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Abstract
Target tracking is a fundamental problem in robotics research and has been the subject of detailed studies over the
years. In this paper, we generate a data-driven target model from a real-world dataset of taxi motions. This model
includes target motion, appearance, and disappearance from the search area. Using this target model, we introduce
a new formulation of the mobile target tracking problem based on the mathematical concept of random finite sets. This
formulations allows for tracking an unknown and dynamic number of mobile targets with a team of robots. We show
how to employ the Probability Hypothesis Density filter to simultaneously estimate the number of targets and their
positions. Next, we present a greedy algorithm for assigning trajectories to the robots to allow them to actively track
the targets. We prove that the greedy algorithm is a 2-approximation for maximizing submodular tracking objective
functions. We examine two such functions: the mutual information between the estimated target positions and future
measurements from the robots and a new objective that maximizes the expected number of targets detected by the
robot team. We provide extensive simulation evaluations to validate the performance of our data-driven motion model
and to compare the behavior and tracking performance of robots using our objective functions.
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Introduction

There are many applications that require target detec-
tion, localization, and tracking, such as search-and-
rescue (Furukawa et al. 2006), wildlife tracking (Tokekar
et al. 2013), surveillance (Grocholsky et al. 2006), and
building smart cities (Li et al. 2011). Consequently, such
problems have long been a subject of study in the robotics
community. Active target tracking typically refers to two
types of tasks: estimating the trajectories of the targets
from the sensor data, and actively controlling the motion
of the sensors to gather the data. Both problems have been
studied in the literature under various settings. Solutions
have been presented for radio-based sensors (Hollinger
et al. 2012), range-only sensors (Zhou and Roumeliotis
2008), bearing-only sensors (Logothetis et al. 1997), and
range and/or bearing sensors (Zhou and Roumeliotis 2011)
in both centralized and decentralized settings.

Frew and Rock (2003) designed optimal trajectories for a
single robot to track a single moving target using monocular
vision. The problem of keeping targets in a robot’s field
of view can be formulated as a visual servoing problem.
Gans et al. (2011) designed a controller which guarantees
stability while keeping three or fewer targets in the field

of view of a single mobile robot. Tracking multiple targets
with multiple robots requires explicit or implicit assignment
of targets to robots. Spletzer and Taylor (2003) presented a
general solution for the multi-robot, multi-target case using
a particle filter formulation. Xu et al. (2013) presented
a mixed nonlinear integer programming formulation for
assigning robots to targets as well as for determining
optimal robot positioning. Such a formulation is not directly
applicable in our case since the number of targets itself is
unknown, and thus explicit assignment is not possible.

Recently, there has been some work on actively detecting
and/or localizing an unknown number of stationary targets
using radio sensors (Song et al. 2012; Kim et al. 2014),
range-only sensors (Charrow et al. 2014), and arbitrary
sensor models (Dames and Kumar 2015). Unlike most
existing work, this paper addresses the case of tracking an
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unknown and varying number of indistinguishable targets.
This introduces a number of challenges. First, we cannot
maintain a separate estimator for each target, since the
required number of estimators itself is unknown. Second,
we must account for the fact that targets appear and
disappear from the environment over time. Third, we cannot
maintain a history of the target positions because we cannot
uniquely identify individual targets, making prediction
difficult. Finally, the system must be capable of handling
false positive and false negative detections and unknown
data association in addition to sensor noise. Despite these
challenges, we present positive results towards solving the
problem.

To solve the estimation problem we turn to Random
Finite Sets (RFSs) (Mahler 2007). RFSs are random
variables whose realizations are finite sets. Distributions
over RFSs have both a distribution over the cardinality of
the set (i.e., number of targets) and a distribution over the
elements of the set (i.e., positions of targets). RFS-based
methods have one key advantage for multi-target tracking
over standard tracking algorithms such as the Kalman filter
or particle filter: they do not require explicitly solving the
data association problem. Solutions based on the Kalman
filter or particle filter require solving the data association
problem, i.e., matching measurements to targets, prior
to applying the filter updates while RFS-based methods
simultaneously perform data association and tracking. Also,
traditional data association solvers do not scale well with
the number of targets since the problem is combinatorial.

The Probability Hypothesis Density (PHD) filter (Mahler
2003a) is the most common estimation strategy based on
RFSs. The PHD filter and RFSs have recently been used
for robot localization (Atanasov et al. 2014), simultaneous
localization and mapping (Leung et al. 2014), localizing
static targets (Ristic et al. 2011; Dames and Kumar 2015),
and more (Adams et al. 2014). Unlike all these works, we
do not assume that the targets remain stationary.

