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1. Abstract

This document surveys fixed point theory and presents original results.

2. Introduction

Definition: A fixed point of a function f ∶ D → D is a point that gets mapped to itself. That is to say, x
is a fixed point if f(x) = x.

When do we get a fixed point? The following theorems show us how certain properties of the function
f or domain D (for example, continuous functions on norm-compact and convex domains) guarantee the
existence of a fixed point for any transformation of that domain possessing those properties.

Brouwer’s Theorem: Every continuous function from a closed, bounded, and convex (c.b.c.) set K ⊆ Rn

(equipped with the canonical topology induced by the Euclidean distance) into K has a fixed point.

We will prove Brouwer’s Theorem in one dimension.

Proof. If n = 1 and K is closed, bounded, convex, and nonempty then K = [a, b] for some real numbers
a < b. Consider the Intermediate Value Theorem: For f a continuous function over [a, b] and for m between
f(a) and f(b), then ∃c ∈ [a, b] such that f(c) =m. Now fix a continuous function f ∶ [a, b]→ [a, b]. In order
to have a fixed point, we want f(x) = x. Now, consider g(x) = f(x) − x. Note that g is also a continuous
function. Here, we want g(x) = 0.
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A trivial solution to g(x) = 0 could occur at one of our end points, i.e. f(a) = a and f(b) = b. If this is not
the case, f(a) > a or f(b) < b. Then, g(a) > 0 and g(b) < 0. Apply I.V.T. to g. Hence, for some c ∈ [a, b], it
follows that g(c) = 0 which implies f(c) = c. Therefore, there exists a fixed point.

When generalizing to higher dimensions, the proof of Brouwer’s Theorem becomes vastly more complicated.
One such proof was written by Takejiro Seki [10]. A generalization of the theorem itself is due to Schauder
in the context of Banach spaces is as follows [7].

Definition: A Banach space (B-space) (X, ∥ ⋅ ∥) is a vector space X and a norm ∥ ⋅ ∥ on X so that X is
complete in the topology induced by ∥ ⋅ ∥.

Schauder’s Theorem: Every continuous function from a compact, convex domain D (in a B-space) back
into D has a fixed point.

Before continuing with results like these, let us see some counter-examples indicating that the geometric
domain restrictions are indeed necessary.

Consider ρ ∶ S1 → S1 given by ρ(cos(θ), sin(θ)) = (cos(θ+π/2), sin(θ+π/2)). This function rotates the circle
S1 90 °. In this case, the lack of convexity is what allows us to have a fixed point free map that is so simple.

Consider s ∶ R → R given by s(x) = x + 1. This is not a bounded domain. Here, we suppose s has a fixed
point. This then implies that x = s(x) = x+1 ⇔ 0 = 1. We achieve a contradiction. The lack of boundedness
allows for a simple fixed point free map.

Consider h ∶ (0,1) → (0,1) given by h(x) = x/2. This is not a closed domain in the canonical topology on
R. Suppose a fixed point exists. Then, the only solution x = h(x) = x/2 would be x = 0. Thus, the lack of a
closed domain allows for another fixed point free map.

Even though ρ, s, and h are continuous, we have now seen that closedness, boundedness, convexity, and
compactness themselves do not inherently imply that a fixed point exists, but combinations of conditions
can guarantee the existences of a fixed point (or, absence of a condition can allow for a very simple fixed
point free map).

Now, consider the following map from Brailey Sims [8]:

In what follows, c0 is the set of sequences which converge to 0. We equip this vector space with the sup-norm
∥ ⋅ ∥∞ to make it a B-space.

Let C = B+c0 ∶= {(xn) ∈ c0 ∶ 0 ≤ xn ≤ 1,∀n}, where all sequences, xn, in c0 approach 0 as n → ∞. We define
the following affine map:

S1 ∶ C → C ∶ (x1, x2, x3, ...)↦ (1, x1, x2, ...)

Now, to prove that this map is fixed point free. By way of contradiction, assume that there exists a fixed
point. Then, S1(xn) = (1,1,1, ...). However, then lim

n→∞(xn) = 1 which proves that (xn) is not in c0. Thus,

S1 must be fixed point free.

Another example, due to Brailey Sims, is as follows [8]. Here {e1, e2, e3, ...} is the standard basis for c0
with e1 = (1,0,0, ...), e2 = (0,1,0,0, ....), etc. This is an example of a fixed point free contractive map, which
is a central focus of this document.

Definition. Let (X,d) be a metric space. A function f from X to itself is a nonexpansive if ∀x, y ∈X, it
follows that d(f(x), f(y)) ≤ d(x, y).
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Definition. Let (X,d) be a metric space. A function f from X to itself is a contractive map if ∀x, y ∈X,
it follows that d(f(x), f(y)) < d(x, y).

Note that all contractive functions are nonexpansive. Note also that every nonexpansive function is contin-
uous. In fact, such maps are Lipschitz continuous with a Lipschitz constant of 1.

Example: Let λn be a decreasing sequence of real numbers that converge to 1. Define C ∶= {
∞
∑
n=1

tnλnen ∶

(tn) ∈ c0,0 ≤ tn ≤ 1,∀n} and S to be an affine map on C such that S(
∞
∑
n=1

tnλnen) ∶= λ1e1 +
∞
∑
n=1

tnλn+1en+1.

We will show that S is fixed point free for the specific case of λn = n+1
n

[8].

Now, consider
∞
∑
n=1

tnλnen = (t1λ1, t2λ2, t3λ3, ...) = (2t1,
3

2
t2,

4

3
t3, ...). Then, S(

∞
∑
n=1

tnλnen) = (2,
3

2
t1,

4

3
t2, ...).

This is essentially a modified shift. Thus, S is a mapping of C into C that is nonexpansive and contractive,
given that (λn) is strictly decreasing.

Do we have a fixed point? Recalling the definition, we know that we achieve a fixed point when
∞
∑
n=1

tnλnen =

S(
∞
∑
n=1

tnλnen), or when (2t1, 32 t2,
4
3
t3, ...) = (2, 32 t1,

4
3
t2, ...). This only occurs when tn = 1∀n. Thus, the only

possible fixed point here is (2, 3
2
, 4
3
, ...) = (λ1, λ2, λ3, ...) which is not in c0 since (λn)↛ 0 as n→∞.

We next prove that S is contractive.

With λn = n+1
n

, we want to show that ∃0 ≤ k < 1 such that kd(tn, tm) ≥ d(S(tn, tm)).

∣S(
∞
∑
n=1

tnλnen) − S(
∞
∑
m=1

tmλmem)∣ = ∣(2, 32 t1,
4
3
t2, ...) − (2, 32 t1,

4
3
t2, ...)∣ = 0

We know that kd(tn, tm) cannot be negative. Therefore, S is contractive.

Banach’s Contraction Mapping Theorem, also known as the Banach Fixed Point Theorem, guarantees the ex-
istence and uniqueness of a fixed point for certain mappings within complete metric spaces. These mappings
are referred to as contraction maps or strict contractions.

Definition. The function f ∶D →D is a contraction map if the following condition is satisfied:

∃0 ≤ k < 1 with k ∈R such that ∀x, y ∈X it follows that d(f(x), f(y)) ≤ kd(x, y)

Banach’s Contraction Mapping Theorem: Every contraction mapping on a complete metric space has
a unique fixed point.

