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ABSTRACT 

Assistive technologies such as wheelchairs, canes, and 
walkers have significantly improved the mobility, function, 
and quality of life for individuals with spinal cord injury 
(SCI). In this article, we propose a framework which 
combines machine learning algorithms with wearable sensors 
to capture and track mobility in individuals with SCI. Pilot 
testing in two individuals without SCI indicated that four to 
seven features obtained from sensors worn on the body or 
placed on the assistive technology could successfully detect 
mobility and mobility modes. The classification accuracy for 
Naïve Bayes and Decision Tree algorithms to detect mobility 
from non-mobility activity varied from 87.4% to 97.6%. The 
classification accuracy for detecting six mobility modes 
within mobility ranged from 88.5% to 90.6%. The proposed 
framework has the potential to assist researchers and 
clinicians to study complex mobility patterns of individuals 
with SCI and provide adaptive rehabilitation and physical 
activity interventions in the community. 
 

Index Terms— Assistive technology, sensors, machine 
learning, activity monitoring, spinal cord injury 
 

1. INTRODUCTION 
The National Spinal Cord Injury Statistical Center estimated 
that approximately 300,000 people with spinal cord injury 
(SCI) live in the United States of America in the year 2016, 
with 17,000 new cases each year [1]. An SCI can lead to loss 
of strength, sensation, and function which in turn may lead to 
reduced mobility such as the inability to stand and walk [2-
4]. Restoration of mobility function in individuals with SCI 
can have a significant impact on the health, quality of life, 
and social participation [4-6]. To address this need, a 
rehabilitation team including clinicians, the individual with 
SCI, and their family members assess the functional 
limitations and the community goals of the individual with 
SCI to provide an intensive inpatient and outpatient 
rehabilitation treatment.  

In recent years’ assistive technologies such as 
wheelchairs, canes, and walkers have significantly improved 
the mobility, function, and quality of life for individuals with 
SCI. Depending on the person’s function and the level of SCI 
a clinician may prescribe various forms of assistive 

technologies for mobility (Figure 1). Use of mobility aids or 
assistive technologies combined with a person's function (or 
lack of) results in changes to the biomechanical pattern of 
walking or mobility. Currently, most gait research has 
focused on how to assist people towards "normal" walking, 
defined as walking without the use of assistive technologies, 
but the proposed framework recognizes the importance and 
normality of assistive devices for individuals with SCI. This 
framework fills an important gap in understanding and 
improving mobility modes of individuals with SCI who use 
assistive technology. 

 

2. RELATION TO PRIOR WORK  
Sensor-based activity monitors have been used to track 
wheelchair movement [7-11], arm or wrist movements [12-
15], and physiological changes [10, 13] for quantifying 
physical activities among individuals who use wheelchairs. 
Garcia-Masso et al. and Nightingale et al. [14, 15] indicated 
that the energy expenditure estimated by the activity counts 
from Actigraph GT3X worn on the wrist was correlated with 
energy expenditure (housework activities, arm-ergometry, 
and propulsion: r=0.86 [14], propulsion and deskwork: 
r=0.93  [15]). Hiremath et al. used SenseWear, a multi-sensor 
based activity monitor, to detect and classify four physical 
activities including resting, wheelchair propulsion, arm-
ergometry, and deskwork in individuals with SCI [16]. 
Additionally, Hiremath et al. developed a Physical Activity 
Monitor Systems that combined information from a wrist-
worn accelerometer with a wheel rotation monitor to detect 
and classify seven wheelchair related physical activities 

Figure 1: A person-specific function will influence the 
choice of assistive technology for various mobility modes. 
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(accuracy: 89%) [17]. The classification algorithms utilized 
included Naïve Bayes, Support Vector Machine and Decision 
Trees. In another study, Bowden et al. focused on step count 
using an accelerometer placed on the leg for individuals with 
SCI (accuracy: 97% for 6 min and 10 m walk tests) [18].  

