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Abstract

On the space of essentially bounded functions L∞(0,∞) we consider the Cesàro averaging operator
Jf(x) := 1

x

∫ x

0
f(t) dt. We then extend the concept of integer iterates of Cesàro averaging Jn, to an

operator of the form Jrf(x), where r is any positive real number and f ∈ L∞(0,∞). Our definition of
fractional powers of Cesàro averaging is such that (Jr)r>0 has the semigroup property.

Our paper contains the following result:
[
For any f ∈ L∞(0,∞), Jrf(x) has a limit at infinity for

some r > 0, if and only if Jsf(x) has a limit at infinity for any s > 0. In this case, the limit values are all
the same

]
. We present a strong quantitative version of the special case where 0 < r ≤ 1 and s = 1 + r.

We construct Banach limits Λ on L∞(0,∞) that are invariant under our continuous generalization
of Cesàro iterates Jr. We also construct an example of a Banach limit Ψ on L∞(0,∞) that preserves
Cesàro convergence, but is not Cesàro invariant.

Keywords— Functional Analysis, Cesàro averaging operators, invariant Banach limits, fractional powers

1 Introduction

On L∞(0,∞) we consider the Cesàro averaging operator f 7→ Jf , where Jf(x) := 1
x

∫ x

0
f(t) dt. We then extend

the concept of integer iterates of Cesàro averaging Jn, to an operator of the form Jrf(x), where r is any positive
real number and f ∈ L∞(0,∞). Our definition of fractional powers of Cesàro averaging is such that (Jr)r>0 has the
semigroup property, that is, Jr(Jsf) = Jr+s(f), for all r, s > 0, and for all f ∈ L∞(0,∞).

Our paper contains three main theorems. The second is:
[
For any f ∈ L∞(0,∞), Jrf(x) has a limit at infinity

for some r > 0, if and only if Jsf(x) has a limit at infinity for any s > 0. In this case, the limit values are all the
same (Theorem 3.4)

]
. Our first main theorem is a strong quantitative version of the special case where 0 < r ≤ 1

and s = 1 + r (Theorem 3.3).
Our Theorem 3.3 is analogous to the quantitative result obtained in Sivek [17, theorem II.9] in the sequence space

ℓ∞, for the usual Cesàro averaging operator C and its square C2. The qualitative version of the result in [17] follows
from a theorem due to Frobenius [5], and a classical theorem of Hardy and Littlewood (see Theorem 7.3 of [9]).

Our third main result is the following (Theorem 4.2). We construct Banach limits Λ on L∞(0,∞) that are
invariant under our continuous generalization of Cesàro iterates Jr; i.e.,

[
Λ(Jrf) = Λ(f), for all f ∈ L∞, for all

r > 0.
]

In Section 5, we construct an example of a Banach limit Ψ on L∞(0,∞) that preserves Cesàro convergence (i.e.,
Ψ(w) = limx→∞ Jw(x), for all w ∈ L∞(0,∞)), but is not Cesàro invariant (i.e., there exists f ∈ L∞(0,∞) with
Ψ(Jf) ̸= Ψ(f)). Hence, Cesàro invariance is a strictly stronger property than preserving Cesàro convergence.

The body of our paper includes a number of other interesting theorems concerning the Cesàro averaging map J :
for example, Claim 2.5 and Theorem 2.6.

We also include an appendix, where we prove many supporting results for our theorems.

In Dodds, de Pagter, Sedaev, Semenov and Sukochev [3], Banach limits invariant under Cesàro averaging were
first studied for the sequence space ℓ∞. In [15], the authors E. Semenov and F. Sukochev, gave sufficient conditions
for a linear operator on ℓ∞, to guarantee the existence of Banach limits that would be invariant under the given
operator. Also, they gave necessary and sufficient conditions for a sequence to have the same output under any Cesàro
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invariant Banach limit. In [16], the authors E. Semenov, F. Sukochev, A. Usachev, and D. Zanin, studied Banach
limits on ℓ∞ that are invariant under the Cesàro operator and the Dilation operator. Sukochev, Usachev, and Zanin
[18] have also studied generalized limits on L∞ invariant under the Cesàro operator and related operators. Moreover,
their work has applications to non-commutative geometry. Also, their work does not discuss fractional powers of the
Cesàro operator. A more recent paper related to [18] is [10], where convolution invariant linear functionals on L∞

are studied, and Cesàro invariant functionals are also considered.

2 Cesàro averaging on L∞(0,∞)

2.1 Notation and preliminaries

For all a and b in R, a ∨ b := max{a, b} and a ∧ b := min{a, b}. Let L∞ = L∞(0,∞) be the Banach space of
(classes of) essentially bounded, real-valued Lebesgue measurable functions f on (0,∞), equipped with the uniform
norm

∥f∥∞ := ess sup |f(t)|,

where the supremum is taken over all t > 0.
The integrals we consider in this document, are with respect to the Lebesgue measure on (0,∞).
The dual space of L∞, (L∞)∗, consisting of all continuous linear functionals ψ on L∞, is equipped with the norm

∥ψ∥(L∞)∗ := sup |ψ(f)|,

where the supremum is taken over all f ∈ L∞ with ∥f∥∞ ≤ 1.
(L∞)∗ is isometrically isomorphic to fa(m), the space of finitely additive measures on the Borel subsets of (0,∞)

that vanish on m-null sets, where m is Lebesgue measure (see Dunford and Schwartz [4], page 296). Moreover, fa(m)
is isometrically isomorphic to L1(0,∞)

⊕
1 pfa(m), where pfa(m) is the space of purely finitely additive measures

on the Borel subsets of (0,∞) that vanish on m-null sets (see Yosida and Hewitt [20]).
The Hahn-Banach Theorem is often applied to obtain extensions of functionals. In particular, on (L∞, ∥ · ∥∞)

consider the closed vector subspaces

BC := {f ∈ L∞ : f is continuous },
BCL :=

{
f ∈ L∞ : f is continuous and lim

x→∞
f(x) exists in R

}
, and

Ces :=

{
g ∈ L∞ : ψ(g) := lim

x→∞

1

x

∫ x

0

g(t)dt exists in R
}
.

Remark. For an element f ∈ L∞, when we write lim
x→∞

f(x) = L ∈ R , we mean the following: For every ϵ > 0, there

exists N > 0 such that ess sup
x≥N

|f(x)− L| ≤ ϵ.

BCL and Ces are Banach subspaces of L∞, equipped with the induced norm. ψ is a continuous linear functional
on Ces; and for all ϕ in Ces∗ define

∥ϕ∥Ces∗ := sup |ϕ(g)|,

where the supremum is taken over all g ∈ Ces with ∥g∥∞ ≤ 1.
By Hahn-Banach Extension Theorem, there exists Ψ ∈ (L∞)∗ such that

∥Ψ∥(L∞)∗ = ∥ψ∥Ces∗ = 1 and Ψ |Ces= ψ.

We define the linear operator J : L∞ → BC by

(Jf)(x) :=
1

x

∫ x

0

f(t)dt, for all x ∈ (0,∞), for all f ∈ L∞.

Jf is called the Cesàro average of f . Jf is indeed inBC when f is bounded. It is bounded because |Jf(x)| ≤ ∥f∥∞
and continuous as the product of continuous functions.

Clearly, Ψ preserves Cesàro convergence. Also, it can be checked that if f ∈ BCL, then lim
x→∞

f(x) = lim
x→∞

(Jf)(x),

and so Ψ preserves classical convergence as well. (See, for example, Claim 3.1.1. of [2].)
We are interested in obtaining extensions of functionals that are also Banach limits. We define Banach limits on

L∞ next:
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Definition 2.1. A continuous linear functional Λ : L∞ → R is a Banach limit on L∞ if

1. ∥Λ∥(L∞)∗ = 1.

2. Λ(f) = lim
x→∞

f(x) for all f ∈ BCL.

3. Λ(Srf) = Λ(f), for all f ∈ L∞, and for all r ∈ (0,∞); where Srf(x) = f(x+ r).

The operator Sr is called the left shift by r operator on L∞.
In [18], Banach limits are referred to as translation invariant generalized limits.

Lemma 2.1. The linear functional Ψ defined above is a Banach limit on L∞.

Proof. Property 1 holds because ∥Ψ∥(L∞)∗ = ∥ψ∥Ces∗ = 1. Property 2 holds because we know that if f ∈ BCL, then
lim

x→∞
f(x) = lim

x→∞
(Jf)(x) = ψ(f).

The third property follows from the fact that for any f ∈ L∞,

f − Srf ∈ Ces0 := {g ∈ Ces : ψ(g) = 0}. (See, for example, Claim 3.1.2. of [2].)

So, ψ(f − Srf) = 0, which implies Ψ(f − Srf) = 0, and therefore Ψ(f) = Ψ(Srf).

2.2 A stronger Banach limit on L∞

Banach limits in general do not preserve Cesàro convergence, unlike our Banach limit Ψ. We will next construct
a stronger Banach limit that is Cesàro invariant, a stronger condition than Cesàro-convergence preserving. First, we
give the following definitions:

Definition 2.2. A linear functional Λ : ℓ∞ → R is a Banach limit on ℓ∞ if

1. Λ is continuous and ∥Λ∥(ℓ∞)∗ = 1.

2. Λ(x) = lim
n→∞

xn , for all x = (xn)n∈N ∈ c, where c is the subspace in ℓ∞ of the convergent sequences.

3. Λ(Sx) = Λx, for all x ∈ ℓ∞. Here S(x1, x2, x3, . . .) := (x2, x3, x4, . . .) for all (xn)n∈N ∈ ℓ∞, and S is known as
the left shift operator.

We see that definition 2.1 given above for Banach limits on the space L∞ is completely analogous to definition 2.2
for Banach limits on the space ℓ∞. It can be verified that the previous definition is equivalent to the one originally
given by Banach (see [1], page 21), which we present next:

Definition 2.3. A Banach limit Λ : ℓ∞ → R can also be defined as a linear functional such that

1. Λ(x) ≥ 0 for all x = (xn)n ∈ ℓ∞ such that xn ≥ 0 for all n ∈ N.
2. Λ(1) = 1.

3. Λ(Sx) = Λx, for all x ∈ ℓ∞.

We turn our attention back to L∞, where we will next define Cesàro invariant Banach limits:

Definition 2.4. A Banach limit Λ on L∞ is said to be Cesàro invariant if Λ(Jf) = Λ(f) for every f ∈ L∞.

Remark. Using the terminology from [18], these linear functionals would fall under the definition of translation
invariant generalized limits as well as H-invariant generalized limits.

Consider an arbitrary Banach limit σ on ℓ∞, we will use σ to define a Banach limit on L∞:

Claim 2.2. Fix σ a Banach limit on ℓ∞. Define ∆ : L∞ → R by

∆(f) := σ(Ψ(f),Ψ(Jf),Ψ(J2f),Ψ(J3f), . . .) for all f ∈ L∞.

∆ is a Cesàro invariant Banach limit on L∞.
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Proof. The first and second properties from the definition of Banach limit are easy to check (see A.1). For the third
property, we claim that for every r > 0 and f ∈ L∞ we have that Ψ(JnSrf) = Ψ(Jnf), for all n ∈ N ∪ {0}, we will
prove this claim later. And so,

∆(Srf) := σ(Ψ(Srf),Ψ(JSrf),Ψ(J2Srf),Ψ(J3Srf), . . .)