Proof: Define a contraction map f ∶ X → X with (X,d) being our metric space. We want to show that
there exists at least one fixed point of f . We define a sequence {xn} with x0 ∈ X given and xj = f(xj−1).
We notice that

d(x1, x2) = d(f(x0), f(x1)) ≤ kd(x0, x1)
d(x2, x3) ≤ kd(x1, x2) ≤ k2d(x0, x1)

and so on...

d(xn, xn+1) ≤ kd(xn−1, xn) ≤ knd(x0, x1)
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Assume n <m. We know two facts:

(1) d(xn, xn+1) ≤ knd(x0, x1)
(2) d(xn, xn+2) ≤ d(xn, xn+1) + d(xn+1, xn+2)

≤ knd(x0, x1) + kn+1d(x0, x1) = (kn + kn+1)d(x0, x1)

Consider the following,

d(xn, xm) ≤ (kn + kn+1 + ... + km−1)d(x0, x1) = kn(1 + k + k2 + ... + k(m−1)−n)d(x0, x1)
< kn(1 + k + k2 + ...)d(x0, x1) = kn 1

1−kd(x0, x1)

We can rewrite it in this fashion because this is a geometric series.
Because k < 1, kn 1

1−kd(x0, x1) converges to 0. Therefore, {xn} Cauchy in a complete metric space. Hence,
{xn} converges to a single point, x. Note that fn refers to the nth iterate of f in what follows. Now, to
show that x is a fixed point of f :

We have by definition of our sequence xn = fn(x0). Then by the continuity of f ,

x = lim
n→∞xn = lim

n→∞ fn(x0) = lim
n→∞ f(fn−1(x0)) = f( lim

n→∞ fn−1(x0)) = f(x)

Now, to show that this fixed point is unique: By way of contradiction, suppose there exist two fixed points of
X, i.e. f(x1) = x1 and f(x2) = x2. Then, d(x1, x2) = d(f(x1), f(x2))≤kd(x1, x2) However, we know 0 ≤ k < 1
so d(x1, x2) must equal 0, which implies that x1 and x2 are the same point.
Thus, f contains only one unique fixed point.

Kirk’s Theorem: Let K be a nonempty, bounded, closed, and convex subset of a reflexive Banach space
X, and suppose that K has a normal structure. If ϕ is a nonexpanisve mapping of K into itself, then ϕ has
a fixed point.

More information (including definitions) regarding reflexive spaces and normal structure can be seen in
Appendix 8.

2.1. Alspach’s Map. Fixed point free maps are also of particular interest to mathematicians. In 1981, Dale
Alspach [2] provided an example of a fixed point free map of a weakly compact and convex set, C1/2. Note
that the elements here are really equivalence classes of functions, with additional details on this equivalence
in Appendix A. Below, L1[0,1] = L1([0,1],Σ, µ) where µ is Lebesgue measure and Σ is the sigma-algebra of
Lebesgue-measurable subsets of [0,1].

C1/2 = {f ∈ L1[0,1] ∶ 0 ≤ f(t) ≤ 1 for all t and ∫
1
0 f = 1

2
}

Alspach’s Map T ∶ C1/2 → C1/2 is given by

Tf(t) = { 2f(2t) ∧ 1 t ∈ [0,1/2)
(2f(2t − 1) − 1) ∨ 0 t ∈ [1/2,1)

Here, for all α,β ∈ R, α∧β ∶= min {α,β} and α∨β ∶= max {α,β}. Alspach’s map is a fixed point free isometry.
Every isometry is a nonexpansive map, defined below and also known as Lipschitz-1.

Proof that T is fixed point free: This proof has been modified from the writing of Brailey Sims [8].
We let T be defined as it is above. That is to say, that ∀f ∈ C, it follows that Tf(t) = 1 iff either 0 ≤ t ≤ 1

2

and 1
2
≤ f(2t) ≤ 1 or 1

2
< t ≤ 1 and f(2t − 1) = 1. We can also note that 1

2
≤ t ≤ 1 and Tf(t) = 1 implies that

Tf(t − 1
2
) = 1.



FIXED POINT THEORY AND INVARIANT SETS: INTRODUCTION AND NEW EXAMPLES 5

Now, we assume that T is not fixed point free. Let f be a fixed point of T . Then,

A ∶ = {t ∶ f(t) = 1}
= {t ∶ Tf(t) = 1}

= {t ∶ 0 ≤ t ≤ 1

2
and

1

2
≤ f(2t) ≤ 1} ∪ {t ∶ 1

2
< t ≤ 1 and f(2t − 1) = 1}

= {1
2
t ∶ 1

2
≤ f(t) ≤ 1} ∪ {1

2
+ 1

2
t ∶ f(t) = 1}

= 1

2
{t ∶ 1

2
≤ f(t) < 1} ∪ 1

2
A ∪ (1

2
+ 1

2
A)

We can see that the three sets in the above union are mutually disjoint. We can also note that each of the
last two sets have a measure that is half of that of A. Therefore, it follows that:

B1 ∶= {t ∶
1

2
≤ f(t) < 1}

is a null set. However,

B1 ∶= {t ∶
1

2
≤ Tf(t) < 1} ⊃ { t

2
∶ 1
4
≤ f(t) < 1

2
}

and thus, B2 ∶= {t ∶ 14 ≤ f(t) <
1
2
} is also null. We continue this pattern and find that

Bn ∶= {t ∶
1

2n
≤ f(t) < 1

2n−1
}

is also null for n ∈ Z. Therefore, we can conclude that

{t ∶ 0 < f(t) < 1} =
∞
⋃
n=1

Bn

is null and

f ≡ χA where µ(A) = ∫
1

0
χA =

1

2

From the definition of T we have

T (χA) = (χ 1
2A
+ χ( 12+ 1

2A))

And thus, up to sets of measure zero,

A = 1

2
A ∪ (1

2
+ 1

2
A)

We continue to iterate T and find that

A = 1

4
A ∪ (1

4
+ 1

4
A) ∪ (1

2
+ 1

4
A) ∪ (3

4
+ 1

4
A)

A = 1

8
A ∪ (1

8
+ 1

8
A) ∪ (1

4
+ 1

8
A) ∪ ...

and so on and so forth.

Thus, the intersection of A with any given dyadic interval has measure half of that of the interval, which
is impossible for a set that is not of full measure. Note that the domain of C1/2 of T is not a minimal
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invariant set. This follows from diam(C) = 1 as 1 ≥ diam(C) ≥ ∥χ[0, 12 ] − χ[ 12 ,1]∥1 = 1 while ∀f ∈ C1/2, we

have − 1
2
≤ f − 1

2
≤ 1

2
which implies ∥f − 1

2
χ[0,1]∥1 = ∫

1
0 ∣f −

1
2
∣ ≤ 1

2
.

Therefore, C1/2 is not diametral (defined in Appendix B) and hence, not a minimal invariant set. The
concept of this proof is simple: We know that iterates of T assume values at either 0 or 1. If T is to have a
fixed point, it must be a function that also assumes only values 0 or 1. However, we have just shown that
functions that are either constantly 0 or constantly 1 do not lie in C1/2 and therefore, T cannot contain a
fixed point.

3. Fixed Point Free Contractive Maps

It was unknown until 2014 if there were strictly contractive fixed point free maps on sets like the domain of
T . Then such an example was created as defined below. This map acts on C1/2 and is built from T :

R ∶ C1/2 → C1/2 ∶ f ↦
∞
∑
n=0

Tnf

2n+1
= (I

2
+ T

4
+ T 2

8
+ ...)(f).

It is known that this map is fixed point free and contractive [3]. Here, I refers to the identity map, which
we will also denote as T 0.
Question ∶ If we change the ratio r in the fixed point free map R from 1

2
to some other number in (0, 1),

does the resulting map remain fixed point free and contractive?

It is important to recall that T is Alspach’s map and that Alspach’s map is an isometry. That is to say,
∥Tf − Tg∥1 = ∥f − g∥1 for all f, g ∈ C1/2. For the remainder of this paper, we will use T to refer to Alspach’s

map and ∥ ⋅ ∥ = ∥ ⋅ ∥1 where domains are subsets of L1.

We will use the following lemma from [3].

Lemma 1. For every f, g ∈ C1/2 with ∥f − g∥ > 0, there is some N ∈ N such that

∥I + T
N

2
f − I + TN

2
g∥ < ∥f − g∥.

3.1. Special Cases. First, we consider a special case. We start with the case r = 1/3 where F 1
3
f = 1

2
If +

∞
∑
n=0

1

3n+1
Tnf .

We want the sum of all coefficients to be equal to 1. Since
∞
∑
n=0

1

3n+1
= 1

2
, we chose

1

2
to be our coefficient on

the I term.

Now, consider ∥F 1
3
f − F 1

3
g∥.

