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Abstract. In this paper, we construct new examples of fixed point free (fpf) maps. We construct

a fpf isometry of a weakly compact and convex subset of a complex function space, inspired by

Alspach’s famous 1981 example on a real function space. We also use a known fpf nonexpansive
map and previously established technique involving series to construct a new fpf contractive map.

In this second case, we hope that the necessary details in the lemma regarding contractiveness

shed light on a natural general question about such series. We generalize the contractive series
construction in another direction, showing that the coefficients can vary over a certain interval.

In addition, we prove that once a map is fpf and contractive on an appropriate domain, the

previously mentioned series technique will always produce a fpf and contractive map.

1. Introduction

For any map f ∶ X Ð→ X on a set, we say x ∈ X is a fixed point if f(x) = x. Moreover, f is fixed
point free (fpf) if there is no such x ∈X.

Let X be a Banach space and C be a closed, bounded, and convex (cbc) subset of X. Let
T ∶ C Ð→ C be a map. We say that T is nonexpansive if for all x, y ∈ C we have ∥Tx − Ty∥ ≤ ∥x − y∥,
contractive if for all x, y ∈ C we have ∥Tx−Ty∥ < ∥x− y∥, and an isometry if for all x, y ∈ C we have
∥Tx − Ty∥ = ∥x − y∥. We note the difference between contractive as defined here and the stronger
notion of a strict contraction. The map T is a (strict) contraction on C if ∃k ∈ (0,1) such that
∥Tx − Ty∥ ≤ k∥x − y∥ for all x, y ∈ C.

Fixed point theory studies the mix of conditions on maps and domains that guarantee that all
such maps on all such domains have a fixed point. Three well-known results of this type follow.

Brouwer’s Theorem: Let C ⊆ Rn be cbc. Then any continuous function f ∶ C Ð→ C has a fixed
point.

Banach’s Contraction Mapping Theorem: If (X,d) is a complete metric space, then every
contraction mapping f ∶X Ð→X has a unique fixed point.

The next result [5] applies to reflexive spaces and their subsets with normal structure. We do not
define these properties here. We do note that the label “normal structure” is apt. These domains
share some geometric properties with their simpler analogues, such as the fixed point property
established by the theorem.

Kirk’s Theorem: Let C be a nonempty cbc subset of a reflexive Banach space X, and assume C
has normal structure. If f ∶ C Ð→ C is a nonexpansive map, then it has a fixed point.

Beyond these positive results, counterexamples show certain conditions that are not sufficient to
guarantee the existence of a fixed point. Taken together, these two types of results establish the
contours of fixed point theory. The new results derived in this paper are all counterexamples.

In [1], Dale Alspach gave such a counterexample. His example of a fixed point free map acts on a
weakly compact and convex subset of a Banach space. This map is defined (with x ∧ y = min{x, y}
and x ∨ y =max{x, y}) as:

(Tf)(t) =
⎧⎪⎪⎨⎪⎪⎩

2f(2t) ∧ 1, if t ∈ [0, 1
2
)

(2f(2t − 1)) − 1) ∨ 0, if t ∈ [ 1
2
,1)
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The convex iterate series of T was considered in [2], where the map R ∶=
∞

∑
n=0

Tn

2n+1
was shown to be

a fixed point free and contractive map on a weakly compact and convex subset of a Banach space.
In section 2, we generalize this construction to series with coefficients rn where r ∈ (0,1/2].

In section 3, we consider a convex iterate series of R, which leads to a generalization about maps
of this kind. We will prove that the standard iterate series of any fpf and contractive map on a cbc
subset of a Banach space is itself fpf and contractive.

In Section 4, we define a complex analogue, V , of Alspach’s original map T . While analogous to
T in the sense of doubling outputs and “slicing” them, V is not built from T . V does mimic T ’s
behavior of pushing outputs of transformed functions to “extreme” values. We prove that V is a
fixed point free isometry of a domain of complex-valued integrable functions.

In Section 5, we construct an iterate series of T∆, a variation of Alspach’s map ([1]) as defined
in [4]. We prove that this series is fpf and contractive even though T∆ is merely nonexpansive.
This proof uses similar techniques to [2], where it is proven that the convex series of iterates for
Alspach’s map is fpf and contractive. This raises another natural general question about iterate
series of nonexpansive fpf maps which we are unable to fully resolve.

2. An Interval of Fixed Point Free Contractive Maps

In this section we will prove that for any r ∈ (0,1/2], the following functions are fixed point free
and contractive on C1/2. Note that W1/2 is the map R.

Wr ∶ C1/2 → C1/2 ∶ f ↦ (1 − r)f + (1 − r)
∞

∑
n=1

rnTnf

https://www.overleaf.com/project/65143b1b6b9092672b2b9256
To prove that Wr is contractive we will use the following lemmas. Lemma 1 here is Lemma 3.3

from [2]. We will use ∥ ⋅ ∥ for ∥ ⋅ ∥1 on elements of C1/2 ⊆ L1.

Lemma 1. For any f, g ∈ C1/2 with ∥f − g∥ > 0 there is an N ∈ N such that

∥I + T
N

2
f − I + Tn

2
g∥ < ∥f − g∥.

Lemma 2. Let {cn}∞n=0 ⊆ (0,1) be such that
∞

∑
n=0

cn = 1. Then G ∶ C1/2 → C1/2 given by G =
∞

∑
n=0

cnT
n

is a contractive map.

Proof: We note first that rearrangement of terms preserves the value of (Gf)x =
∞

∑
n=0

cn(Tnf)(x) for

any f ∈ C1/2 and any x ∈ [0,1] because the convergence of this series is absolute. We will decompose

the series as G = E +
∞

∑
n=1

dn (
I + Tn

2
). We will call E the “extra terms”. The terms with I+Tn

2
make

G contractive and the extra terms keep G a convex combination of Tn.

If c0 ≤
∞

∑
n=1

cn, then (noting the sum on the right hand side equals 1 − c0 and also that c0 ≤ 1/2)

define dn =
2c0cn
1 − c0

. In this case the extra terms are E = 1 − 2c0
1 − c0

∞

∑
n=1

cnT
n.

