
QUANTIFYING PHYSICAL ACTIVITY USING AN ACTIGRAPH IN MANUAL 
WHEELCHAIR USERS WITH SPINAL CORD INJURY 

Shivayogi Hiremath, MS, Dan Ding, PhD 

Human Engineering Research Laboratories, Department of Veterans Affairs, Pittsburgh, PA 

Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA 

INTRODUCTION 

Manual wheelchair users (MWUs) with spinal cord 

injury (SCI) need to strike a balance between regular 

physical activity (PA) and the prevention of upper extremity 

injuries associated with PA. Regular PA is associated with 

increased cardiorespiratory fitness and muscular strength, 
and decreased deconditioning and pain (Glaser, Janssen, 

Suryaprasad, Gupta, & Mathews, 1996). On the other hand, 

overuse of upper extremities for wheelchair propulsion and 

transfers can lead to shoulder pain and carpal tunnel 

syndrome (Boninger, et al., 2005). To overcome this 

challenge, activity monitors can help MWUs attain an 

optimal PA level in a community setting (Hiremath & Ding, 

2011; Warms & Belza, 2004; Washburn & Copay, 1999). 

Past research has shown that sensor based activity 

monitors can quantify various types and levels of PAs in 

MWUs with SCI (Hiremath & Ding, 2011; Warms & Belza, 

2004; Washburn & Copay, 1999). Washburn and Copay 
investigated the validity of uni-axial CSA accelerometers 

worn on both wrists, with respect to energy expenditure 

(EE) measured in 21 MWUs during wheelchair propulsion 

(Washburn & Copay, 1999). They reported significant 

correlations (0.52–0.66,P<0.01) between the activity 

counts/min from both the CSA accelerometers over three 

propulsion speeds. In another study, Warms and Belza 

evaluated the validity of the accelerometry-based Actiwatch 

to measure community living PA in 22 MWUs with SCI 

with respect to self-reported activity (Warms & Belza, 

2004). The Pearson correlation between the activity counts 
and the self-reported activity varied from 0.30 to 0.77. In 

our previous study, we developed and evaluated new EE 

estimating models for the multi-sensor based SenseWear 

activity monitor in 24 MWUs with SCI during resting, 

wheelchair propulsion, arm-ergometry and deskwork 

activities  (Hiremath & Ding, 2011). The results indicated 

that a general and four activity-specific models for 

SenseWear worn on the upper arm estimated EE with an 

error of 16.9-90.8% and 6.8-32.9% for various trials. In this 

study we extend earlier work (Hiremath & Ding, 2011; 

Warms & Belza, 2004; Washburn & Copay, 1999) by 

evaluating ActiGraph, a simple tri-axial accelerometer 
widely accessible to researchers and MWUs. Compared to 

the previous studies that limited their testing to wheelchair 

propulsion or small number of subjects, our project tested 

the ActiGraph activity monitor for multiple PAs and a larger 

number of MWUs (n=45).  

The objective of this study was to develop and evaluate 

new EE prediction models for MWUs with SCI based on an 

ActiGraph activity monitor.  

METHODOLOGY 

Experimental Protocol 

The Institutional Review Board at the University 

approved this study. Subjects were included in the study if 

they were between 18 and 60 years of age, used a manual 

wheelchair as a primary means of mobility, had an SCI, 

were at least six months post-injury, and could use an arm-

ergometer to exercise. Subjects were excluded if they could 

not tolerate sitting for 4 hours, had active pelvic or thigh 

wounds, or failed to obtain their primary care physician’s 

consent for the study. All subjects provided a written 

informed consent.  