= σ(Ψ(f),Ψ(Jf),Ψ(J2f),Ψ(J3f), . . .)

= ∆(f).

Finally, we notice that ∆ is Cesàro averaging invariant since σ is a Banach limit and therefore it is left-shift
invariant. Therefore, ∆(f) = ∆(Jf).

It only remains to prove our earlier claim: For every r > 0 and f ∈ L∞ we have that Ψ(JnSrf) = Ψ(Jnf), for
all n ∈ N ∪ {0}: Fix r > 0. As stated before, f − Srf ∈ Ces0 for any f ∈ L∞, that is lim

x→∞
J(Srf − f) = 0. We

also know that if g ∈ BCL then lim
x→∞

g(x) = lim
x→∞

(Jg)(x), therefore lim
x→∞

Jn(Srf − f) = 0 for all n ∈ N ∪ {0}. This

implies that Ψ(JnSrf − Jnf) = 0, for all n ∈ N ∪ {0}.

2.3 Defining the fractional Cesàro averaging operator on L∞

In this subsection we define the operator Jr on L∞, for each r > 0, which generalizes the concept of iterates of the
J operator, and in such a way that the family of these operators indexed by r > 0, forms a commutative semigroup
of operators on L∞.

In the literature, the following well known operator [6] can be found:

Definition 2.5. For α > 0, the Hadamard fractional integral is an operator that is defined by

(Fα
+f) (x) :=

1

Γ(α)

∫ x

a

1[
ln
(
x
t

)]1−α f(t)
dt

t
, for x > a.

This definition comes from generalizing the following formula:∫ x

a

dt1
t1

∫ t1

a

dt2
t2

. . .

∫ tn−1

a

f(tn)

tn
dtn =

1

(n− 1)!

∫ x

a

1[
ln
(
x
t

)]1−n f(t)
dt

t
.

It is known that the operators Fα
+ admit the semigroup property, that is Fα

+Fβ
+f = Fα+β

+ f , under appropriate
assumptions of the function f and the exponents α and β.

In [8], the author introduced a new operator that generalizes both the Hadamard and the Riemann-Liouville
fractional integral. The latter is another well known fractional integral obtained by generalizing the Cauchy’s formula
for repeated integration. An overview of fractional calculus can be found in the book [12].

Inspired by these fractional integrals, we obtained the following result (see A.2).

Claim 2.3. For n ∈ N, the nth iteration of applying the Cesàro averaging operator to a function f ∈ L∞ is given by
the following formula:∫ x

0

dt1
x

∫ t1

0

dt2
t1

. . .

∫ tn−1

0

f(tn)
dtn
tn−1

=
1

(n− 1)!

1

x

∫ x

0

[
ln
(x
t

)]n−1

f(t)dt.

Based on the previous result, we give the following definition of the r power of the operator J , where r > 0.

Definition 2.6. For r > 0, define the operator Jr on L∞ by

(Jrf)(x) :=
1

Γ(r)

1

x

∫
t∈(0,x)

f(t)
1[

ln
(x
t

)]1−r dt,

for f ∈ L∞, and x ∈ (0,∞).
We refer to this operator as the fractional Cesàro averaging operator on L∞.

Next, we show that the family of operators (Jr)r>0 has the semigroup property:

4



Theorem 2.4. JrJpf = Jr+pf for all f ∈ L∞, for all p, r > 0.

Proof. Fix f ∈ L∞, and fix p, r > 0.
By making use of the identity Γ(p)Γ(r) = B(p, r)Γ(p+ r), we can express

(
Jp+rf

)
(x) in the following way

(
Jp+rf

)
(x) =

1

Γ(p+ r)

1

x

∫ x

s=0

f(s)
[
ln
(x
s

)]p+r−1

ds

=
1

Γ(p)Γ(r)

1

x

∫ x

s=0

B(p, r)f(s)
[
ln
(x
s

)]p+r−1

ds

=
1

Γ(p)

1

Γ(r)

1

x

∫ x

s=0

∫ 1

u=0

up−1(1− u)r−1duf(s)
[
ln
(x
s

)]p+r−1

ds.

On the other hand,

(Jp(Jrf)) (x) =
1

Γ(p)

1

x

∫ x

t=0

(Jrf)(t)
[
ln
(x
t

)]p−1

dt

=
1

Γ(p)

1

x

∫ x

t=0

1

Γ(r)

1

t

∫ t

s=0

f(s)

[
ln

(
t

s

)]r−1

ds
[
ln
(x
t

)]p−1

dt

=
1

Γ(p)

1

Γ(r)

1

x

∫ x

t=0

1

t

∫ t

s=0

f(s)

[
ln

(
t

s

)]r−1

ds
[
ln
(x
t

)]p−1

dt.

So, we wish to show ∫ x

s=0

∫ 1

u=0

up−1(1− u)r−1duf(s)
[
ln
(x
s

)]p+r−1

ds

=

∫ x

t=0

1

t

∫ t

s=0

f(s)

[
ln

(
t

s

)]r−1

ds
[
ln
(x
t

)]p−1

dt.

And this can be proven by applying Fubini-Tonelli (see A.3).

Remark. It is worth noting that the definition for the operator Jr was originally derived using a different approach
inspired by the following identity for real numbers:

For t > 0 and r ∈ (0, 1), it holds that tr =
1

K

∫ ∞

0

qt(λ)
1

λr+1
dλ, where K := Kr is a constant dependent on r,

and the integrand q := qt, dependent on t as well, is given by q(λ) =
tλ

1 + tλ
.

Letting α := 1
λ
, we have that (α + t)q = t, and so, for a fixed f ∈ L∞ we posed the following integral equation:

Find q ∈ L∞ such that (αI + J)q = Jf .
We were able to solve the integral equation, and so, we defined the operator T 1

α
on L∞ by T 1

α
(f) = q, for f ∈ L∞.

This let to the following definition of Jr for r ∈ (0, 1):

Jr(·) := 1

Kr

∫ ∞

0

T 1
λ
(·) 1

λr+1
dλ,

which we then extended to arbitrary r > 0 by setting Jr := (J⌊r⌋)(J⟨r⟩).
In Delgado [2, theorem 3.3.8], it is shown that the two different approaches described above to define fractional

powers of J result in the same operator Jr.

2.4 Properties of the fractional Cesàro averaging operator Jr

By making the substitution u = ln
(x
t

)
, the fractional Cesàro averaging operator can also be written as

(Jpf)(x) =
1

Γ(p)

∫
u∈(0,∞)

[u]p−1 e−uf(xe−u)du.

It is easy to check that for any p > 0, we have that ∥Jp∥op = 1. (See, for example, Claim 3.4.1. of [2].)
The following Hardy-like inequality tells us that for any r > 0 the operator Jr maps Lp(0,∞) into Lp(0,∞), for

p > 1. And so, for any s > r and f ∈ L∞, if Jrf ∈ Lp with p > 1, then Jsf = Js−r(Jrf) ∈ Lp.
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Claim 2.5. If f ∈ Lp(0,∞) for some p > 1, then for every r > 0 we have that Jrf ∈ Lp(0,∞). In fact,

∥Jrf∥p ≤
(

p

p− 1

)r

∥f∥p.

Proof. Fix p > 1. Fix r > 0 and f ∈ Lp(0,∞).

∥Jrf∥p ≤ 1

Γ(r)

∫ ∞

0

 1

x

∫ x

0

|f(t)| 1[
ln
(x
t

)]1−r dt


p

dx


1/p

=
1

Γ(r)


∫ ∞

0


∫ 1

0

|f(ux)| 1[
ln

(
1

u

)]1−r du


p

dx


1/p

.

Where the last equality was obtained by making the substitution u = t/x for the inner integral. We can do this
change of variables since g(u) := xu is a continuously differentiable, one-to-one mapping on (0, 1), which also implies
the inner integrand in the last expression is a measurable function (see [11, theorem 3, section 9.3]).

Next, we apply Minkowski’s integral inequality (see e.g. [7, theorem 202]), followed by the substitution s = ux
for the inner integral (which we are allow to do since h(s) := s/u is continuously differentiable and one-to-one), to
obtain: 

∫ ∞

0


∫ 1

0

|f(ux)| 1[
ln

(
1

u

)]1−r du


p

dx


1/p

≤
∫ 1

0


∫ ∞

0

|f(ux)|p[
ln

(
1

u

)]p(1−r)
dx


1/p

du =

∫ 1

0

(
1

u

∫ ∞

0

|f(s)|p 1

|ln (u)|p(1−r)
ds

)1/p

du

=

∫ 1

0

1

u1/p

1

|ln (u)|(1−r)

(∫ ∞

0

|f(s)|pds
)1/p

du = ∥f∥p
∫ 1

0

1

u1/p

1

|ln (u)|(1−r)
du.

Finally, by denoting q = 1− 1/p = p−1
p

, and making the substitution z = q ln

(
1

u

)
, we obtain:

1

Γ(r)
∥f∥p

∫ 1

0

1

u1/p

1

|ln (u)|(1−r)
du =

1

Γ(r)
∥f∥p

1

qr

∫ ∞

0

z(r−1)e−zdz = ∥f∥p
1

qr
. (See, for example, proof of Claim

3.4.2. in [2].)

Therefore

∥Jrf∥p ≤
(

p

p− 1

)r

∥f∥p.

Remark. Consider the function f := χ[0,1]. Clearly f ∈ L1(0,∞). Nevertheless

Jf(x) =

1, 0 < x ≤ 1
1

x
, 1 ≤ x

is not in L1(0,∞). So, we see the previous Claim does not necessarily hold for p = 1.

The following Theorem will imply one more result concerning Lp spaces, for a particular type of function:
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Theorem 2.6. For every s > 0 there exists a constant Ks := K > 0 such that, for every f ∈ L∞, we have that

|(Js/2f)(x)| ≤
(
∥f∥2∞
K

) 1
3

max
{
((Jsf1)(x))

1
3 , ((Jsf2)(x))

1
3

}
,

where

f1 := max{f, 0} and f2 := max{−f, 0}.

Proof. Fix s > 0. First assume that f ≥ 0. Recall

(Jsf)(x) =
1

Γ(s)

∫
u∈(0,∞)

[u]s−1 e−uf(xe−u)du.

Clearly, the desired inequality holds when f is the constant function 0, for any value we choose for K > 0.

Therefore we may assume f ∈ L∞ \ {0}. Let g :=
f

∥f∥∞
, then ∥g∥∞ = 1 and g ≥ 0. Fix x > 0, and fix τ ∈ (0, s).

Then

(Jsg)(x) =
1

Γ(s)

∫
u∈(0,∞)

us−1e−ug(xe−u)du

=
1

Γ(s)

∫
u∈(0,∞)

uτus−τ−1e−ug(xe−u)du.

