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INTRODUCTION 

Regular physical activity (PA) in manual 
wheelchair users (MWUs) with spinal cord injury 

(SCI) is associated with positive health 

benefits, such as increased cardiorespiratory 
fitness and muscular strength, and decreased 

deconditioning and pain (1). However, studies 
by Washburn et al. and Fernhall et al. have 

shown that only 13-16% of persons with SCI 

reported regular PA and the majority reported 
virtually no regular PA (2, 3).  

One of the strategies to promote regular PA 

is to obtain an accurate estimate of everyday 
PA, which could increase MWUs’ awareness of 

their activity levels and promote PA adherence 

(2-5). Currently, activity monitors (AMs) are 
extensively used in the ambulatory population 

to measure accurate PA in terms of energy 
expenditure (EE) on a daily basis (6). However, 

our previous study in 13 MWUs with SCI has 

found that these AMs do not work well for 
MWUs who extensively rely on their upper limbs 

for day-to-day activities (4). The EE estimated 

by the SenseWear Armband (SW) (BodyMedia 
Inc., PA, USA) and RT3 AMs (StayHealthy Inc., 

CA, USA) were significantly higher (17.8-

131.4%) and lower (21.4-53.3%), respectively 
compared to the criterion EE in MWUs with SCI 

(4). On the other hand, our previous study has 

shown that EE from the SW explained 56% of 
variance in the criterion EE (4). In addition, 

several studies have developed individualized 
heart rate models that can predict EE in MWUs 

(5, 7). A limitation of this method is that it 

requires subjects to perform a range of PAs 
with different intensities to develop 

individualized prediction equations. To our 

knowledge, no study has been performed to 
investigate if the current AMs can be modified 

to provide an accurate EE prediction for MWUs 

with SCI.  

The objective of this study was to develop 

and evaluate new EE prediction models for 
MWUs with SCI based on the commercially 

available SenseWear Armband.  

METHODOLOGY 

Experimental Protocol 

A total of 24 MWUs with SCI participated in 
the study. The study was approved by the 

Institutional Review Board at the University of 

Pittsburgh and the VA Pittsburgh Healthcare 
System. Subjects were included if they were 

between 18 and 60 years, used a manual 

wheelchair as a primary means of mobility, 
have a SCI of T1 or below, were at least six 

months post-injury, and were able to use an 

arm-ergometer for exercise. Subjects were 
excluded if they were unable to tolerate sitting 

for 4 hours, had active pelvic or thigh wounds, 
or failed to obtain their primary care physician’s 

consent to participate in the study. All subjects 

provided a written informed consent to 
participate in the study.  

The protocol started with a pre-activity 

session where subjects answered a 
demographics questionnaire. In addition, their 

weight, height and skinfolds at biceps, triceps, 

subscapular and suprailiac were measured.  

During the activity session, subjects wore a 

portable metabolic cart K4b2 (COSMED srl, 

Rome, Italy) connected to a face mask, a Polar 
heart rate monitor on their chest, and a SW on 

the upper right arm on triceps muscles. The SW 
consists of a three-axis accelerometer, a skin 

temperature sensor, a Galvanic Skin Response 

sensor, and a near body temperature sensor. 
The SW analysis software (InnerView Research 

Software 7.0) uses sensor data, height, weight, 

age, gender, dominant hand, and smoking 
status of the subjects to estimate the EE. The 

activity session consisted of resting and three 

activity routines including wheelchair 



propulsion, arm-ergometer exercise, and desk 

work. During the resting session, subjects were 
required to be seated quietly in their 

wheelchairs for a period of eight minutes while 

the metabolic cart and the SW were used to 
collect EE. The propulsion routine included 

three trials, i.e., 0.89m/s (2mph) and 1.34m/s 
(3mph) on a computer controlled dynamometer 

and 1.34m/s (3mph) on a flat tiled surface. The 

resistance offered by the dynamometer 
simulated propelling on a slope of 2�. The arm-

ergometer exercise included three trials of 20 

watts (W) resistance at 60 rotations per minute 

(rpm), 40W at 60rpm, and 40W at 90rpm. 
During the desk work routine, subjects typed 

on a computer and read a book. Subjects were 
asked to perform each activity trial for 8 

minutes with a resting period of 5 to 10 

minutes between each trial and a period of 30 
to 40 minutes between each activity routine. 