During the study’s pre-activity session all subjects 
filled in a demographics questionnaire. In addition, we 

measured the subjects’ weight, height, and skinfold 

measurements to estimate their fat percentage (Hiremath & 

Ding, 2011). During the activity session, subjects wore a 

portable metabolic cart K4b2 (COSMED srl, Rome, Italy) 

connected to a face mask, and an ActiGraph (ActiGraph, Fl, 

USA) on the right wrist. As most activity trials involved 

symmetric use of both hands, the ActiGraph’s position was 

independent of the subject’s dominant hand. The activity 

session started with a resting trial, followed by three activity 

routines: wheelchair propulsion, arm-ergometery, and desk 
work. The activity routines were counterbalanced and the 

trials within each activity routine were randomized to 

counter order effects.  The resting session required the 

subjects to sit still in their wheelchairs for eight minutes 

while the devices collected data. The wheelchair propulsion 

activity included three trials, i.e., 0.89m/s (2mph) and 

1.34m/s (3mph) on a dynamometer and 1.34m/s (3mph) on 

a tiled surface. The arm-ergometer exercise routine included 

three trials of 20 watts (W) resistance at 60 rotations per 

minute (rpm), 40W at 60rpm, and 40W at 90rpm. During 

the deskwork routine, subjects typed on a computer and read 

a book for four minutes each. Subjects performed each 
activity trial for a period of 8 minutes with a resting period 



of 5-10 minutes after each trial and a period of 30-40 

minutes between activity routines.  

Instrumentation and Data Collection 

The K4b2 is an indirect calorimeter that measures the 

percentages of O2 consumed and CO2 released, in order to 

estimate breath-by-breath EE. We used the Cosmed 
software to retrieve the EE data from the K4b2. The 

ActiGraph GT3X consists of a tri-axial solid-state 

accelerometer sensor that detects ±3g (g=9.8m/s2) of 

dynamic acceleration. In the next phase, the acceleration 

signal is processed with an analog band-pass filter to yield a 

range of +/-2.13g/sec at 0.75Hz. The filtered analog signals 

are sampled at 10Hz and converted to 256 distinct levels (8-

bit digital values). Each level is considered as an activity 

count equivalent of 0.01664g/sec/count (ActiGraph, 2011). 

The sampling rate of the ActiGraph was set to 1Hz (a 

sample every second). We used the ActiLife analysis 

software to collect three axes activity counts data from the 
ActiGraph. For our analysis, instead of using activity counts 

from each individual axis, we used the resultant activity 

counts from all three axes as the local reference for the 

ActiGraph’s accelerometer was limited only by the degrees 

of freedom at the wrist during wheelchair related activities 

(Boninger, et al., 2005).  To ensure accuracy of the data 

collection, the K4b2 was calibrated for each subject and was 

time synchronized with the ActiGraph. 

Data Analysis 

We developed data analysis software in MATLAB® 

(The Mathworks Inc. MA, USA) to process and analyze 
data from the K4b2 and the ActiGraph. Steady-state 

conditions during the activity trials were determined by 

averaging breath-by-breath EE data in kcal/min over 30 

second periods, and then identifying all EE values having 

coefficients of variation of less than 10% computed over 

windows of at least 1 minute. We used the average EE and 

the activity counts data per minute from the steady state 

conditions for later analysis. Further, we used the activity 

counts data per second to calculate statistical features 

including standard deviation, root mean square, mean 

absolute deviation, mean crossing rate and amplitude every 

minute. 

All statistical analysis was performed using SPSS 

software (SPSS Inc. Il., USA), with the statistical 

significance at an alpha level of 0.05. Spearman’s Rho 

correlations were calculated between the EE and the activity 

counts for each activity routine and all activities combined, 

as the data failed to meet the assumption of normality. New 

EE estimation models were developed using stepwise 

multiple regressions from 36 randomly selected subjects and 

validated in the remaining 9 subjects. The EE models 

developed consisted of a general model for all activities 

combined and four activity-specific models for each activity 
routine. The independent variables to estimate the EE 

included movement based variables (average and statistical 

features from activity counts) and demographic variables 

(age, weight, height, gender and completeness of injury). 

The new models were evaluated in the validation group 

(n=9) by computing the absolute differences and percentage 

errors between predicted and measured EE. 

RESULTS 

This study included a total of 45 MWUs (Males=37, 

Females=8) with SCI. Participants had a mean (SD) age of 

40.2 (11.0) years, weight of 78.5 (21.9) kg, height of 178.2 

(9.6) cm, and body fat percentage of 25.3 (7.7) %. The 

injury-level varied from C4 to L4 with 21 out of the 45 

subjects having a complete injury. Self-reported PA 

indicated that 23 subjects performed regular PA, 13 

performed occasional PA, and 9 performed no regular PA. 