To see that G is contractive in this case, let f, g ∈ C1/2 be given with ∥f − g∥ > 0. Because
∥Tnf − Tng∥ = ∥f − g∥ for every n, it follows that

∥Ef −Eg∥ ≤ 1 − 2c0
1 − c0

∞

∑
n=1

cn∥Tnf − Tng∥

= 1 − 2c0
1 − c0

∞

∑
n=1

cn∥f − g∥ = (1 − 2c0)∥f − g∥.
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And also,

∥
∞

∑
n=1

dn [(
I + Tn

2
) f − (I + T

n

2
) g]∥ ≤

∞

∑
n=1

dn ∥(
I + Tn

2
) f − (I + T

n

2
) g∥

<
∞

∑
n=1

dn∥f − g∥

= 2c0∥f − g∥
1 − c0

∞

∑
n=1

cn = 2c0∥f − g∥.

The strict inequality above is provided by Lemma 1. Putting these together, we have

∥Gf −Gg∥ = ∥Ef −Eg +
∞

∑
n=1

dn [(
I + Tn

2
) f − (I + T

n

2
) g]∥

< (1 − 2c0)∥f − g∥ + 2c0∥f − g∥ = ∥f − g∥.

In the remaining case, we have c0 >
∞

∑
n=1

cn. In this case, we can let dn = 2cn and E = (2c0 − 1)I.

Then we have

∥Gf −Gg∥ = ∥Ef −Eg +
∞

∑
n=1

dn [(
I + Tn

2
) f − (I + T

n

2
) g]∥

= ∥(2c0 − 1)(f − g) +
∞

∑
n=1

2cn [(
I + Tn

2
) f − (I + T

n

2
) g]∥

≤ (2c0 − 1)∥f − g∥ +
∞

∑
n=1

2cn ∥(
I + Tn

2
) f − (I + T

n

2
) g∥

< (2c0 − 1)∥f − g∥ + 2
∞

∑
n=1

cn∥f − g∥

= (2c0 − 1)∥f − g∥ + 2(1 − c0)∥f − g∥ = ∥f − g∥.
Once again, the strict inequality above comes from Lemma 1. □

Lemma 3. If the map Wr is one-to-one for a given r ∈ (0,1), then it is fixed point free.

Proof: Let r ∈ (0,1) be given and suppose that Wr is one-to-one. By way of contradiction, suppose
that f0 ∈ C1/2 is such that Wr(f0) = f0. This means f0 = (1− r)f0 + r(1− r)Tf0 + r2(1− r)T 2f0 +⋯.
Subtracting (1 − r)f0 from both sides of this equation and then dividing by r gives the following.

f0 = (1 − r)f0 + r(1 − r)Tf0 + r2(1 − r)T 2f0 +⋯
rf0 = r(1 − r)Tf0 + r2(1 − r)T 2f0 + r3(1 − r)T 3f0 +⋯

f0 = (1 − r)Tf0 + r(1 − r)T 2f0 + r2(1 − r)T 3f0 +⋯ =Wr(Tf0).
We have shown that Wr(Tf0) = f0 = Wr(f0). Supposing that Wr is one-to-one, we would have

Tf0 = f0. Since T is fixed point free, this would be a contradiction. □

Lemma 4. For any r ∈ (0,1/2], Wr is one-to-one.

Proof: Let f, g ∈ C1/2 be given so that ∥f − g∥ > 0. In the following calculation, we use that Wr is
contractive.

∥Wrf −Wrg∥ = ∥(1 − r)(f − g) + r(1 − r)(Tf − Tg) + r2(1 − r)(T 2f − T 2g) +⋯∥
≥ (1 − r)∥f − g∥ − ∥r(1 − r)(Tf − Tg) + r2(1 − r)(T 2f − T 2g) +⋯∥
= (1 − r)∥f − g∥ − r∥WrTf −WrTg∥
> (1 − r)∥f − g∥ − r∥Tf − Tg∥ = (1 − r)∥f − g∥ − r∥f − g∥ ≥ 0. □

Putting these lemmas together, we have proven the following theorem.

Theorem 5. For any r ∈ (0,1/2], Wr is contractive and fixed point free.
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The question remains open when r > 1/2. By Lemma 2, the maps are all contractive. Lemma
4 breaks down when r > 1/2. Considering a map like Ar = (I +Wr)/2 (which is fixed point free if
and only if Wr is fixed point free) extends the values of r to which a result like Lemma 4 applies,
however it is unclear if the appropriate variation of Lemma 3 holds.

We note another natural way to generalize R is the family of maps Fr ∶ C1/2 → C1/2 ∶ f ↦
1−2r
1−r

f +
∞

∑
n=1

rnTnf. These maps are contractive. F1/2 = R. But it is unclear if these maps are fixed

point free.

3. Iterate Series of Fixed Point Free and Contractive Maps

In this section, we prove a theorem about fpf and contractive maps. The iterate series (following
the construction in [2]) of such maps are always contractive and fpf. The following example motivated
the details of the proof of this general theorem.

Example 1: Let F ∶=
∞

∑
n=0

Rn

2n+1
with R as in [2]. Then F is fpf and contractive.

Upon writing down the details of the proof of the above statement, it became clear that there
were sufficient conditions for general iterate series to be fpf and contractive. We prove below that
the iterate series of any fpf and contractive mapping on a cbc subset of a Banach space is itself fpf
and contractive. Moreover, Theorem 6 gives a new class of fpf and contractive maps.

Theorem 6. Let D be any cbc subset of a Banach space. If H is any map H ∶D ↦D that is fixed

point free and contractive, then the map J ∶=
∞

∑
n=0

Hn

2n+1
is also fixed point free and contractive.

Proof: Let D be a cbc subset of a Banach space. To see that J is contractive, consider ∥Jf − Jg∥
for f, g ∈D. Grouping like coefficients,

∥Jf − Jg∥ = ∥1
2
(f − g) + 1

4
(Hf −Hg) + 1

8
(H2f −H2g) +⋯∥

Using the triangle inequality, we get

∥Jf − Jg∥ ≤ 1

2
∥f − g∥ + 1

4
∥Hf −Hg∥ + 1

8
∥H2f −H2g∥ +⋯.

Since H is contractive, for every j ∈ N it follows that ∥Hjf −Hjg∥ < ∥f − g∥. So

∥Jf − Jg∥ <
∞

∑
n=0

1

2n+1
∥f − g∥ = ∥f − g∥,

proving that J is contractive.

