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Abstract. This study addresses the fact that reasonable methods for determining the winner(s)

of ranked choice elections can disagree with each other. We consider six well-known methods and
check their agreement using a variety of simulation strategies. We explain some of the underlying

causes of potential disagreement using examples. Most centrally, we attempt to determine the

probability that the choice of counting method itself will determine the result of an election. In
considering different models for voter behavior, we arrive at a range of numbers.

1. Introduction

In ranked choice voting, voters are given a set of candidates which they may rank in preferential
order. Given a set of ballots, there exist various methods to determine the winner of the election.
These methods need not pick the same winner. Methods that seem perfectly fair can produce results
that appear unreasonable. This creates an issue - if different (seemingly fair) methods are picking
different winners, then it can be difficult to settle on a single method for continued use.

Perhaps the most famous encapsulation of this issue is due to Kenneth Arrow [1]. Arrow’s theorem
has been widely discussed and we draw some clarity from Amartiya Sen [15].

Informed by the unavailability of a perfect decision-making method, this study aims to help clarify
the differences between reasonable imperfect methods. We include Condorcet, Plurality, Instant-
Runoff, Borda, Baldwin, and Range methods. Where the meanings of these methods are ambiguous
(for example, when ballots are incomplete), we provide methodological details.

We focus on the frequency that these methods agree in simulated elections. Where possible, we
attempt to explain the causes of the disagreements with an eye toward classifying such. We use four
significantly different simulation strategies (and minor variations therein). Simulation strategies
used here include simple and hybrid spatial models which are known to mirror real-world election
dynamics [14], [12], [5]. As shown below, we found some expected and unexpected patterns in the
agreement frequencies.

Before working through our simulation strategies in order of increasing complexity, we offer one
helpful example here from the mixed spatial model described in section 3. Using a scatter plot of
candidates and voters, we can see the location of each candidate in comparison to every voter’s ideal
point.

The example just below includes one of the most common method disagreements seen in the real
elections we tested. The black dots represent voters, and the red circles represent candidates. The
method used to generate their positions and the voters’ ballots will be explained in section 3.

In this example, Instant Runoff and Plurality both pick a different winner than the rest of the
methods. Both of these methods focus on first place votes, whereas other methods considered in this
paper attempt to consider all preference information simultaneously. Candidate 2 (the Condorcet
winner) gets fewer first place votes than 1 and 4, likely because it shares a quadrant with Candidate
3. In a pairwise match-up, however, 2 beats 1. This last fact is possibly because 2 is located between
the other candidates, getting a large portion of the second place votes.
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As mentioned above, we will proceed through simulation models in order of increasing complexity.
We will pause at times to discuss what a given model can show us about why simple or advanced
counting methods may disagree in a potential election.

We will see some patterns holding across models: that the more advanced methods agree more
frequently with each other, that instant runoff agrees more frequently with plurality than other true
ranked choice methods, and the frequency that even advanced methods disagree is non-trivial. We
consider the data to support the assertion that using an advanced counting system is worth the
consideration of political bodies. We hope that the collection of data presented here can help to
inform the discussion of these choices.

Data from historical elections [4] informed changes to our simulation methods. First, voters may
not rank every candidate. Voters could leave all but one candidate off the ballot, or rank the entire
set of candidates. Simulation parameters were set to have this occurring as frequently in simulation
as in historical data. And also the methods work differently with complete and incomplete ballots.
Accounting for this required modifications to our implementation of the voting methods:

• Borda will now award 1 point to the candidate in last place on a ballot, as opposed to the
traditional 0. Since no voter must put every candidate on the ballot, just being on the ballot
should be awarded with a point.

• As previously discussed, Baldwin no longer needs to elect the Condorcet winner. This is
possible even if a single ballot is left incomplete.

• Using the same logic as the first point, Condorcet should consider being on the ballot a
pairwise win against all candidates not on it.

• Borda will now award 0 points to any candidate left off a ballot. It is worth noting that
there are many possible solutions to dealing with candidates left off a ballot. Awarding 0
Borda points to those candidates ensures that no voter is forced to award points to any can-
didate they strongly dislike. However, it is possible that this provides a strategic incentive
to submit an incomplete ballot.

