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Abstract— This paper proposes a distributed estimation and
control algorithm that enables a team of mobile robots to search
for and track an unknown number of targets. These targets
may be stationary or moving, and the number of targets may
vary over time as targets enter and leave the area of interest.
The robots are equipped with sensors that have a finite field
of view and may experience false negative and false positive
detections. The robots use a novel, distributed formulation of
the Probability Hypothesis Density (PHD) filter, which accounts
for the limitations of the sensors, to estimate the number of
targets and the positions of the targets. The robots then use
Lloyd’s algorithm, a distributed control algorithm that has been
shown to be effective for coverage and search tasks, to drive
their motion within the environment. We utilize the output of
the PHD filter as the importance weighting function within
Lloyd’s algorithm. This causes the robots to be drawn towards
areas that are likely to contain targets. We demonstrate the
efficacy of our proposed algorithm, including comparisons to a
coverage-based controller with a uniform importance weighting
function, through a series of simulated experiments with teams
of 10-100 robots tracking 10-50 targets.

I. INTRODUCTION

Target search and tracking is a canonical task in robotics,
encompassing problems such as mapping, surveillance, and
search and rescue. In any such scenario, a team of robots is
tasked with exploring an area of interest in order to locate
and track multiple targets. These targets may be stationary
or mobile. The number of targets is often unknown and
may change over time as targets enter or leave the area of
interest. Being able to track the number of targets and the
target positions requires the robots to have: 1) an estimation
algorithm capable of this task and 2) a control algorithm
that drives the robots to explore in order to detect new
targets as well as to track previously detected targets. Both of
these problems have been heavily studied individually in the
literature, however our paper focuses on their combination.

Probabilistic search methods are best suited to our problem
as the robots have significant noise in the sensors. Multi-
target tracking is particularly difficult as robots must also
solve the data association problem (i.e., matching measure-
ments to targets) and account for the possibility of false
positive or false negative detections. Stone et al. [1] discuss
in their book a number of probabilistic, multi-target track-
ing approaches, including the Multiple Hypothesis Tracker
(MHT) [2], Joint Probabilistic Data Association (JPDA) [3],
and the Probability Hypothesis Density (PHD) filter [4]. All
of these approaches simultaneously solve the data association
and tracking problems. We elect to use the PHD filter as its
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representation of the targets, as a target density function over
the state space of the targets, naturally pairs with Voronoi-
based control algorithms, as we will discuss in detail later.

Actively detecting and tracking multiple moving targets
effectively requires multiple robots. There are many dif-
ferent approaches to solve this problem, which Robin and
Lacroix [5] discuss in their survey article. One approach
is Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT), from Parker [6], in which a team of
robots attempts to simultaneously observe all of the targets.
When this is not possible, the team attempts to minimize
the time during which any individual target is not viewed.
Another approach is to use an information-theoretic objective
to select actions for a team of robots in order to reduce
the uncertainty in the targets’ positions [7], [8]. However,
all of these approaches are typically centralized and do not
scale above a small team of robots. Hollinger et al. [9]
proposed a decentralized variation in which robots do not
have guaranteed communication, but they only consider
tracking a single target.

One of the most successful algorithms for distributed
coverage and target tracking proposed in the last decade
is Voronoi-based control. The basic idea is to divide the
search area using the Voronoi partition and then for each
robot to move towards the centroid of its Voronoi cell,
a process known as Lloyd’s algorithm. One of the first
applications can be found in Cortés et al. [10]. Pimenta
et al. [11] expanded the idea to heterogeneous teams of
robots. Arslan and Koditschek [12] further allowed for robots
with non-holonomic constraints or higher order dynamics.
Bhattacharya et al. [13] enabled Lloyd’s algorithm to be used
to explore non-convex and non-Euclidean environments.

Our approach is most similar to that of Pimenta et al. [14]
on Simultaneous Coverage and Tracking (SCAT). They use
the continuous time variant of Lloyd’s algorithm to create
a decentralized control law with guaranteed exponential
convergence to a local minimum of the objective function.
The importance weighting function, which determines the
relative importance of each portion of the environment, is a
linear combination of a constant term to encourage coverage
and of radial basis functions centered at each target location
to encourage tracking. However, Pimenta et al. do not discuss
how the target locations are known.