Now, we will show that J is fpf. To do this, we will first show that J is 1-1. Let f, g ∈ D with
∥f − g∥ > 0. Grouping ∥Jf − Jg∥ as above and using the reverse triangle inequality, we get

∥Jf − Jg∥ ≥ 1

2
∥f − g∥ − ∥1

4
(Hf −Hg) + 1

8
(H2f −H2g) +⋯∥ = 1

2
∥f − g∥ − 1

2
∥JHf − JHg∥ = ∗∗

Since J and H are contractive, ∗∗ > 1
2
∥f − g∥ − 1

2
∥Hf − Hg∥ > 1

2
∥f − g∥ − 1

2
∥f − g∥ = 0. Hence

∥Jf − Jg∥ > 0 when ∥f − g∥ > 0, proving that J is 1-1.

Finally, assume by way of contradiction that Jf = f for some f ∈D. By definition,

f = f

2
+ Hf

4
+ H2f

8
+⋯.

Subtracting the f
2
from both sides, we get f

2
= Hf

4
+ H2f

8
+⋯. Multiplying by 2 then gives

Jf = f = Hf

2
+ H2f

4
+⋯ = JHf

Since J is 1-1, this implies Hf = f , a contradiction to H being fpf. □
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4. A Complex Version of Alspach’s Map

In this section we define a complex analogue of Alspach’s famous map T . The map V , defined
below, was named in honor of Vladimir Visnjic. In this section, we prove that V is a fixed point
free isometry. Letting S = [0,1]× [0,1] ⊆ C, we take V to be acting on a domain (specified in a later
subsection) of functions g ∶ S → S.

(1) V g(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h(z) = 2g(2z) ∧ 1 ∧ i, if z ∈ [0,1/2] × [0,1/2] =D3

b(z) = (2g(2z − i) − i) ∧ 1 ∨ 0i, if z ∈ [0,1/2] × (1/2,1] =D2

u(z) = (2g(2z − 1) − 1) ∨ 0 ∧ i, if z ∈ (1/2,1] × [0,1/2] =D4

d(z) = (2g(2z − 1 − i) − 1 − i) ∨ 0 ∨ 0i, if z ∈ (1/2,1] × (1/2,1] =D1

Here, we have taken some liberties with ∧ and ∨ notation. We define (a+ bi)∧ c∨di =min{a, c}+
imax{b, d}, (a + bi) ∨ c ∧ di = max{a, c} + imin{b, d}, etc. In every case we have a complex number
(a + bi) on the left of the first operator (∧ or ∨), then a purely real number (0 or 1) to the right of
the first operator, and then a purely imaginary number (0i or i) to the right of the second operator.
This notation is simply used to take ∧ =min or ∨ =max one coordinate at a time.

In order to more clearly denote the relationship between the values that g acts on as we iterate
V and the inputs to V ng, we define the correspondence ϕ ∶ S → S as

(2) ϕ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2z, if z ∈D3

2z − i, if z ∈D2

2z − 1, if z ∈D4

2z − 1 − i, if z ∈D1

and note that we can re-write V in the following way

(3) V g(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h(z) = 2g(ϕ(z)) ∧ 1 ∧ i, if z ∈D3

b(z) = (2g(ϕ(z)) − i) ∧ 1 ∨ 0i, if z ∈D2

u(z) = (2g(ϕ(z)) − 1) ∨ 0 ∧ i, if z ∈D4

d(z) = (2g(ϕ(z)) − 1 − i) ∨ 0 ∨ 0i, if z ∈D1

4.1. V is Fixed Point Free. Consider the domain D = {f ∈ L1(S) ∶ f(z) ∈ S ∀z ∈ S and ∬S f =
1
2
+ i

2
}. Suppose that g ∈D with V g = g.

In this subsection, we will define A = {z ∈ S ∶ Re(g(z)) = 1} and Bn = {z ∈ S ∶ 1/2n−1 > Re(g(z)) ≥
1/2n}. As before S = [0,1] × [0,1]. Then

A = {z ∶ Re(g(z)) = 1}
= {z ∶ Re(V g(z)) = 1}

= {z ∈D1⋃D4 ∶ Re(g(ϕ(z))) = 1}⋃{z ∈D2⋃D3 ∶
1

2
≤ Re(g(ϕ(z)))}

Recall that in D1, ϕ(z) = 2z − 1 − i (and therefore z = ϕ
2
+ 1

2
+ i

2
). Consider

A⋂D1 = {z ∈D1 ∶ Re(V g(z)) = 1}
= {z ∈D1 ∶ Re(g(ϕ(z))) = 1}

= {ϕ
2
+ 1

2
+ i

2
∶ ϕ ∈ S and Re(g(ϕ)) = 1} = 1

2
A + 1

2
+ i

2
.

Similarly, A⋂D4 = 1
2
A + 1

2
.

Also recall that in D2, ϕ(z) = 2z − i and consider

A⋂D2 = {z ∈D2 ∶ Re(g(ϕ(z))) ≥ 1

2
} = {z ∈D2 ∶ Re(g(ϕ(z))) = 1}⋃{z ∈D2 ∶ 1 > Re(g(ϕ(z))) ≥ 1

2
} .
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As above, {z ∈D2 ∶ Re(V g(z)) = 1} = 1
2
A+ i

2
. And similarly, {z ∈D2 ∶ 1 > Re(V g(z)) ≥ 1

2
} = 1

2
B1+ i

2
.

Similarly, A⋂D3 = {z ∈ D3 ∶ Re(g(ϕ(z))) = 1}⋃{z ∈ D3 ∶ Re(g(ϕ(z))) ≥ 1
2
} where the first part

is equal to 1
2
A and the second part is equal to 1

2
B1.

Summarizing, we have that

A = (A⋂D1)⋃(A⋂D2)⋃(A⋂D3)⋃(A⋂D4)

= (1
2
A + 1

2
+ i

2
)⋃((

1

2
A + i

2
)⋃(

1

2
B1 +

i

2
))⋃(

1

2
A⋃

1

2
B1)⋃(

1

2
A + 1

2
)

= ((1
2
A + 1

2
+ i

2
)⋃(

1

2
A + i

2
)⋃

1

2
A⋃(

1

2
A + 1

2
))⋃((

1

2
B1 +

i

2
)⋃

1

2
B1) .

And if we take the measures of both sides of this (recalling that in 2 dimensions, scaling down by

a factor of 2 decreases area by a factor of 4) we get m(A) = 4 ∗ 1

4
m(A) + 2 ∗ 1

4
m(B1). Subtracting

m(A) from both sides of this equation reveals that m(B1) = 0.