All subjects completed the eight activity trials. Due to the 

malfunction of the K4b2, three trials from three subjects had 

to be discarded. In addition, five trials from four subjects 
that did not yield steady-state conditions were also 

discarded.  

Table 1 shows the criterion EE and the activity counts 

for each trial and the Spearman Rho correlations between 

the EE and the activity counts for each routine. Significant 

correlations were found for wheelchair propulsion, arm-

ergometry exercise and all activities combined. Figure 1 

shows a near linear relationship between the activity counts 

and the EE. Table 2 shows the results from the regression 

analysis for both the general and the activity-specific EE 

estimation models with randomly selected 36 subjects. The 
general and the activity-specific models are shown in 

equations (1) and (2)-(5), respectively. Table 3 shows the 

validation results by the new models with the remaining 9 

subjects. In addition, the EE estimated by general 

(Spearman’s Rho: 0.88, P<0.001) and activity-specific 

(Spearman’s Rho: 0.87, P<0.001) models significantly 

correlated with the criterion EE among the validation 

subject group.  

DISCUSSION 

The availability of various accelerometer based activity 

monitors can aid MWUs to quantitatively measure their 

regular PA to meet an optimal quota of PA similar to the 
moderate PA recommendations made by Healthy People 

2020 (U.S. Department of Health and Human Services, 

2011).   

The results indicated strong correlations (0.5-1.0) for all 

activities combined and wheelchair propulsion, and medium 

correlations (0.3-0.5) for arm-ergometry trials. Correlations 

for wheelchair propulsion trials (0.512,P<0.05) in this study 

were similar to Washburn et al.’s research (0.52,P<0.01) 

(Washburn & Copay, 1999). The high variation of the EE 

measured from the scatter plot (Figure 1) and the standard 



error of estimate (Table 2) for wheelchair propulsion 

compared to the other activities could be due to the different 

propulsion patterns (Boninger, et al., 2005).  

The EE estimation errors for the general and activity-

specific models were comparable (Table 3) for all trials 

except for deskwork, where the estimation error was much 
higher for the general model. As deskwork activity is 

associated with intermittent movements, which do not 

always reflect substantial increases in the EE, the general 

model may not estimate the EE accurately. In comparison 

with the SenseWear’s EE estimation errors from our 

previous study (general model: 16.9-90.8%; activity-specific 

models: 6.8-32.9%), the current EE estimation errors for the 

ActiGraph had a smaller variation (general: 16.7-42.1%; 

activity-specific: 15.4- 25.0%) (Hiremath & Ding, 2011). 

The predictors of the general model included accelerometer 

based variables and weight similar to the SenseWear’s 

models, which estimated the EE using mean absolute 
deviation and average acceleration in longitudinal direction 

and weight (Hiremath & Ding, 2011). The predictors of the 

activity-specific models indicated weight as a major 

predictor across all activities. In addition to weight, upper 

limb movement (activity counts) was chosen as an 

important predictor for PAs such as wheelchair propulsion 

and arm-ergometry. However, the activity-specific model 

developed for the deskwork routine failed to identify any 

movement based variables, probably due to small wrist 

movements associated with deskwork activity. These small 

movements may have led to the flooring effect of the 
activity counts which failed to explain the variability in the 

EE during deskwork (Tables 1 and 2). 

This study’s limitations included testing ActiGraph in 

MWUs with SCI and limited PAs. We tested the ActiGraph 

only in MWUs with SCI to minimize the impact of different 

types of disabilities on EE and activity count measurements. 

In the future, we hope to test the ActiGraph in persons with 

other disabilities and various PAs in natural settings. In 

conclusion, simple accelerometer-based activity monitors 

such as the ActiGraph can be used to quantify PAs in 

MWUs with SCI. 

 

 

 

 

 

 

 

 

 

FIGURE AND TABLES 

Table 1. The criterion EE from the K4b2 and the activity 

counts/min from the ActiGraph for each activity trial and 

the Spearman Rho correlations between the EE and activity 

counts for each routine.  