In this paper we simultaneously consider the detection
and tracking tasks. The primary contribution is that we
directly address the multi-target estimation problem, using
a novel, distributed formulation of the PHD filter to detect
and track targets using noisy measurements from the robots.
The proposed distributed PHD filter only requires each robot



to maintain the PHD in a local neighborhood but still yields
an identical estimate to a centralized solution. We then use
the PHD as the importance weighting function in Lloyd’s
algorithm, a novel combination. This naturally and effec-
tively drives the robots to follow previously detected targets
and to explore unknown areas that may contain targets. We
demonstrate the efficacy of this approach through a series of
simulated experiments with static and moving targets.

II. PROBLEM FORMULATION

We have a team of R robots exploring a convex envi-
ronment £ C R? in search of an unknown number of
targets. The pose of robot r at time ¢ is g.. At each time
time step, robot r collects a set of local measurements,
Zy = {21 45+ %}y .}, Which has mj. measurements. The
number of measurement varies over time due to false positive
and false negative detections and due to the motion of both
targets and robots causing targets to enter and leave the
sensor field of view (FoV). The team seeks to determine
the set of targets, X* = {«},..., 2!}, where each z! € E.
Note that this set encodes both the number of targets (i.e.,
the cardinality of the set | X*|) and the state of each target
(i.e., the elements of the set z).

A. Random Finite Sets

The sets X and Z from above are realizations of random
finite sets (RFSs). An RFS is a set containing a random
number of random elements, e.g., each of the n elements
x; in the set X = {z1,...,z,} is a vector indicating the
state of a single target. See Mahler [15] for a more thorough
treatment of the mathematics presented in this section.

In deriving the PHD filter, Mahler [4] assumes that: 1)
the clutter and true measurement RFSs are independent
and 2) the clutter, target, and birth RFSs are Poisson. The
first assumption is standard for target localization tasks.
The second assumption is a result of assuming that the
number of points in each finite region is independent if the
regions do not overlap [16]. A Poisson RFS is one that has
independently and identically distributed (i.i.d.) elements and
where the number of elements follows a Poisson distribution.
The likelihood of such an RFS X is

p(X) =[] vl=), 1)

reX

where v(-) is the Probability Hypothesis Density (PHD), A =
[ v(z) dz, and p(@) = e~*. The PHD is a density function
over the state space of the targets, with the unique property
that the integral of the PHD over a region S C FE is the
expected cardinality of an RFS X in that region. The PHD
is also the first statistical moment of a distribution over RFSs.
Note that it is not a probability density function, but it may be
turned into one by normalizing by the expected cardinality,

p(z) = A" (). )

B. PHD Filter

The PHD filter tracks the first moment of the distribution
over RFSs, recursively updating the PHD using models of
target motion and the measurement sets collected by the
robots. Targets may be stationary or mobile, may appear in
the environment, or may disappear. The target motion model,
f(z | &), describes the uncertain motion of a target from
an initial state £ to a new state . The birth model, b(z),
is a PHD and describes both the number and locations of
the new targets in the environment. For many situations the
birth PHD will only be non-zero near the boundaries of the
environment, where new targets can enter the area of interest.
Finally, the survival probability, p,(z), models the survival
(and conversely the disappearance) of a target with state x.

Each robot is equipped with a sensor to detect targets.
This sensor may experience false negative detections, return
noisy measurements to true targets, or receive false positive
detections. The detection model, pg(z | g), of a robot with
state ¢ detecting a target with state x characterizes the true
(and false negative) detections. Note that the probability of
detection is identically zero for all x outside the sensor FoV.
The measurement model, g(z | ; ¢), returns a measurement
z for a target with state z that is detected by a robot with
state ¢. Finally, the false positive (or clutter) measurements
are modeled by the clutter PHD, ¢(z | ¢), which describes
both the number and locations of the clutter measurements.

Using these target and sensor models, the PHD filter
prediction and update equations are:
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where 1, ,(z) is the probability of a sensor at ¢ receiving
measurement z from a target with state x.

C. Lloyd’s Algorithm

The goal of Lloyd’s algorithm is to minimize the value of
the function
H ey = min
oncam) = [ in,

fd(z,¢r))(x) dz, (7)

where d(z,q) measures the distances between elements in
E, f(-) is a monotonically increasing function, and ¢(z) is
a non-negative weighting function. We use f(z) = 22, a
standard choice. The minimum inside of the integral induces
a partition on the environment V., = {z | d(z,¢) <
d(x,q;),Vi # r}. This is the Voronoi partition, and these
V. are the Voronoi cells.