An important consideration for target tracking is the
motion model for the targets. A number of parametric
motion models have been proposed in the literature (see Li
and Jilkov (2003) for a detailed survey). In general, most
motion models can directly be used in the PHD filter. We
employ a data-driven technique to extract the motion model,
instead of assuming any parametric form. Specifically, we
use Gaussian Process (GP) regression to learn a map of
velocity vectors for the targets, as Joseph et al. (2011)
do. GPs offer a highly flexible method to learn motion
models. They can capture state-dependent behavior, which
we will take advantage of to learn the traffic flow patterns
in our experiments. GPs can be used in any situation with a
prior dataset to characterize the target motion. Additionally,
we show how to empirically model the appearance and
disappearance of targets within the environment.

Next, we present a control policy to assign trajectories for
all robots in order to maximize the objective function over
a receding horizon. We study two objective functions using
the PHD filter. The first is mutual information (MI), which
is a common objective function in active perception tasks.
The second is the expected number of detections (END)
by the robot team and is a new objective that explicitly
considers the possibility of missed detections. We show that
both objective functions are submodular and use a result
from Tokekar et al. (2014) to prove that our greedy control
policy is a 2-approximation. Tokekar et al. (2014) used this
greedy algorithm to track a known and fixed number of
mobile targets using a team of aerial robots. In this paper,
we build on this work to allow for the case of an unknown
and changing number of targets.

In addition to the theoretical analysis we offer, we
evaluate our algorithm using simulated experiments. While
our framework may be applied to a number of robot and
sensor models, for the purposes of testing we restrict our
attention to fixed-wing aerial robots with downward-facing
cameras. We use a real-world taxi motion dataset from
Piorkowski et al. (2009) to learn the target motion model
and to drive the target motion in the experiments. This
paper builds upon our previous work in Dames et al.
(2015) and offers additional discussion of the system, new
simulation results, and more detailed analysis. In particular,
we examine the performance of our system as a function
of the relative speed of the targets and the robots. We
also compare the performance using both of our objective
functions to that of teams of robots following a coverage-
based controller. The simulation results reveal that robot
teams using the information-based control objective track
a smaller number of targets with higher precision compared
to teams that maximize the expected number of detections.
The coverage-based controller tracks a comparable number
of targets to the other methods but with higher uncertainty
in the target positions.

Problem Formulation
We address the problem of a team of R robots monitoring
an area in order to detect, localize, and track an unknown
number of moving targets using an inexpensive camera.
The robots are able to localize themselves within the
environment (e.g., using GPS). We denote the pose of robot
r at time t by qrt .

The number of targets, nt, is unknown and varies over
time, since individual targets may enter and leave the
area of interest. We use Random Finite Sets (RFSs) to
represent the number and state of targets at any time. In
the target tracking scenario, RFSs may represent either
the measurements or the states of the targets. Let Xt =
{x1,t, x2,t, . . . , xnt,t} denote a realization of a RFS of
target states at time t, where xi,t is the state of target
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i at time t. Note that the set Xt contains information
about both the number of targets (i.e., the size of the set)
and the target locations (i.e., the elements of the set). A
probability distribution of a RFS is characterized by a
discrete distribution over the cardinality of the set and a
family of densities for the elements of the set conditioned
on the size, i.e.,

p(X = {x1, . . . , xn}) =

p(|X| = n) p({x1, . . . , xn} | |X| = n). (1)

The first statistical moment of a distribution over a RFS
is called the Probability Hypothesis Density (PHD). The
PHD, v(x), is a density function over the state space of an
individual target with the property that the integral over any
region S is the expected number of targets in that region,
i.e., ∫

S

v(x) dx = E[|X ∩ S|]. (2)

The PHD filter makes the assumption that targets are
independent and identically distributed and that the
cardinality of the target set is characterized by a Poisson
distribution. The likelihood of such an RFS is

p(X) = exp

(
−
∫
v(x) dx

) ∏
x∈X

v(x), (3)

which is fully characterized by the PHD.
Each robot receives a set of measurements Zrt =

{zr1,t, zr2,t, . . . , zrm,t} to targets that it detects within the
field of view (FoV) of its sensor. The number of
measurements, mt, varies over time due to false negative
and false positive detections and the motion of the robots
and the targets. Let pd(x | q) denote the probability of a
robot at q detecting a target with state x. pd(x | q) = 0
for targets outside of the FoV of the sensor and having
pd(x | q) < 1 indicates the possibility of a false negative,
or missed detection. When a target is successfully detected,
the sensor returns a measurement z ∼ g(· | x, q). The
sensor can also return measurements to clutter objects,
causing false positive detections. Let c(z | q) denote the
PHD of clutter measurements.