Observe that

∫
u∈(0,∞)

us−τ−1e−udu = Γ(s− τ). So, we can re-write Jsg as

(Jsg)(x) =
Γ(s− τ)

Γ(s)

∫
u∈(0,∞)

uτg(xe−u)dντ (u),

where dντ (u) :=
us−τ−1e−udu

Γ(s− τ)
, with ντ being a probability measure on ∆[0,∞).

Fix σ > 1. Notice that that the integrand uτg(xe−u) is non-negative, and so we apply Jensen’s inequality:

(Jsg)(x) =
Γ(s− τ)

Γ(s)

∫
u∈(0,∞)

(
u

τ
σ (g(xe−u))

1
σ

)σ
dντ (u)

≥ Γ(s− τ)

Γ(s)

(∫
u∈(0,∞)

u
τ
σ (g(xe−u))

1
σ dντ (u)

)σ

=
Γ(s− τ)

Γ(s)

(∫
u∈(0,∞)

u
τ
σ (g(xe−u))

1
σ
us−τ−1e−udu

Γ(s− τ)

)σ

.

Since 0 ≤ g(xe−u) ≤ 1 and 0 < 1
σ
< 1, we have that (g(xe−u))

1
σ ≥ g(xe−u). Thus

(Jsg)(x) ≥ Γ(s− τ)

Γ(s)(Γ(s− τ))σ

(∫
u∈(0,∞)

us−τ−1+ τ
σ g(xe−u)e−udu

)σ

=
Γ(s− τ)Γ(s− τ + τ

σ
)σ

Γ(s)(Γ(s− τ))σ

((
Js−τ+ τ

σ g
)
(x)
)σ

.

So, we choose τ ∈ (0, s) and σ > 1 in such a way that we get the desired conclusion: take τ = 3
4
s and σ = 3. We

get

(Jsg)(x) ≥ Γ(s/4)Γ(s/2)3

Γ(s)Γ(s/4)3

((
Js/2g

)
(x)
)3
.
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This, after substituting g =
f

∥f∥∞
, gives us

(
Js f

∥f∥∞

)
(x) ≥ Γ(s/2)3

Γ(s)Γ(s/4)2

((
Js/2 f

∥f∥∞

)
(x)

)3

.

Therefore, by letting K :=
Γ(s/2)3

Γ(s)Γ(s/4)2
, we obtain

(Jsf) (x) ≥ K

((
Js/2f

)
(x)
)3

∥f∥2∞
.

Next, consider an arbitrary f ∈ L∞ \ {0}. Then f1, f2 as defined above, are elements of L∞ and f1, f2 ≥ 0.
Consequently, we have that

0 ≤
(
Js/2f1

)
(x) ≤

(
∥f1∥2∞
K

) 1
3

((Jsf1) (x))
1
3 ,

and

−
(
∥f2∥2∞
K

) 1
3

((Jsf2) (x))
1
3 ≤ −

(
Js/2f2

)
(x) ≤ 0.

Notice that ∥f1∥∞, ∥f2∥∞ ≤ ∥f∥∞, and f = f1 − f2. So, using the linearity of Js/2 we obtain

−
(
∥f∥2∞
K

) 1
3

((Jsf2) (x))
1
3 ≤ (Js/2f)(x) ≤

(
∥f∥2∞
K

) 1
3

((Jsf1) (x))
1
3 ,

which implies the desired conclusion.

Lemma 2.7. Let f ∈ L∞ such that f ≥ 0 and Jsf ∈ Lp(0,∞), for some p > 0 and some s > 0. Then we have that
Js/2f ∈ L3p(0,∞).

Proof. We can assume f is not the constant function 0, since in this case the conclusion holds trivially.
Since we are assuming f ≥ 0, then f1 = f , and f2 = 0, and so, by Theorem 2.6, we have that(

∥f∥2∞
K

)1/3

((Jsf) (x))1/3 ≥
(
Js/2f

)
(x) ≥ 0,

which implies

(Jsf) (x) ≥ K

∥f∥2∞

((
Js/2f

)
(x)
)3

.

Therefore,

∞ >

∫ ∞

0

| (Jsf) (x)|pdx ≥
(

K

∥f∥2∞

)p ∫ ∞

0

|
(
Js/2f

)
(x)|3pdx.

Thus, Js/2 ∈ L3p(0,∞).

Remark. We already mentioned that for the function f := χ[0,1], we have that Jf ̸∈ L1(0,∞). Still

J1/2f(x) =

1, 0 < x ≤ 1

1
Γ(1/2)

∫ ∞

ln(x)

u−1/2e−udu, 1 ≤ x

is an element of L3(0,∞), given that∫ ∞

1

∣∣∣∣∣
∫ ∞

ln(x)

u−1/2e−udu

∣∣∣∣∣
3

dx = −
√
π
(
6(−2 +

√
2) + π

)
.
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Hence, we see the converse of the previous Lemma does not necessarily hold.

Remark. The previous Lemma can be modified to obtain the following result: Let f ∈ L∞ such that f ≥ 0 and

Jsf ∈ Lp(0,∞), for some p > 0 and some s > 0. Then for any n ∈ N we have that J
2n+1
n+1

s
2 f ∈ L

n+1
n

p(0,∞).

We achieve this by modifying Theorem 2.6 and its proof: In the proof of Theorem 2.6,fix n ∈ N and let σ :=
n+ 1

n
and τ := s/2. Then, the constant K in the statement of this Theorem would depend on s and n. And the inequality
in the conclusion would be:

|(J
2n+1
n+1

s
2 f)(x)| ≤

(
∥f∥1/n∞

K

) n
n+1

max
{
((Jsf1)(x))

n
n+1 , ((Jsf2)(x))

n
n+1

}
,

In the remainder of this section, we will discuss continuity results for the operator Jp.

Claim 2.8. For all f ∈ L∞, we have that lim
p→0+

(Jpf)(x) = f(x) for every x > 0 such that f is continuous at x.

Proof. Fix x > 0 such that f is continuous at x. We want to show

lim
p→0+

1

Γ(p)

1

x

∫
t∈(0,x)

f(t)
1[

ln
(x
t

)]1−p dt = f(x).

Define φϵ(t) :=
1

xΓ(ϵ)

χ[0,x](x− t)[
ln

(
x

x− t

)]1−ϵ . Then φϵ(x− t) =
1

xΓ(ϵ)

χ[0,x](t)[
ln
(x
t

)]1−ϵ .

Let g(t) := f(t)χ[0,x](t), then g ∈ L1(−∞,∞) since∫ ∞

−∞
|g(t)|dt ≤ x∥f∥∞ <∞.

We can rewrite our desired conclusion as∫ ∞

−∞
g(t)φϵ(x− t)dt→ g(x) as ϵ→ 0+.

Or equivalently, g ∗ φϵ(x) → g(x) as ϵ→ 0+.
And this holds since φϵ is a good kernel, according to the definition in [14, chapter 3, section 2] (see A.4).

Claim 2.9. Let f ∈ L∞. Then

lim inf
x→∞

f(x) ≤ lim inf
x→∞

(Jpf)(x) ≤ lim sup
x→∞

(Jpf)(x) ≤ lim sup
x→∞

f(x),

for all p > 0.

(See A.5).
As an immediate corollary, we conclude that if lim

x→∞
f(x) = L then lim

x→∞
(Jpf)(x) = L for all p > 0.

Theorem 2.10. For each f ∈ L∞, the map p 7→ Jpf : (0,∞) → L∞ is norm-to-norm continuous.

Proof. First consider p ∈ (0, 1). Consider a sequence of positive real numbers (pn)n such that pn → p. We can
assume that pn ∈ (0, 1), for each n ∈ N. So, for a fixed f ∈ L∞ we have that

∥Jpnf − Jpf∥∞ =

ess sup
x∈(0,∞)

∣∣∣∣ 1

xΓ(pn)

∫ x

t=0

f(t)
[
ln
(x
t

)]pn−1

dt− 1

xΓ(p)

∫ x

t=0

f(t)
[
ln
(x
t

)]p−1

dt

∣∣∣∣ .
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We add and subtract the term
1

xΓ(p)

∫ x

t=0

f(t)
[
ln
(x
t

)]pn−1

dt and obtain

∥Jpnf − Jpf∥∞ ≤

ess sup
x∈(0,∞)

{∣∣∣∣ 1

Γ(pn)
− 1

Γ(p)

∣∣∣∣ ∥f∥∞ 1

x

∫ x

t=0

[
ln
(x
t

)]pn−1

dt+

1

xΓ(p)

∫ x

t=0

∣∣∣∣f(t)([ln(xt )]pn−1

−
[
ln
(x
t

)]p−1
)
dt

∣∣∣∣} .
Now, let u = ln

(
x
t

)
. Then

∥Jpnf − Jpf∥∞

≤
∣∣∣∣ 1

Γ(pn)
− 1

Γ(p)

∣∣∣∣ ∥f∥∞Γ(pn) + ∥f∥∞
1

Γ(p)

∫ ∞

u=0

∣∣[u]pn−1 − [u]p−1
∣∣ e−udu.

Since 1
Γ(·) is continuous for positive values, it is enough to show that

lim
n→∞

∫ ∞

u=0

∣∣[u]pn−1 − [u]p−1
∣∣ e−udu = 0.

And we can show this holds by applying Dominated Convergence Theorem (see A.6).
Now, for p ≥ 1 such that ⟨p⟩ > 0, we know there existsN ∈ N such that ⌊pn⌋ = ⌊p⌋ for all n ≥ N . Assume, without

loss of generality, that N = 1. Since ⟨pn⟩ → ⟨p⟩, ⟨pn⟩,⟨p⟩ ∈ (0, 1) for all n, we have that (J⟨pn⟩f)(x) → (J⟨p⟩f)(x)
uniformly in x as n→ ∞. Therefore J⌊pn⌋(J⟨pn⟩f)(x) → J⌊p⌋(J⟨p⟩f)(x) uniformly in x as n→ ∞.

Next, consider when p ∈ N. If s→ p, then we can assume that s > p− 1. So, we notice that

∥Jsf − Jpf∥∞ ≤ ∥Jp−1∥op∥Js−p+1f − Jf∥∞,

where, in case p = 1, we define J0f := f for every f ∈ L∞. Then

lim
s→p

∥Jsf − Jpf∥ ≤ ∥Jp−1∥op lim
s→p

∥(Js−p+1/2)(J1/2f)− (J1/2)(J1/2f)∥∞

= ∥Jp−1∥op lim
r→1/2

∥(Jr)(J1/2f)− (J1/2)(J1/2f)∥∞.

Now, for r ∈ (0, 1) and fixed g ∈ L∞, we already checked that the mapping r 7→ Jrg : (0, 1) → L∞ is norm-to-norm
continuous. Since J1/2f ∈ L∞, we can apply this result to the last expression, and get the desired result.

Theorem 2.11. Fix r > 0. Fix f ∈ L∞. Then Jrf is continuous on (0,∞).