Continuing in this way, we can see that m(Bn) = 0 for every n ∈ N. The omitted proof follows
the above structure using that V ng = g and therefore scaled-down copies of Bn can be seen to land
in A for every n just as with B1. From this we can conclude that (up to a set of measure zero in the
domain), the outputs of Re(g) are only 0 and 1.

And focusing on imaginary parts of the outputs of V ng shows that m({z ∶ Im(g(z)) ∈ (0,1)}) = 0
just as with the real part above. In fact, the rest of the proof only needs these facts for the real
part, and proceeds much as the proof in [8] does.

Using the decomposition of A from above - and discarding the copies of B1 which we now know
have measure zero - produces the following.

A = 1

2
A⋃(

1

2
A + i

2
)⋃(

1

2
A + 1

2
)⋃(

1

2
A + 1

2
+ i

2
)

Substituting again gives

A = 1

4
A⋃(

1

4
A + 1

4
)⋃(

1

4
A + i

4
)⋃(

1

4
A + 1

4
+ i

4
)

⋃(
1

4
A + 1

2
)⋃(

1

4
A + 3

4
)⋃(

1

4
A + 1

2
+ i

4
)⋃(

1

4
A + 3

4
+ i

4
)

⋃(
1

4
A + i

2
)⋃(

1

4
A + 1

4
+ i

2
)⋃(

1

4
A + 3i

4
)⋃(

1

4
A + 1

4
+ 3i

4
)

⋃(
1

4
A + 1

2
+ i

2
)⋃(

1

4
A + 3

4
+ i

2
)⋃(

1

4
A + 1

2
+ 3i

4
)⋃(

1

4
A + 3

4
+ 3i

4
)

This process continues infinitely, showing that the intersection of A with any dyadic rectangle
(i.e. any set of the form [k/2n, (k + 1)/2n] × [j/2m, (j + 1)/2m] ∈ S where k, j, m, and n are in N)
contains such scaled down copies of A. Recalling that Re(∬

S
g) = 1/2, we can also now compute

m(A) =∬
A
1 =∬

A
Re(g) =∬

S
Re(g) = Re(∬

S
g) = 1/2.

From this it follows that the intersection of A with those dyadic rectangles is exactly half the measure
of those rectangles, contradicting the measurability (and not full measure) of A. This finishes the
proof of the following theorem.

Theorem 7. The map V ∶D →D is fixed point free.
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4.2. V Preserves Integrals. Consider any integrable g ∶ S → S.

By definition ∬
S
V g(z)dA =∬

D1

V g(z)dA +∬
D2

V g(z)dA +∬
D3

V g(z)dA +∬
D4

V g(z)dA.

Consider ∬
D1

V g(z)dA = ∬
D1

((2g(ϕ(z)) − 1 − i) ∨ 0 ∨ 0i)dA. Separating real and imaginary

coordinates, we have

∬
D1

V g(z)dA = ∫
1

1/2
∫

1

1/2
[(2g(2x − 1 + i(2y − 1)) − 1 − i) ∨ 0 ∨ 0i]dxdy

and with the substitutions u = 2x − 1 and w = 2y − 1, this becomes

∬
D1

V g(z)dA = ∫
1

0
∫

1

0
[(2g(u + iw) − 1 − i) ∨ 0 ∨ 0i] 1

2
du

1

2
dw.

Similarly,

∬
D2

V g(z)dA =∬
S
[(2g(u + iw) − i) ∧ 1 ∨ 0i] 1

4
dudw

∬
D3

V g(z)dA =∬
S
[(2g(u + iw)) ∧ 1 ∧ i)]1

4
dudw

∬
D4

V g(z)dA =∬
S
[(2g(u + iw) − 1) ∨ 0 ∧ i]1

4
dudw

And so,∬
S
V g(z)dA =∬

S
[[(2g(u + iw) − 1 − i) ∨ (0 + 0i)] + [(2g(u + iw) − i) ∧ 1 ∨ 0i] + [(2g(u +

iw)) ∧ (1 + i)] + [(2g(u + iw) − 1) ∨ 0 ∧ i]] 1
4
dudw.

Let x = Re(g(u + iw)). Then the real component of the sum of the 4 integrands (notated as
Re(Int)) can be written as Re(Int) = 1

4
[((2x − 1) ∨ 0) + (2x ∧ 1) + (2x ∧ 1) + ((2x − 1) ∨ 0)] =

1
2
[((2x− 1)∨ 0)+ (2x∧ 1)]. At this point, there are two cases we have to consider: x ≤ 1

2
and x > 1

2
.

Case 1: If x ≤ 1
2
, consider Re(Int) = 1

2
[((2x − 1) ∨ 0) + (2x ∧ 1)]. The first term will be 0 and 2x

will be less than or equal to 1, making the second term 2x. This gives Re(Int) = 1
2
(0 + 2x) = x.

Case 2: If x > 1
2
, then we get Re(Int) = 1

2
[((2x−1)∨0)+(1∧1)]. The second term equals 1 and the

first term is 2x − 1 because x > 1/2. The two ones will cancel. As a result, we get that Re(Int) = x,
and

Re(∬
S
V g(z)) dA =∬

S
Re(Int)dudw =∬

S
xdudw =∬

S
Re(g(u + iw))dudw.

The imaginary part of g acts in the same way, with the imaginary component of the sum of the
4 integrands equaling 1

2
[((2y − 1) ∨ 0) + (2y ∧ 1)], where y = Im(g(u + iw)). Again, for both y ≤ 1

2

and y > 1
2
, the sum equals y, and thus

Im(∬
S
V g(z)) dA =∬

S
Im(Int)dudw =∬

S
y dudw =∬

S
Im(g(u + iw))dudw

Putting these two parts of the integral together, we have proven the following theorem.

Lemma 8. For any integrable g ∶ S → S,∬
S
V g(z)dA =∬

S
g(u+ iw)dudw. That is, V is integral

preserving (just as T is).

Putting this together with the result of subsection 4.1, we get the following.