The PHD filter is somewhat analogous to the Kalman
filter, recursively updating the statistical moments neces-
sary to fully characterize a distribution over the target
states. Like the Kalman filter, there are two equations: the
prediction and the update,

v̄t(x) = b(x) +

∫
ps(ξ)f(x | ξ)v(ξ) dξ (4)

vt(x) =
(
1− pd(x | q)

)
v̄t(x)

+
∑
z∈Zt

pd(x | q)g(z | x, q)v̄t(x)

c(z, q) +
∫
pd(ξ | q)g(z | ξ, q)v̄t(ξ) dξ

.

(5)

Here v̄t(·) is the predicted target PHD; b(·) is the PHD of
target births, which accounts for new targets entering the
area; ps(·) is the target survival probability, which accounts
for targets leaving the area; and f(· | ξ) is the target motion
model. In the following section, we show how to learn these
parameters from a real-world dataset.

Note that the representation in the PHD filter is inherently
different from more traditional target trackers. With the
PHD, there is no notion of target labels or of individual
target tracks. Instead, the PHD filter tracks the density
of targets over time, yielding information about the bulk
motion rather than about the motion of individual targets.
Future work will examine the recent Labeled MeMBer
filter (Reuter et al. 2014), which is also based on RFSs but
uses a different representation such that it is able to output
labeled target tracks.

Target Tracking Framework
The representative problem that we consider is of a team
of fixed-wing aerial robots equipped with downward-facing
cameras tracking vehicles driving on the ground. However
the same methodology could be extended to work with
robots with other mobility constraints (e.g., ground vehicles
or quadrotor platforms) and other sensor modalities (e.g.,
lidars or 3D depth cameras).

Sensor Parameterization
The problem of detecting vehicles using aerial imagery has
been well studied (Zhao and Nevatia 2003; Grabner et al.
2008). We use such studies to inform our selection of the
sensor detection, measurement, and clutter models. The
approaches presented in Zhao and Nevatia (2003); Grabner
et al. (2008) are similar, searching for image features over a
range of scales in order to detect cars of different sizes or to
detect cars from different elevations or with different image
resolutions. In general, the system is able to have a higher
detection rate if we accept a larger number of false positive
detections Zhao and Nevatia (2003, Fig. 12), Grabner et al.
(2008, Fig. 8). The detection rate may also vary with the
number of pixels per target, which may be computed using
the robot pose, the approximate length scale of a target, and
the image resolution, to be

# pixels per car = pixels per radian×

arctan
length of target

distance from camera to target
. (6)

We assume a logistic relationship between the number of
pixels per target, npx(x, q), and the detection rate,

pd(x | q) = p0 +
pd,max − pd,0

1 + exp
(
− k(npx(x, q)− npx,0)

) ,
(7)
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where pd,0, pd,max, k, and npx,0 are design parameters.
The camera returns pixel (i.e., bearing) measurements to

the cars detected within the image. Using the pose of the
robot, we can project measurements onto the ground plane
to localize the targets. The measurement model is

g(z | x, q) = N
(
z; [rx, cx]T , σ2I

)
, (8)

where rx, cx are the pixel row and column values in an
image taken at q, of a target at x, σ is the standard deviation
in pixels, and I is a 2× 2 identity matrix.

Like the targets, the clutter is modeled as a Poisson RFS,
which is completely characterized by the PHD. Without
a priori knowledge of locations that are likely to have
clutter, the best choice is to use a uniform distribution
over the measurement space. For most computer vision-
based detection algorithms, the expected number of clutter
detections depends upon the detection model, with a
high detection likelihood resulting in a higher detection
rate (Zhao and Nevatia 2003; Grabner et al. 2008).

Target Parameterization
In order to predict how the target set evolves, we need
models for the motion of individual targets as well as the
birth/death processes of the targets. A number of motion
models have been proposed in the literature, ranging from
random (Li and Jilkov 2003) to adversarial (Chung et al.
2011). Often, a mixture of parametric motion models
is used (Li and Jilkov 2005). We take a data-driven
approach to modeling the targets’ motion, utilizing real-
world datasets that are available (Kotz and Henderson
2005). In particular, we use Gaussian Process (GP)
regression (Rasmussen and Williams 2006) to learn the
function that maps the position coordinates of the targets to
velocity vectors, as shown by Joseph et al. (2011). Unlike
Joseph et al. (2011), we use a single GP rather than a
mixture of GPs.