Proof. First, we fix r ∈ (0, 1). Let x, y ∈ (0,∞). Without loss of generality, assume y > x. Then

|(Jrf)(x)− (Jrf)(y)| =
∣∣∣∣ 1

Γ(r)

{
1

x

∫ x

0

[
ln
(x
t

)]r−1

f(t)dt− 1

y

∫ y

0

[
ln
(y
t

)]r−1

f(t)dt

}∣∣∣∣.
Therefore

Γ(r)|(Jrf)(x)− (Jrf)(y)| =∣∣∣∣ 1x
∫ x

0

[
ln
(x
t

)]r−1

f(t)dt−
(
1

x
+
x− y

xy

)(∫ x

0

[
ln
(y
t

)]r−1

f(t)dt+

∫ y

x

[
ln
(y
t

)]r−1

f(t)dt

)∣∣∣∣ =
|I1 − I2 − I3| ≤ |I1|+ |I2|+ |I3|;
where

I1 :=

∫ x

0

{
1

x

[
ln
(x
t

)]r−1

− 1

x

[
ln
(y
t

)]r−1
}
f(t)dt,

I2 :=
x− y

xy

∫ x

0

[
ln
(y
t

)]r−1

f(t)dt, and

I3 :=
1

y

∫ y

x

[
ln
(y
t

)]r−1

f(t)dt.

For the second integral, we make the usual substitution u = ln
(
y
t

)
to get
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∣∣∣∣x− y

xy

∫ x

0

[
ln
(y
t

)]r−1

f(t)dt

∣∣∣∣ ≤ ∥f∥∞
∣∣∣x− y

x

∣∣∣Γ(r),
and this last expression goes to 0 as y − x→ 0.

For the last integral, again we make the substitution u = ln
(
y
t

)
to get

1

y

∣∣∣∣∫ y

x

[
ln
(y
t

)]r−1

f(t)dt

∣∣∣∣ ≤ ∥f∥∞
∫ ln(y/x)

0

ur−1e−udu

≤ ∥f∥∞
∫ ln(y/x)

0

ur−1du = ∥f∥∞
1

r
[ln (y/x)]r ,

and this last expression goes to 0 as y − x→ 0.
For the first integral, since r − 1 < 0 and y > x, then∣∣∣∣ 1x [ln(yt )]r−1

− 1

x

[
ln
(x
t

)]r−1
∣∣∣∣ ≤ 2

1

x

[
ln
(x
t

)]r−1

,

and recall that

2

∫ x

0

1

x

[
ln
(x
t

)]r−1

dt = 2Γ(r) <∞.

Therefore, we can apply Dominated Convergence Theorem to get∫ x

0

{
1

x

[
ln
(x
t

)]r−1

f(t)− 1

x

[
ln
(y
t

)]r−1

f(t)

}
dt→ 0 as y − x→ 0.

Finally, for r ≥ 1, we have that

|Jrf(y)− Jrf(x)| = |J⌊r⌋J⟨r⟩f(y)− J⌊r⌋J⟨r⟩f(x)|.

Let h(x) := J⟨r⟩f(x), let ⌊r⌋ = n, and let g := Jn−1h, where J0h := h. Then

|Jrf(y)− Jrf(x)| = |Jnh(y)− Jnh(x)| = |Jg(y)− Jg(x)|

=

∣∣∣∣1y
∫ y

0

g(t)dt− 1

x

∫ x

0

g(t)dt

∣∣∣∣
=

∣∣∣∣( 1

x
+
x− y

xy

)(∫ x

0

g(t)dt+

∫ y

x

g(t)dt

)
− 1

x

∫ x

0

g(t)dt

∣∣∣∣
=

∣∣∣∣x− y

xy

∫ x

0

g(t)dt+
1

y

∫ y

x

g(t)dt

∣∣∣∣ ≤ ∣∣∣∣x− y

y

∣∣∣∣ ∥g∥∞ +
y − x

y
∥g∥∞,

and this last expression goes to 0 as y − x→ 0.

3 The vector space Cesr

Definition 3.1. For each r > 0, we define the vector subspace of L∞:

Cesr := {f ∈ L∞ : ψr(f) := lim
x→∞

(Jrf)(x) ∈ R}.

Remark. ∥ψr∥(Cesr)∗ = 1 (see A.7).

The third author obtained a quantitative version [17, theorem II.9] of the following qualitative theorem:

For x ∈ ℓ∞, Cx is convergent if and only if C2x is convergent.

This qualitative result follows from a theorem due to Frobenius [5], and a classical theorem of Hardy and Littlewood
(see Theorem 7.3 of [9]).

We followed the proof of Theorem II.9 from [17] closely in places, and obtained the exact analogue result for the
space L∞, including the same quantitative outcome. The qualitative version of our result tells us that Cesn = Cesm

for every n,m ∈ N. We present our quantitative result next:

Theorem 3.1. Let f ∈ L∞ with Jf ̸∈ BCL. Define
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q := lim sup
x→∞

f(x) and p := lim inf
x→∞

f(x);

and also

b := lim sup
x→∞

Jf(x) and a := lim inf
x→∞

Jf(x);

Let d := b− a and m := (a− p) ∨ (q − b) := max{a− p, q − b}. Then

lim sup
x→∞

J2f(x)− lim inf
x→∞

J2f(x) ≥ d2

10d+ 8m+
√

(10d+ 8m)2 − 4d2
.

In particular, h(x) := J2f(x) ̸∈ BCL.

The proof of the previous theorem can be found in [2, theorem 3.5.1].
The following Corollary not only follows from Theorem 3.1, but also generalizes it:

Corollary 3.2. For any 1 ≤ r, s we have that Cesr = Cess.

Proof. Assume, without loss of generality, that r < s. First notice that we already know Cesr ⊂ Cess. Indeed, from
the semigroup property of {Jp}p>0 we have that Jsf(x) = Js−r(Jrf(x)). By the fact that the operator Jp preserves
limits at infinity for every p > 0, and in particular for p = s − r, the result follows. Next, consider f ∈ Cess. This
will imply that f ∈ Ces⌊s⌋+1 since s < ⌊s⌋ + 1. Then by Theorem 3.1 this implies that f ∈ Ces⌊r⌋, which in turn
implies f ∈ Cesr.

To obtain the most general form of the previous results, we first present the following theorem. Its proof is a
variation on, and a significant extension of, the proof of Theorem II.9 from Sivek [17]. Indeed, this is one of the main
theorems of our paper (as mentioned in our Introduction).

Theorem 3.3. Let r ∈ (0, 1]. Let f ∈ L∞ with Jrf ̸∈ BCL. Define

q := lim sup
x→∞

f(x) and p := lim inf
x→∞

f(x);

and also

b := lim sup
x→∞

Jrf(x) and a := lim inf
x→∞

Jrf(x);

Let d := b− a. Then for every τ ∈ (0, 1/2) there exists Θ := Θ(r, d, ∥f − a+b
2

∥∞, τ) > 0 such that

δ1+rf := lim sup
x→∞

J1+rf(x)− lim inf
x→∞

J1+rf(x) ≥ Θ.

In particular, J1+rf(x) ̸∈ BCL.
Moreover, we may choose Θ to be

Θ :=

(
rγ

2V −1
r (γ)

)1/r
(τ/2)

G−1
r (γ)∥f − a+b

2
∥1/r∞

d1+1/r.

Here,

γ := γ(τ, r) :=
1/2− τ

2τ + 1
Γ(r)

.

Also,

Gr(w) := w

∫ ln(w)

0

ur−1e−udu, and Vr(w) := w
(ln(w))r

r
, for all w ∈ [1,∞).

Proof. Without loss of generality, we may assume that
a+ b

2
= 0. Since, the result holds for f if and only if it holds

for f1 := f − a+ b

2
. (See, for example, proof of Theorem 3.5.3. in [2].)

So, without loss of generality, we have that a = −b, and d = 2b > 0.
Recall, by Claim 2.9, we know that
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−∞ < −∥f∥∞ ≤ p ≤ a = −d
2
< 0 and 0 < b = d

2
≤ q ≤ ∥f∥∞ <∞.

Fix real numbers θ, τ , θ
′
and τ

′
with 0 < θ < τ < 1/2 and 0 < θ

′
< τ

′
< 1/2, arbitrary. The relationships

between τ, θ, τ
′
and θ

′
will be chosen later.

Fix ϵ ∈ (0, (1/2− τ) ∧ (1/2− τ
′
)). Then, there exists K := Kϵ > 0 such that for all x ≥ K,

a− ϵd < Jrf(x) < b+ ϵd.

Fix x0 > K arbitrary. We consider two cases: J1+rf(x0) =
1

x0

∫ x0

0

Jrf(t)dt ≤ 0; and J1+rf(x0) ≥ 0.

Case 1. J1+rf(x0) ≤ 0.
Since b := lim sup

x→∞
Jrf(x), then there exists x1 > x0 such that

Jrf(x1) > b− ϵd =
a+ b

2
+
(
1
2
− ϵ
)
d =

(
1
2
− ϵ
)
d > τd.

Since a := lim inf
x→∞

Jrf(x), then there exists x̃ > x1 such that

Jrf(x̃) < a+ ϵd =
a+ b

2
+
(
ϵ− 1

2

)
d =

(
ϵ− 1

2

)
d < −τd < τd.

We see then, that the set A := {x ∈ (0,∞) : x > x1 and Jrf(x) < τd} is not empty, and is bounded below by x1. So
we let x2 := inf A.

Notice x1 ̸= x2 since

Jrf(x1) > τd and Jrf(x2) ≤ τd by continuity of Jrf .

Therefore x1 < x2, and we have that

Jrf(x) ≥ τd for all x ∈ [x1, x2], and in fact Jrf(x2) = τd. (⋄ ⋄)

Let ∆ := x2 − x1 > 0. Then,

τd− x1
x2
Jrf(x1)

= Jrf(x2)−
x1
x2
Jrf(x1)

=
1

x2Γ(r)

(∫ x2

0

f(t)
[
ln
(x2
t

)]r−1

dt−
∫ x1

0

f(t)
[
ln
(x1
t

)]r−1

dt

)
=

1

x2Γ(r)

(∫ x1

0

f(t)
[
ln
(x2
t

)]r−1

dt+

∫ x2

x1

f(t)
[
ln
(x2
t

)]r−1

dt−
∫ x1

0

f(t)
[
ln
(x1
t

)]r−1

dt

)
=

1

x2Γ(r)

(∫ x2

x1

f(t)
[
ln
(x2
t

)]r−1

dt−
∫ x1

0

f(t)

[[
ln
(x1
t

)]r−1

−
[
ln
(x2
t

)]r−1
]
dt

)
≥ 1

x2Γ(r)

(
−∥f∥∞

∫ x2

x1

[
ln
(x2
t

)]r−1

dt− ∥f∥∞
∫ x1

0

[[
ln
(x1
t

)]r−1

−
[
ln
(x2
t

)]r−1
]
dt

)
.

Therefore

τd− x1

x2
Jrf(x1) ≥

−∥f∥∞
x2Γ(r)

(∫ x2

x1

[
ln
(x2

t

)]r−1

dt+

∫ x1

0

[[
ln
(x1

t

)]r−1

−
[
ln
(x2

t

)]r−1
]
dt

)
.

Denote by

Φ1(r, x1, x2) :=

∫ x2

x1

[
ln
(x2

t

)]r−1

dt > 0 and Φ2(r, x1, x2) :=

∫ x1

0

[[
ln
(x1

t

)]r−1

−
[
ln
(x2

t

)]r−1
]
dt ≥ 0.