Research in other populations with mobility impairments 
include sensors worn on ankles [19, 20], shank [21] and waist 
[22] towards detecting and quantifying mobility [23] in 
individuals with stroke. Dobkin et al. evaluated a tri-axial 
accelerometer on the ankle of individuals with hemiparetic 
stroke [19]. Naïve Bayes classifier and a heuristic algorithm 
were used to detect walking and estimate walking speed, 
respectively. The walking speed was estimated based on a 
correlation between the individual walking a fixed distance 
of 50 feet and the algorithm detecting the walking (r=0.98). 
Xu et al. developed a hierarchical classification system that 
combined Naïve Bayes and dynamic time warping algorithms 
to detect walking in 6 individuals with stroke [19].  

A major limitation of the current research is that the 
existing research has focused on individuals who use specific 
types of assistive technologies such as manual wheelchairs or 
walking. In this article, we propose a framework that can 
enhance mobility tracking by detecting complex mobility 
modes (using a wheelchair, walking with a cane or a walker, 
or other mobility activity) influenced by functional 
limitations and assistive technology usage. 
 

3. A FRAMEWORK TO ENHANCE  
MOBILITY TRACKING 

We propose a framework which uses a combination of 
machine learning models and wearable sensors to capture and 
track assistive technology-based mobility and function in 
individuals with SCI (Figure 2). The machine learning 
models will consist of personalized algorithms that can utilize 
modified human biomechanical movement pattern captured 
by sensors to predict mobility and mobility modes. The 
modified human biomechanical movement pattern is a result 
of interaction between mobility influenced by person-specific 
function and mobility modes due to assistive technology used 
for mobility (Figure 3).  
 

 
Figure 2:  A framework consisting of measuring and 
predicting physical activity and health and function. 

 

 

Figure 3: Machine learning algorithms used to detect 
various mobility modes. 

 

Personalizing the activity classifiers will involve two steps 
(Figure 3). First, we will detect mobility based activities from 
the rest of the physical activities [17, 20, 22]. Second, we will 
identify various types of mobility modes in individuals with 
SCI influenced by functional limitations and assistive 
technology usage within the detected mobility activity. 
Detection and quantification of different mobility modes will 
transform future research studies that assess rehabilitation 
outcomes in individuals with SCI in the community.  

 

3.1. Placement of Sensors 
Sensor placement on the individual and or the assistive 
technology [17, 24] can play a significant role in obtaining 
features that reflect biomechanical data of mobility and 
mobility modes (Figure 4).  Factors that may affect sensor 
placement include wearability and burden to the individuals 
with paralysis. The sensor orientation and placement at 
certain extremities such as wrist versus ankle may provide 
more information for certain activities (wheelchair 
propulsion vs. walking). Sensor placement on the assistive 
technology may provide a unique perspective on usage and 
the movement information as it has limited degrees of 
freedom compared to the extremities.   
 

 
Figure 4: An investigator using various types of mobility aids. 
Red circles highlight the SenseWear armbands.  
 

3.2. Developing Feature Data 
Statistical measures such as time and frequency domain 
features [17, 25, 26] will need to be extracted to distinguish 
between various types of activities and mobility modes 
related to use or non-use of assistive technology [17]. The 
time domain features such as mean, mean absolute deviation, 
and peaks are simple to extract and can be used to classify 
mobility versus other physical activities (activities that are 
considerably different). The frequency domain features such 
as total power between a band of frequencies, energy, and 
entropy provide classification models the capability to 
differentiate walking, walking with assistive technology, or 
wheelchair propulsion (activities based on the fundamental 
frequency of human movement). Real-time extraction of 
frequency domain features on smartphones or mobile health-
based platforms may require higher computation capacity 
than time domain features. Based on our previous work in 
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individuals with SCI [16, 17] we have found that extracting 
features based on 10s and 1 min window size have resulted in 
successful classification of mobility and physical activities. 
Collecting acceleration data from sensors in a format that is 
close to the raw format (m/s2) compared to activity counts 
(used by some sensor-based platforms) will allow researchers 
to develop various types of feature data post-data collection. 
Based on the sensor-based platforms used to collect data the 
captured human movement data may vary in range (±2g or 
±4g: g – acceleration due to gravity 9.8m/s2) and sampling 
frequency (10Hz to 110Hz: Hz – samples per second). 
 