2. Spatial Model

We now turn to simulations with more realistic ballot generation techniques. We consider the fact
that some candidates (or policy options, etc.) are more similar to each other, so a high ranking for
one makes a voter very likely to rank a similar candidate next. This phenomenon can be captured
by a spatial model - widely considered the most accurate methods of election simulation [5].
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Candidates are placed in multi-dimensional space, where each dimension is an issue, policy, or
potential attribute of a candidate. Each voter has a point in this multi-dimensional space that best
represents their opinions across multiple issues. A utility function can be used to model a voter’s
favor towards each candidate. A natural utility function is the euclidean distance, known as the
proximity model: [11]

U(V,C) = −
√

(v1 − c1)2 + ...+ (vk − ck)2

where k is the number of dimensions in the model. The voter then ranks candidates in order of
decreasing utility.

We also chose to simulate the possibility of voters leaving incomplete ballots. In the algorithm
generating the data present in this section, any candidate whose distance is more than twice as great
as the candidate with the smallest distance to the current voter will be left off that voter’s ballot.

Finally, we must decide on a number of dimensions to use for our model. Not knowing how this
may affect results, we chose to test the effect of using a 2D vs. a 3D model on our results. The data
is shown below. The code itself can generate simulations in n-dimensions where n is any number
that is small enough for the computational hardware.

4 candidates, 1,000 simulations

100 voters 1,000 voters 10,000 voters
2D 3D 2D 3D 2D 3D

Condorcet existence .976 .984 .995 .999 .999 .999
Condorcet-Borda .895 .935 .921 .951 .941 .956
Condorcet-Baldwin .876 .907 .895 .916 .899 .930

Condorcet-IR .914 .948 .942 .968 .937 .966
Condorcet-plurality .806 .820 .801 .837 .802 .826
Borda-Baldwin .942 .954 .950 .960 .960 .948

Borda-IR .852 .921 .876 .920 .883 .923
Borda-Plurality .753 .793 .745 .792 .756 .787
Plurality-IR .850 .842 .837 .856 .844 .849

Plurality-Baldwin .730 .769 .715 .763 .722 .764
Baldwin-IR .830 .891 .845 .887 .839 .897

6 candidates, 1,000 simulations

100 voters 1,000 voters 10,000 voters
2D 3D 2D 3D 2D 3D

Condorcet existence .949 .963 .983 .995 .991 .999
Condorcet-Borda .830 .855 .833 .903 .855 .895
Condorcet-Baldwin .766 .813 .745 .858 .774 .855

Condorcet-IR .831 .898 .843 .910 .838 .914
Condorcet-plurality .652 .675 .667 .671 .632 .706
Borda-Baldwin .907 .922 .903 .943 .907 .947

Borda-IR .755 .817 .705 .829 .727 .818
Borda-Plurality .586 .627 .562 .602 .545 .619
Plurality-IR .721 .728 .748 .709 .717 .748

Plurality-Baldwin .530 .592 .493 .567 .473 .585
Baldwin-IR .687 .778 .621 .786 .646 .775

3. Mixed Spatial Model

Many have theorized that the Euclidean distance is not the only possible way for voters to deter-
mine their utility for a candidate. Beyond proximity, a spatial model with a directional component
incorporates the observation [14] that voters can prefer the most extreme candidate on their side of
an issue axis, calculating utility with a dot product of voter and candidate position.
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Using a purely proximity model or a purely directional model could fail to account for all the
possible aspects of voter behavior. Voters may prefer a candidate who is extremely close to them
in ideological/ policy space, but might otherwise prefer the more extreme candidate on their side
of an issue, but only up to a certain extent. For this reason, a mixed model is believed to be a
sophisticated and accurate way to model a voter’s utility for a candidate in space. The accuracy of
such mixed models has been experimentally verified [10], [12].

We implemented such a “mixed” spatial model by adding a directional term as described above.
Informed by the literature [11], we also added a small random term (R) which accounts for possible
variations (misunderstanding, personal affinity, etc.) in voter behavior. The proximity and direc-
tional terms were calibrated to have roughly equal contributions to the average utility score. The R
term was calibrated to contribute much less than other terms in every implementation.