Also denote

Φ(r, x1, x2) := Φ1(r, x1, x2) + Φ2(r, x1, x2).

Notice that, by making the usual substitution u = ln
(
x2

t

)
for Φ1(r, x1, x2), we obtain
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Φ1(r, x1, x2) =

∫ x2

x1

[
ln
(x2

t

)]r−1

dt = x2

∫ ln
(

x2
x1

)
0

ur−1e−udu.

Also, by making the substitutions u = ln
(
x1

t

)
and v = ln

(
x2

t

)
for Φ2(r, x1, x2),

Φ2(r, x1, x2) =

∫ x1

0

[[
ln
(x1

t

)]r−1

dt−
∫ x1

0

[
ln
(x2

t

)]r−1
]
dt

= x1

∫ ∞

0

ur−1e−udu− x2

∫ ∞

ln
(

x2
x1

) vr−1e−vdv

= (x1 − x2 + x2)Γ(r)− x2

∫ ∞

ln
(

x2
x1

) vr−1e−vdv

= −∆Γ(r) + x2

∫ ln
(

x2
x1

)
0

vr−1e−vdv.

Therefore

Φ(r, x1, x2) = −∆Γ(r) + 2x2

∫ ln
(

x2
x1

)
0

ur−1e−udu = −∆Γ(r) + 2Φ1(r, x1, x2).

Here, we make the observation that for r = 1, we have that Φ(1, x1, x2) = x2 − x1 = ∆.
Now, for r ∈ (0, 1], we have the following inequality

τd− x1

x2
Jrf(x1) ≥

−∥f∥∞
x2Γ(r)

Φ(r, x1, x2)

=
−∥f∥∞
x2Γ(r)

(−∆Γ(r) + 2Φ1(r, x1, x2)) ,

or equivalently

τdx2 ≥ x1J
rf(x1) +

−∥f∥∞
Γ(r)

(−∆Γ(r) + 2Φ1(r, x1, x2)).

Since r ∈ (0, 1], then Γ(r) ≥ 1, and so τdx2 = τd(x1 + ∆) ≤ τd(x1 + Γ(r)∆), given that τd > 0. Also
recall that Jrf(x1) > ( 12 − ϵ)d. Then,

τd(x1 + Γ(r)∆) ≥ x1(
1
2 − ϵ)d+

−∥f∥∞
Γ(r)

Φ(r, x1, x2).

Next, since Φ(r, x1, x2) ≥ 0, and also Γ(r)∆ > 0, we have that

τd(x1 + Γ(r)∆ + Φ(r, x1, x2)) ≥ x1(
1
2 − ϵ)d− ∥f∥∞

Γ(r)
(Γ(r)∆ + Φ(r, x1, x2)).

Recall that Γ(r)∆ + Φ(r, x1, x2) = 2Φ1(r, x1, x2). Thus

τd(x1 + 2Φ1(r, x1, x2)) ≥ x1(
1
2 − ϵ)d− ∥f∥∞

Γ(r)
2Φ1(r, x1, x2).

This implies

2Φ1(r, x1, x2)

(
τd+

∥f∥∞
Γ(r)

)
≥ x1(

1
2 − ϵ− τ)d.

Therefore
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∆r := Φ1(r, x1, x2) ≥
x1(

1
2 − ϵ− τ)d

2

(
τd+

∥f∥∞
Γ(r)

) .

Equivalently

∆r

x1
=

1

x1
Φ1(r, x1, x2) =

x2

x1

∫ ln
(

x2
x1

)
0

ur−1e−udu ≥
( 12 − ϵ− τ)d

2

(
τd+

∥f∥∞
Γ(r)

) .

Denote

Pϵ := Pr,d,∥f∥∞,τ,ϵ :=
( 12 − ϵ− τ)d

2

(
τd+

∥f∥∞
Γ(r)

) ,

and consider the function

Gr(w) := w

∫ ln(w)

0

ur−1e−udu, for all w ∈ [1,∞).

Notice that Gr is a strictly increasing continuous function. Also Gr(1) = 0, and lim
w→∞

Gr(w) = ∞, thus

Gr : [1,∞) → [0,∞) has an inverse. So, (Gr)
−1 : [0,∞) → [1,∞) is well defined and it is also a strictly

increasing continuous function. In particular (Gr)
−1(s) > 1 for all s ∈ (0,∞).

Also notice Gr(
x2

x1
) =

∆r

x1
≥ Pϵ > 0. Therefore

x2

x1
≥ (Gr)

−1(Pϵ) > 1,

which implies

∆ = x2 − x1 ≥ x1

(
(Gr)

−1(Pϵ)− 1
)
.

Here we make the following observation: G1(w) = w(1− e− ln(w)) = w(1− 1
w ) = w− 1, for all w ∈ [1,∞).

So G−1
1 (s) = s+ 1, for all s ∈ [0,∞).

Now, recall that 0 < θ < τ < 1/2.
Sub-case 1.a. J1+rf(x1) ≥ θd.

Since J1+rf(x0) ≤ 0, then

J1+rf(x1)− J1+rf(x0) ≥ θd.

Sub-case 1.b. J1+rf(x1) < θd.
Then by fact (⋄ ⋄) above,

J1+rf(x1 +∆)− J1+rf(x1) =
1

x1 +∆

∫ x1+∆

0

Jrf(t)dt− J1+rf(x1)

=
1

x1 +∆

∫ x1

0

Jrf(t)dt+
1

x1 +∆

∫ x1+∆

x1

Jrf(t)dt− J1+rf(x1)

≥ x1

x1 +∆
J1+rf(x1) +

∆

x1 +∆
τd− J1+rf(x1)

=
∆

x1 +∆
τd− ∆

x1 +∆
J1+rf(x1)

≥ ∆

x1 +∆
(τ − θ)d =

(
1− x1

x1 +∆

)
(τ − θ)d
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≥
(
1− x1

x1 + x1[(Gr)−1(Pϵ)− 1]

)
(τ − θ)d

=

(
1− 1

(Gr)−1(Pϵ)

)
(τ − θ)d

=


1− 1

(Gr)−1

 ( 12 − ϵ− τ)d

2

(
τd+

∥f∥∞
Γ(r)

)



(τ − θ)d.

It follows from Sub-cases 1.a and 1.b that

sup
x≥x0

J1+rf(x)− inf
y≥x0

J1+rf(y) ≥ Uϵ,

where

Uϵ := min

{
θd,

(
1− 1

(Gr)−1(Pϵ)

)
(τ − θ)d

}
, and Pϵ :=

( 12 − ϵ− τ)d

2

(
τd+

∥f∥∞
Γ(r)

) .

Case 2. J1+rf(x0) ≥ 0.
Let g := −f . Then g ∈ L∞, and ∥g∥∞ = ∥f∥∞. Let x0 ≥ K be fixed and arbitrary.
Notice

lim inf
x→∞

Jrg(x) = lim inf
x→∞

−(Jrf(x)) = lim sup
x→∞

Jrf(x) = −b and lim sup
x→∞

Jrg(x) = −a.

Thus −a− (−b) = b− a = d. Also −b+−a
2 = 0. Further J1+rg(x0) = −(J1+rf(x0)) ≤ 0.

So, we are back in Case 1, with f replaced by g := −f . Also replace θ by θ
′
, and τ by τ

′
. Then,

sup
x≥x0

J1+rf(x)− inf
y≥x0

J1+rf(y) = sup
y≥x0

J1+rg(y)− inf
x≥x0

J1+rg(x) ≥ U
′

ϵ ,

where

U
′

ϵ := min

{
θ
′
d,

(
1− 1

(Gr)−1(P ′
ϵ )

)
(τ

′ − θ
′
)d

}
, and P

′

ϵ :=
( 12 − ϵ− τ

′
)d

2

(
τ ′d+

∥f∥∞
Γ(r)

) .

It follows from Case 1 and Case 2 that for all real numbers x0 ≥ K,

sup
x≥x0

J1+rf(x)− inf
y≥x0

J1+rf(y) ≥ Uϵ ∧ U
′

ϵ .

Letting x0 → ∞ we get that

δ1+rf := lim sup
x→∞

J1+rf(x)− lim inf
x→∞

J1+rf(x) ≥ Uϵ ∧ U
′

ϵ .

But ϵ ∈ (0, (1/2 − τ) ∧ (1/2 − τ
′
)) is completely arbitrary. So we can let ϵ → 0+, and by continuity of

G−1
r , we get

δ1+rf = lim sup
x→∞

J1+rf(x)− lim inf
x→∞

J1+rf(x) ≥ U ∧ U
′
,

where

16



U := min

{
θ,

(
1− 1

(Gr)−1(P )

)
(τ − θ)

}
d, P := Pτ,d,r,f :=

( 12 − τ)d

2

(
dτ +

∥f∥∞
Γ(r)

) ,

and

U
′
:= min

{
θ
′
,

(
1− 1

(Gr)−1(P ′)

)
(τ

′ − θ
′
)

}
d, and P

′
:= P

′

τ ′ ,d,r,f
:=

( 12 − τ
′
)d

2

(
dτ ′ +

∥f∥∞
Γ(r)

) .

Recall that the 0 < θ < τ < 1/2 and 0 < θ
′
< τ

′
< 1/2 are fixed and arbitrary. Let θ

′
= θ and τ

′
= τ .

Then U
′
= U . Then δ1+rf ≥ U , and U > 0.

Fix τ ∈ (0, 1/2) arbitrary. Let θ = τ
2 . Then τ − θ = τ

2 also. Thus

U =

(
1− 1

G−1
r (P )

)
τ

2
d.

For example, for r = 1, we have G−1
1 (s) = s+ 1, for all s ∈ [0,∞). So

U =

(
1− 1

P + 1

)
τ

2
d.

Let τ = 1/4. Then in this case P =
d/4

d/2 + 2∥f∥∞
, and U =

(
d/4

3d/4 + 2∥f∥∞

)
d

8
.

Therefore,

δ2f ≥ U =
d2/32

3d/4 + 2∥f∥∞
=

d2

24d+ 64∥f∥∞
> 0.

This is similar to the optimized lower bound for δ2f given in Theorem 3.1.

Note also that d = 2b ≤ 2∥f∥∞. So δ2f ≥ d2

112∥f∥∞
.

Now, going back to the general situation r ∈ (0, 1], we have that

δ1+rf ≥ U :=

(
1− 1

G−1
r (P )

)
τ

2
d, where P :=

(1/2− τ)d

2τd+ 2∥f∥∞
Γ(r)

.

Since d ≤ 2∥f∥∞, we have that P ≥ (1/2− τ)d

4τ∥f∥∞ + 2∥f∥∞
Γ(r)

.

Let Q := Qr,d,∥f∥∞,τ :=
(1/2− τ)d

4τ∥f∥∞ + 2∥f∥∞
Γ(r)

. Then

δ1+rf ≥
(
1− 1

G−1
r (Q)

)
τ

2
d =

G−1
r (Q)− 1

G−1
r (Q)

τ

2
d.