Cortés et al. [10] showed that the gradient of (7) with
respect to the state of each robot is independent of the



states of the other robots, and that moving each robot to
its weighted centroid,

. fVT z¢(z) dz
qr fVT (Z)(x) dx )

achieves a local minimum of H. The process of iteratively
moving towards the weighted centroid is known as Lloyd’s
algorithm. This is a distributed control algorithm since each
robot is able to compute its Voronoi cell, V., and therefore
its action, so long it is able to communicate with its Voronoi
neighbors.

Pimenta et al. [14] build on this idea by using a weighting
function of the form ¢(xz,t) = Y . | a;¢i(z,t) + [, where
¢i(x,t) is a radial basis function centered at the location of
target 4, o; is a tuning constant to define the importance of
target ¢, and [ is a tuning constant to define the importance
of coverage. While Pimenta et al. showed that this approach
does work to track moving targets, they did not provide
details on how to perform the target tracking, and the tuning
constants were manually chosen.

In this work, we use the PHD as the weighting function,
setting ¢(x) = v(z). This naturally guides the robots towards
areas of high target density and requires no manual tuning.
When the locations of the targets are unknown and the PHD
is close to uniform, the robots will attempt to uniformly cover
the environment. Then, as areas are found to be empty of
targets, v(x) will decrease and the robots will avoid those
regions. Once a robot detects a target, v(z) will increase and
the robot will be incentivized to track the target as it moves.

Each robot sets as it goal position the weighted centroid
of its Voronoi cell. In practice robots have a maximum
achievable velocity, and so they will not be able to instantly
reach their goals. We assume that the robots are both
holonomic and kinematic, which means that the robots will
move in a straight line path toward their goal positions at
the maximum velocity. As the robots move, their onboard
sensors collect new measurements at a fixed rate. Upon
receiving a new measurement set the robots will update
the PHD filter, leading to a new v(x). To account for this
new information, and the motion of the targets, the robots
compute a new centroid, even if they have not yet reached
the previous goal.

®)

D. Assumptions

Throughout this work we assume that each robot know its
own pose at all times. While this is a strong assumption, it is
not unrealistic. Robots operating in indoor environments with
high quality a priori maps [8] or robots operating outdoors
with GPS receivers can, in some instances, navigate for long
periods of time with negligible uncertainty in the pose. If the
uncertainty in the robots’ poses is not negligible, then we
would need to propagate the uncertainty between the robot
and target poses. This would cause sensor measurements to
become correlated over time and we would need to utilize
a smoothing approach to track targets, rather than a filtering
approach. Note that this is commonly done in modern SLAM
(Simultaneous Localization and Mapping) systems [17].

We also assume that each robot is capable of commu-
nicating with all of its Voronoi neighbors and with all of
the robots with overlapping sensor FoVs. Note that the
second condition is, in practice, a subset of the first since
each robot’s Voronoi region is typically larger than its FoV.
Future work will aim to relax this assumption using multi-
hop communication, which would only require that the
communication network be connected. We also assume that
each robot has a unique ID. This is necessary to induce a
strict total order on the measurement updates in order to
create a globally consistent estimate.

III. DISTRIBUTED ESTIMATION

As Mahler [18] noted, “even in the two-sensor [or two-
robot] case, the theoretically rigorous formula for the PHD
filter corrector equation is computationally intractable.” The
workaround for this problem is to iteratively apply the PHD
update equation, (4), for each sensor. This approach has
been shown to perform well in practice in a centralized
setting, where a single robot is responsible for maintaining
the PHD for the entire team [18]. We have also shown in
our previous work [8], [19] that this approach can also work
in a decentralized setting, and Punithakumar et al. [20] have
used it in a distributed setting. Punithakumar et al. represent
the PHD as a set of weighted particles, as in Vo, et al. [21],
and consider the case of a set of static nodes, some of which
are equipped with sensors while others have computational
capabilities. Each computational node maintains an identical
copy of the PHD filter, using a measurement quantization
method to transmit measurements between nodes.

Like Punithakumar et al. [20], we here take a fully
distributed approach and represent the PHD using a set of
weighted particles. More precisely, we divide the environ-
ment into a collection of equally-sized, square bins and
represent each bin with a single, stationary particle at its
centroid. This is similar to the bin-occupancy filter, which
Erdinc et al. [22] note is closely related to the PHD filter.