GP regression is a Bayesian approximation technique
to learn some function f(X) given measurements y =
f(x) + ε corrupted by Gaussian noise, ε ∼ N (0, σ2).
Here, x = [x1, x2]T is the position of the target and
y = [y1, y2]T is the velocity of the target. We learn two
independent functions, f1 and f2, one for each axis
of the ground plane, assuming that the velocities along
the two axes are independent. Instead of assuming a
parametric model for fi, GP regression assumes that the
joint distribution of fi(X) defined over any collection of
positions, X = {x1, . . . , xk}, is always Gaussian. Thus,
each fi(X) is completely specified by its mean function,
µi(X) = E[fi(X)] and covariance function, Ki(X,X

′) =
E[(fi(X)− µi(X))(fi(X

′)− µi(X ′))].
Given observed velocity vectors Y1 and Y2 taken at

some subset of positions, X , GP regression predicts the
velocity vectors at some other set of positions, X∗, as a

Gaussian distribution with conditional mean and variance
values (Rasmussen and Williams 2006):

µi(X
∗|X) = µi(X

∗)+

Ki(X
∗, X)[Ki(X,X) + σ2I]−1(Yi − µi(X))

σ2
i (X∗|X) = Ki(X

∗, X∗)−
Ki(X

∗, X)[Ki(X,X) + σ2I]−1Ki(X,X
∗),

where Ki(X,X
′) is a matrix whose (m,n)th entry is

given by the covariance between xm ∈ X and xn ∈ X ′.
We take the prior function, µi(X), to be a zero-mean
distribution. Thus, if the covariance function is known, the
above equations can fully predict the velocity values at
arbitrary positions.

We assume that the covariance function belongs to the
Matérn class with parameter ν = 3/2 (Rasmussen and
Williams 2006) since this choice of covariance function
yields a better fit as compared to the standard squared-
exponential function used by Joseph et al. (2011). The
length hyperparameter of the Matérn covariance is learned
using training data from the Cabspotting taxi dataset from
Piorkowski et al. (2009). The training data consists of 436
taxi traces over a 5 hour period that includes the evening
rush hour in order to ensure high taxi usage. We reserve
the remaining 100 taxi traces to use as test data. Figure 1
shows the predicted mean and variance values given by the
GP regression using the learned hyperparameter values.

We use an empirical approach to learn the target survival
(ps(x)) and birth processes (b(x)). We overlay a uniform
grid (1 m resolution) over the environment. Whenever a
target appears in a cell, we add one to the survival count
if the target was previously in another cell, add one to
the birth count if the target was previously outside the
environment, and add one to the death count if at the next
time step the target leaves the environment. The birth count
for each cell is initialized to 10, so that the distribution of
birth locations is uniform if there is no data. Similarly, the
survival and death count for each cell are initialized to 9 and
1, respectively. The survival probability in a cell is given
by the ratio of the survival count to the total survival and
death counts in that cell. In the absence of data, this yields
a uniform probability of survival of 0.9.

Figure 2a shows the environments used in the
simulations, with the target survival probability in Fig. 2b
and birth PHD in Fig. 3. As Fig. 2b shows, the targets
survive with high probability in the majority of the
environment. The probability decreases near the western
and southern edges of the environment, where there are
roads along the edge of the environment. These same areas
also have the highest rates of target births, as Fig. 3b shows.
One may also clearly see the highways in the southeast and
the bridge in the northeast, which have the highest rates
of traffic, and thus of target births and deaths. The target
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(a) Gaussian process mean.
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(b) Gaussian process standard deviation.

Figure 1. The (a) mean and (b) standard deviation of the
Gaussian Process regression motion model overlaid on the
map. We only show a small patch of the environment to show
the detail. The measured velocity vectors are shown in red,
and the velocity vectors predicted over a grid are given in blue.
The units of the velocity are m/s.

birth rate per minute, when considering all 536 taxis in the
dataset, is 4.548 targets per minute of real time. The actual
and fit birth rates are shown in Fig. 3a, with the Poisson
approximation fitting the data well.

PHD Filter
The motion model in the PHD filter, f(x | ξ) from (4),
is fully characterized by the GP learned in the previous
section. Let N (x | µ, σ2) be a Gaussian distribution with
mean µ and covariance σ2 evaluated at x. Then f(x |
ξ) = N ((x− ξ)∆−1t | µ(ξ), σ2(ξ)), where ∆t is the time
step between measurements and µ, σ are the mean and
covariance functions of the GP.