∥F 1
3
f − F 1

3
g∥ = ∥1

2
I(f − g) + 1

3
I(f − g) + 1

9
T (f − g) + 1

27
T 2(f − g) + 1

81
T 3(f − g) + ...∥ = ⋆

We can rearrange our terms as follows, distributing the I-term coefficient throughout the terms that follow
it:

⋆ = ∥2
3
(f − g) + 2

9

I + T
2
(f − g) + 2

27

I + T 2

2
(f − g) + ... + 2

3N+1
I + TN

2
(f − g) + 2

3N+2
I + TN+1

2
(f − g) + ...∥

We then simplify using the fact that Alspach’s map is an isometry and apply the Triangle
Inequality.

⋆ ≤ 2
3
∥f − g∥ + 2

9
∥f − g∥ + 2

27
∥f − g∥ + 2

81
∥f − g∥ + ... + 2

3N+1 ∥
I+TN

2
∥ + 2

3N+2 ∥f − g∥ + ...
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We then apply Lemma 1 on the N -th term, getting ⋆ < (1 − 2
3N+1 )∥f − g∥ +

2
3N+1 ∥f − g∥ = ∥f − g∥. Hence,

∥F 1
3
f − F 1

3
g∥ < ∥f − g∥.

Therefore, this map remains contractive for r = 1
3
.

Now, we will show that the map is fixed point free using the technique that worked in [3]:

F1/3(Tf) =
1

2
(Tf) +

∞
∑
n=0

1

3n+1
Tn(Tf) = T

2
f +

∞
∑
n=0

1

3n+1
Tn+1f = (T

2
+ T

3
+ T 2

9
+ ...)f

= (5
6
T + T 2

9
+ T 3

27
+ ...)f

Thus,
F1/3(Tf)

3
= ( 5

18
T + T 2

27
+ T 3

81
+ ...)f .

Besides our first term,
F1/3(Tf)

3
looks remarkably similar to F1/3f . We can write our F1/3f in terms of F1/3Tf

by subtracting our excess amount of T and adding our 5
6
I:

F1/3f = 5
6
If − 1

6
Tf + F1/3Tf

3

Now, consider ∥F1/3f − F1/3g∥ = ∥ 56(f − g) −
1
6
(Tf − Tg) + 1

3
(FTf − FTg)∥ = ♡

We apply the reverse triangle inequality:

♡ ≥ 5
6
∥f − g∥ − 1

6
∥Tf − Tg∥ − 1

3
∥F1/3Tf − F1/3Tg∥ ≥ 5

6
∥f − g∥ − 1

6
∥f − g∥ − 1

3
∥f − g∥ = 1

6
∥f − g∥

Since ∥f − g∥ > 0, ∥F1/3f − F1/3g∥ > 0 which implies that F1/3 is 1-1.

If F1/3f0 = f0, then f0 = 5
6
f0 + 1

9
Tf0 + 1

27
T 2f0 + ...
f0 = 5

6
f0 + 1

9
Tf0 + 1

27
T 2f0 + ...

1
6
f0 = 1

9
Tf0 + 1

27
T 2f0 + ...

f0 = 2
3
Tf0 + 2

9
T 2f0 + ... = F (Tf0)

Since F1/3 is 1-1, we have just shown that f0 = Tf0. However, it is known that T is fixed point free. Thus,
we achieve a contradiction. F1/3 is fixed point free.

Now, let us consider another attempt using r = 3
4
:

F3/4 =
∞
∑
n=0

3n

4n+1
Tnf.

The coefficients in the sum is 1. Thus, we do not need an additional I term before our sum. We can rewrite
this as follows, breaking the sum up into a portion where the coefficients add to 1

4
and the remaining terms.

By doing this, we ensure that the 1
4
I can evenly be distributed throughout the T values of that portion.

2

3
( 3
16

T + 9

64
T 2 + ...) + (1

4
I + 1

16
T + 3

64
T 2 + ...) = (1

8
T + 3

32
T 2 + ...) + (1

8
(I + T

2
) + 3

32
(I + T

2

2
) + ...)

Then,
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∥F3/4f − F3/4g∥ = ∥(1
8
T (f − g) + 3

32
T 2(f − g) + 9

128
T 3(f − g)...)

+(1
8

I + T
2
(f − g) + 3

32

I + T 2

2
(f − g) + ... + 3N−1

2(4N)
I + TN

2
(f − g) + ...)∥

≤ (1
8
∥T (f − g)∥ + 3

32
∥T 2(f − g)∥ + 9

128
∥T 3(f − g)∥ + ...)

+(1
8
∥I + T

2
(f − g)∥ + 3

32
∥I + T

2

2
(f − g)∥ + 9

128
∥I + T

3

2
(f − g)∥ + ...

+ 3N−1

2(4N)
∥I + T

N

2
(f − g)∥ + ...)

Because T is an isometry, we can simplify the first expression to achieve the following: ∥F3/4f − F3/4g∥ ≤
1

2
∥f − g∥ + (1

8
∥I + T

2
(f − g)∥ + 3

32
∥I + T

2

2
(f − g)∥ + 9

128
∥I + T

3

2
(f − g)∥ + +⋯+ 3N−1

2(4N)
∥I + T

N

2
(f − g)∥ + ...) .

Again, we apply our lemma to the N -th term.

∥F3/4f −3/4 g∥ < 1
2
∥f − g∥ + ( 1

2
− 3N−1

2(4N ))∥f − g∥ +
3N−1
2(4N )∥f − g∥

Hence, ∥F3/4f − F3/4g∥ < ∥f − g∥. Therefore, this map remains contractive for r = 3
4
.

What would remain to resolve is whether this map is fixed point free.

We know that F3/4f =
∞
∑
n=0

3n

4n+1
Tnf .

F3/4(Tf) =
∞
∑
n=0

3n

4n+1
Tn+1f = (1

4
T + 3

16
T 2 + 9

64
T 3 + ...)f . We can rewrite F3/4f in terms of F3/4(Tf):

F3/4f = 1
4
I + 3

4
F3/4(Tf)

Now, consider ∥F3/4f − F3/4g∥ = ∥ 14(f − g) +
3
4
(F3/4Tf − F3/4Tg)∥ = ♣

The reverse triangle inequality (and the non-expansiveness of F3/4T ) no longer helps if we try to apply it in
the same way:

♣ ≥ 1
4
∥f − g∥ − 3

4
∥F3/4Tf − F3/4Tg∥ > 1

4
∥f − g∥ − 3

4
∥f − g∥ = − 1

2
∥f − g∥.

In the previous case, having positive k in the expression ∥F1/3f − F1/3g∥ ≥ k∥f − g∥ > 0 was crucial. This
calculation breaking down in this case greatly informs our general result in the following subsection.

If we were to continue with the assumption that F is 1-1 and assume that F3/4f0 = f0, then

f0 =
f0
4
+ 3

16
Tf0 +

9

64
T 2f0 + ... =

∞
∑
n=0

3n

4n+1
Tnf0.

We then rearrange this equation as shown below: First, by subtracting f0
4

from both sides and then by

dividing each side by 3
4
.
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f0 =
f0
4
+ 3

16
Tf0 +

9

64
T 2f0 + ...

3

4
f0 =

3

16
Tf0 +

9

64
T 2f0 + ...

f0 =
1

4
Tf0 +

3

16
T 2f0 + ... = F3/4(Tf0)

If F3/4 were to be 1-1, we could see how Tf0 = f0 implies that Alspach’s map has a fixed point. Thus, since
Alspach’s map is fixed point free, this is a contradiction. Therefore, F3/4 is fixed point free if F3/4 is 1-1.
However, because we cannot determine injectivity, we cannot conclude that F3/4 is fixed point free.

3.2. Generalizing What Works. We would like to generalize the working construction from F1/3 to
an unknown r ∈ (0,1). Specifically, for r ∈ (0,1) we would like to define a selfmap on C1/2 given by

Wrf = cf + b
∞
∑
n=1

rnTnf for positive real numbers c and b to be determined. Noting that
∞
∑
n=1

rn = r

1 − r
we

need c + b( r
1−r ) = 1 in order for Wr to map f back into C1/2.

Then, Wr(f) = cTf + b(r2Tf + r3T 2f + ...) while Wr(f) = cf + b(rTf + r2T 2f + ...).

This implies that rWr(f) −Wr(f) = rcTf − rbTf − cf . Let f0 be such that Wr(f0) = f0. Then, rWr(Tf0) =
r(c − b)Tf0 + (1 − c)f0 = ♣.