In our distributed architecture, each robot r has both
sensing and computational capabilities and is responsible
for maintaining the estimate of the PHD within its Voronoi
cell, V.. Thus, robot r must only store the locations, x;,
(and corresponding weights, w;) of the particles within V..
Note that even if the target state includes more than just the
position of the target (e.g., the orientation or velocity), only
the position is used to determine ownership.

A. Particle Exchange

As robots move about, so do their Voronoi cells. This
means that robots must be able to transfer ownership of local
regions of the environment to one another. To do this, each
robot must store its previous Voronoi cell, W‘l, and share
its current cell with each of its neighbors. Each robot r then
computes the intersection of its own previous cell with the
current cells of its neighbors and transfers ownership of the
particles in each of those intersecting regions to its neighbors.
Algorithm 1 outlines this process, which is also shown in
Fig. la.



(a) Particle exchange (c) PHD update

Fig. 1. Example with 6 robots (the numbered squares), focusing on robot
1 (the solid square). The solid lines show the current Voronoi cell of each
robot. (a) The dashed lines show robot 1’s previous Voronoi cell. This
overlaps with the current cells of robots 2-5, so robot 1 must transfer
ownership of any particles in the overlapping regions to the corresponding
neighbor. (b) The dashed line shows the expanded Voronoi cell of robot 1,
which contains all possible final positions of targets that begin within the
original Voronoi cell. (c) The dashed lines shows the sensor FoV of each
robot. Robot 1’s FoV overlaps with those of robots 5 and 6 so these robots
must exchange measurement sets and synchronize their PHD updates.

(b) PHD prediction

Algorithm 1 Particle Exchange
Share state, g, with neighbors N (r)

1:

2: Compute Voronoi cell, V!

3: Share Voronoi cell, V!, with neighbors N (r)
4: for i € N(r) do

5. Compute AV,; =VI=1nV}!

6: Send particles in AV, ; to robot ¢

7. end for

B. PHD Prediction Step

As targets move about, they may leave the Voronoi cell of
one robot and enter the cell of another robot. To account for
this, each robot must run the prediction step over a larger area
than its Voronoi cell. In particular, the area must be increased
to contain all of the PHD mass after target motion, as
Fig. 1b shows. Consider an arbitrary motion model with finite
support, so that the motion of the target is bounded during
each time step. Each robot expands its Voronoi cell using the
convex hull of the target motion model, adding in phantom
particles with zero initial weight outside of its Voronoi cell.
The robot then runs the standard PHD prediction step, (3).
Finally, the robot sends to all of its neighbors any phantom
particles that lie within each neighbor’s Voronoi cell using
Algorithm 1, replacing V;!~! with the expanded Voronoi cell.

If the support of the motion model is infinite (e.g., a
Gaussian random walk) this algorithm will still work, but
it would require all robots to exchange information with all
other robots, either directly or indirectly. Alternatively, robots
could artificially truncate the target motion, but this would
cause some error to accrue.

C. PHD Update Step

The distributed PHD update step, outlined in Algorithm
2, requires two special considerations: first, each application
of (4) depends on all particles within the sensor FoV, and
second, the result of iteratively applying (4) depends on the
order that the measurement sets are applied if and only if the
FoVs of the two sensors overlap. When a robot receives a
new measurement set, it must first check if its sensor FoV is

Algorithm 2 Distributed PHD Update Step for Robot r
1: if F! C int(V}!) then
2 Update PHD using Z; with (4)
3: else

4 Find neighbors N'(r) = {i | F NV} # &}

5. forie N(r) do

6

7

8

Exchange Z¢, ¢*, and r with robot 4

end for

o Nu(r) =N(r) > Remaining updates
9:  while NV, (r) # @ do
10: Set active ID j = min A\, (r)
11: if 7 = Active ID of robot ;5 then
12: for z5 € Zj do
13: Compute 77, = [i, ¥, 4, (2)v(z) da
14: end for
15: if j = r then
16: Wait for {n* }. cz, from all k € N(r)
17: Compute 7., = c(2r;9) + Ypenr) 15
18: Send {1, },.cz, to neighbors N (r)
19: else
20: Send {1 }.;ez, to robot j
21: Wait for {9).,}.,cz, from robot j
22: end if
23: Update PHD using Z; with (4)
24: Nu(r) = Nu(m)\ {5}
25: end if
26: end while
27: end if

fully contained within its Voronoi cell, as Fig. 1c shows. If
so, the robot simply applies the standard update step, since
it is guaranteed that the FoV of other sensors do not overlap
with its own FoV, as Remark 1 shows.