We utilize the Sequential Monte Carlo (SMC) PHD
filter from Vo et al. (2005). This approximates the PHD
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Figure 2. (a) The area of interest, a roughly 6.15× 5.56 km
region surrounding downtown San Francisco. (b) The
probability of target survival as a function of position.

using a set of weighted particles, v(x) ≈
∑Pt
i=1 wi δ(x−

xi). The SMC PHD filter allows for arbitrary, non-linear
sensor and motion models, including a finite field of
view for the sensor. New particles are added to the PHD
using the birth PHD described above as well as using the
most recent measurement set (Ristic et al. 2010). A fixed
number of particles, Pb, are drawn from the birth PHD
and an additional Pm particles are drawn from the inverse
measurement model for each measurements in the most
recent set, Zt. The weight of each of these particles is w =∫

c(z) dz
Pb+|Zt|Pm , where |Zt| is the cardinality of the measurement
set. We resample the particles every 5 time steps using the
low variance resampling method from Thrun et al. (2005) as
it is low-complexity and offers a more systematic coverage
of the sample space. We use a maximum of 20,000 particles,
which is over 200 particles per true target, and set Pb = 500
and Pm = 100.
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Figure 3. The empirical target birth PHD.

Control Policy
In this section, we first present the method we use to
generate candidate trajectories for each robot. We then
present our control policy for assigning trajectories for the
robots and two objective functions for the control policy.

Trajectory Generation and Assignment As previously
mentioned, in this paper we are considering fixed-wing
aircraft. We use a simple model for the aircraft with three
basic control inputs: forward velocity, yaw rate, and pitch
rate. For each control input we select a range of possible
values. For each possible set of control inputs we integrate
the position, yaw, and pitch forward in time using a 1-
step Euler integration scheme for TD seconds, where T is
the number of steps and D = 5 s is the duration of each
step. Note that while Euler integration does accumulate
error, the trajectories are over a relatively short time
scale, and the integration time step is very small (10 ms).

Figure 4. A sample set of UAV trajectories.

Additionally, the robots replan before completing any given
trajectory and are assumed to have perfect self-localization.
Any trajectories that bring the robots above or below the
elevation limits are discarded as invalid, as are any that
result in collision. The valid trajectories are interpolated to
yield the sequence ofNs poses at which each robot will take
a measurement. Each such sequence is an action qr and let
Qr be the set of all candidate actions for robot r. Figure 4
shows an example set of trajectories for a single robot.

We utilize a greedy approximation strategy, outlined in
Algorithm 1, to assign trajectories to each robot. This is
similar to the approach used by Tokekar et al. (2014).
Initially, each robot computes the utility of each action
qr ∈ Qr according to some desired objective function.
The robot and action with the highest utility are selected.
The remainder of the team then recomputes the utility of
each action conditioned on the action of the first robot,
discarding any trajectories that lead to collisions, and the
robot and action with the highest utility are again selected.
This process repeats until all robots have been assigned
an action. Let Q = {q1, q2, . . . , qR} be a candidate set of
trajectories for the team ofR robots. For any objective f(Q)
that is submodular set function of Q, we can show that this
greedy assignment policy is a 2-approximation.

Theorem 1. Let QG be the robot poses selected by the
greedy assignment policy in Algorithm 1 and Q∗ be the
robot actions selected by the full, joint evaluation of

Q∗ = argmaxQ∈Q1:R f(Q), (9)

where Q1:R = Q1 × . . .×QR. Then greedy is a 2-
approximation, i.e., f(QG) ≥ 1

2f(Q∗).

Proof. It is known that the greedy algorithm yields a 2-
approximation for maximizing a monotone, submodular
function subject to a partition matroid constraint (Calinescu
et al. 2007). We can create a set system using the candidate
robot actions, as shown in Tokekar et al. (2014). This set
system defines a partition matroid, which along with the
previous lemma proves the desired result.
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Algorithm 1 Greedy trajectory assignment
1: Inputs: f(·) . Objective function
2: Q1, . . . , QR . Candidate action sets
3: QG = ∅ . Greedy assignments
4: A = {1, . . . , R} . Agents left to plan for
5: while A 6= ∅ do
6: Q = ∪r∈AQr
7: q∗, r∗ = argmaxqr∈Q f(QG ∪ {qr})
8: QG ← QG ∪ {q∗} . Assign best action q∗ to r∗

9: A← A \ {r∗} . Remove robot r∗ from list
10: end while
11: return QG

Atanasov et al. (2015) recently proved the same bound
holds for the centralized and the decentralized case. This
result significantly speeds up the control computations as
the complexity of Algorithm 1 scales linearly with the
number of robots while (9) scales exponentially.

Mutual Information (MI) Objective Mutual information is
a way of quantifying the dependence between two random
variables (Cover and Thomas 2012), and can be defined in
multiple ways

I[X ,Z] =

∫
p(X,Z) log

p(X,Z)

p(X)p(Z)
dXdZ (10)

=

∫
KL
[
p(X | Z)||p(X)

]
p(Z) dZ. (11)

The last term above states that mutual information
can be interpreted as the expected Kullback-Leibler
divergence between the prior and the posterior, given
the unknown future measurements. Thus, maximizing
mutual information between the target set and the future
measurements of the robots will cause the robots to take
measurements that will change their belief quickly.