Also notice that Q ≤ (1/2− τ)2∥f∥∞
4τ∥f∥∞ + 2∥f∥∞

Γ(r)

=
2(1/2− τ)

4τ + 2
Γ(r)

=: γ(r, τ), thus δ1+rf ≥ G−1
r (Q)− 1

G−1
r (γ(r, τ))

τ

2
d.

Also, Q := Qr,d,∥f∥∞,τ =
γ(r, τ)

2

d

∥f∥∞
≤ γ(r, τ).

Fix w0 > 1. For all w ∈ (1, w0],

Gr(w) := w

∫ ln(w)

0

ur−1e−udu ≤ w0

∫ ln(w)

0

ur−1du = w0
(ln(w))r

r
.

17



Consider the mapping s = Hr(w) := w0
(ln(w))r

r
, for w ≥ 1. Hr is strictly increasing and continuous,

and such that Hr(1) = 0. Therefore Hr : [1, w0] → [0, Hr(w0)] has an inverse, and w = H−1
r (s) =

exp

((
rs

w0

)1/r
)
. So, we have that for w ∈ (1, w0],

w ≤ G−1
r (Hr(w)).

Now, for all s ∈ (0, Hr(w0)],

G−1
r (s)− 1 ≥ w − 1 = exp

((
rs

w0

)1/r
)

− 1 ≥
(
rs

w0

)1/r

.

Recall that 0 < Q ≤ γ := γ(r, τ), and also H−1
r : [0, Hr(w0)] → [1, w0]. We wish to find w0 > 1 such

that Hr(w0) = γ. If we define Vr(w) := w
(ln(w))r

r
, for all w ∈ [1,∞), then we know its inverse V −1

r is well

defined on [0,∞), since Vr strictly increasing to infinity. Then Hr(w0) = γ is equivalent to w0 = V −1
r (γ). In

this case, since we have that Q ∈ (0, γ], then

G−1
r (Q)− 1 ≥

(
rQ

V −1
r (γ)

)1/r

=

(
rγd

2V −1
r (γ)∥f∥∞

)1/r

.

Thus

δ1+rf ≥
(

rγ

2V −1
r (γ)∥f∥∞

)1/r
1

G−1
r (γ)

τ

2
d1+1/r > 0.

Now we have all the tools to prove the summarizing theorem of this section, which is the second main theorem
of our paper. (Recall that Theorem 3.3 is the first of our main theorems.)

Theorem 3.4. For any 0 < r, s we have that Cesr = Cess.

Proof. Without loss of generality assume 0 < r < s. If 1 ≤ r, then by Corollary 3.2 we already have the conclusion.
So, assume 0 < r ≤ 1 and r < s. We wish to show Cess ⊂ Cesr, since the other inclusion is already known. Let
f ∈ Cess, then f ∈ Ces⌊s⌋+1+r, since s < ⌊s⌋ + 1 + r. This is equivalent to Jrf ∈ Ces⌊s⌋+1. By Theorem 3.1 this
implies Jrf ∈ Ces1, that is f ∈ Ces1+r. Thus, by Theorem 3.3 we have that f ∈ Cesr.

Remark. Notice that the previous result not only says that Cesr = Cess for any s, r > 0 but also lim
x→∞

Jsf(x) =

lim
x→∞

Jrf(x) for any 0 < r < s whenever one of these two limits exist. This is clear when we assume f ∈ Cesr,

since the operator Js−r preserves limit at infinity. But also, notice that if we assume lim
x→∞

Jsf(x) = L ∈ R, then
lim

x→∞
Jrf(x) exists, which implies lim

x→∞
Jrf(x) = lim

x→∞
Jsf(x) = L.

Remark. Notice that the function sine is an element of Ces1, but sine ̸∈ BCL. So, BCL ⊊ Ces1.

4 Banach limits on L∞ invariant under Jr

In this section, we construct Banach limits on L∞ that are invariant under our definition of fractional powers
of the Cesàro averaging operator. That is, Banach limits Λ invariant under Jr, for each r > 0; and therefore these
Banach limits preserve Jr-convergence. Given the results from the previous section, for f ∈ L∞ such that f ∈ Cesr,
for some r > 0, there exists L ∈ R such that lim

x→∞
Jsf(x) = L for all s > 0. In this case, for any Banach limit Λ that

is fractional-power-Cesàro-invariant, we have that Λ(f) = L.
We follow the same approach used in Claim 2.2, to construct the desired Jr-invariant Banach limits. We will

make use of Ψ, the extension of the Cesàro limit functional, obtained through Hahn-Banach Theorem:
Recall the closed vector subspace of L∞
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Ces :=
{
g ∈ L∞ : ψ(g) := lim

x→∞
Jg(x) exists in R

}
.

By Hahn-Banach Extension Theorem, there exists Ψ ∈ (L∞)∗ such that

∥Ψ∥(L∞)∗ = ∥ψ∥Ces∗ = 1 and Ψ |Ces= ψ.

Definition 4.1. For each f ∈ L∞, we define the map Γf : (0,∞) → R by

Γf (r) := Ψ(Jrf), for all r ∈ (0,∞) .

Claim 4.1. For each f ∈ L∞, Γf ∈ BC(0,∞) ⊆ L∞(0,∞).

Proof. Fix f ∈ L∞. We already establish on Theorem 2.10 that the map r 7→ Jrf is continuous, therefore the
composition Ψ(Jrf) is also a continuous function of r, since Ψ is a continuous functional.

We see then Γf ∈ BC(0,∞) since for all r ∈ (0,∞), we have that

|Γf (r)| ≤ ∥Ψ∥(L∞)∗∥Jr∥op∥f∥∞ = ∥f∥∞ <∞.

In analogy with Claim 2.2 we present the following result, which is the third main theorem of our paper. (Recall
that Theorems 3.3 and 3.4 are our other main theorems.)

Theorem 4.2. Define Λ : L∞ → R by

Λ(f) := ΨΓf , for every f ∈ L∞.

Λ is a Banach limit in L∞ that is invariant under fractional powers of the Cesàro operator, i.e. Λ(Jrf) = Λ(f), for
all f ∈ L∞, for all r > 0.

Proof. Fix f ∈ L∞. Fix r0 > 0. We first check that Λ in fact is invariant under fractional powers of the Cesàro
averaging operator:

Recall that for every r ∈ [0,∞), we define the left shift operator by r on L∞, by Srf(·) := f(· + r) ∈ L∞, for
every f ∈ L∞. Also recall Ψ is left-shift invariant, since it is a Banach limit. So,

Λ(Jr0f) = Ψ(r 7→ Ψ(JrJr0f)) = Ψ(r 7→ Ψ(Jr0+rf))

= Ψ(r 7→ Γf (r0 + r)) = Ψ(r 7→ (Sr0Γf )(r))

= Ψ(Sr0Γf ) = Ψ(Γf ) = Λ(f).

It is easy to check that ∥Λ∥(L∞)∗ = 1. It can also be checked that if lim
x→∞

f(x) = L ∈ R then Λ(f) = L. (See

A.8.)
Next, we verify that Λ(f) = Λ(Srf) for all r > 0: Notice that Λ(Srf) = Ψ(s 7→ Ψ(JsSrf)). We claim that

for any f ∈ L∞, we have that Ψ(JsSrf) = Ψ(Jsf) for all r > 0 and all s > 0. This holds since we know that
lim

x→∞
J(Srf − f) = 0, and by the remark made after Theorem 3.4, this implies that lim

x→∞
Js(Srf − f) = 0 for any

s > 0. Therefore,

Ψ(JsSrf) = Ψ(Jsf), for all r > 0 and all s > 0.

And so,

Λ(Srf) = Ψ(s 7→ Ψ(JsSrf)) = Ψ(s 7→ Ψ(Jsf)) = Ψ(s 7→ Γf (s))

= Ψ(Γf ) = Λ(f).

Remark. We can modify Theorem 4.2 to get a more general one, using the definition of Λ below:

Theorem 4.2* Fix ∆ and T any two Banach limits in L∞. Then Λ : L∞ → R defined by

Λ(f) := T (r 7→ ∆(Jrf)).
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is a Banach limit that is invariant under fractional powers of the Cesàro averaging operator.

Open Question 4.3. It was proven in [17, lemma II.27], that the Pascal Operator defined on ℓ∞ commutes with
the Cesàro averaging operator. In fact, along with the left shift operator and the identity operator, they generate an
abelian semigroup of linear operators on ℓ∞/c0 . Then, using a generalization of the Hahn Banach Extension Theorem
[13, proposition 5, chapter 10, section 3], it was shown the existence of a Banach limit invariant under any number
of compositions of these operators ([17, lemma II.29]).

What could be an analogue definition of the Pascal Operator P for the space L∞(0,∞)? Can continuous iterates
of this operator be defined? If this new operator, and its iterations, commute with our definition of iterates of Cesàro
averaging, one could use the generalization of the Hahn Banach Extension Theorem to get the existence of Banach
limits invariant under compositions of Jr and P s, for any r, s > 0.

Open Question 4.4. The quantitative result from Theorem 3.3 could be improved by choosing τ in an appropriate
way. What value of τ would give us an optimal lower bound for the inequality of this theorem?

5 A Banach limit in L∞ that preserves Cesàro convergence, but
is not Cesàro invariant

We start by stating the following result derived from the Bohnenblust-Sobczyk version of The Hahn-Banach
extension Theorem for seminorms [19, chapter IV, section 4]:

Theorem 5.1. Let (X, ∥ · ∥) be a normed linear space over K = R or C. Let V be a vector subspace of X, and
a, z ∈ X. Consider the affine subspace M generated by a and z, that is, M := {(1− t)z + ta : t ∈ K}. Assume there
is a positive distance from M to V , that is, η := d(M,V ) := inf {∥(1− t)z + ta− v∥ : t ∈ K, v ∈ V } > 0. Then, there
exists Ψ ∈ X∗ such that ∥Ψ∥X∗ = 1, Ψ|V = 0, and Ψ(z) = Ψ(a) = η.

The proof of this theorem can be found in [2, theorem A.0.2].
To show the existence of a Banach limit Ψ in L∞, such that Ψ is not Cesàro invariant, but preserves Cesàro

convergence, we will first construct a special element f ∈ L∞. Later on, a constant times the function Jf − f will
play the role of a when applying Theorem 5.1, to obtain this desired Banach limit.

We construct f ∈ L∞ the following way: Choose N1 > 1, choose N2 such that N2 > 2N1, and choose N3 such
that N3 > 2N2, and such that N1

N3
< 1

2
. For k ∈ N, k > 1, inductively we choose N2k such that N2k > 2N2k−1, and

N2k+1 such that N2k+1 > 2N2k, and such that
N2k−1

N2k+1
<

1

2k
(e.g. define Nj := (j + 1)! for every j ∈ N). Then, we

have that

1 < N1 < 2N1 < N2 < 2N2 < N3 < 2N3 < N4 < 2N4 < N5 < . . ..

Define f by

f(x) :=

{
1, x ∈ (0, N1] ∪ (2N1, N3] ∪ (2N3, N5] ∪ . . .
0, x ∈ (N1, 2N1] ∪ (N3, 2N3] ∪ (N5, 2N5] ∪ . . . .