Remark 1: Let all robots have identical sensors with a
circular FoV centered at the position of the robot. Let int(V}.)
be the interior of the Voronoi cell, which is an open set
defined by removing the boundary of the Voronoi cell, and
let F,. be the sensor FoV of robot r. If F, C int(V,.), then
F.NF,=2,Yi#r.

Proof: By definition of the Voronoi cell, all points in
V.. are closer to robot r than to any other robot i # r. If
F, C int(V,.) then all points in F,. are closer to robot r than
to robot . Since all robots have identical FoVs, it is not
possible for any point in F;. to be within Fj. [ ]

Corollary 1: If F,. ¢ int(V,.) then F,. NV; # & (and
F,. N F; # ) for at least one i # r.

Corollary 2: Remark 1 also holds for non-circular FoVs
so long as all robots have identical FoVs and a circle centered
at the robot and containing the FoV is entirely contained
within the Voronoi cell.

Recall that we assume that each robot is able to com-
municate with all robots that have an overlapping sensor
FoV (line 4 in Algorithm 2). Robot r will also send its
measurement set Z?, its state ¢!, and its ID r to each of
these neighbors (lines 5—7). The team then must ensure that
measurements are applied in the same order on each robot,



which is accomplished using the active ID and Ny (r) (lines
8-10). Once the active ID is set, all robots must wait until
that robot activates itself (line 11). The active robot then
communicates with its neighbors in order to compute the
normalization constant for each measurement, 7, in the PHD
filter update (5) (lines 12-22). This is necessary because the
active robot does not have all of the information about the
PHD to compute the normalization constants in (5). Note that
each neighbor computes the portion of these normalization
constants within its own Voronoi cell (lines 12-13) and sends
it to the active robot (line 20). The active robot aggregates
these pieces and sends the full normalization constants to all
of the neighbors (lines 15-18). The active robot and each
of its neighbors can then update the PHD using the active
measurement set (line 23). Once this is done, all robots
remove the active robot ID from their list of updates (line 24)
and repeat this process until all measurement sets have been
processed. These steps ensure that the distributed update step
yields an identical PHD to a centralized implementation of
the PHD filter.

This distributed PHD filter in Algorithm 2 is low band-
width, since each exchange of data is small. Robots only need
to exchange measurement sets (a set of scalars or vectors),
poses (a single vector), IDs (a scalar), and normalization
constants (a set of scalars). Since their is theoretically no
upper bound on the number of measurements, there is no
upper bound on the bandwidth. But in practice the number
of measurements will typically be small, making this much
more efficient than sending direct information about the
PHD, which would include 10’s to 1000’s of particles (each
of which is a vector for the pose and a scalar for the weight).
Algorithm 2 also has constant complexity in the size of the
team. This is due to the fact that the number of Voronoi
neighbors remains unchanged when another robot is added
to the team outside of the local neighborhood. Therefore, the
number of iterations through the while loop, i.e., the number
of neighbors, has constant complexity in the size of the team
(line 9) as does each round of communication within the loop
(lines 11, 18, and 20).

IV. RESULTS

We conducted a set of simulated experiments using MAT-
LAB in order to demonstrate the efficacy of our proposed
distributed estimation and control algorithm. The environ-
ment is an open 100 x 100 m area with no obstacles. The
robots are holonomic with a maximum velocity of 2m/s.
Each robot is equipped with an onboard sensor with

0.8 —q|l <5

pale | ) = { =gl <5m o
0 else

g(z|z,q) =N(z]| z,0.2515) (10)

c(z]q) =3.66-10"3 (11)

where N'(z | p,X) is a Gaussian distribution with mean
w1 and covariance Y. The total expected number of clutter
detections per measurement set is [¢(z | ¢)dz = 0.287.
The sensors collect measurements at 2 Hz.

The PHD was represented by a uniform grid of particles.
The grid resolution was 1 m, and initially the weight of each
particle was set to w; = 104, so that the total expected
number of targets was initially 1. To extract an estimated
target set we converted the PHD to an image and used
the LocalMaximaFinder from the MATLAB Computer
Vision toolbox with a neighborhood size of 3 and a threshold
of 0.05. The resulting maxima were used as the best guess
of the target set.