This last expression lead to proving F1/3 is fixed point free exactly because the coefficient on Tf0 was 0. To

that end, let c = b. Then b + b( r
1−r ) = b(1 +

r
1−r ) = b(

1−r+r
1−r ) = 1 which implies b = 1 − r.

Then, ♣ = r(b−b)Tf0+(1−b)f0 = r(0)Tf0+(1−(1−r))f0 = rf0. Thus, rWr(Tf0) = rf0. So this construction
shows promise.

Wr ∶ C1/2 → C1/2 ∶ f ↦ (1 − r)f + (1 − r)
∞
∑
n=1

rnTnf

To prove that Wr is contractive we will use the following lemma.

Lemma 2. Let {cn}∞n=0 ⊆ (0,1) be such that
∞
∑
n=0

cn = 1. Then G ∶ C1/2 → C1/2 given by G =
∞
∑
n=0

cnT
n is a

contractive map.

Proof: We note first that rearrangement of terms preserves the value of (Gf)x =
∞
∑
n=0

cn(Tnf)(x) for any

f ∈ C1/2 and any x ∈ [0,1] because the convergence of this series is absolute. We will decompose the series

as G = E +
∞
∑
n=1

dn (
I + Tn

2
). We will call E the “extra terms”. The terms with I+Tn

2
make G contractive and

the extra terms keep G a convex combination of Tn.

If c0 ≤
∞
∑
n=1

cn, then (noting the sum on the right hand side equals 1 − c0 and also that c0 ≤ 1/2) define

dn =
2c0cn
1 − c0

. In this case the extra terms are E = 1 − 2c0
1 − c0

∞
∑
n=1

cnT
n.

To see that G is contractive in this case, let f, g ∈ C1/2 be given with ∥f−g∥ > 0. Because ∥Tnf−Tng∥ = ∥f−g∥
for every n, it follows that

∥Ef −Eg∥ ≤ 1 − 2c0
1 − c0

∞
∑
n=1

cn∥Tnf − Tng∥

= 1 − 2c0
1 − c0

∞
∑
n=1

cn∥f − g∥ = (1 − 2c0)∥f − g∥.
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And also,

∥
∞
∑
n=1

dn [(
I + Tn

2
) f − (I + T

n

2
) g]∥ ≤

∞
∑
n=1

dn ∥(
I + Tn

2
) f − (I + T

n

2
) g∥

<
∞
∑
n=1

dn∥f − g∥

= 2c0∥f − g∥
1 − c0

∞
∑
n=1

cn = 2c0∥f − g∥.

The strict inequality above is provided by Lemma 1. Putting these together, we have

∥Gf −Gg∥ = ∥Ef −Eg +
∞
∑
n=1

dn [(
I + Tn

2
) f − (I + T

n

2
) g]∥

< (1 − 2c0)∥f − g∥ + 2c0∥f − g∥ = ∥f − g∥.

In the remaining case, we have c0 >
∞
∑
n=1

cn. In this case, we can let dn = 2cn and E = (2c0 − 1)I. Then we

have

∥Gf −Gg∥ = ∥Ef −Eg +
∞
∑
n=1

dn [(
I + Tn

2
) f − (I + T

n

2
) g]∥

= ∥(2c0 − 1)(f − g) +
∞
∑
n=1

2cn [(
I + Tn

2
) f − (I + T

n

2
) g]∥

≤ (2c0 − 1)∥f − g∥ +
∞
∑
n=1

2cn ∥(
I + Tn

2
) f − (I + T

n

2
) g∥

< (2c0 − 1)∥f − g∥ + 2
∞
∑
n=1

cn∥f − g∥

= (2c0 − 1)∥f − g∥ + 2(1 − c0)∥f − g∥ = ∥f − g∥.
Once again, the strict inequality above comes from Lemma 1. □

Lemma 3. If the map Wr is one-to-one for a given r ∈ (0,1), then it is fixed point free.

Proof: Let r ∈ (0,1) be given and suppose that Wr is one-to-one. By way of contradiction, suppose that
f0 ∈ C1/2 is such that Wr(f0) = f0. This means f0 = (1 − r)f0 + r(1 − r)Tf0 + r2(1 − r)T 2f0 +⋯. Subtracting
(1 − r)f0 from both sides of this equation and then dividing by r gives the following.

f0 = (1 − r)f0 + r(1 − r)Tf0 + r2(1 − r)T 2f0 +⋯
rf0 = r(1 − r)Tf0 + r2(1 − r)T 2f0 + r3(1 − r)T 3f0 +⋯

f0 = (1 − r)Tf0 + r(1 − r)T 2f0 + r2(1 − r)T 3f0 +⋯ =Wr(Tf0).
We have shown that Wr(Tf0) = f0 = Wr(f0). Supposing that Wr is one-to-one, we would have Tf0 = f0.
Since T is fixed point free, this would be a contradiction. □

Lemma 4. For any r ∈ (0,1/2], Wr is one-to-one on C1/2.

Proof: Let f, g ∈ C1/2 be given so that ∥f −g∥ > 0. In the following calculation, we use that Wr is contractive.

∥Wrf −Wrg∥ = ∥(1 − r)(f − g) + r(1 − r)(Tf − Tg) + r2(1 − r)(T 2f − T 2g) +⋯∥
≥ (1 − r)∥f − g∥ − ∥r(1 − r)(Tf − Tg) + r2(1 − r)(T 2f − T 2g) +⋯∥
= (1 − r)∥f − g∥ − r∥WrTf −WrTg∥
> (1 − r)∥f − g∥ − r∥Tf − Tg∥ = (1 − r)∥f − g∥ − r∥f − g∥ ≥ 0. □

Putting these lemmas together, we have proven the following theorem.
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Theorem 5. For any r ∈ (0,1/2], Wr is contractive and fixed point free on C1/2.

The question remains open when r > 1/2. By Lemma 2, the maps are all contractive. Lemma 4 breaks
down when r > 1/2. Considering a map like Ar = (I +Wr)/2 (which is fixed point free if and only if Wr is
fixed point free) extends the values of r to which a result like Lemma 4 applies, however it is unclear if the
appropriate variation of Lemma 3 holds.

We note another natural way to generalize R is the family of maps Gr ∶ C1/2 → C1/2 ∶ f ↦ 1−2r
1−r f +

∞
∑
n=1

rnTnf.

These maps are contractive and we can see that G1/2 is R. But it is unclear if these maps are fixed point
free.

4. Minimal Invariant Sets

Question: The minimal invariant set for T has already been characterized [4]. Can we do the same for R
and Wr?

What is a minimal invariant set?

Definition. A set, D, is T-invariant if T (D) ⊆ D. We call a closed, bounded, and convex set, C, a
minimal invariant set for T if it is invariant and no closed, bounded, and convex set K ⊊ C is T -invariant.

Kazimierz Goebel has noted that minimal invariant sets are “bizarre objects” surrounded by much interest
[5]. They were studied and some of their properties were catalogued before Alspach’s example proved that
they existed non-trivially.

With new fixed point free maps identified above, it raises the natural question about their minimal invariant
sets. Are these new minimal invariant sets similar to those characterized by Day and Lennard [4]. Would
iterating the fixed point free maps identified above produce the same weak limits?

These questions informed the next investigations of this study. If a map is fixed point free, the minimal
invariant set is the “next best thing”. It is the closest we can get to a fixed point for a fixed point free map.
The way we know that these minimal invariant sets must exist is by application of Zorn’s Lemma. A simpler
understanding of Zorn’s Lemma can be achieved via the Nested Interval Theorem.

Nested Interval Theorem

We begin with a proof of the Monotone Convergence theorem:

Theorem 6. If a sequence of real numbers is monotone and bounded, then it converges.

Proof. Let (an) be an increasing sequence of real numbers that is bounded. Then ∃A ∈ R such that
∀n ∈ N, an ≤ A. Consider {an} which is bounded since (an) is bounded. Denote the supremum of the set
as U = sup{an}. Let ϵ > 0. U − ϵ cannot be an upper bound and hence, there exists some aN such that
aN > U − ϵ. Thus, because (an) is increasing, we have for any n > N

⍟ U − ϵ < an < U + ϵ
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which implies ∥an −U∥ < ϵ for any n > N . Hence, lim
n→∞an = U and (an) is convergent. A similar proof holds

for decreasing sequences.