The activity routines, except for resting, were 

counterbalanced and the trials within each 
activity routine were randomized to counter 

order effects.   

Instrumentation and Data Collection 

To ensure accuracy of the data collection, 

the K4b2 was calibrated for every subject and 

synchronized with the SW. The data collected 
from the K4b2 were EE in kcal/min.  The data 

collected from the SW included the mean 
absolute deviation in longitudinal and 

transverse accelerations (LMAD and TMAD), 

and the average longitudinal (LAVG), 
transverse (TAVG), and resultant accelerations 

(RAVG) at 16Hz, and skin temperature 

(STEMP), galvanic skin response (GSR), near-
body temperature (NTEMP), and EE in kcal/min 

at each minute. 

Data Analysis 

The data analysis software written in 

MATLAB® (Version 7.6 R2008a, The Mathworks 
Inc. MA, USA) processed and analyzed data 

from the K4b2 and the SW. To determine 

steady-state conditions, EE data in kcal/min for 
each of the activity trials were obtained by 

averaging breath-by-breath measures over 30 

second periods, and EE values having 
coefficients of variation of less than 10% 

computed over windows of at least 1 minute 

was averaged and used in the later analysis.  

All statistical analysis was performed using 

SPSS software (ver. 15.0, SPSS Inc. Il., USA), 
with the statistical significance at an alpha level 

of 0.05. New EE prediction models were 

developed using the data from 20 subjects 
randomly selected from the 24 subjects using 

forward stepwise multiple regression. The 
remaining 4 subjects served as a validation 

group. In addition to a generalized prediction 

for all the activities, activity specific models 
were also developed, which consisted of four 

separate prediction equations for resting, 

deskwork, wheelchair propulsion, and arm-
ergometry, respectively. The dependent 

variable was the EE in kcal/min measured from 

the K4b2. The independent variables included 
acceleration variables (i.e., LMAD, TMAD, LAVG, 

TAVG, and RVAG) and demographic variables 
(i.e., age and weight) which were significantly 

correlated (Pearson Correlations 0.25-0.77, 

p<0.05) with the criterion EE. Physiologic 
variables (i.e., STEMP, GSR, NTEMP) were not 

considered due to their weak correlations 

(Pearson correlations 0.0 7-0.54, p>0.05) 
with the criterion EE. Data from the activity 

trials within each activity routine were pooled 

and treated as independent observations. The 
resultant prediction equations were cross-

validated with the data from the validation 

group by computing the absolute differences 
and absolute percentage errors between 

predicted and criterion EE.  

RESULTS 

Among the 24 subjects, there were 19 

males and 5 females with a mean age of 
41.4±11.4 years, weight of 82.4±25.1 kg, 

height of 178.0±9.4 cm, and body fat 

percentage of 28.0%±7.3%. The injury level 
varied from T3 to L4 with 11 of the 24 subjects 

having a complete injury. Self-reported PA 

indicated that 10 subjects performed regular 
PA; 8 performed occasional PA; and 6 

performed no regular PA. All the 24 subjects 
completed the eight activity trials. Due to 

device malfunction of the K4b2, two trials 

including one 3mph propulsion trial on the tiled 
surface and one resting trial were discarded. In 

addition, three trials including one resting trial, 

one 2mph propulsion trial on dyno, and one 
deskwork trial that did not yield steady-state or 



near steady-state conditions were also 

discarded.  

Table 1 shows the absolute difference 

and absolute percentage error between the 

criterion EE from the K4b2 and the estimated 
EE from the SW using manufacturer’s 

equations.  