Theorem 9. The map V ∶D →D is a fixed point free isometry.
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5. Contractiveness of TΔ Series

A reasonable question is whether the iterate series of variations of Alspach’s map become con-
tractive and remain fpf as seen with the map R. In this section, we consider the isometry T∆ from
[4]. This map is similar to T but has distinct behavior on four intervals of [0,1], leading to new
questions about its behavior when iterated. T∆ ∶ C 1

2
Ð→ C 1

2
is defined by:

(4) (T∆f)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2f(4t) ∧ 1, if t ∈ [0, 1
4
)

2(1 − f(4t − 1)) ∧ 1, if t ∈ [ 1
4
, 1
2
)

(2f(4t − 2) − 1) ∨ 0, if t ∈ [ 1
2
, 3
4
)

(1 − 2f(4t − 3)) ∨ 0, if t ∈ [ 3
4
,1]

5.1. Graphs of TΔ. Below are the graphs of T∆ applied to the functions f(x) = x (left) and

f(x) = sin(12x)+6x
6

(right).

5.2. Iterate Series of TΔ. Using ideas from [2], we will show the map R∆ ∶=
∞

∑
n=0

(T∆)n
2n+1

is

contractive and fpf on C 1
2
. We begin by showing the outputs of (T∆)n tend to the extreme values

0 and 1 as n increases.

Lemma 10. Let An(f) = {x ∈ [0,1] ∶ (T∆)nf(x) ∈ (0,1)}. For every f ∈ C 1
2
, lim
n→∞

m(An(f)) = 0.

Proof: Let f ∈ C 1
2
and consider the set A1(f). We can write this as the disjoint union

A1(f) = (A1(f)⋂ [0,
1

4
))⋃(A1(f)⋂ [

1

4
,
1

2
))⋃(A1(f)⋂ [

1

2
,
3

4
))⋃(A1(f)⋂ [

3

4
,1])

If x ∈ A1(f)⋂ [0, 14), then x ∈ [0, 1
4
) and (T∆)f(x) ∈ (0,1). By definition, (T∆)f(x) = 2f(4x) ∧ 1,

so this implies f(4x) ∈ (0, 1
2
). Hence

x ∈ A1(f)⋂ [0,
1

4
) ⇐⇒ f(4x) ∈ (0, 1

2
)

Similar arguments show that if x ∈ A1(f) ∩ [ 14 ,1], then f(4x − 1) ∈ ( 1
2
,1), f(4x − 2) ∈ ( 1

2
,1), or

f(4x − 3) ∈ (0, 1
2
). This gives:

m(A1(f)⋂ [0,
1

4
)) = 1

4
m{x ∈ (0,1) ∶ f(x) ∈ (0, 1

2
)}

m(A1(f)⋂ [
1

4
,
1

2
)) = 1

4
m{x ∈ (0,1) ∶ f(x) ∈ (1

2
,1)}
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m(A1(f)⋂ [
1

2
,
3

4
)) = 1

4
m{x ∈ (0,1) ∶ f(x) ∈ (1

2
,1)}

m(A1(f)⋂ [
3

4
,1]) = 1

4
m{x ∈ (0,1) ∶ f(x) ∈ (0, 1

2
)}

Since m(A0(f)) ≥m[0 < f < 1
2
] +m[ 1

2
< f < 1], we get:

1

2
m(A0(f)) ≥

1

4
m{x ∈ (0,1) ∶ f(x) ∈ (0, 1

2
)} + 1

4
m{x ∈ (0,1) ∶ f(x) ∈ (1

2
,1)}

+ 1

4
m{x ∈ (0,1) ∶ f(x) ∈ (0, 1

2
)} + 1

4
m{x ∈ (0,1) ∶ f(x) ∈ (1

2
,1)}

= m(A1(f)⋂ [0,
1

4
)) +m(A1(f)⋂ [

1

4
,
1

2
))

+ m(A1(f)⋂ [
1

2
,
3

4
)) +m(A1(f)⋂ [

3

4
,1])

= m(A1(f)).
This gives 1

2
m(A0(f)) ≥m(A1(f)) for every f ∈ C1/2. We can apply this to (T∆)n−1f and see that

m(An(f)) =m(A1((T∆)n−1f)) ≤
1

2
m(A0((T∆)n−1f)) =

1

2
m(An−1(f))

which shows

m(An(f)) ≤
1

2n
m(A0(f)) ≤

1

2n
ÐÐÐ→
n→∞

0.

□

Lemma 11. Let f ∈ C 1
2
and let y be nondyadic in [0,1]. Let n ∈ N. Then for every j ∈ {0,⋯,4n−1},

when f(y) ∈ {0,1}, (T∆)nf(y+j
4n
) ∈ {0,1}.

Proof: Base case: n=1

We need to show the above for j ∈ {0,1,2,3}.
If j = 0, T∆f(y

4
) = 2f(y) ∧ 1 since y

4
∈ [0, 1

4
). If f(y) = 0, T∆f(y

4
) = 0 and if f(y) = 1, T∆f(y

4
) = 1.

If j = 1, T∆f(y+1
4
) = 2(1 − f(y)) ∧ 1 since y+1

4
∈ [ 1

4
, 1
2
). If f(y) = 1, T∆f(y+1

4
) = 0 and if f(y) =

1, T∆f(y+1
4
) = 0.

If j = 2, T∆f(y+2
4
) = (2f(y) − 1) ∨ 0 since y+2

4
∈ [ 1

2
, 3
4
). If f(y) = 0, T∆f(y+2

4
) = 0 and if f(y) =

1, T∆f(y+2
4
) = 1.

If j = 3, T∆f(y+3
4
) = (1 − 2f(y)) ∨ 0 since y+3

4
∈ [ 3

4
,1]. If f(y) = 0, T∆f(y+3

4
) = 1 and if f(y) =

1, T∆f(y+3
4
) = 0.

Hence the claim holds for n = 1 and all f ∈ C1/2.

Now, by way of induction, suppose the claim holds for some m ∈ N and some f ∈ C1/2. Then for

each j ∈ {0, . . . ,4m − 1}, we have that (T∆)mf (y + j
4m
) ∈ {0,1} when f(y) ∈ {0,1}.

By applying the base case (n=1) to (T∆)mf , we then have that

(T∆)m+1f
⎛
⎝

y+j
4m
+ k
4

⎞
⎠
∈ {0,1}.

for each k ∈ {0,1,2,3}. By rewriting the above, we get that:
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T∆m+1f
⎛
⎝

y+j
4m
+ k
4

⎞
⎠
= T∆m+1f (y + j + 4

mk

4m+1
) ∈ {0,1}

This holds for each j ∈ {0, . . . ,4m − 1} and k ∈ {0,1,2,3}, and so it holds for each ℓ = j + 4mk ∈
{0, . . . ,4m − 1,4m, . . . ,2 ⋅ 4m − 1,2 ⋅ 4m, . . . ,3 ⋅ 4m − 1,3 ⋅ 4m, . . . ,4 ⋅ 4m − 1 = 4m+1 − 1} which proves the
lemma.