U(V,C) = α|V − C|+ βV · C +R(V,C)

Method(s) Frequency 1* Frequency 2*
Condorcet existence .997 .876
Condorcet-Borda .9230 .731
Condorcet-Baldwin .933 .754

Condorcet-instant runoff .8542 .763
Condorcet-plurality .637 .582
Borda-Baldwin .947 .854

Borda-instant runoff .852 .759
Borda-plurality .688 .735

Plurality-instant runoff .701 .690
Plurality-Baldwin .651 .640

Baldwin-instant runoff .836 .751

The above table states rates of agreement over two implementations of this model.
In model 1, the spatial axes run from −1 to 1. We found the directional and proximity components

to have roughly equal sizes on average and so set α = β = 1. We set R(V,C) to sample from a uniform
distribution on [.15, .40]. The data labeled Frequency 1* above comes with these parameters and 5000
runs with variable voter and candidate number. The overall pattern of agreement is similar to the
purely proximity-based model (low agreement between plurality and advanced methods, interesting
patterns otherwise).

In model 2 ... 5 candidates, 500 voters, 1000 runs ... we set the probability that a voter would
rank every candidate to 20%. After checking the historical databases we could access, we found this
number to be closer to 8pct in reality [9]. The spatial dimensions were −100 to 100. We set α = 1
and β = .05. R(V,C) was sampled from a normal distribution with µ = 0, σ = 5.

4. Visualization and Spatial Characteristics of Method Disagreements

Here are a few more examples that show simulations where methods disagree. These examples
all used the mixed spatial model for the utility function.
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In the above simulation, Condorcet picks a winner not selected by any other methods. Instant
runoff also disagrees with plurality, even eliminating the plurality winner early. Borda and Baldwin
agree, but Baldwin eliminates 1, the Condorcet winner, quickly. Candidate 1 is poorly placed once
the lowest Borda score is eliminated, sharing “territory” with 3 while 4 has a large region to itself.
But when all candidates are considered, 1 wins a pairwise comparison against every other candidate.

Finally, above we see the possible role of symmetry in creating the near-ties necessary for methods
to disagree. There does not exist a Condorcet winner, instant runoff and plurality pick different
winners, and Borda and Baldwin do not agree either. It is worth noting that the three top Borda
scores here are very close.

We see some apparent patterns in the winning candidates’ positions. Being away from other
candidates is most helpful in Plurality, where this leads to less competition for that candidate’s
neighborhood of first place votes.

Having an overall better position, even if it is crowded, can be preferable in the elimination
methods (Baldwin, IR). Being close to other candidates who are slightly less-well positioned means
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that those candidates will be eliminated first. And then the candidate who was positioned best with
the voters to begin with will have that prime position to themselves.

We have attempted to capture these effects by measuring some numbers related to the spatial
positions of method winners: their distance to the origin, their distance to the closest alternative
candidate, and their average distance to all other candidates. The table below presents these numbers
for 1100 simulations with 5 candidates and 500 voters.

We include information about the Range method (described in section 6). The Range and Plural-
ity methods show the most unique spatial characteristics. We propose that Plurality winners have
the largest average distance to the origin because this makes them most likely to have a region (even
if less densely populated with voters) free of other candidates that would split that region’s first
place votes. We do not have as solid of an explanation for the Range method winners having unique
spatial characteristics.

Dist to Origin Dist to Closest Alternative Avg Dist to Alternatives
Range .1928 .4885 .2679

Condorcet .2177 .5437 .2967
Baldwin .2243 .5475 .2977

Instant Runoff .2345 .5543 .3055
Borda .2290 .5540 .3065

Plurality .2900 .6136 .3748

5. Graph Theoretic Voter Model for Ranked Preference Elections

This is just a placeholder paragraph. Every simulation method captures only one or two things.
Above captured policy preference. The new model introduced in this section captures the influence of
voters upon each other after each voter forms some initial opinions of the candidates. This has been
modeled in various ways for 2-candidate elections [13]. We use an update rule adapted from pure
graph-theoretic Voter Models (GTVM) [7], [8]. We believe that such a model for ranked preference
elections is original here.