We measured the error of this estimated target set with
respect to the true target set using the Optimal SubPattern
Assignment (OSPA) metric, which is commonly used in the
PHD filter literature [23]. The error between two sets X, Y,
where | X| = m < |Y| = n without loss of generality, is

Ad(X,Y) =

n well, =

m 1/p
1
< min dc(xia yﬂ(i))p + Cp(n - m)> ) (12)

where c is a cutoff distance, d.(z,y) = min(c, ||z —y]|), and
I1,, is the set of all permutations of the set {1,2,...,n}.
OSPA finds the lowest cost assignment, where an element
z € X and y € Y can be matched only if they are within
distance ¢ of each other. We use ¢ = 10m and p = 1.

To demonstrate the advantage of using the PHD as the
importance weighting function ¢(z) within Lloyd’s algo-
rithm, we compare the results of teams using our algorithm
to teams using Lloyd’s algorithm with a uniform importance
weighting function. In practice, using a uniform weighting
function will lead the robots to evenly spread out and cover
the environment [10]. We use the same collection of starting
locations for the robots and targets to make the comparisons
between the two methods as consistent as possible.

A. Stationary Targets

When searching for static targets, the target motion models
were trivial. The motion model was the identity map, the
survival probability was unity, and the birth PHD was zero.
This was true for both the ground truth motion of the targets
and the models used by the robots in the PHD prediction
equation (3). We ran trials with three different numbers of
targets, 10, 30, and 50, with the locations drawn uniformly
at random from an area that is 120 x 120 m. Any targets that
began outside of the environment were discarded, effectively
randomizing the number of targets in each trial. On average,
the number of targets inside of the environment was 6.6,
20.0, and 33.5, respectively. The robots began each trial at
randomized locations within the box at the bottom center of
the environment shown in Fig. 3 and explored for 250s.

In each trial, robots began sweeping out the environment.
As the robots detected that areas have no targets, the PHD
weight decreased, thereby shifting the centroid away from
regions without targets. If a robot located a target (or targets,
if multiple targets are in close proximity to one another), it
stopped exploring to keep that target with its FoV. Figure
3 and the accompanying video show this behavior over the
course of a single run. Figures 2a-2c show the statistics of
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Fig. 2. Boxplots showing the final OSPA error statistics over 10 runs for teams of 10—100 robots and 10, 30, or 50 static targets. The robots used either
the PHD as the weighting function (a—c) or a constant weighting function (d-f).
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Fig. 3. Figure showing the paths taken by the robots during a single trial
with 20 robots and 9 static targets.

the final OSPA error over ten trials for team size of 10—
100 robots and for robots using the PHD as the importance
weighting function. As the size of the team surpassed the
number of targets, the OSPA error reached a minimum and
did not decrease any further as more robots were added to
the team. This was expected from the emergent behavior of
the team.

The robots using the PHD as the importance weighting
function perform significantly better than robots that use
a uniform importance weighting function (i.e., a coverage
strategy), as Figs. 2d-2f show. Note the average OSPA error
remains consistent as the number of targets increases. This is
due to the fact that the target locations are drawn uniformly
at random and so a coverage-based control scheme will

tend to see the same fraction of targets on average. The
spread decreases because the density of targets increases,
so the total fraction of the targets that have been seen is
less sensitive to missing or seeing an extra target. The only
instance where the constant weighting function is not at a
disadvantage compared to the PHD weighting function is
when the number of robots is small compared to the number
of targets. This is due to the fact that robots using the PHD
tend to stop exploring when they see a target. When there
are fewer robots than targets, this will leave some targets
unviewed, while robots using the constant weighting function
will not stop and have the opportunity to localize more
targets, despite the fact that their motion is not guided by
the current target estimates.

B. Moving Targets

The moving targets were differential drive. The ground
truth motion for the mobile targets was a variant of a
random walk. The targets moved forward at 1 m/s while the
heading direction was updated at 10 Hz, changing by A#f at
each update. Af was drawn from a Gaussian distribution
with zero mean and standard deviation 0.1 rad. The motion
model used in the PHD filter was different from the true
behavior. The robots assume that the targets followed a
truncated Gaussian random walk, so the target state was only
the 2D position (with no orientation). The Gaussian had a
spherical covariance matrix with standard deviation 0.35m
(corresponding to a velocity of 0.7 m/s since the filter update
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Fig. 5. Boxplots showing the average OSPA error statistics over 10 runs for teams of 10-100 robots and 10, 20, or 30 dynamic targets. The robots used
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targets eventually reached an average of /35 regardless of the initial number of targets.
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Fig. 4. Figure showing the paths taken by the robots during a single trial
with 20 robots and (initially) 20 dynamic targets.

rate was 2Hz) and was truncated to be within 2m of the
current position. This gave the robots the advantage of having
greater maneuverability, but the disadvantage of having an
incorrect target motion model, making the PHD prediction
step less accurate.