Stepwise multiple linear regression analysis 

indicated that EE could be predicted by a few 

acceleration and demographic variables. Table 
2 shows the results from the regression 

analysis for both the generalized model and the 

activity specific models. For each model, the 
significant predictors, the adjusted R-square, 

the standard error of the estimate (SEE) were 

reported. The final prediction equation for the 
generalized activity model is shown in equation 

1. The final prediction equations for the activity 
specific models are shown in equations (2)-(5). 

Table 3 shows the validation results for both 

the generalized and activity specific models. In 
addition, the EE estimated by the general 

(Pearson correlation: 0.62, p<0.05) and 

activity specific EE prediction equations 
(Pearson correlation: 0.89, p<0.05) 

significantly correlated (p<0.05) with the 

criterion EE. 

DISCUSSION 

Availability of AMs that accurately estimate 

EE in MWUs with SCI can increase their PA 
awareness and promote regular PA. In this 

study, we have developed and evaluated new 
EE prediction models for MWUs with SCI based 

on SW AM.  

The research showed that the SW AM using 
manufacturer’s equations consistently 

overestimated EE with relatively small errors 

for light activities and large errors for 
wheelchair propulsion and arm ergometry. The 

results of this study (20.1-130.0% 

overestimation) are similar to our previous 
study (17.8-131.4%) which consisted of 13 

MWU’s with SCI (4).  

The performance of the new general EE 

prediction equation significantly improved the 

EE prediction by SW for wheelchair propulsion 
and arm-ergometery compared to the default 

outputs. However, the EE prediction for the 

resting and deskwork using the new general EE 

prediction equation worsened. Better EE 

estimation during wheelchair propulsion and 
arm-ergometer exercise trials may be due to 

SW’s ability to capture higher upper arm 

movement during these activities. The 
predictors of the generalized model include 

acceleration variables (LMAD and LAVG) and 
demographic variable (weight) indicating that 

the generalized model utilized upper extremity 

movements and demographic variables to 
estimate EE. The performance of the activity 

specific equations was better than the general 

EE prediction equation. In addition, the 
performance of activity specific equations 

compared to the manufacturer’s equation for 

resting and deskwork were better and similar, 
respectively. The predictors for the activity-

specific equations showed that weight was a 
single major contributor (β=0.72) toward EE 

during resting, while weight (β=0.72) and 

accelerometer variable (TAVG, β=0.45) 
contributed towards EE during deskwork. For 

the wheelchair propulsion and arm-ergometry 

trials LMAD was a significant predictor 
compared to the demographic variables (weight 

and age). Presence of accelerometer variables 

during deskwork, wheelchair propulsion and 
arm-ergometry indicates that SW AM can 

capture upper extremity movements that 

contribute towards overall EE. In addition, the 
variance explained by the estimated EE, using 

the activity specific equations, in the criterion 
EE was high (79%). On closer analysis, it was 

also found that the weight of one of the 

subjects (141.1kg) in the validation group lied 
outside the range of weights of the subjects 

(44.2kg-129.5kg) used for modeling. Removing 

this subject from the error analysis led to a 
better EE estimation using generalized (20.4-

42.8%) and activity specific (6.4-18.9%) 

models.  

There are several limitations of this study 

including small sample size, and limited PAs. 
The study also chose to test AM only in MWUs 

with paraplegia to minimize the impact of 

different types and levels of disabilities on EE 
measurements. In future, we hope to perform 

rigorous cross-validations and also include 

important demographics such as gender and 
injury to develop models. 

In conclusion, the new activity specific EE 

equations significantly reduced prediction errors 



compared to the original output indicating that 

the SW with appropriate modifications could be 
used by MWUs with SCI to gauge their activity 

levels in terms of EE.  