Using a Python script that implemented the NetworkX package, we generated such graphs with
various documented algorithms for creating realistic social network models. Namely, we reference the
Watts-Strogatz [18] and Barabási-Albert [2] algorithms. The former produces graphs which replicate
the properties of small, real-world social networks. The latter generates scale-free networks, with
examples including the internet or social media connections.
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5.1. Evolution Toward Consensus. We believe that results about equilibria in 2-candidate GTVM
[6] can be adapted here. As the multi-candidate GTVM is allowed to continue, the state of the elec-
tion will converge toward and in fact reach a state where every voter has exactly the same ballot.
This would lead to a consensus winner.

We conducted an experiment to see which counting methods (Baldwin, Borda, Condorcet, IR,
Plurality) would be most likely to agree with the eventual consensus winner. In this initial round of
data gathering, we started with a simulated ranked preference election with 5 candidates and 5000
voters using the mixed spatial model described above. We ran such simulations until encountering a
case where at least two of the counting methods disagreed. We then ran loops of 10*[Voter Number]
individual rolls of the update rule. We stopped the model if after any one of these loops the 5
counting methods all agreed and named their choice the consensus winner.

We discovered that this update rule favored Borda winners the most and disfavored Plurality
winners the most. To understand this, recall that each Borda point is awarded to candidate X for
being above candidate Y on some ballot. The update rule starts by randomly selecting consecutive
candidates on a ballot and then polls a randomly chosen adjacent voter’s preference between these
candidates. The probability that X will be above Y on the randomly chosen adjacent ballot is
correlated to their Borda scores. If Y tended to be ranked higher than X, it would be getting as
many Borda points as X on those ballots and at least one additional point for being above X on
each of those ballots.

The charts below focus on the cases where the eventual consensus winner was also the original
winner of method X (where X is named in the upper-left corner of the chart) and displays the
probability that method Y (where method Y is the column header) also agreed with that consensus
winner.

First, we have results from 10,000 runs where at least two methods initially disagreed and the
social network facilitating the updates was created with a Watts-Strogatz algorithm. In 96.40% of
cases, the initial Borda winner became the consensus winner. And in 2.69% of cases, the initial
Plurality winner became the consensus winner.

Agrees w/ Baldwin Condorcet IR Plurality
Borda .7854 .7848 .4718 .0215

Agrees w/ Baldwin Borda Condorcet IR
Plurality .5985 .7695 .5911 .2565
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The last number has the potential to be somewhat misleading despite being accurately recorded.
Because we are focused only on those cases where there is some initial disagreement and the original
plurality winner eventually becomes the consensus winner, this number misses the frequency with
which plurality and IR agreed generally. Of the 10,000 cases considered here where at least some
methods disagreed, there were 5220 cases where IR and Plurality either both matched the eventual
consensus winner or both failed to match the consensus. And as other data indicate, by focusing on
disagreements, we are more likely to land on a disagreement involving either IR or Plurality than a
more consensus-oriented method like Borda.

Second, we have results from 10,000 runs where the social network facilitating the updates was
created with a Barabási-Albert algorithm. In 96.11% of these cases, the original Borda winner
was the eventual consensus winner and in 2.86% of cases, the original Plurality winner became the
consensus winner.

Agrees w/ Baldwin Condorcet IR Plurality
Borda .7913 .7904 .4672 .0234

Agrees w/ Baldwin Borda Condorcet IR
Plurality .6538 .7867 .6538 .2068

6. Range Voting Method

Range voting is similar in some ways to ranked preference voting. Instead of ranking candidates,
however, voters provide a score (here between 0 and 99, inclusive) for each candidate. This score is
meant to capture the extent to which the voter supports the candidate.

The winner is determined by averaging the scores for each candidate over all ballots. In range
voting, a candidate may be left off of a ballot. The candidate’s score is only taken over the ballots
on which they appear. This is considered necessary for practical reasons (voters may simply not
want to fill in every blank or be authentically indifferent to a candidate) and provides a convenient
method for including partially damaged or illegible ballots (any score that cannot be read is simply
excluded) [16].