Proof of ⍟.
Claim. For U = sup{an}, U − ϵ < an < U + ϵ holds for n sufficiently large.

Proof. We want to show that ∀ϵ > 0,∃a0 ∈ {an} such that a0 > U − ϵ. Suppose that a0 < U − ϵ and that
no element of {an} exists and is greater than (U − ϵ). Then, (U − ϵ) would be an upper bound of {an} by
definition, contradicting U = sup{an}.
The Nested Interval Theorem (N.I.T.) is as follows:

Theorem. Let (Ck)∞k=1 be a collection of closed intervals, Ck = [xk, yk], such that Ck+1 ⊆ Ck∀k. Then,
∩∞k=1Ck ≠ ∅. Additionally, if lim

k→∞
(yk − xk) = 0, then ∩∞k=1Ck consists of a single point.

Below, we prove the Nested Interval Theorem:

Proof. Let Ck = [xk, yk] and Ck+1 = [xk+1, yk+1]. Since Ck+1 = [xk+1, yk+1] ⊆ Ck = [xk, yk], xk+1 ≥ xk and
yk+1 ≤ yk. Hence, {xk} is an increasing sequence and is bounded below. By the Monotone Convergence
Theorem above, {xk} converges. That is to say, ∃ lim

k→∞
{xk} = x. From this, we know that sup{xk} = x. Note

that {yk} is bounded below by x1 ≤ xk ≤ yk ∀k.

Similarly, {yk} is a decreasing sequence and is also bounded. Again, by the Monotone Convergence Theorem,
there is a limit y = lim

k→∞
{yk}. This implies that inf{yk} = y. Since xk ≤ yk ∀k, any arbitrary yj of the sequence

{yk} is an upper bound of {xk} and any arbitrary xj of the sequence {xk} is a lower bound of {yk}. Hence
x ≤ yk∀k and x ≤ y. Thus, we obtain ∀k

xk ≤ x ≤ y ≤ yk.

This demonstrates that [x, y] ⊆ [xk, yk]. Thus, ⋂∞k=1Ck ≠ ∅.

Cantor’s Intersection Theorem

The Nested Interval Theorem can also be generalized to higher finite dimensions. And an even more general
result is demonstrated in Cantor’s Intersection Theorem:

Theorem. Let S be a topological space. A decreasing nested sequence of non-empty compact, closed subsets
of S has a non-empty intersection. That is to say, if we suppose that (Ck)k≥0 is a sequence of non-empty
compact, closed subsets of S such that C0 ⊃ C1 ⊃ C2 ⊃ ...Cn ⊃ Cn+1 ⊃ ..., then ⋂∞k=0Ck ≠ ∅.

Proof. By way of contradiction, suppose ⋂∞k=0Ck = ∅. For all k ∈ N, let Uk = C0 ∖ Ck. Then, ⋂∞k=0Uk =
C0 ∖⋃∞k=0Ck. Thus, since ⋂∞k=0Ck = ∅, we have ⋃∞k=0Uk = C0. Since the Ck are closed relative to S, the Ck

are also closed relative to C0 and the Uk are open relative to C0 since the Uk are the set complements of the Ck.

Now, since C0 ⊂ S is compact and {Uk ∣k ≥ 0} is an open cover of C0, we can extract a finite cover
{Uk1

, Uk2 , Uk3 , ..., Ukm}. Denote M = max1≤i≤m ki. Then, ⋃m
i=1Uki = UM because U1 ⊂ U2 ⊂ ... ⊂ Un ⊂

Un+1 ⊂ ... by our nesting hypothesis.

Consequently, C0 = ⋃m
i=1Uki = UM . But then CM = C0 ∖UM = ∅, which is a contradiction.
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Zorn’s Lemma

Proved in the early 20th century, Zorn’s Lemma is a proposition of set theory. The lemma has multiple
applications and is a foundational element throughout numerous branches of mathematics, including analysis,
topology, and ring theory. Before any discussion of the lemma or its proof, here are a few foundational
definitions:

Definition. Let B be a partially ordered set. A subset A ⊆ B is called an initial segment if for ∀a ∈ A
and ∀b ∈ B, a ≤ b implies that a ∈ B.

Definition. A subset is called the greatest common segment of two or more sets if it is the largest
subset that is contained within all of the sets.

Definition. A subset or segment A ⊂ B is called proper if all elements of A are in B but A ≠ B.

Zorn’s Lemma is as follows:

Lemma. Let P be a partially ordered set (P,≤) with the property that every chain C ⊆ P is bounded. Then
P has a maximal element.

Proof. By way of contradiction, suppose P is a partially ordered set such that every chain in P has an
upper bound in P and P has no maximal elements. Take any nonempty chain C ⊆ P . If C is a chain in
P , then, by assumption, the set of upper bounds of C in P is nonempty. Let us denote the set of all upper
bounds of C that do not lie in C as f(C).

Let us define a function f ∶ P(P ) → P(P ) such that ∀{pj} ∈ P, f({pj}) ⊇ {pj}. Now, take p1 ∈ P . If
p1 is not maximal, let p1 < p2 ∈ f({p1}). If p2 is not maximal, let p2 < p3 ∈ f({p1, p2}). If p3 is not
maximal, let p3 < p4 ∈ f({p1, p2, p3}). After finitely many steps, if we do not have a maximal element,
let pn−1 < pn ∈ f({p1, p2, ..., pn−1)}. This process continues infinitely, only terminating if P has a maximal
element.

Now, suppose we fix an element p ∈ P and let B denote the set of subsets C ⊆ P where

(i) C is a well-ordered chain in P
(ii) p is the least element of C
(iii) For ever nonempty initial segment ∃t ∈ T ⊂ C such that the least element of (C/T ) is f(T )

Clearly, B is nonempty since it contains {p}. We note that if C1, C2 ∈ B are nonempty, then either C1 or
C2 is an initial segment of the other. To see that this is true, let R be the union of all sets that are initial
segments of C1 and C2. Thus, R is the greatest common segment of C1 and C2. If R is a proper initial
segment, then by (iii), f(R) is the least element of (C1 −R) and (C2 −R) but then R ∪ f(R) would be an
initial segment of both C1 and C2, which contradicts our definition of R since f(R) ∩R = {∅}. Hence, this
implies that R cannot be a proper subset of both C1 and C2 and thus, R must be equal to either C1 or C2.

Denote U to be the union of all members of B. By (ii), U is well-ordered. Moreover, all members of B are
initial segments of U and the least element of U is {p}.

We now want to show that (iii) holds for U : If T is a proper nonempty initial segment of U , ∃u ∈ (U/T ).
By construction, u belongs to some C ∈ B, and T is a proper initial segment of C by construction. Thus, by
(iii), f(t) is the least element of (C/T ) which implies that f(t) is the least element of (U/T ). Hence, U is
an element of B.

Now, suppose U does not contain a maximal element of P . Then, U ∪ f(U) ⊆ B but clearly, U ∪ f(U) ⊈ U ,
since ∃f(u) ∈ f(U)∩UC . This contradicts our definition of U , which states that U is the union of all members
of B. Therefore, U must contain a maximal element of P . Thus, a maximal element exists, thereby proving
our lemma. A similar proof shows the existence of minimal elements.
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4.1. Advanced Properties of Minimal Invariant Sets. In 1998, Goebel provided a property of minimal

invariant sets [5]. In what follows co(S) will refer to the closed convex hull of S. Note that co(S) = {
n

∑
k=1

tksk ∶

sk ∈ S ∀k,
n

∑
k=1

tk = 1}.

Property 1. If K is a minimal invariant set, then K = co(T (K))

Proof. By definition of T -invariant, we know that T (K) ⊆K and that T refers to Alspach’s map. We also
know that co(T (K)) is the set of all convex combinations of points in T (K). Thus, T (K) ⊆ co(T (K)).
Now, to show set inclusion, by way of contradiction, suppose that x ∈K but x ∉ co(T (K)). Then, co(T (K))
is “smaller” than K, contradicting the minimality of K. Therefore if x ∈ K,x ∈ co(T (K)) and thus,
K ⊆ co(T (K)). Now, we know that T (K) ⊆ K. Take the convex hull of both sides of the inequality.
co(T (K)) ⊆ co(K) =K since K is convex. Thus, co(T (K)) ⊆K. Therefore, K = co(T (K)).