3.3. Machine Learning Algorithms 
Following feature extraction, machine learning algorithms 
such as hierarchical models need to be evaluated to detect 
complex mobility modes and assistive technology usage. The 
development of hierarchical models is a two-step process of 
using algorithms such as Support Vector Machines, Naïve 
Bayes, or Decision Trees to detect mobility from other 
physical activities. Then using a joint classification algorithm 
such as Dynamic Time Warping (DTW) [27] combined with 
Naïve Bayes to detect a mobility mode within the larger 
activity of mobility. The DTW algorithm will allow for 
personalizing the algorithms to specific waveforms from 
wearable sensors collected during patterns of modified gait or 
mobility. Personalizing the algorithms will allow for 
detecting multiple mobility modes in an individual over a 
day, which in turn will quantify the duration of time a person 
performs a specific activity using assistive technologies.  

Personalization of the algorithms may be necessary to 
improve detection of mobility and other physical activities 
due to the interaction of an individual’s function and assistive 
technology. Personalization of algorithms and choice of 
features to detect activities in an individual will increase the 
classification accuracy. However, personalization may also 
lead to overfitting of the models. One approach to limit 
overfitting is to use classification algorithms that can include 
or are not sensitive to slight variations in feature data and use 
a limited number of features. Previous research by our group 
has used five to seven features to perform classification in 45 
individuals with SCI.  
 

3.4. Mobility Assessment Analysis  
Various assessment metrics such as precision, recall, F-score, 
and accuracy of classification algorithms should be used to 
assess mobility tracking [28]. Data collected should be split 
into training and testing datasets to evaluate both within-
subject and between-subject classification performance. 
Within-subject classification is necessary when the features 
and classification algorithms developed and evaluated are 
personalized. For example, 10-fold-stratified cross-validation 
(CV) [29] and leave-one-session-out CV should be assessed 
for within-subject algorithm evaluations. Between-subject 
classification is appropriate when the same set of features are 
used to develop classification algorithms on a group of 
individuals with SCI who use specific assistive technologies 
resulting in a similar biomechanical movement. 10-fold and 

leave-one-subject-out CV should assess the performance of 
the algorithms.  
 

4. PILOT EVALUATION OF THE FRAMEWORK  
We evaluated the framework in two investigators without 
SCI. The pilot evaluation included collecting data from six 
SenseWear armbands (BodyMedia Inc.) for five commonly 
used assistive technologies by individuals with paralysis. The 
individuals wore four armbands on each of their ankles and 
wrists. The remaining armbands were attached to the assistive 
devices. The assistive devices included a wheelchair, 
crutches, walker, and two types of canes (quad cane and 
regular single tip). The armbands monitored 3-axis 
acceleration in m/s2 at a 32Hz sampling rate. Each participant 
traveled 15m with all of the assistive devices while 
simulating walking or wheelchair propulsion similar to an 
individual with SCI. Each investigator performed multiple 
trials of data collection. InnerView software was used to 
retrieve the data from the armbands. Statistical measures such 
as time and frequency domain features were calculated based 
on the data collected from the armbands [16, 17]. The features 
were extracted using custom programs written in MATLAB 
(version 2016b) for a 10s window size.  
 

4.1. Biomechanical Patterns of Assisted Mobility 
Figure 5 shows various patterns of resultant acceleration 
(sampled at 32Hz) for simulated mobility patterns with 
assistive technology for individuals with SCI. The patterns 
also indicate the challenge of capturing and assessing the 
complex mobility modes performed by individuals with SCI. 
The acceleration patterns for some of the sensors and 
mobility modes are small. But the feature data obtained from 
these sensors combined with personalized classification 
algorithms allowed us to distinguish them from other physical 
activities such as standing idle, sitting, or other non-mobility 
based activities. 