Targets may enter or leave the environment by crossing its
boundaries. To account for this, the probability of survival
and the birth PHD were

0.5 |lzx—0F| <2m

po(a) = {08 = OFl = a3
1 else
.26 -107° —JE| <

bx) = 5.26 - 10 |lx —0F] <5m (14)
0 else

where OF is the boundary of the environment. The total
number of expected target births was [, b(x)dz = 0.1 per
update step. Targets were added to the true target set by
drawing samples from the birth PHD, so the birth model
matched the true statistics of the targets. This was unlike the
survival probability model, where the true targets survive
with probability 1 until their motion causes them to leave
the environment, in which case the survival probability is 0.
Regardless of the number of initial targets, the number of
targets over the final half of the experiment was around 35.

The team of robots behaved markedly differently when
tracking dynamic targets as opposed to static targets, as Fig. 4
and the accompanying video show. Instead of uniformly
spreading out, most the team clustered around the boundary
of the environment due to the birth PHD providing a constant
source of weight in the PHD. The remaining robots spread
out over the central region of the environment. When a
central robot detected a target, it moved with that target,
keeping the target in its FoV. When a new target entered the
environment and moved towards the center, the robot that
first detected it followed the target away from the boundary
as long as there were other robots nearby to take its place.

This change in the emergent behavior of the team led to
a change in the OSPA error, as Fig. 5 shows. For dynamic
targets, we measured the OSPA error as the average value
over the final half of the run (250s out of 500s). This
measured the steady-state performance of the team as it gives



time for the robots to spread out across the environment. In
this case, the trend in the OSPA error was nearly invariant
to the initial number of targets. For teams using the PHD as
the importance weighting function, the team size at which
the error asymptoted was largely a function of the size of the
environment and the size of the sensor FoV. In our scenario
68 robots were required to completely cover the entire region
where targets may be born (i.e., b(z) > 0) if they were
perfectly spaced, hence the OSPA error remained largely
constant at 70 robots and above. Once the boundary was
sufficiently covered by robots, the remainder were free to
fill the center, with additional robots providing diminishing
returns as the center area became saturated. The minimum
error also increased compared to the static case due to
the mismatch between the true and assumed target motion
models as well as the occasional failure of the team to detect
a target in the center of the environment.

We can also see that, in the case of dynamic targets,
robots using the PHD as the importance weighting function,
Figs. 5a-5c, have an even greater advantage over robots using
a constant importance weighting function, Figs. 5d-5f, than
in the case of static targets. One factor leading to this is that
robots using the constant weighting function do not prioritize
areas where new targets are likely to appear. In the scenario
considered in this paper, where the targets appear along the
boundaries of the environment, this puts the coverage-based
controller at a significant disadvantage since relatively few
robots will be near the boundaries.

V. CONCLUSION

In this paper we proposed a distributed algorithm to search
for and track an unknown number of targets in a search
area. There are two main components: 1) a novel, distributed
PHD filter implementation and 2) a Voronoi-based control
strategy. The distributed PHD filter yields identical results
to a centralized filter while only requiring communication
between nearby agents. This offers a significant advantage
for large teams and for teams exploring large environments in
which centralized solutions are not possible. The robots use
the output of the distributed PHD filter to weight the relative
importance of the area within their Voronoi cell. The robots
drive toward the weighted centroid of their Voronoi cell,
updating the goal location whenever the PHD is updated.
This causes robots to move towards areas where targets
have been detected or may enter the environment and to
move away from areas that are believed to be empty. This
combination of the PHD filter with Voronoi-based control is
another contribution of our work. We demonstrate through
extensive simulated experiments that our distributed estima-
tion and control algorithm scales to teams of 10-100 robots,
and that these teams are able to accurately detect and track
10-50 static or dynamic targets. Furthermore, the tracking
performance of the team is significantly more accurate using
our proposed approach than using the standard coverage
controller with a uniform importance weighting function.
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