We notice that, for any x > 0, Jf(x) ≤ 1, since ∥f∥∞ = 1. Consequently,

1

x

∫ x

0

f(t)dt− f(x) =
1

x

∫ x

0

f(t)dt− 1 ≤ 0, for all x ∈ (N2k, 2N2k], for any k ∈ N.
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For all x ∈ (N2k+1, 2N2k+1) for all k ∈ N, we have that x = N2k+1 + y, for y = x−N2k+1 ∈ (0, N2k+1). Hence

1

x

∫ x

0

f(t)dt− f(x) =
N2k+1 −N2k−1 − · · · −N1

N2k+1 + y
− 0

>
N2k+1 −N2k−1 − · · · −N1

2N2k+1

=
1

2
− 1

2

N2k−1 + · · ·+N1

N2k+1

>
1

2
− 1

2

kN2k−1

N2k+1

>
1

4
.

Now, we apply Theorem 5.1:

Let g(x) := 4

(
1

x

∫ x

0

f(t)dt− f(x)

)
∈ L∞. Let h(x) := 1(x) ∈ L∞. Let V := Ces0 := {f ∈ L∞ : lim

x→∞
Jf(x) =

0}. Let M := {(1− t)h+ tg : t ∈ R}.

Claim 5.2. d(M,V ) := inf{∥(1− t)h+ tg − j∥∞ : t ∈ R and j ∈ Ces0} = 1.

Proof. First notice that, for the particular function j(x) := 0 for all x > 0, and for the particular value t = 0, we
have that

d(M,V ) := inf{∥(1− t)h+ tg − j∥∞ : t ∈ R and j ∈ Ces0} ≤ ∥h∥∞ = 1.

On the other hand, fix arbitrary t ≥ 0 and j ∈ Ces0. Also fix k ∈ N and x ∈ (N2k+1, 2N2k+1).

∆ := ∥(1− t)h+ tg − j∥∞ ≥ |(1− t)h(x) + tg(x)− j(x)|
≥ (1− t) · 1 + t · 4(Jf(x)− f(x))− j(x)

≥ 1− t+ t · 1− j(x) = 1− j(x).

Therefore

∆ =
1

N2k+1

∫ x=2N2k+1

x=N2k+1

∆dx ≥ 1

N2k+1

∫ x=2N2k+1

x=N2k+1

(1− j(x))dx

= 1− 1

N2k+1

∫ x=2N2k+1

x=N2k+1

j(x)dx

= 1− 1

N2k+1

(∫ x=2N2k+1

x=0

j(x)dx−
∫ x=N2k+1

x=0

j(x)dx

)
.

This implies

∆ ≥ 1− 2Jj(2N2k+1) + Jj(N2k+1) → 1− 0 + 0, as k → ∞, since j ∈ Ces0.

Thus, for any t ≥ 0, for any j ∈ Ces0,

∥(1− t)h+ tg − j∥∞ ≥ 1.

Next, fix t < 0 and j ∈ Ces0. Also, fix k ∈ N and x ∈ (N2k, 2N2k).

∆ := ∥(1− t)h+ tg − j∥∞ ≥ (1− t) · 1 + t · 4(Jf(x)− f(x))− j(x)

≥ 1− t− j(x) ≥ 1− j(x).

Consequently, similarly to above, we get that

∆ ≥ 1− 2Jj(2N2k) + Jj(N2k) → 1, as k → ∞, since j ∈ Ces0.

Hence, for all t < 0 and for all j ∈ Ces0,

∥(1− t)h+ tg − j∥∞ ≥ 1.

So, we see that
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inf{∥(1− t)h+ tg − j∥∞ : t ∈ R and j ∈ Ces0} ≥ 1.

This implies that d(M,V ) = 1.

Thus, by Theorem 5.1, we know there exists Ψ in (L∞)∗, with ∥Ψ∥(L∞)∗ = 1, and: (i) Ψ|Ces0 = 0, (ii) Ψ(h) =
Ψ(1) = 1, and (iii) Ψ(g) = 1.

Notice that (iii) implies Ψ is not Cesàro invariant, since for the function f constructed above, we have that

Ψ(Jf − f) = 1
4
Ψ(g) = 1

4
̸= 0.

On the other hand, (i) and (ii) imply that Ψ is Cesàro convergence preserving, since for any g ∈ Ces, we have
that g = L1+ j, where L := lim

x→∞
Jg(x), and j ∈ Ces0 (simply define j(x) := g(x)−L1(x), for all x > 0). Therefore

Ψ(g) = Ψ(L1+ j) = L.

Finally, to verify Ψ is a Banach limit, first notice that for any f ∈ BCL, we have that f ∈ Ces, and lim
x→∞

f(x) =

lim
x→∞

Jf(x). So we see that Ψ preserves classical convergence. Also recall that ∥Ψ∥(L∞)∗ = 1. We also have that Ψ

is left-shift invariant, since we know that for any r > 0 we have {f − Srf : f ∈ L∞} ⊆ Ces0. Hence Ψ(f − Srf) = 0,
for any r > 0 and f ∈ L∞.

A Appendix

Claim A.1. ∆ satisfies property 1 and 2 from the definition a Banach limit.

Proof. Take an arbitrary f ∈ L∞.

|∆(f)| ≤ ∥σ∥(ℓ∞)∗∥(Ψ(f),Ψ(Jf),Ψ(J2f),Ψ(J3f), . . .)∥∞
= 1∥(Ψ(f),Ψ(Jf),Ψ(J2f),Ψ(J3f), . . .)∥∞
= sup{|Ψ(f)|, |Ψ(Jf)|, |Ψ(J2f)|, |Ψ(J3f)|, . . .}

≤ sup{∥Ψ∥(L∞)∗∥f∥∞, ∥Ψ∥(L∞)∗∥Jf∥∞, ∥Ψ∥(L∞)∗∥J2f∥∞, . . .}

= sup{∥f∥∞, ∥Jf∥∞, ∥J2f∥∞, . . .}.

Since ∥Jf∥∞ ≤ ∥f∥∞ for every f ∈ L∞, we have that ∥Jnf∥∞ ≤ ∥f∥∞, for all n ∈ N and all f ∈ L∞. Therefore

|∆(f)| ≤ ∥f∥∞ for all f ∈ L∞,

which implies ∥∆∥(L∞)∗ ≤ 1. On the other hand, let 1(x) = 1, for all x ∈ (0,∞). Then,

∆(1) = σ(Ψ(1),Ψ(1),Ψ(1),Ψ(1), . . .) = σ(1, 1, 1, . . .) = 1.

Therefore ∥∆∥(L∞)∗ ≥ 1. Thus ∥∆∥(L∞)∗ = 1.
Next, let f ∈ BCL and let L := lim

x→∞
f(x), then lim

x→∞
Jf(x) = L, and therefore

lim
x→∞

Jnf(x) = L, for each n ∈ N. This implies that Ψ(Jnf) = L, for each n ∈ N. So, we get that

∆(f) = σ(L,L,L, . . . ) = L.

Claim A.2. For n ∈ N, the nth iteration of applying the Cesàro averaging operator to a function f ∈ L∞ is given
by the following formula:∫ x

0

dt1
x

∫ t1

0

dt2
t1

. . .

∫ tn−1

0

f(tn)
dtn
tn−1

=
1

(n− 1)!

1

x

∫ x

0

[
ln
(x
t

)]n−1

f(t)dt.

Proof. We proceed by induction on n:
If n = 1, then ∫ x

0

f(t1)
dt1
x

=
1

0!

1

x

∫ x

0

[
ln
(x
t

)]0
f(t)dt.
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Next, fix n ∈ N, n > 1, and let

J(n−1)f(x) :=

∫ x

0

dt1
x

∫ t1

0

dt2
t1

. . .

∫ tn−2

0

f(tn−1)
dtn−1

tn−2
.

Assume

J(n−1)f(x) =
1

(n− 2)!

1

x

∫ x

0

[
ln
(x
t

)]n−2

f(t)dt.

Then

Jnf(x) := J(J(n−1)f)(x)

=
1

x

∫ x

0

1

(n− 2)!

1

u

∫ u

0

[
ln
(u
t

)]n−2

f(t)dtdu

=
1

x

1

(n− 2)!

∫ x

0

∫ x

t

1

u

[
ln
(u
t

)]n−2

f(t)dudt.

In this last step, we were able to apply Fubini-Tonelli to change the order of integration since the integrand is a
measurable function, and

1

x

∫ x

0

∫ u

0

1

u

∣∣∣∣[ln(ut )]n−2

f(t)

∣∣∣∣ dtdu ≤ ∥f∥∞
1

x

∫ x

0

∫ u

0

1

u

[
ln
(u
t

)]n−2

dtdu

= ∥f∥∞
1

x

∫ x

0

∫ ∞

0

1

u
yn−2ue−ydydu

= ∥f∥∞
1

x

∫ x

0

Γ(n− 1)du

= ∥f∥∞Γ(n− 1) <∞.

Here, we made the substitution y = ln
(
u
t

)
. We will continue to make use of this substitution throughout this

document. We also note that the expression Γ(n−1) is the Gamma function evaluated at n−1, which equals (n−2)!,
and therefore is finite.

So, after applying Fubini-Tonelli we obtain

Jnf(x) := J(J(n−1)f)(x)

=
1

x

1

(n− 2)!

∫ x

0

∫ x

t

1

u

[
ln
(u
t

)]n−2

f(t)dudt

=
1

x

1

(n− 2)!

∫ x

0

∫ ln( x
t )

0

[y]n−2 f(t)dydt

=
1

x

1

(n− 1)!

∫ x

0

[
ln
(x
t

)]n−1

f(t)dt.

Where again we made the substitution y = ln
(
u
t

)
.

Claim A.3. Fix x > 0. Fix p, r > 0. Then∫ x

s=0

∫ 1

u=0

up−1(1− u)r−1duf(s)
[
ln
(x
s

)]p+r−1

ds =

∫ x

t=0

1

t

∫ t

s=0

f(s)

[
ln

(
t

s

)]r−1

ds
[
ln
(x
t

)]p−1

dt.

Proof. This can be proven by applying Fubini-Tonelli:
Denote

I1 :=

∫ x

s=0

∫ 1

u=0

up−1(1− u)r−1duf(s)
[
ln
(x
s

)]p+r−1

ds,

and

I2 :=

∫ x

t=0

1

t

∫ t

s=0

f(s)

[
ln

(
t

s

)]r−1

ds
[
ln
(x
t

)]p−1

dt.
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For I2, we make the substitution u = t
x
, to get

∫ x

t=0

1

t

∫ t

s=0

f(s)

[
ln

(
t

s

)]r−1

ds
[
ln
(x
t

)]p−1

dt

=

∫ 1

u=0

1

u

∫ xu

s=0

f(s)
[
ln
(xu
s

)]r−1
[
ln

(
1

u

)]p−1

dsdu

=

∫ x

s=0

f(s)

∫ 1

u= s
x

1

u

[
ln
(xu
s

)]r−1
[
ln

(
1

u

)]p−1

duds.