The value of ranked choice voting to political communities is that it allows voters to express some
of their opinions related to more than one candidate per election. Range voting allows for all of the
expression of ranked voting and more, allowing voters to quantify the extent to which they prefer
one candidate to another.

Range voting is natural and easily understood despite not being widely used. [3]
Given the natural link between a given voter’s likely range score for a given candidate and the

“utility” that voter expects to derive from that candidate’s election, it has been shown that range
voting exceeds the utility maximization of the previously discussed methods [17].

In our simulations, the Range method disagrees with other methods confusingly often. The table
below comes from 500 simulations with 5 candidates and 500 voters. Other runs exhibited similar
frequencies.

Condorcet Borda Inst Runoff Baldwin Plurality
Frequency Agree w/ Range .570 .530 .496 .566 .356

Above we saw that Range method winners have a unique spatial characteristic: closer on average
to the median voter and closer on average to other candidates. We hypothesize that being close to
other candidates (in our model and in real-world range voting) is much more advantageous in Range
than in any other method. This can be understood by the fact that our model would give close
candidates approximately identical Range scores (as a real voter might), whereas Borda and Baldwin
force voters to give only one of them a valuable extra point (out of say 5). More dramatically, IR and
Plurality would allow voters to support exactly one of the two close candidates (overall in plurality
and at any given stage in IR).

Below we see an example where the Range method disagrees with all other methods. We hypoth-
esize that the position of Candidate 5 is significant here.
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We saw above that the Range method was much more likely to pick a centrally located candidate
than other methods in this model. We see this in the scatterplots below as well. In the spatial
characteristic data in section 4, we saw that plurality and Range are outliers in different ways.
Range winners tended to be more centrally located as can also be seen below.

7. Uniformly Generated Ballots

**This was above. Material on uniform ballots already submitted for publication. Weights array
not submitted. Consider transitions.**

The simplest model in this study generated ballots uniformly. Each alternative had the same
probability of ending up at any given spot on any given ballot. We observed interesting variations in
the frequency of agreement between methods as the numbers of candidates and voters changed. In
particular, for many quantities of interest, the numbers appear to approach horizontal asymptotes
as the number of voters increases.

Note that frequencies describing Condorcet’s agreement with other methods are counted only
in the cases where there exists a Condorcet winner. If one does not exist, it is not counted as a
disagreement.

In the table below, the first row (9050 runs) comes from simulated elections with 100 to 1,000,000
voters and 5 candidates. There were more runs at smaller numbers of voters. We compress some of
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the data here and attempt to show the effect of changing voter number in graphs below. The second
row (4430 runs) averages simulations with 5, 10, 20, and 50 voters.

Agrmnt Frcnqy Cndrct-Bldwn Borda-Bldwn Plurality-IR Plurality-Bldwn Bldwn-IR
More Voters .719 .762 .548 .551 .820
Fewer Voters .552 .707 .593 .545 .806

In the next table, we have agreement frequency data from more simulations focusing on simpler
methods. The first row (90,000 runs) averages runs with 500 to 16,000 voters. The second row
(60,000 runs) averages runs with 5 voters to 150 voters.

Agrmnt Frcnqy Condorcet existence Condorcet-Borda Condorcet-Plurality Borda-Plurality
More Voters .621 .719 .409 .541
Fewer Voters .578 .540 .388 .569

We note a couple trends in the data.
The frequency with which Plurality disagrees with the more advanced methods is striking. We

consider this natural as plurality does not access the information about lower preferences at all. And
we take it as evidence that, given the reality that lower preferences exist, the plurality method is
not just failing to collect this information but also frequently making a different choice than the one
that would be made by a reasonable method that saw this information.

We also note that agreement frequency seems to increase with voter number for most pairs of
methods. For many pairs (data in appendix ??), the frequency of agreement appears to stabilize as
voter number increases. We find these potential horizontal asymptotes intriguing, observe them in
many quantities in this simulation method, and cannot currently prove that they must exist.

In later sections, we describe simulation methods that attempt to realistically capture the behavior
of an electorate. One imagines, for example, that voters may view certain candidates as “similar”
and therefore be increasingly likely to rank them consecutively (or nearly consecutively). And the
models below capture such behavior and more.