□

We have shown that T∆ copies the extreme values of functions f ∈ C 1
2
(excluding dyadic numbers

constituting a set of measure 0) by either preserving 0’s and 1’s or exchanging them.

5.3. Locations of Extreme Values Upon Iterations of TΔ.
Now, for any f ∈ C 1

2
we define

Bn(f) = {x ∈ [0,1] ∶ (T∆)nf(x) = 1},
Cn(f) = {x ∈ [0,1] ∶ (T∆)nf(x) = 0}.

Note that An(f)⋃Bn(f)⋃Cn(f) = [0,1] for any f . In the following claim, we write Cn+k =
Cn+k(f) and so on for brevity.

Claim: For all k ∈ N,

Cn+k ⊇
4k−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j)

and

Bn+k ⊇
4k−1

⋃
j=0

( j

4k
+ 1

4k
Yn,j)

where, considering j in base 4 as j = (j0j1⋯jt)4 for some t ≥ 0, Xn,j , Yn,j are defined as:

Xn,j =
⎧⎪⎪⎨⎪⎪⎩

Cn, if (j0 + j1 +⋯ + jt) ≡ 0 mod 2

Bn, if (j0 + j1 +⋯ + jt) /≡ 0 mod 2

and

Yn,j =
⎧⎪⎪⎨⎪⎪⎩

Bn, if (j0 + j1 +⋯ + jt) ≡ 0 mod 2

Cn, if (j0 + j1 +⋯ + jt) /≡ 0 mod 2

Proof: Base case: k=1

Cn+1 ⊇ (
1

4
Cn⋃(

1

4
+ 1

4
Bn)⋃(

2

4
+ 1

4
Cn)⋃(

3

4
+ 1

4
Bn))

Bn+1 ⊇ (
1

4
Bn⋃(

1

4
+ 1

4
Cn)⋃(

2

4
+ 1

4
Bn)⋃(

3

4
+ 1

4
Cn))

These inclusions follow from the base case in Lemma 11 and by a simple check that the Bn and
Cn terms correspond with the even and odd sums of j’s base 4 digits.

Now let k ∈ N be given. By way of induction, suppose it holds that

Cn+k−1 ⊇
4k−1−1

⋃
j=0

( j

4k−1
+ 1

4k−1
Xn,j)

and

Bn+k−1 ⊇
4k−1−1

⋃
j=0

( j

4k−1
+ 1

4k−1
Yn,j)

If we consider Cn+k = C(n+k−1)+1 and Bn+k = B(n+k−1)+1 and apply our base case to each, we see
that
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Cn+k ⊇ (
1

4
Cn+k−1⋃(

1

4
+ 1

4
Bn+k−1)⋃(

2

4
+ 1

4
Cn+k−1)⋃(

3

4
+ 1

4
Bn+k−1))

Bn+k ⊇ (
1

4
Bn+k−1⋃(

1

4
+ 1

4
Cn+k−1)⋃(

2

4
+ 1

4
Bn+k−1)⋃(

3

4
+ 1

4
Cn+k−1))

We will show that these unions are equivalent to the inclusions for Bn+k and Cn+k stated in the
claim. Specifically, we will prove the inclusion for Cn+k, as the proof for Bn+k is similar.

First, by our inductive hypothesis, we have

1

4
Cn+k−1 ⊇

1

4

⎛
⎝
4k−1−1

⋃
j=0

( j

4k−1
+ 1

4k−1
Xn,j)

⎞
⎠
=

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j)

(1
4
+ 1

4
Bn+k−1) ⊇

1

4
+ 1

4

⎛
⎝
4k−1−1

⋃
j=0

( j

4k−1
+ 1

4k−1
Yn,j)

⎞
⎠
= 1

4
+

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Yn,j)

(2
4
+ 1

4
Cn+k−1) ⊇

2

4
+ 1

4

⎛
⎝
4k−1−1

⋃
j=0

( j

4k−1
+ 1

4k−1
Xn,j)

⎞
⎠
= 2

4
+

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j)

(3
4
+ 1

4
Bn+k−1) ⊇

3

4
+ 1

4

⎛
⎝
4k−1−1

⋃
j=0

( j

4k−1
+ 1

4k−1
Yn,j)

⎞
⎠
= 3

4
+

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Yn,j)

1
4
Cn+k−1 gives us a portion on the union contained in Cn+k in the claim (with the correct X term).

For ( 1
4
+ 1

4
Bn+k−1), we write:

1

4
+

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Yn,j) =

4k−1

4k
+

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Yn,j) =

4k−1−1

⋃
j=0

(j + 4
k−1

4k
+ 1

4k
Yn,j)

Let ℓ1 ∶= j + 4k−1. Note that the base 4 addition of 4k−1 and j is (10⋯⋯0)4 + (j0⋯jt)4, where
t ≤ (k − 2) since j < 4k−1. Therefore ℓ1 = (1j0⋯jt)4 has digits adding to 1 + j0 + ⋯ + jt, flipping the
parity of ℓ1’s sum of digits in base 4 from that of j. This means Yn,j =Xx,ℓ1 and hence gives

(1
4
+ 1

4
Bn+k−1) ⊇

2⋅4k−1−1

⋃
ℓ1=4k−1

( ℓ1
4k
+ 1

4k
Xn,ℓ1)

We now have another portion of the union in our claim (with the correct X term) that continues
where the previous one left off.

Next, for ( 2
4
+ 1

4
Cn+k−1), we write:

2

4
+

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j) =

2 ⋅ 4k−1
4k

+
4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j) =

4k−1−1

⋃
j=0

(j + 2 ⋅ 4
k−1

4k
+ 1

4k
Xn,j)

Let ℓ2 ∶= j +2 ⋅4k−1. Note that the base 4 addition of 2 ⋅4k−1 and j is (20⋯⋯0)4 + (j0⋯jt)4, where
t ≤ (k − 2) since j < 4k−1. Therefore ℓ1 = (2j0⋯jt)4 has digits adding to 2+ j0 +⋯+ jt, preserving the
parity of ℓ2’s sum of digits in base 4 from that of j. This means Xn,j =Xx,ℓ2 and hence gives

(2
4
+ 1

4
Cn+k−1) ⊇

2⋅4k−1−1

⋃
ℓ2=4k−1

( ℓ2
4k
+ 1

4k
Xn,ℓ2)

Again, we have a portion of the union in our claim (with the correct X term) that continues where
the previous one left off.