We were able to change the order of integration since the function

g(s, u) :=
[
ln
(xu
s

)]r−1 (− ln(u))p−1

u
χ[0,ux](s)

is continuous a.e. on [0,∞)× [0, 1], f is measurable, therefore g(s, u)f(s) is measurable. Also, we have that

∫ 1

u=0

∫ ux

s=0

|f(s)|
[
ln
(xu
s

)]r−1

(− ln(u))p−1ds
1

u
du

≤ ∥f∥∞
∫ 1

u=0

∫ ux

s=0

[
ln
(xu
s

)]r−1

ds(− ln(u))p−1 1

u
du

= ∥f∥∞
∫ 1

u=0

xuΓ(r)(− ln(u))p−1 1

u
du

= ∥f∥∞xΓ(r)
∫ 1

u=0

(− ln(u))p−1du

= ∥f∥∞xΓ(r)Γ(p) <∞;

where the Gamma function evaluated at r, Γ(r), is obtained by making the substitution y = ln
(
xu
s

)
and the Gamma

function evaluated at p, Γ(p), is obtained by making the substitution y = ln
(
1
u

)
.

Next, we rewrite I1 as ∫ x

s=0

∫ 1

u=0

up−1(1− u)r−1duf(s)
[
ln
(x
s

)]p+r−1

ds

=

∫ x

s=0

f(s)

∫ 1

u=0

up−1(1− u)r−1
[
ln
(x
s

)]p+r−1

duds.

Let

Q(s, x) :=

∫ 1

u= s
x

[
ln
(xu
s

)]r−1 (− ln(u))p−1

u
du,

which is the inner integral on I2. Therefore, it is enough to show that

Q(s, x) =

∫ 1

u=0

up−1(1− u)r−1
[
ln
(x
s

)]p+r−1

du.

Notice

Q(s, x) =

∫ 1

u= s
x

[
ln
(x
s

)
− (− ln(u))

]r−1 (− ln(u))p−1

u
du

=

∫ 1

u= s
x

[
ln
(x
s

)]r−1+p

1− (− ln(u))

ln
(x
s

)
r−1− ln(u)

ln
(x
s

)
p

1

− ln(u)

du

u

=
[
ln
(x
s

)]p+r−1
∫ 0

1

(1− q)r−1qp
−1

q
dq.

Where q =
− ln(u)

ln
(x
s

) , therefore dq = −1

u

1

ln
(x
s

)du and so
1

u(− ln(u))
du =

−1

q
dq. Thus we get the desired result.
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Claim A.4. Fix x > 0, and define

φϵ(t) :=
1
x

1
Γ(ϵ)

1[
ln

( x

x− t

)]1−ϵχ[0,x](x− t), for t ∈ R.

φϵ is a good kernel, according to the definition in [14, chapter 3, section 2].

Proof. To prove φϵ is a good kernel according to the definition in [14], we need to show the following:

1.

∫ ∞

−∞
φϵ(t)dt = 1.

2.

∫ ∞

−∞
|φϵ(t)|dt ≤ A, for some constant A independent of ϵ.

3. for any ν > 0,

∫
|x|≥ν

φϵ(t)dt tends to 0 as ϵ→ 0+.

This will imply that

g ∗ φϵ(x) → g(x) = f(x) as ϵ→ 0+, at every point x of continuity of f .

We first check

∫ ∞

−∞
φϵ(t)dt = 1:

∫ ∞

−∞
φϵ(t)dt =

1

xΓ(ϵ)

∫ x

0

1[
ln

(
x

x− t

)]1−ϵ dt.

Let s = ln
(

x
x−t

)
, then ∫ ∞

−∞
φϵ(t)dt =

1

Γ(ϵ)

∫ ∞

0

sϵ−1e−sds =
Γ(ϵ)

Γ(ϵ)
= 1.

Thus the first condition holds.

Next notice that φϵ(t) ≥ 0, and so

∫ ∞

−∞
|φϵ(t)|dt = 1.

Finally, notice that for any ν ∈ (0, x), by making again the substitution s = ln
(

x
x−t

)
we obtain

1

xΓ(ϵ)

∫ x

ν

1[
ln

(
x

x− t

)]1−ϵ dt =
1

Γ(ϵ)

∫ ∞

ln( x
x−ν )

sϵ−1e−sds.

Let R := ln
(

x
x−ν

)
, notice R > 0. Since we are going to let ϵ tend to 0, we may assume ϵ < 1. Then for s ∈ (R,∞)

we have that sϵ−1 ≤ Rϵ−1. Therefore∫ ∞

ln( x
x−ν )

sϵ−1e−sds ≤ Rϵ−1

∫ ∞

R

e−sds = Rϵ−1e−R.

Thus, ∫
(−∞,−ν)∪(ν,∞)

φϵ(t)dm(t) tends to 0 as ϵ→ 0+, since 1
Γ(ϵ)

→ 0.

Therefore the desired conclusion holds.

Claim A.5. Let f ∈ L∞. Then

lim inf
x→∞

f(x) ≤ lim inf
x→∞

(Jpf)(x) ≤ lim sup
x→∞

(Jpf)(x) ≤ lim sup
x→∞

f(x),

for all p > 0.
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Proof. Let f ∈ L∞. Let ℓ := lim inf
x→∞

f(x). This means the following: For every ϵ > 0, there exists N > 0 such that

ℓ− ϵ ≤ f(x) for almost all x > N .
Fix p > 0. For each x > 0 we have that

ℓ− (Jpf)(x) = ℓ− 1

xΓ(p)

∫ x

0

[
ln
(x
t

)]p−1

f(t)dt

=
1

xΓ(p)

(
ℓxΓ(p)−

∫ x

0

[
ln
(x
t

)]p−1

f(t)dt

)
=

1

xΓ(p)

(
ℓx

∫ ∞

0

up−1e−udu−
∫ x

0

[
ln
(x
t

)]p−1

f(t)dt

)
=

1

Γ(p)

(
ℓ

∫ ∞

0

up−1e−udu−
∫ ∞

0

[u]p−1 f
( x
eu

)
e−udu

)
=

1

Γ(p)

∫ ∞

0

(
ℓ− f

( x
eu

))
up−1e−udu.

Where the previous to last expression comes from the usual substitution u = ln
(
x
t

)
.

Now, fix ϵ > 0. Since Γ(p) <∞, there is S > 0 such that

∫ ∞

S

up−1e−udu <
Γ(p)

2∥f∥∞
ϵ. In fact, for any R > S, we

have that ∫ ∞

R

up−1e−udu <

∫ ∞

S

up−1e−udu <
Γ(p)

2∥f∥∞
ϵ.

Let x > NeS , then S < ln
(

x
N

)
. Next, choose R such that R ∈ (S, ln( x

N
)). Notice that, if u < R, then

x

eu
>

x

eR
>

x

eln(x/N)
= N , and so ℓ− ϵ ≤ f

( x
eu

)
.

Consequently,

ℓ− (Jpf)(x) =
1

Γ(p)

(∫ R

0

(
ℓ− f

( x
eu

))
up−1e−udu+

∫ ∞

R

(
ℓ− f

( x
eu

))
up−1e−udu

)
≤ 1

Γ(p)
ϵ

∫ R

0

up−1e−udu+
2∥f∥∞
Γ(p)

∫ ∞

R

up−1e−udu

< ϵ+ ϵ = 2ϵ.

As ϵ→ 0+, we obtain

ℓ ≤ lim inf
x→∞

(Jpf)(x).

Similarly we can verify that

lim sup
x→∞

(Jpf)(x) ≤ lim sup
x→∞

f(x).

Claim A.6. Let p ∈ (0, 1). Consider a sequence of positive real numbers (pn)n such that pn ∈ (0, 1) for each n ∈ N,
and pn → p. Then

lim
n→∞

∫ ∞

u=0

∣∣[u]pn−1 − [u]p−1
∣∣ e−udu = 0.

Proof. We apply Dominated Convergence Theorem:
Since pn − 1 → p− 1 and p− 1 < 0, there exists N ∈ N such that p− 1− p

2
≤ pn − 1 < 0 for all n ≥ N .

If u ≥ 1 then we have that
∣∣upn−1 − up−1

∣∣ e−u ≤ (upn−1 + up−1)e−u ≤ 2e−u for all n ≥ N .

If u ∈ (0, 1), then uy is decreasing as function of y. Then upn−1 ≤ u
p
2
−1 for all n ≥ N , and so∣∣upn−1 − up−1

∣∣ e−u ≤
∣∣upn−1 − up−1

∣∣ ≤ upn−1 + up−1 ≤ u
p
2
−1 + up−1.
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Define

g(u) =

{
u

p
2
−1 + up−1, 0 < u < 1

2e−u, 1 ≤ u

Notice ∫ ∞

0

g(u)du =

∫ 1

0

(
u

p
2
−1 + up−1

)
du+ 2

∫ ∞

1

e−udu.

We know this integral is finite since p− 1, p
2
− 1 ∈ (−1, 0). Therefore we can apply Dominated Convergence Theorem

and reach the desired conclusion.

Claim A.7. ∥ψr∥(Cesr)∗ = 1

Proof. Recall that we already know ∥Jr∥op = 1, therefore for any f ∈ L∞ we have that

|ψr(f)| = | lim
x→∞

(Jrf)(x)| = lim
x→∞

|(Jrf)(x)| ≤ ∥f∥∞.

So ∥ψr∥(Cesr)∗ ≤ 1. Also, ψr(1) = lim
x→∞

(Jr
1)(x) = lim

x→∞
1(x) = 1. Thus ∥ψr∥(Cesr)∗ = 1.

Claim A.8. Λ satisfies property 1 and property 2 of the definition of Banach limit.

Proof. Notice that for any f ∈ L∞ we have that |Λ(f)| ≤ ∥Ψ∥(L∞)∗∥Γf∥∞ ≤ ∥f∥∞. Therefore, ∥Λ∥(L∞)∗ ≤ 1. On
the other hand,

Λ(1) = Ψ(r 7→ Ψ(Jr1)) = Ψ(r 7→ Ψ(1)) = Ψ(r 7→ 1) = Ψ(1) = 1.

Thus ∥Λ∥(L∞)∗ = 1.
Next, we check that if lim

x→∞
f(x) = L ∈ R then Λ(f) = L. Recall that if lim

x→∞
f(x) = L then lim

x→∞
(Jrf)(x) = L

for all r > 0. Therefore,

Λ(f) = Ψ(r 7→ Ψ(Jrf)) = Ψ(r 7→ L)

= Ψ(L1) = L.
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[2] P. DELGADO. Cesàro averaging and extension of functionals on infinite dimensional spaces, University of Pitts-
burgh, 2020, Ph.D. Dissertation.

[3] P. G. DODDS, B. DE PAGTER, A. A. SEDAEV, E. M. SEMENOV, F. A. SUKOCHEV. Singular symmetric
functionals and Banach limits with additional invariance properties, Izv. Math.,67 (6), 2003,1187-1212.

[4] N. DUNFORD, J.T. SCHWARTZ, Linear Operators I, Interscience Publishers, Inc., New York, 1957.

[5] G. FROBENIUS. Uber die leibnitzsche reihe, Reine Angew. Math, 89, 1880, 262-264.

[6] J. HADAMARD. Essai sur l’étude des fonctions données par leur développement de Taylor, J. de Mathématiques
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