But this uniform model benefits from simplicity. With this study being concerned more with the
differing choices made by the counting methods themselves, the uniform model may offer the best
single number. If the apparent horizontal asymptotes are provably present for those methods, then
the levels of those asymptotes may be the best simple “similarity scores” for pairs of methods.

One simple observed and provable fact is that this method, given k candidates running, generated
elections closer to k-way ties as the number of voters increased. We note now that other models
produced less-frequent disagreement as voter number increased and that it is easier to generate
simple examples where the methods disagree if one starts with a near tie (as captured by Borda
score or the number of first place votes, for example).
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8. The Weights Array

One possible improvement to generating uniform ballots is to give some candidates more support
than others. This may better simulate the circumstances of a real election, where some candidates
are more popular, have more effective campaigns, etc. This intuition led to what we called the
“weights array”.

Each candidate receives a weight ({w1, w2, ..., wk−1}, sampled from normal distribution with
µ = 1/k, σ = 0.2/k, and wk chosen so that Σwj = 1 if possible, otherwise the run was discarded)
which determines their probability of being put on the next available spot on the ballot. For example,
if a candidate’s weight is 0.4, their probability of ending up first on any given ballot is 0.4, after
which the remaining candidates’ probabilities are normalized and rolled again for second place.

Contrasting with the uniform method above, we observe that as voter number increases, the
methods converge to total agreement, all choosing the candidate with the greatest weight. A proof
that this observation must hold can be found after some data generated by this method.

8.1. Data From Weights Method of Simulation.

Below is a sample of data regarding frequency of method agreement using our weights method.
(Here C=Condorcet, B=Borda, BW=Baldwin, IR=Instant Runoff, and P=Plurality.)

4 candidates, 1,000 simulations

C existence C-B C-BW C-IR C-P B-BW B-IR B-P P-IR P-BW BW-IR

100 voters .890 .843 .890 .874 .753 .896 .877 .802 .805 .800 .967

1,000 voters .979 .947 .979 .972 .877 .953 .948 .896 .890 .884 .985

10,000 voters .998 .989 .998 .998 .967 .990 .990 .969 .969 .969 1.00

5 candidates, 1,000 simulations

C existence C-B C-BW C-IR C-P B-BW B-IR B-P P-IR P-BW BW-IR

100 voters .836 .880 .863 .843 .659 .872 .848 .733 .723 .705 .938

1,000 voters .981 .941 .981 .973 .864 .948 .945 .871 .871 .890 .989

10,000 voters .999 .978 .999 .998 .958 .979 .978 .961 .959 .958 .999

6 candidates, 1,000 simulations

C existence C-B C-BW C-IR C-P B-BW B-IR B-P P-IR P-BW BW-IR

100 voters .830 .762 .830 .903 .571 .840 .830 .643 .652 .634 .913

1,000 voters .983 .921 .983 .977 .835 .929 .925 .839 .841 .843 .989

10,000 voters .998 .981 .998 .998 .946 .982 .981 .954 .946 .947 .999

8.2. Proof Regarding Weights Method.

This section refers to the claim that under the above weights method, choice functions will always
pick the candidate with the greatest weight. In this proof we will show this holds true for Condorcet’s
method.
Claim: The winner of the weights roll (i.e. the candidate assigned the largest number in the weights
array) will win every pairwise match-up.
Proof: Consider N candidates {c1, c2, ..., cN} in a simulated election using ranked preference ballots.
Let the “weights” roll be {w1, w2, ..., wN} where these are the probabilities associated with each
candidate for sampling (numpy.random.choice). We suppose that there is a “weights winner” cm
such that wm > wj ∀j ̸= m.

In what follows, we fix j ̸= m and consider the pairwise matchup between cj and cm. We will
write cj > cm to communicate that cj is a higher on a given ballot. We aim to show that it must be
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the case cm > cj on more than half of the ballots for sufficiently large voter number. To this end,
we define the random variable

Xi =

{
1 cm > cj on ballot i

0 cj > cm on ballot i

Let X = EV (Xi). We will prove below the main argument that X = wm

wm+wj
. Taking this as

given for now, we note that X =
wm

wm + wj
>

wm

wm + wm
=

wm

2wm
=

1

2
.