Finally, for ( 3
4
+ 1

4
Bn+k−1), we write:

3

4
+

4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Yn,j) =

3 ⋅ 4k−1
4k

+
4k−1−1

⋃
j=0

( j

4k
+ 1

4k
Yn,j) =

4k−1−1

⋃
j=0

(j + 3 ⋅ 4
k−1

4k
+ 1

4k
Yn,j)
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Let ℓ3 ∶= j +3 ⋅4k−1. Note that the base 4 addition of 3 ⋅4k−1 and j is (30⋯⋯0)4 + (j0⋯jt)4, where
t ≤ (k − 2) since j < 4k−1. Therefore ℓ3 = (3j0⋯jt)4 has digits adding to 3+ j0 +⋯+ jt, preserving the
parity of ℓ3’s sum of digits in base 4 from that of j. This means Yn,j =Xx,ℓ3 and hence gives

(3
4
+ 1

4
Bn+k−1) ⊇

4⋅4k−1−1

⋃
ℓ3=3⋅4k−1

( ℓ3
4k
+ 1

4k
Xn,ℓ3) =

4k−1

⋃
ℓ3=3⋅4k−1

( ℓ3
4k
+ 1

4k
Xn,ℓ3)

Together, these unions span 0 to 4k − 1, which gives

Cn+k ⊇
4k−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j)

as claimed. The proof for the Bn+k inclusion follows the same argument but swaps any B-sets for
C-sets and vice-versa.

□

5.4. Lemma for Contractivness of TΔ.
We now define the following for any f, g ∈ C 1

2
:

Dn = Bn(f)⋂Cn(g)

En = Bn(g)⋂Cn(f)

Fn = (Bn(f)⋂Bn(g))⋃ (Cn(f)⋂Cn(g))

Gn = An(f)⋃An(g)
Note that the disjoint union Dn⋃En⋃Fn⋃Gn = [0,1] for any f, g.

Let f, g ∈ C 1
2
be such that f ≠ g. By Lemma 10,m(Gn)Ð→ 0. Since ∥f−g∥ > 0 and ∫

1
0 f = ∫

1
0 g = 1

2
,

m[f > g] and m[g > f] are both positive. We will now show m(Dn) and m(En) are both positive.
Since T∆ is an isometry, we have

∥f − g∥ = ∥(T∆)nf − (T∆)ng∥ = ∫
Gn

∣(T∆)nf − (T∆)ng∣ + ∫
Fn

0 + ∫
Dn

1 + ∫
En

1

= ∫
Gn

∣(T∆)nf − (T∆)ng∣ +m(Dn) +m(En)

This shows m(Dn)+m(En) = ∥f −g∥−∫Gn
∣(T∆)nf −(T∆)ng∣. Also, since ∫

1
0 (T∆)nf = ∫

1
0 (T∆)ng =

1
2
,

∫
Gn

((T∆)nf−(T∆)ng)+∫
Dn

((T∆)nf−(T∆)ng)+∫
En

((T∆)nf−(T∆)ng)+∫
Fn

((T∆)nf−(T∆)ng) = 0

so

∫
Gn

((T∆)nf − (T∆)ng) + ∫
Dn

1 + ∫
En

(−1) = 0

and hence

m(En) −m(Dn) = ∫
Gn

((T∆)nf − (T∆)ng).

From the above and the fact that ∫Gn
∣(T∆)nf − (T∆)ng∣ ≤ m(Gn) (because the integrand is

bounded above by 1), we conclude that

∥f − g∥ ≥m(Dn) +m(En) ≥ ∥f − g∥ −m(Gn)
and

∣m(En) −m(Dn)∣ ≤m(Gn)
Since m(Gn) Ð→ 0, it holds that m(Dn) Ð→ 1

2
∥f − g∥ and m(En) Ð→ 1

2
∥f − g∥ as n gets large.

Hence we can choose n large enough such that m(Dn) and m(En) are both greater than 1
4
∥f − g∥.
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(♠)Claim: Choosing n as above, there exists k ∈ N such that the sets

S1 = En+k⋂[f > g]

S2 =Dn+k⋂[f < g]

are both of positive measure.
(♠)Proof: Let W ∶= [f < g]. Fix ϵ > 0. By Proposition 15 in [7], there exists a finite sequence of
open intervals (Il)νl=1 such that m(W /Γ ∪ Γ/W ) = m(W∆Γ) < ϵ where Γ ∶= ⋃ν

l=1 Il. Without loss
of generality, we assume that the intervals Il are pairwise disjoint and dyadic intervals of the form
( jl
4k
, jl+1

4k
) for some jl ∈ {0,⋯,4k − 1} and k ∈ N. We write:

χ
Γ
=

4k−1

∑
j=0

βjχ( j

4k
, j+1
4k
)
,

where each βj ∈ {0,1}. Let pn = min{m(Dn),m(En)}. Note that the measures of Dn and En both

exceed 1
4
∥f − g∥ and that ( j

4k
+ 1

4k
Xn,j(g)) ∩ ( j

4k
+ 1

4k
Yn,j(f))) is j

4k
+ 1

4k
Dn for certain values of j

and j
4k
+ 1

4k
En for others. Then

m(Dn+k ∩W ) ≥ m
⎛
⎝
⎛
⎝
4k−1

⋃
j=0

j

4k
+ 1

4k
Xn,j(g)

⎞
⎠
∩
⎛
⎝
4k−1

⋃
j=0

j

4k
+ 1

4k
Yn,j(f)

⎞
⎠
∩W ∩ Γ

⎞
⎠

= m
⎛
⎝
⎛
⎝
4k−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j(g)) ∩ (

j

4k
+ 1

4k
Yn,j(f))

⎞
⎠
∩W ∩ Γ

⎞
⎠

= m
⎛
⎝
⎛
⎝
4k−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j(g)) ∩ (

j

4k
+ 1

4k
Yn,j(f))

⎞
⎠
∩ Γ
⎞
⎠

− m
⎛
⎝
⎛
⎝
4k−1

⋃
j=0

( j

4k
+ 1

4k
Xn,j(g)) ∩ (

j

4k
+ 1

4k
Yn,j(f))