Definition. For any F ∶ D → D and any f ∈ D, define Mf(F ) to be the minimal invariant set for F that
contains f .

Consider R the contractive, fixed point free map defined above. Note that because R is contractive, it has
only one minimal invariant set [5]. Therefore we will use the notation M(R) to denote this set. It’s also
known that in C1/2, T has a unique minimal invariant set which we will denote M(T ).

Claim: It holds that M(R) ⊆M(T ).

Proof. Let f ∈M(T ). We want to show that M(T ) is R-invariant which would follow from R(f) ∈M(T ).

Recall that M(T ) is convex and closed. Recall that R(f) =
∞
∑
n=0

Tnf

2n+1
.

Now, T ∶M(T ) →M(T ). Thus, Tf ∈M(T ), T 2f ∈M(T ), and so on. Hence, all convex combinations must
also be in M(T ), including R(f). Therefore, R ∶M(T )→M(T ), which is to say that M(T ) is R-invariant.
Thus M(R) ⊆M(T ).

4.2. Outputs of R. Previous discoveries of minimal invariant sets have hinged on computing the weak
limits of iterates of the fixed point free map [4]. We aim to do the same for Wr starting with R = W1/2.
Define g(x) = 1

2
. We begin by proving that Rg = 3

4
− 1

2
x. The following lemma is closely related to a lemma

in [3]. We prove the version we need here.

Lemma 7. For any n ≥ 1, Tng = ∑
0≤k<2n−1

χ[ 2k2n , 2k+12n ].

Proof: We proceed by induction.

Let n = 1 be our base case.
For x ∈ [0, 1

2
), Tg(x) = 2g(2x) ∧ 1 = 1

For x ∈ [ 1
2
,1], Tg(x) = (2g(2x − 1) − 1) ∨ 0 = 0

Assume by way of induction that Tng(x) = ∑
0≤k<2n−1

χ[ 2k2n , 2k+12n ]. Then, throughout, let f = Tng, allowing the

abbreviation Tf for the next iterate. Below, we check the following cases. These are appropriate dyadic
intervals starting with either an even or odd numerator.

We have four cases:
Case 1: x ∈ [ 2k

2n+1 ,
2k+1
2n+1 ) ∩ [0,

1
2
)

Then, 2x ∈ [ 2k
2n

, 2k+1
2n
) so Tf(x) = 2f(2x) ∧ 1 = 2 ∗ 1 ∧ 1 = 1
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Case 2: x ∈ [0, 1
2
) ∩ [ 2k+1

2n+1 ,
2k+2
2n+1 )

Then, 2x ∈ [1,2]⇒ (2x − 1) ∈ [0,1] so Tf(x) = 2f(2x) ∧ 1 = 2 ∗ 0 ∧ 1 = 0

Case 3: x ∈ [ 1
2
,1] ∩ [ 2k

2n+1 ,
2k+1
2n+1 )

Then, 2x ∈ [1,2]⇒ (2x − 1) ∈ [0,1] so Tf(x) = (2f(2x − 1) − 1) ∨ 0 = 1 ∨ 0 = 1

Case 4: x ∈ [ 2k+1
2n+1 ,

2k+2
2n+1 ) ∩ [

1
2
,1)

Then, 2x ∈ [ 2k
2n

, 2k+1
2n
)⇒ (2x − 1) ∈ [ 2k+1−2

n

2n
, 2k+2−2

n

2n
) so Tf(x) = (2f(2x − 1) − 1) ∨ 0 = (2 ∗ 0 − 1) ∨ 0 =

= −1 ∨ 0 = 0

We have shown that Tf(x) = 1 exactly when x is in an appropriate dyadic interval starting with an even
numerator. Therefore, Tn+1g(x) = ∑

0≤k<2n
χ[ 2k

2n+1 , 2k+1
2n+1 ]

.

Let hN denote the N -the Rademacher function. Defined below, the function has the domain [0,1].

hn(x) = {
1 if x ∈ [ 2k

2n
, 2k+1

2n
) for 0 ≤ k < 2n−1

0 otherwise
}

Lemma 8. With sN =
N

∑
n=0

Tng

2n+1
and f(x) = 3

4
− 1

2
x, we have ∥f − sn+1∥ = 1

2
∣∣f − sn∥ for every n ∈ N.

Proof: We will prove this by showing that the following three criteria hold for the graph of f −sn for any n:

● The graph consists of 2n triangles
● The triangles are sitting over intervals [ 2k

2n+1 ,
2k+2
2n+1 ] = [

k
2n

, k+1
2n
] ∀k ∈ {0, ...,2n − 1}

● Height of the triangles is 1
2n+1 =

1
2
⋅ 1
2n

attained at the left endpoints

Note that the total area of the triangles would be

(number of triangles)⋅( 1
2
(height ⋅ interval length)) = 2n( 1

2
( 1
2n
⋅ 1
2n+1 )) =

1
2n+2

Base Case: n=0

f − s0 = f − g
2
= ( 3

4
− 1

2
x) − 1

4
= 1

2
− 1

2
x

We have three criteria:

● 20 = 1 amount of triangles
● This triangle is sitting over intervals [ k

20
, k+1

20
] for k ∈ {0} which is the interval [0,1] in this case

● The height of each triangle is 1
20+1 =

1
2
attained at the left endpoints

Thus, our total area is 1( 1
2
( 1
2
⋅ 1)) = 1

4
.

Now suppose by way of induction that f − sn satisfies the criteria listed above.

We want to show f − sn+1 satisfies our criteria:

● There are 2n+1 triangles.
● The triangles are sitting over intervals [ 2k

2n+2 ,
2k+2
2n+2 ] = [

k
2n+1 ,

k+1
2n+1 ]∀k ∈ {0, ...,2

n+1 − 1}
● The height of the triangles in f − sn+1 is half of the previous iterate’s height

The inductive hypothesis says that there are 2n triangles, each of which looks as follows
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Here, a = j
2n
= 2j

2n+1 and b = j+1
2n
= 2j+2

2n+1 . The height of the triangle is 1
2n+1 . Now, consider subtracting Tn+1g

2n+2 .

The effect on [ 2j
2n+1 ,

2j+2
2n+1 ] is demonstrated below, with c =

2j
2n+1 +

2j+2
2n+1

2
= 2j + 1

2
.

Recall that sn+1 − sn = Tn+1g
2n+2 ⇐⇒ sn − sn+1 = −Tn+1g

2n+2 . We can use this to re-write

∥f − sn+1∥ = ∥f − sn + sn − sn+1∥ = ∥f − sn − (
Tn+1g
2n+2

)∥

By Lemma 7, to subtract Tn+1g
2n+2 from f − sn is to subtract 1

2n+2 on the interval [a, c]. This results in the red
line, which bisects the height of the original triangle. Lemma 1 also says to subtract 0 on the interval [c, b]
which results in no change. Overall, we are left with two smaller triangles, both of which have a height equal
to half of that of the original triangle.

Thus, the total area is 2n+1( 1
2
( 1
2n
⋅ 1
2n+1 )) =

1
2n+3 =

1
2
( 1
2n+2 ), which is half of the area of our n-th triangle.

Thus, we’ve demonstrated that for all n, the area of each set of triangles decreases by a factor of 1
2
each

iteration. That is to say, ∥f − sn+1∥ = 1
2
∥f − sn∥.

Theorem 9. With g = 1
2
χ[0,1], Rg = 3

4
− 1

2
x.
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Proof : Again, define f = 3
4
− 1

2
x and sn =

N

∑
n=0

Tng

2n+1
. Now, by Lemmas 7 and 8, ∥f − sn+1∥ =

1

2n+2
ÐÐÐ→
n→∞ 0,

which is to say that the series Rg converges to f .

We hope to continue understanding {Rng} or {Rnf} for other starting functions f . Understanding such
sequences of iterates enabled the characterization in [4]. The irregularity of R may make this more difficult,
but the result above shows that progress is possible.