 
Figure 5: Resultant acceleration from sensors placed on 
ankle, wrist, and assistive technology (AT) for various 
mobility modes. X and Y axes represent samples and 
acceleration (0-4 m/s2), respectively. 

 

4.2. Classification of Mobility and Mobility Modes 
Feature data from the tri-axial accelerometers placed on the 
person and assistive technology were used to classify 
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mobility from non-mobility activities. The classification 
accuracy using the Naïve Bayes and Decision Tree 
algorithms for four features varied from 87.4% to 97.6% for 
individual and combined devices (armbands on the person 
and the assistive technology). Multiple evaluations including 
10-fold CV and 50%-CV (50% for training and 50% for 
testing) were performed to assess within-subject 
classification accuracy.  

Furthermore, within the mobility based activities, the 
mobility modes for two participants were classified using 
seven features with an accuracy ranging from 88.5% to 
90.6%. A high percentage of classification within mobility 
based activities (six classes) compared to just detecting 
mobility from non-mobility based activities was due to the 
higher number of features used for classification. Also, 
certain non-mobility based activities had intermittent 
mobility bouts of short duration (about 10s).  

DTW algorithm was used to detect biomechanical 
variations of mobility with multiple mobility modes. Figure 
6 shows the sensor pattern for a wrist-worn sensor during two 
types of mobility-based activities. For example, DTW was 
used to detect wheelchair propulsion from cane use. Figure 7 
shows the plot of distance measure obtained by the DTW 
algorithm for an automatically chosen wheelchair propulsion 
template with walking while using a cane.  

 

 

Figure 6: Resultant acceleration from a wrist sensor for 
wheelchair propulsion (top) and cane use (bottom). X and Y 
axes are samples and acceleration in m/s2, respectively. 

 

5. DISCUSSION 
Pilot evaluation of the framework indicated that feature data 
obtained from armbands worn on the body or placed on the 
assistive technology could detect mobility and mobility 
modes in individuals using assistive technology for 

locomotion. In addition, algorithms such as DTW can be used 
to detect biomechanical patterns for various mobility modes 
(canes, crutches, and wheelchairs). Further evaluation of this 
framework is necessary for a large number of individuals who 
have a varied level of injury and have a complete or an 
incomplete SCI. A key finding from this study was that a 
sensor on the assistive technology improved overall 
classification accuracy as it provided feature based 
information that was complementary to the sensor worn on 
the wrist or the ankle of a person. The improvement in 
classification accuracy is similar to our prior research in 
individuals with SCI where two sensors were used to track 
upper arm and wheelchair movement, respectively [17].   

The proposed framework has the potential to assist 
researchers to study complex mobility in the community and 
allow clinicians to transition individuals with SCI in the 
community from one mobility mode (wheelchair or a walker) 
to another (walker, robotic exoskeleton, cane or no assistive 
technology). Improved mobility can lead to better treatment 
outcomes and quality of life [4]. Furthermore, complex 
mobility patterns, detected by personalized algorithms, can 
be used to adaptively provide rehabilitation and physical 
activity interventions in the community. 

Future work should also assess other types of machine 
learning algorithms such as linear-chain conditional random 
field models that can detect and capture activities that have a 
certain sequence or possible sequence of activities. Linear-
chain conditional random field models were designed and 
used for structured prediction problems in natural language 
processing [30], recently linear-chain conditional random 
field models have been used to detect behaviors or activities 
[31]. Future research should also evaluate this framework in 
individuals with stroke and traumatic brain injury who may 
have hemiparesis or hemiplegia and use assistive technology 
for mobility. 
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Figure 7: DTW for each propulsion cycle (red x) or walk with 
a cane (blue ). Y axis represents distance in m/s2. 
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