If there are n voters, cm beats cj in the election in exactly the case where

n∑
i=1

Xi >
n

2
which we

note is the same as

n∑
i=1

Xi

n
>

1

2
. The law of large numbers tells us that lim

n→∞

(
n∑

i=1

Xi

n

)
= X >

1

2
.

Let ϵ =
X − 1/2

2
, which is greater than 0. By the definition of lim

n→∞

(
n∑

i=1

Xi

n

)
= X, ∃K ∈ N

such that n > K gives∣∣∣∣∣
(

n∑
i=1

Xi

n

)
−X

∣∣∣∣∣ < ϵ ⇒ X −

(
n∑

i=1

Xi

n

)
<

X − 1/2

2

⇒ X − X − 1/2

2
<

n∑
i=1

Xi

n
⇒ X + 1/2

2
<

n∑
i=1

Xi

n
.

But X > 1/2, giving that

n∑
i=1

Xi

n
>

1

2
meaning that cm beats cj whenever n > K as desired.

To finish the proof, let’s confirm that X is
wm

wm + wj
.

We note first that X is also exactly the probability that cm is ahead of cj on a given ballot. The
value of Xi in this event this is 1. The value of any other event is 0. So the probability of this event
is the EV of Xi.

We note that the random.choice method uses the variable p, which we set equal to the weights
array, to iteratively determine the candidate in the next ballot position. So at any stage in this
iterative process, the matter can be resolved only if the choice of cm or cj is made. In any other
case, the process continues to a next step.

With the basic conditional probability formula P (A|B) =
P (A ∩B)

P (B)
in hand, we consider the

events A = [cm chosen at stage t] and B = [the process stops at stage t]. We note that A ∩B = A
because choosing cm stops the process. We also note that B is the event that either cm or cj is
chosen.

In each case, the probability depends on the “leftover” weight in the weights array after the first
t− 1 choices. The probability of choosing cm is wm

leftover and the probability of choosing either cm or

cj is
wm+wj

leftover . From this we see P (A|B) =
P (A ∩B)

P (B)
=

wm

leftover
wm+wj

leftover

=
wm

wm + wj
. □

This claim shows that the weights roll winner is the Condorcet winner immediately (because cm
wins pairwise matchups with cj for all j). We expect that small modifications can prove the same
for every other counting method as well.
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9. Concluding Remarks

After much study, we remain interested in the natural questions about methods disagreeing in
real elections and realistic simulations. What “causes” the disagreement? Can we classify candidates
(using spatial position or some other characteristic) that are more likely to win one method while
losing another?

We remain puzzled by the frequency of difference between Borda and Range winners. In our
simulations, both scores were based closely on the underlying spatial score. Varying the parameters
and having ballots complete or incomplete all resulted in Range making frequently different choices
from other methods.

In advanced simulations and in historical elections, we found a surprisingly high frequency of
Condorcet winner existence. This departs from the first data we had from the uniform method. In
those simulations, being close to pairwise ties for every pair greatly increased the likelihood that
no Condorcet winner would be present. The higher observed frequency of Condorcet winners in
reality and realistic simulations suggests that this criterion could be used in some way. (We refer
the interested reader to the easily researched method of Duncan Black. The second author has also
proposed a method whereby a Condorcet winner that is also a Borda winner would be elected and
otherwise the candidate with the lowest Borda score would be eliminated, as in Baldwin’s method.
In elections with complete ballots, this method always selects the Baldwin winner.)

As a matter of personal opinion, both authors would like to see one of the above methods used over
plurality for elections affecting us because of the way they facilitate more meaningful and nuanced
expression by voters. We also agree that methods such as Borda, Baldwin, Condorcet, and Range
use the information submitted by voters in more reasonable ways than Instant-Runoff. One of the
authors prefers the Range method for reasons including the practical value of its simplicity, that is
the way that votes are counted being simpler will make it easier for the voting public to understand
and therefore accept. Both authors like that any of these methods other than plurality allows for
third parties and independents to participate without being “spoilers”.
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