We utilize binary measurements, rather than the full
measurements sets, in order to decrease the computational
complexity of the control policy. This allows us to derive
a closed-form expression, and we have previously shown
that this approach effectively drives a team of robots to
detect and localize static targets (Dames and Kumar 2015).
The binary measurements are defined to be y = 1 (Z 6= ∅),
where 1 (·) is the indicator function. Here y = 0 is the event
that the robot receives no measurements to any (true or
clutter) objects while y = 1 is the complement of this, i.e.,
the robot receives at least one measurement. Kreucher et al.
(2005) take a similar approach, using a binary sensor model
and an information-based objective function to schedule
sensors to track an unknown number of targets.

Theorem 2. The mutual information between the target
set and the binary measurement model is a lower bound on

the mutual information between the target set and the full
measurement set, i.e., I[X ;Y | Q] ≤ I[X ;Z | Q].

Proof. Note that y is deterministically related to Z, y =
1 (Z 6= ∅). This allows us to apply the Data Processing
Inequality (Cover and Thomas 2012, Theorem 2.8.1),
which states that functions of the data cannot increase the
amount of information.

The optimal strategy is then to choose robot trajectories
that maximize the mutual information between the target
set and its future measurements,

Q∗τ = argmaxQτ∈Q1:R
τ

I[Xt+Ns ;Y1:R
τ | Qτ ], (12)

where τ = {t+ 1, . . . , t+ T} is the time horizon, Xt+T is
the predicted location of the targets at time t+Ns, Y1:R

τ

is the collection of binary measurements for robots 1 to R
from time steps t+ 1 to t+ T , and Qτ are the future poses
of the robots. These measurements depend on the future
locations of the robots Qτ = {q1t+1, . . . , q

1
t+T , . . . , q

R
t+T }.

We can can show that the objective function in (12)
is a submodular set function of the robot poses, which
allows us to use the greedy algorithm to select actions that
approximately maximize the mutual information.

Lemma 1. I[X ;Y | Q] is a submodular set function of Q.

Proof. See Krause and Guestrin (2005, Proposition 2).

Expected Number of Detections (END) Objective We
introduce the Expected Number of Detections (END)
objective function to be

N [X | Q] =

∫ (
1−

∏
q∈Q

(
1− pd(x | q)

))
v(x) dx.

(13)
This objective is similar to the Posterior Expected Number
of Targets (PENT) objective from Mahler (2003b) but is
simpler to compute as it does not involve propagating
the target state forward in time. END gives the expected
number of targets detected by at least one robot and will
increase as the robots’ sensor footprints cover high target-
density regions and as the robots move towards areas where
they are more likely to detect targets. We can show that
END is a submodular set function of Q so the greedy
assignment algorithm will be a 2-approximation, similar to
the previous theorem.

Lemma 2. The END objective function, N [X | Q], is a
submodular function of Q.
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Proof. The difference in the objective when adding a single
robot is

N [X;Q ∪ {q′}]−N [X;Q] =∫
pd(x | q′)

∏
q∈Q

(1− pd(x | q))v(x) dx.

For any R ⊆ Q, the product
∏
r∈R(1− pd(x | r)) ≥∏

q∈Q(1− pd(x | q)) since pd(x | q) ∈ [0, 1],∀x, q.
Thus N [X;R ∪ {q′}]−N [X;R] ≥ N [X;Q ∪ {q′}]−
N [X;Q], so by definition N [X,Q] is submodular.

Coverage Based Control The last control method that
we consider in this work is a coverage-based controller
where the robots follow a pre-determined pattern. We use
a simple lawnmower pattern at a fixed elevation to ensure
that each part of the environment receives equal coverage
as the robots explore. When there is more than one robot,
the robots are evenly spaced along the trajectory. This will
provide a baseline to which we can compare the other two
objective functions which we will refer to as the lawnmower
(LM) controller.

Results

To validate the performance of our system we ran a series
of simulated experiments, varying the motion model of the
targets and the speed of the targets relative to the speed
of the robots. We tested each configuration with different
team sizes (R = 2, 4, 6), planning horizons, and control
objectives. For the planning horizon we examined two
scenarios, one with a fixed number of steps (T = 1, 2) and
one where the total number of measurements per plan was
held constant (RT = 12). We performed 5 trials with each
configuration, randomly selecting a subset of 80 targets to
use for the ground truth target motion from the 100 taxi
traces originally reserved for testing. The true number of
targets in the area of interest varies over time as targets enter
and leave. The robots monitor the area from Fig. 2a, scaled
down by a factor of 100. We also sped up the data by a
factor of 30 in order to speed up the simulations, so 1 s in
simulation represents 30 s of real time. The data is taken
from 4–9 pm on May 18, 2008, a time of day where there
was plenty of taxi traffic.