5. Applying R to Rg

Many of the results in this section and the next have been submitted for publication as [9]. Here C1/2 and
R are as previously defined.

Lemma 10. R(f) ≠ hn∀f ∈ C1/2 and ∀n.

Proof: Assume hn(x) = Rf(x) = f(x)
2
+ Tf(x)

4
+ T 2f(x)

8
+ T 3f(x)

16
+ ... Let x be such that hn(x) = 1. By

assumption, 1 = hn(x) = f(x)
2
+ Tf(x)

4
+ T 2f(x)

8
+ T 3f(x)

16
+ .... Since the RHS is a convex combination of

numbers in [0,1] that add up to 1, it holds that Tn(x) = 1∀n ≥ 0. In particular, f(x) = 1. The same
reasoning shows that f(x) = 0 when hn(x) = 0. Therefore, f = hn. This then implies that R(hn) = hn, which
is a contradiction since R is a fixed point free map.

Claim: 2R(hm) − hm = R(hm+1)
Proof: Recall that Thn = hn+1. Now,

R(hm) = hm

2
+ Thm

4
+ T 2hm

8
+ T 3hm

16
+ ...

R(hm) − hm

2
= Thm

4
+ T 2hm

8
+ T 3hm

16
+ ... = hm+1

4
+ T 2hm+1

8
+ T 3hm+1

16
+ ...

2R(hm) − hm = hm+1
2
+ T 2hm+1

4
+ T 3hm+1

8
+ ... = R(hm+1).

Claim: R(hn)(x) = 2n−1 − 2n−1x −
n−1
∑
k=1

2n−k−1hk(x)

Proof: We proceed by induction.
Base case: n = 2

R(h2)(x) = 2 − 2x − h1x as proven above.

Suppose, by way of induction that the claim holds for n =m. Then

2R(hm+1)(x) = 2R(hm)(x) − hm(x)

= 2(2m−1(1 − x) −
m−1
∑
k=1

2m−k−1hk(x)) − hm(x)

= 2m(1 − x) − (
m−1
∑
k=1

2m−khk(x)) − hm(x) = 2m(1 − x) −
m

∑
k=1

2m−khk(x)

Thus proving our claim for n =m + 1. Hence this claim holds ∀n ∈ Z.

Claim: The graph of R(hn) consists of 2n−1 triangles sitting above intervals[ k
2n−1 ,

k+1
2n−1 ] for

k ∈ {0,1, ...,2n−1 − 1} with a height of 1 attained at k
2n−1 .

Proof:
Base Case: The graph of R(h2) produces 22−1 = 2 triangles as displayed below. The height of the triangles
is 1 and they exist over the intervals [0, 1

2
] ∪ [ 1

2
,1].
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Induction Step: Fix j ∈ N. Assume the claim holds for j. Now consider j + 1. By a previously established
claim, R(hj+1) = 2R(hj) − hj . Taking 2R(hj) doubles the height of the graph. This results in the same
amount of triangles but twice as tall, namely 2, then subtracting hj causes the height to become 1. By the
images below, you can see how when subtracting hj , the amount of triangles doubles, similar to the process
in Lemma 8. We apply Lemma 7 here by taking n = j − 2. Thus, the rest of the proof holds as it did in
Lemma 8.

→

→

6. The Sizes of Minimal Invariant Set

Recalling that M(T ) is closed and convex and that Wr is a convex series of iterates of T , it must be the case
that M(Wr) ⊆ M(T ) for every r ∈ (0,1/2]. In this section, we discuss the possibility that M(R) ⊊ M(T ).
This would be achieved by proving that hn ∉M(R). In this document, we begin work in that direction and
indicate the remaining open question.
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Proposition A: hn ∉ co(R(C1/2)).

Proof: Assume hn =
∞
∑
k=1

ckR(fk), where fk ∈ C1/2 and
∞
∑
k=1

ck = 1. Recall that the only outputs of hn are 1’s

and 0’s. Recall also that the outputs of R(fk) are in [0,1]. Whenever hn produces a 1, it must be the case
that R(fk) produces 1 also, just as in the Lemma 10 above. By the same reasoning, whenever hn produces
a 0, it must be the case that R(fk) produces a 0. This then implies that the outputs of R(fk) are 1’s and
0’s on the same intervals as hn. But, this is impossible by the Lemma 10. Thus, we have a contradiction.
Therefore, hn ∉ co(R(C1/2)).

Proposition B: hn ∉ cowk(R(C1/2)).

We do not have a proof of this proposition currently. Our work indicates that it is true. Supposing it were
true we would have the following affirmative proof of the main question.

Argument: M(R) is a c.b.c (closed, bounded, and convex) set by definition of minimal invariant sets.

cowk(R(C1/2)) ⊆ C1/2 and is c.b.c. as well. Therefore, by finite intersection S ∶= cowk(R(C1/2)) ∩M(R)
is c.b.c. and thus, S = M(R). By Goebel 4.1, M(R) = cowk(R(M(R))) which then implies that M(R) ⊆
cowk(R(M(R))). But, M(R) ⊆ C1/2 which implies that M(R) ⊆ cowk(R(M(C1/2))). Since M(R) ⊆
cowk(R(C1/2)), hn ∉M(R).

Open Question: Is it the case that hn ∉ cowk(R(C1/2))? As mentioned, it would follow that hn /∈ M(T )
and M(R) is strictly contained in M(T ).
Open Question: M(T ) is a canonical example of a small domain that admits a fixed point free map. Is
M(R) smaller in a structural sense than M(T )? No such examples are known. Specifically, does M(R)
span a space that contains a copy of L1 as M(T ) does?

7. Applications

Above, we saw a proof of the Banach Contraction Mapping Theorem. In order to illustrate the possible
applications of fixed point theory, we have included three exercises below.

Question 11. LetK be a continuous function on the unit square {(x, y) ∶ 0 ≤ x, y ≤ 1} satisfying ∣K(x, y)∣ < 1
for all x and y. Show that there is a unique continuous function f(x) on [0,1] such that

f(x) + ∫
1

0
K(x, y)f(y)dy = ex

2

.

Answer: Re-arranging, note that our equation is solved if and only if

ex
2

− ∫
1

0
K(x, y)f(y)dy = f(x).

We define the left hand side of this to be T (f) = ex
2

−∫
1

0
K(x, y)f(y)dy. Note that the question is answered

if and only if T has a unique fixed point, f .

As a final preliminary note, since ∣K ∣ is continuous on a compact set, it attains its max. Since ∣K ∣ < 1 it

must be the case that this max (call it k̃) satisfies k̃ < 1.
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Let us prove that T is a strict contraction on the set of continuous functions on the unit square equipped
with the “sup”-norm: ∥ ⋅ ∥∞.

∥T (f1) − T (f2)∥∞ = sup
x
{∣ex

2

− ∫
1

0
K(x, y)f1(y)dy − (ex

2

− ∫
1

0
K(x, y)f2(y)dy)∣}

= sup
x
{∣∫

1

0
K(x, y)f2(y)dy − ∫

1

0
K(x, y)f1(y)dy∣}

= sup
x
{∣∫

1

0
K(x, y)(f2(y) − f1(y))dy∣}

≤ sup
x
{∫

1

0
∣K(x, y)∣ ∣f2(y) − f1(y)∣dy}

But ∣K ∣ ≤ k̃ and ∣f2(y) − f1(y)∣ ≤ ∥f2 − f1∥∞. So the last quantity above is less than or equal to ∫
1

0
k̃ ⋅ ∥f2 −

f1∥∞dy = k̃ ⋅ ∥f2 − f1∥∞.
By transitivity of inequality, ∥T (f1) − T (f2)∥∞ ≤ k̃ ⋅ ∥f2 − f1∥∞, proving that T is a strict contraction. Then
the Banach Contraction Mapping Theorem gives that T (f) = f for exactly one f .