⎞
⎠
∩ Γ/W

⎞
⎠

≥ ∫
1

0

4k−1

∑
j=0

χ
((

j

4k
+ 1

4k
Xn,j(g))∩(

j

4k
+ 1

4k
Yn,j(f)))

4k−1

∑
s=0

βsχ( s

4k
, s+1
4k
)dm −m(Γ/W )

> ∫
1

0

4k−1

∑
j=0

βjχ(( j

4k
+ 1

4k
Xn,j(g))∩(

j

4k
+ 1

4k
Yn,j(f)))

dm − ϵ ≥ pn
1

4k

4k−1

∑
j=0

βj − ϵ

= pnm(Γ) − ϵ > pn(m(W ) − ϵ) − ϵ = pnm(W ) − pnϵ − ϵ ≥ pnm(W ) − 2ϵ

≥ ∥f − g∥
4

m(W ) − 2ϵ > ∥f − g∥
8

m(W ) > 0

for ϵ < ∥f−g∥
16

m(W ) . This holds for all k ≥ k1 for some k1 ∈ N.
A similar argument shows there exists k2 ∈ N such that m(En+k2 ∩ [f > g]) > 0 for small enough ϵ.
Hence we can choose k ≥max{k1, k2}, and we have proven the claim.

□
We can now prove the following lemma:

Lemma 12. For every f , g ∈ C 1
2
with ∥f − g∥ > 0 there is some N ∈ N such that

∣∣I + (T∆)
N

2
f − I + (T∆)N

2
g∣∣ < ∥f − g∥.

Proof: With n ∈ N and k as in claim ♠, let N ∶= n+ k. Define the set S3 ∶= [0,1]/(S1 ∪S2). We will
achieve the desired inequality by breaking down [0,1] into S1, S2, and S3:
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∥I + (T∆)
N

2
f − I + (T∆)N

2
g∥ = ∫

1

0
∣f + (T∆)

Nf

2
− g + (T∆)Ng

2
∣

= ∫
S1

∣f − g + ((T∆)
Nf − (T∆)Ng)
2

∣ + ∫
S2

∣f − g + ((T∆)
Nf − (T∆)Ng)
2

∣

+∫
S3

∣f + (T∆)
Nf

2
− g + (T∆)Ng

2
∣

= ∫
S1

∣f − g − 1
2

∣ + ∫
S2

∣f − g + 1
2

∣ + ∫
S3

∣f + (T∆)
Nf

2
− g + (T∆)Ng

2
∣

= ∫
S1

1 + g − f
2

+ ∫
S2

1 + f − g
2

+ ∫
S3

∣f + (T∆)
Nf

2
− g + (T∆)Ng

2
∣

< ∫
S1

1 + f − g
2

+ ∫
S2

1 + g − f
2

+ ∫
S3

∣f + (T∆)
Nf

2
− g + (T∆)Ng

2
∣

= ∫
S1

(∣(T∆)
Nf − (T∆)Ng

2
∣ + ∣f − g

2
∣) + ∫

S2

(∣(T∆)
Nf − (T∆)Ng

2
∣ + ∣f − g

2
∣)

+∫
S3

∣f − g
2
+ (T∆)

Nf − (T∆)Ng

2
∣

≤ ∫
1

0
(∣f − g

2
∣ + ∣ (T∆)

Nf − (T∆)Ng

2
∣) = ∫

1

0
(∣f − g

2
∣ + ∣f − g

2
∣)

= ∫
1

0
∣f − g∣ = ∥f − g∥

□

Theorem 13. The map R∆ ∶=
∞

∑
n=0

(T∆)n
2n+1

is fpf and contractive.

Proof: Let f ∈ C 1
2
.

R∆f = (
I

2
+ T∆

4
+ (T∆)

2

8
+⋯) f

Distributing the identity term throughout the sum and accounting for the correct coefficients on
each power of T∆, we get

R∆f =
1

2
(I + T∆

2
) f + 1

4
(I + (T∆)

2

2
) f + 1

8
(I + (T∆)

3

2
) f +⋯ =

∞

∑
n=0

1

2n+1
(I + (T∆)

n

2
) f.

Hence for any f , g ∈ C 1
2
such that ∥f − g∥ > 0, we have

∥R∆f −R∆g∥ = ∥
1

2
((I + T∆

2
) f − (I + T∆

2
) g) + 1

4
((I + (T∆)

2

2
) f − (I + (T∆)

2

2
) g) +⋯∥

Using the triangle inequality, we get

∥R∆f −R∆g∥ ≤
1

2
∥(I + T∆

2
) f − (I + T∆

2
) g∥ + 1

4
∥(I + (T∆)

2

2
) f − (I + (T∆)

2

2
) g∥ +⋯

Each I+(T∆)n

2
is nonexpansive, and by Lemma 12 there exists an N ∈ N such that I+(T∆)N

2
is

contractive. Therefore

∥R∆f −R∆g∥ <
∞

∑
n=0

1

2n+1
∥f − g∥ = ∥f − g∥

and we conclude that R∆ is contractive.
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To show R∆ is fpf, we use the same techniques from the proof of Theorem 6. Note that in this case
T∆ is an isometry and hence we get

∥R∆f −R∆g∥ >
1

2
∥f − g∥ − 1

2
∥T∆f − T∆g∥ = 1

2
∥f − g∥ − 1

2
∥f − g∥ = 0

which shows R∆ is 1-1. The rest of the proof follows exactly as in Theorem 6 and uses the fact from
[4] that T∆ is fpf.

□

As a result of Theorem 6, we immediately have the following.

Corollary 1: The map JR∆
∶=
∞

∑
n=0

(R∆)n
2n+1

is fpf and contractive.

6. Conclusion

Proving that V is fixed point free and nonexpansive raises a natural question about whether
∞

∑
n=0

V n

2n+1
is contractive and fpf. If this were the case, in light of Theorem 6 and previous results,

we might ask a more general question about starting with any nonexpansive and fpf map F : Is the

series
∞

∑
n=0

Fn

2n+1
fpf and contractive? Since 2014, there have been other formulations of fixed point free

and contractive maps ([6], [3]) coming from such series, possibly pointing to an affirmative result.
Although, we have only seen the details of the analogue of Lemma 12 for the original series R and
the series R∆ and Wr in this paper.

And the question about Wr being contractive and fpf remains open (to us) for r > 1/2. For
r > 1/2, we have tried both the formula given above for Wr and re-formulations without resolving
the question.
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