It is worth noting that a number of competing multi-
target tracking methods exist (Stone et al. 2013), most
notably the Multiple Hypothesis Tracker (MHT) and Joint
Probabilistic Data Association (JPDA). However, to the
best of our knowledge, no active multi-robot control
policies exist based on these estimation algorithms. This
makes comparisons to these methods beyond the scope of
this paper.

One common measure of uncertainty in the target
estimate is entropy (Cover and Thomas 2012), defined as

H[X] =

∫
p(X) log p(X) δX (14)

=λ+ λ
(
H[p(x)]− log λ︸ ︷︷ ︸

entropy per target

)
, (15)

where λ =
∫
v(x) dx is the expected number of targets

in the environment and p(x) = λ−1v(x) is the probability
distribution for individual targets. Note that (15) results
from plugging (3) into the definition of entropy (14).
See Dames and Kumar (2015) for a derivation of this
expression. We will use entropy to measure uncertainty, and
the term in parentheses in (15) is the entropy per target.

Motion Models
The two target motion models that we consider are the
Gaussian Process (GP) described in the previous section
and a Gaussian random walk (GRW) model. The GRW
models the targets as performing a random walk, with a
velocity drawn at random from a Gaussian distribution.

Note that these models are used only to update the PHD;
the actual targets’ trajectories are given by the taxi dataset.
In both cases we use the survival and birth processes
described in the previous section, with the birth rate set to
0.6788 to account for the reduced number of data files used
(80 for testing versus 436 for training). The average velocity
of the robots and targets is approximately equal.

Fig. 5 shows the ratio of the expected number of targets
to the true number of targets, and Fig. 6 shows the average
entropy per target. In general the GP model tracks more
targets with less uncertainty than the GRW model. The
GRW model tracks approximately the same number of
targets with the same amount of uncertainty per target
regardless of the number of robots or the planning horizon.
The GP model tracking improves slightly with the number
of robots and the planning horizon, with the largest effect
being the increase from a myopic (T = 1) controller to
a receding horizon (T > 1) controller. This validates the
effectiveness of our data-driven motion model, which we
use exclusively for the remainder of the paper.

Objective Functions
As we see in Fig. 5b and Fig. 6b, the END objective seems
to have the best performance out of our three objectives.
Robots using END track the highest fraction of targets with
the lowest uncertainty per target. Robots using MI track
the fewest targets while robots using LM have the highest
uncertainty per target.

We also see that robots using either MI or END benefit
greatly from increasing the planning horizon from T = 1
to T = 2. This effect is particularly strong with the END

Prepared using sagej.cls
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(a) Gaussian random walk (GRW) motion model.
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(b) Gaussian process (GP) motion model.

Figure 5. The average ratio of the expected number to the
true number of targets over a single run.

objective, where the robots’ performance goes from being
slightly worse than that of MI to significantly better. The
addition of more robots has the next largest effect on
the team’s tracking performance. Increasing the planning
horizon beyond 2 makes the performance more consistent
across trials but only leads to modest gains in tracking
quality.

Figures 7–9 show how the ratio of the expected number
of targets to true targets, the robot elevation, and the
target set entropy evolve during the course of a single run.
Extension 1 shows video of the full simulation runs of these
three trials. These are representative trials of a team of
R = 2 robots with a planning horizon of T = 6 time steps.
Overall robots using the END objective function seem to
better estimate the number of targets, quickly reaching the
correct number and clearly following the trend. However,
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(a) Gaussian random walk (GRW) motion model.
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(b) Gaussian process (GP) motion model.

Figure 6. The average entropy per target over a single run.

END has larger jumps in the target count estimate and the
target entropy values than MI or LM. MI maintains a nearly
constant value of entropy per target across the experiment,
which makes sense as this is the only objective function to
explicitly consider entropy. The LM objective is closer to
the MI objective in terms of performance, though it does
not follow the trend in the number of targets as well as MI
and has higher entropy per target.

The emergent behavior of the different control objectives
is also quite different. Robots using MI tend to stay closer to
the ground in order to decrease uncertainty in the location
of individual targets. On the other hand, robots using END
fly at a higher altitude, though robots never reach the
maximum altitude limit of 50 m. Note that increasing the
altitude decreases the probability of detection in (6), while
increasing the size of the sensor FoV. These results indicate
that MI and END make different tradeoffs in terms of the
size of the FoV versus the probability of detection. These
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(a) GP motion model with MI objective.
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(b) GP motion model with END objective.
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(c) GP motion model with LM objective.