Activity 
 

Mean (SD) 
Spearman Rho  

Correlation 

EE in 

kcal/min 

Activity 

Count/min 

Rho P value 

Resting 1.12 (0.31) 1.81 (4.21) 0.029 0.856 

2mph on dyno 3.35 (1.40) 152.11 (63.83) 

0.512* <0.001 3mph on dyno 4.30 (1.81) 198.86 (69.29) 

3mph on tile 2.86 (1.10) 118.70 (49.07) 

20W at 60rpm 3.11 (0.56) 310.87 (46.83) 

0.408* <0.001 40W at 60rpm 4.35 (0.80) 307.34 (57.82) 

40W at 90rpm 5.34 (1.06) 470.09 (88.86) 

Deskwork 1.32 (0.37) 8.14 (6.67) 0.212 0.167 

All Activities 3.22 (1.72) 196.10 (159.74) 0.780* <0.001 

Table 2. General and activity-specific EE models’ predictors 

and statistics for ActiGraph. 

General 

Model 

Predictors Act_Counts(β=0.554,P<0.001) 

weight(β=0.293,P<0.001) 

Mean_crossing_rate(β=0.262,P<0.001) 

Adjusted R
2
 0.613 

Standard Error of 

Estimate (SEE) 

1.07 kcal/min 

Significance F3,278=149.073,P<0.001 

Resting 

Model 

Predictors Weight(β=0.403,P=0.018) 

Adjusted R
2
 0.136 

SEE 0.284 kcal/min 

Significance F1,32=6.205,P =0.018 

Wheelchair 

Propulsion 

Model 

Predictors Act_counts(β=0.424,P<0.001), 

Weight(β=0.432,P<0.001) 

Adjusted R
2
 0.423 

SEE 1.257 kcal/min 

Significance F2,103=39.424,P<0.001 

Arm-Ergometer 

Exercise 

Model 

Predictors Act_counts(β=0.476,P<0.001) 

Weight(β=0.360,P<0.001) 

Adjusted R
2
 0.363 

SEE 0.970 kcal/min 

Significance F2,103=30.920,P<0.001 

Deskwork 

Model 

Predictors Weight (β=0.389, P=0.019) 

Adjusted R
2
 0.126 

SEE 0.350 kcal/min 

Significance F2,34=6.050,P=0.019 

Table 3. Absolute prediction errors for ActiGraph using the 

new prediction models in the validation group. 

Activity  

Mean (SD) 

General Model Prediction Activity-specific Model 

Prediction 

Error % Error % 

Resting 0.31 (0.45) 26.75 (25.69) 0.24 (0.30) 22.00 (12.25) 

2mph on dyno 0.53 (0.58) 17.42 (13.22) 0.57 (0.50) 17.56 (9.22) 

3mph on dyno 0.88 (0.99) 17.88 (12.64) 0.65 (0.75) 15.37 (11.20) 

3mph on tile 0.48 (0.67) 20.28 (24.14) 0.56 (0.52) 23.80 (23.70) 

20W at 60rpm 0.65 (0.68) 19.78 (14.37) 0.82 (0.72) 25.02 (14.74) 

40W at 60rpm 1.06 (0.99) 19.64 (14.14) 0.95 (1.00) 17.32 (15.03) 

40W at 90rpm 0.87 (1.14) 16.70 (15.20) 0.92 (0.98) 16.30 (11.19) 

Deskwork 0.55 (0.50) 42.11 (32.30) 0.25 (0.29) 22.11 (15.22) 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Scatter plot of activity counts from ActiGraph 

versus EE from K4b2. 

 

EQUATIONS 

 

EEgeneral    = -0.631+0.006*Act_counts+0.023*Weight 
+0.047*Mean_cross_rate….………….(1) 

EEresting     = 0.680+0.006*Weight……………………....(2) 

EEpropulsion = -0.644+0.011*Act_counts+0.032*Weight...(3) 

EEergometry  = 0.543+0.006*Act_counts +.020*Weight….(4) 

EEdeskwork   = 0.815+0.007*Weight……………………...(5) 
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