TABLES 

Table 1 SW prediction errors using 

manufacture’s equations 

Activity 
Mean (SD) 

EE (kcal/min) 
SW Prediction 
Absolute Error 

K4b2 SW Error Percentage 

Resting 1.1 (0.3) 1.3 (0.3) 0.2 (0.2) 24.7 (19.4) 

2mph on dyno 3.7 (1.5) 7.9 (4.2) 4.7 (3.8) 130.0 (96.1) 

3mph on dyno 4.7 (2.1) 9.0 (4.3) 4.2 (3.9) 95.2 (71.7) 

3mph on tile 2.9 (1.1) 6.1 (1.9) 3.2 (1.4) 114.8 (61.8) 

20W at 60rpm 3.1 (0.5) 5.6 (1.9) 2.1 (1.1) 66.2 (34.8) 

40W at 60rpm 4.4 (0.6) 6.2 (1.9) 1.6 (1.1) 38.2 (29.6) 

40W at 90rpm 5.5 (1.0) 8.3 (3.2) 2.3 (1.5) 40.4 (24.1) 

Deskwork 1.3 (0.4) 1.6 (0.3) 0.3 (0.1) 20.1 (14.0) 

Table 2 Generalized and activity specific EE 

models’ predictors and statistics for SW AM 

Generalized 
Model 

Predictors LMAD (β=0.88, p<0.001), 
weight (β=0.24, p<0.001),  

LAVG (β=-0.25, p<0.001) 

Adjusted R2 0.73 

SEE 0.97 kcal/min 

Significance F3,151=138.66, p<0.001 

Resting 
Model 

Predictors Weight (β=0.72, p=0.001) 

Adjusted R2 0.49 

SEE 0.20 kcal/min 

Significance F1,16=17.49, p=0.001 

Wheelchair 

Propulsion 
Model 

Predictors LMAD (β=0.81, p<0.001), 

Weight (β=0.45, p<0.001), 
Age (β=0.15, p<=0.029) 

Adjusted R2 0.82 

SEE 0.78 kcal/min 

Significance F3,54=55.09, p<0.001 

Arm-

Ergometer 
Exercise 

Model 

Predictors LMAD (β=0.63, p<0.001), 
Weight (β=0.30, p=0.001) 

Adjusted R2 0.54 

SEE 0.82 kcal/min 

Significance F2,57=35.85, p<0.001 

Deskwork 

Model 

Predictors Weight (β=0.72, p<0.001),  
TAVG (β=0.45, p=0.011) 

Adjusted R2 0.57 

SEE 0.23 kcal/min 

Significance F2,16=12.83, p<0.001 

 

Table 3 SW prediction errors using the new 

prediction models 

Activity  
Mean (SD) 

General Model 
Prediction 

Activity Specific 
Model Prediction 

Error % Error % 

Resting 0.8 (1.0) 79.9 (93.3) 0.2 (0.3) 22.6 (26.1) 

2mph on dyno 0.8 (0.5) 26.9 (10.9) 0.6 (0.8) 20.6 (19.8) 

3mph on dyno 0.8 (0.3) 21.2 (6.9) 0.4 (0.4) 10.4 (8.0) 

3mph on tile 0.7 (0.3) 25.0 (7.7) 0.5 (0.4) 16.6 (16.3) 

20W at 60rpm 1.0 (0.8) 33.9 (27.4) 1.0 (0.9) 32.9 (30.1) 

40W at 60rpm 1.7 (0.4) 39.5 (6.8) 0.8 (1.0) 18.9 (10.1) 

40W at 90rpm 0.9 (0.7) 16.9 (11.3) 0.4 (0.6) 6.8 (6.2) 

Deskwork 1.0 (1.2) 90.8 (115.1) 0.2 (0.3) 20.8 (29.1) 

EQUATIONS 
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EEgeneral=2.060+0.491*LMAD 

  +0.020*weight-2.955*LAVG 
 

(1) 

EEresting=0.405+0.009*weight 
 

(2) 

EEpropulsion=-0.640+0.441*LMAD 
      +0.037*weight-0.027*Age 

 

(3) 

EEergometry= 1.705+0.352*LMAD 

     +0.016*Weight 
 

(4) 

EEdeskwork=0.745+0.625*TAVG 

      +0.011*weight  

(5) 