Figure 7. The ratio of the expected number to the true
number of targets over a single run for R = 2 and T = 6.

differences are consistent across team sizes and planning
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(a) GP motion model with MI objective.
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(b) GP motion model with END objective.

Figure 8. The elevation of the robots over a single run for
R = 2 and T = 6.

horizons, as Fig. 10 shows, with robots using END having a
higher average altitude. This trend also explains why robots
using END keep a larger fraction of the targets within their
collective FoV, as Fig. 11 shows. We selected the constant
elevation for LM to be 15 m to be consistent with the
elevation for MI and the myopic END situations.

Target Speed
In all of the previous trials, the robot and target speeds were
approximately equal, with both having an average speed of
1.5 m/s in the scaled down simulation environment. To test
the performance of our system as the speeds varied we ran a
series of simulations where the targets moved at 10%, 25%,
and 50% of the robots’ speed.

Figure 12 shows the average ratio of tracked targets
and Fig. 13 shows the average entropy per target for each
configuration tested. We again see that the END objective
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(a) GP motion model with MI objective.
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(b) GP motion model with END objective.
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(c) GP motion model with LM objective.

Figure 9. The entropy per target of the target set over a single
run for R = 2 and T = 6.
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Figure 10. The average elevation of the team over a single
run.
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Figure 11. The average fraction of the number of targets
within the team’s field of view over a single run.

tracks a higher fraction of the targets with lower uncertainty,
though the gain over MI decreases as the target speed
decreases. The performance of robots using LM is fairly
consistent across robot speeds. This is natural, as the
controller is not reactive to the current environment and has
no model of the target motion or sensor. The only exception
to this is the decrease in entropy per target from around
8.5 nats at 25% speed to 7.2 nats at 10% speed.

Finally, we test the performance of our framework
with static targets using a team of R = 4 robots with a
planning horizon of T = 3. The simulation parameters are
identical except that we replace the 80 taxi data traces
with 80 randomly drawn static target locations, and the
target motion model is the identity map. The resulting final
estimated number of targets and target entropies are shown
in Fig. 14. The final ratio of the estimated number of targets
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(a) Targets move at 50% of robot speed.
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(b) Targets move at 25% of robot speed.
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(c) Targets move at 10% of robot speed.

Figure 12. The average ratio of the expected number to the
true number of targets over a single run.
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(a) Targets move at 50% of robot speed.
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(b) Targets move at 25% of robot speed.
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(c) Targets move at 10% of robot speed.

Figure 13. The average entropy per target over a single run.

to the true number of targets is very close to 1 using both
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Figure 14. The performance of our framework with static
targets.

objective functions, indicating that the system is able to
correctly and consistently determine the number of targets.
The entropy is also orders of magnitude lower than in the
case of moving targets, with MI reaching a lower final
entropy than END.

Conclusions
In this paper we describe a framework for detecting,
localizing, and tracking an unknown number of moving
targets using a team of mobile robots. We create a data-
driven motion model for the targets using Gaussian Process
regression and also create position-dependent models of
the target appearance and disappearance statistics. The
robot team uses the Probability Hypothesis Density filter to
simultaneously estimate the number of targets and the states
of the targets. The PHD filter is robust to false negative
and false positive detections and sensor noise and does not

require any explicit data association. Using the estimate of
the target set from the PHD filter, the robots greedily select
actions that maximize submodular control objectives. The
three control objectives that we consider in this paper are
the expected number of detected (END) targets by the team,
the mutual information (MI) between the predicted targets
and the future detections of the robots, and a coverage-
based controller where the robots follow a lawnmower
pattern (LM).

We validate our framework through extensive simula-
tions using a real-world dataset for target motion. We
find that robots using our data-driven motion model track
more targets and have less uncertainty than robots using a
Gaussian random walk model. We also find that robot teams
using our new END objective track a higher fraction of the
targets with higher precision than teams using mutual infor-
mation or a coverage-based controller. This trend persists
as we vary the speed of the targets and consider different
target motion models. The END and MI objectives both
make tradeoffs between the size of the sensor field of view
and the probability of detection, with END favoring a larger
FoV and MI favoring a higher probability of detection.

Future work will aim to replicate these results on a team
of real-world robots. We will also explore the effects of
changing the robot and target kinematics. We hypothesize
that a team of multi-rotor robots would be able to track
a larger number of targets due to the fact that they can
hover, unlike the fixed-wing aircraft model used in this
paper, so long as the targets do not move significantly faster
than the robots. We also believe that a team of cars would
track significantly fewer robots with less uncertainty due
to the much smaller sensor footprint. Further work will
also consider using a heterogeneous team of robots to take
advantage of each type of robot motion while mitigating the
drawbacks.
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