A similar problem. [1]

Question 12. Let g be a continuous real-valued function on [0,1]. Prove that there exists a continuous
real-valued function f on [0,1] satisfying the equation

f(x) − ∫
x

0
f(x − t)e−t

2

dt = g(x)

Rearranging, we find f(x) = g(x)+ ∫
x
0 f(x− t)e−t

2

dt. Define this to be T (f) = g(x)+ ∫
x
0 f(x− t)e−t

2

dt. Note
that there exists a unique continuous function if and only if T has a unique fixed point, f .

Now, we want to show that T is a strict contraction on the set of continuous functions on the unit interval
equipped with the “sup”-norm: ∥ ⋅ ∥∞. Let x be arbitrary in [0,1]. Then

∣T (f2)x − T (f1)x∣ = ∣g(x) − ∫
x

0
f2(x − t)e−t

2

dt − g(x) − ∫
x

0
f1(x − t)e−t

2

dt∣

= ∣∫
x

0
f2(x − t)e−t

2

dt − ∫
x

0
f1(x − t)e−t

2

dt∣

≤ ∫
x

0
∣e−t

2

∣∣f2(x − t) − f1(x − t)∣dt

≤ ∫
x

0
e−t

2

∥f2 − f1∥∞dt = ♠

f1(y) − f2(y) is bounded by ∥f1 − f2∥∞. Now, we want to show that ∫
1
0 e−t

2

dy = k < 1. Exponential is a

positive and increasing function and t ∈ [0,1]. Thus, t ≥ 0 implies that et
2

≥ e0. Therefore, e−t
2

= 1

et2
≤ 1

e0
= 1

and k < 1.

And so we see that ∣T (f2)x − T (f1)x∣ = ♠ < k∥f2 − f1∥∞.

This demonstrates that T is a strict contraction and, by Banach Contraction Mapping Theorem, T (f) = f
for exactly one f . Therefore, since we’ve shown that T has a unique fixed point, there exists a unique

continuous, real-valued function that satisfies f(x) − ∫
x
0 f(x − t)e−t

2

dt = g(x).

Question 13. Show that there is a unique continuous function f ∶ [0,1]→ R such that

f(x) = sinx + ∫
1

0

f(y)
ex+y+1

dy.
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Define this to be T (f) = sin(x) + ∫
f(y)
ex+y+1

dy. Note that there exists a unique continuous function if and

only if T has a unique fixed point, f . Now, we want to show that T is a strict contraction. Let x be arbitrary
in [0,1]. Then,

∣T (f2)x − T (f1)x∣ = ∣sin(x) − ∫
f2(y)
ex+y+1

dy − sin(x) + ∫
f1(y)
ex+y+1

dy∣

= ∣∫
f1(y)
ex+y+1

dy − ∫
f2(y)
ex+y+1

dy∣ = ∣∫
f1(y) − f2(y)

ex+y+1
dy∣

≤ ∫ ∣
f1(y) − f2(y)

ex+y+1
∣dy = ♣

f1(y) − f2(y) is bounded by ∥f1 − f2∥∞. Now, we want to show that ∫
1
0

1
ex+y+1 dy ≤

1
e
< 1. The exponential

function is increasing and x, y ∈ [0,1]. Thus, for x, y ≥ 0, ex+y ≥ 1 implies ex+y+1 ≥ e. Hence, 1
ex+y+1 ≤

1
e
.

Therefore, ♣ < 1
e
< 1.

This thereby demonstrates that T is a strict contraction and, by Banach Contraction Mapping Theorem,
T (f) = f for exactly one f . Therefore, since we’ve shown that T has a unique fixed point, there exists a

unique continuous function that is a solution to f(x) = sinx + ∫
1
0

f(y)
ex+y+1 dy.

8. Appendix

Appendix A. Measure Zero

Definition. Measure Zero
We say that A ⊆ R has measure zero if ∀ε > 0, ∃{In}n∈N such that A ⊆ ⋃ In and ∑ l(In) < ε.

Lemma 14. Let A ⊆ B. Then, if B has measure zero, A has measure zero.

Proof. By definition, B ⊆ ⋃{In}. Then A ⊆ B ⊆ ⋃{In} implies A ⊆ ⋃{In}.

Lemma 15. Let A ∪B. Suppose A and B have measure zero. Then, A ∪B has measure zero.

Proof. Let ε > 0. Take {Ik} with A ⊆ ⋃{Ik} such that ∑ l(Ik) < ε
2
and {Ĩk} with B ⊆ ⋃{Ĩk} such that

∑ l(Ĩk) < ε
2
. Note A∪B ⊆ (⋃{Ik})∪(⋃{Ĩk}). We can then denote C ∶= {Ik}∪{Ĩk}. Then, ∑ l(Ik)+∑ l(Ĩk) < ε.

Hence, C has measure zero. Thus, by Lemma 1, A ∪B ⊆ C has measure zero.

Consider the following functions: f, g ∶ R→ R. Let’s define ∼ by f ∼ g if {x ∶ f(x) ≠ g(x)} has measure zero.

1. ∼ is reflexive. We want to show ∀f ∶ R→ R, f ∼ f .

{x ∶ f(x) ≠ f(x)} = ∅ which has measure zero.

2. ∼ is symmetric. We want to show ∀f, g ∶ R→ R, if f ∼ g then g ∼ f .

{x ∶ g(x) ≠ f(x)} = {x ∶ f(x) ≠ g(x)}, which has measure zero. Therefore, the other set has measure zero.

3. ∼ is transitive. We want to show ∀f, g, h ∶ R→ R, if f ∼ g and g ∼ h, then f ∼ h.
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Consider A = {x ∶ f(x) ≠ g(x)} and B = {x ∶ g(x) ≠ h(x)}. A and B have measure zero by definition. Now,
consider the set C = {x ∶ f(x) ≠ h(x)}.

Consider x where f(x) = g(x). If x ∈ AC ∪BC , x ∈ CC . If x ∉ CC , x ∉ AC ∪BC . By DeMorgan’s Laws, if
x ∈ C,x ∈ A ∪B. Thus, C ⊆ A ∪B. Therefore, C also has measure zero.

Appendix B. Reflexive and Normal Structure

Definition. Let X be a normed space and X∗∗ = (X∗)∗ denote the second dual vector space of X. The
canonical map x ↦ x′ defined by x′(f) = f(x), f ∈ X∗ gives an isometric linear isomorphism from X into
X∗∗. The space X is a reflexive space if this map is surjective.

Before defining normal structure, here are a few foundational definitions:

Definition. We say that the radius of D relative to the point u ∈D is ru(D) = sup{∥u − v∥ ∶ v ∈D}.

Definition. The diameter of D is defined as diam(D) = sup{∥x − y∥ ∶ x, y ∈ D}. A point p is considered
diametral if rp(D) = diam(D).

In fact, if our set is c.b.c., then its diametral points must be on the boundary and not in the interior of the
set.
Proof. By way of contradiction, assume the claim to be true. Let D be c.b.c. and let x be diametral and
an interior point of D. Then x ∈ Vε(x) with Vε(x) ⊆D.

Because x is diametral, ∃v ∈D with ∥v − x∥ = d > diamD − 2ε
3
.

Take p = 2ε
3

x−v
∥x−v∥ +x. Then ∥v − p∥ = d+

2ε
3
> diamD− ε

2
+ 2ε

3
= diamD+ ε

6
. However, this contradicts the fact

that the diameter of D by having v and p farther apart than allowed.

Definition. A bounded, convex subset K of a Banach space X is said to have normal structure if it
contains any non-diametral points. That is to say, if a set lacks normal structure, all of its points are
diametral.

Appendix C. Baker Transform

The Baker Transform is a map T ∶ L1[0,1] → L1[0,1] where L1[0,1] the set of all real-valued Lebesque-
integrable functions with domain [0,1]. Note that every Riemann-integrable function is Lebesque-integrable.
Each iteration of the transform makes the function half as wide and twice as tall, as can be seen in the graphs
below. This results in Haar Wavelet-like graphs when f is a constant function. We know the following about
T :

1. lim
n→∞∫

b

a
Tnf = 1

2
(b − a) if and only if the weak limit of {Tnf} is h(x) = 1

2

2. T preserves area: ∫
1
0 f = ∫

1
0 Tf

3. T is fixed point free on certain domains, such as C1/2 = {f ∶ [0,1]→ [0,1] s.t. ∫
1
0 f = 1

2
}
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