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ABSTRACT
Instructional principles gleaned from cognitive science play a criti-
cal role in improving classroom teaching. This study examines how
three cognitive instructional principles including worked examples,
representations, and deep questions are used in eight experienced
elementary teachers’ early algebra lessons in the U.S. Based on the
analysis of 32 videotaped lessons of inverse relations, we found that
most teachers spent sufficient class time on worked examples; how-
ever, some lessons included repetitive examples that also included
irrelevant practice problems. Most teachers also situated new teach-
ing in concrete contexts, which were faded into abstract represen-
tations. However, connections between concrete and abstract were
not always made. The largest challenge was rooted in teachers’
inability to ask deep questions that elicited students’ deep explana-
tions. Some teachers focused on key words and provided students
with direct explanations. Implications are discussed.
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1. Introduction

Although enhancingmathematics classroom teaching continues to be a pressing goal in the
U.S., the quality of classroom instruction continues to be unchanged. ‘The core of teach-
ing – the way teachers and students interact about content – has remained the same for
a century or more’ (Hiebert & Morris, 2012, p. 97). To address this issue, researchers call
for a science of improvement (Bryk, 2009; Cai et al., 2019) focusing on teaching rather
than teachers (Hiebert & Morris, 2012; Hiebert & Stigler, 2017). Instructional principles
gleaned from cognitive science can be expected to play a critical role in this endeavour
(Anderson, 2010; Kirschner et al., 2006; Mayer, 2010). In fact, the Institute of Education
Sciences (IES) in the U.S. recommended teachers organize instruction based on cognitive
principles (e.g. using worked examples to enhance problem solving, making connections
between concrete and abstract representations, and asking deep questions to elicit student
self-explanations) to improve student learning (Pashler et al., 2007). In this study, we refer
to ‘cognitive instructional principles’ as the aforementioned recommendations on teachers’
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use of worked examples, representations, and deep questions. According to Pashler et al.,
these recommendations were based on cognitive research findings, which intended to pro-
vide teachers across subjects with strategies for organizing teaching to facilitate students
learning. While cognitive research findings have a potential to improve classroom instruc-
tion, the applications of broad instructional principles into subject-specific teaching like
mathematics is often not straightforward (Anderson et al., 2000; Kirschner et al., 2006).
Ding and Carlson (2013) found that elementary teachers had challenges in implementing
the aforementioned IES recommendations when planning their mathematics lessons; with
support, those teachers utilized the cognitive principles better in lesson planning. Despite
the previous findings on lesson planning, we know little about how the targeted cognitive
instructional principles recommended by the IES (Pashler et al., 2007) are implemented
in actual elementary mathematics classrooms. The lack of relevant information about the
successes and challenges in existing classroom teaching may hinder the subsequent inter-
vention that aims to improve instructional quality. As such, it is necessary to obtain detailed
understanding of the strength and limitation of currentmathematics teaching in alignment
with cognitive instructional principles in natural classroom settings.

The purpose of this study is to examine experienced elementary teachers’ classroom
teaching on inverse relations, which serve as a case to understand teachers’ instructional
successes and challenges in applying the targeted cognitive principles in elementary math-
ematics classrooms. Inverse relations are an important topic of early algebra, which has
been recognized as an important gatekeeper to students’ success in mathematics (Carpen-
ter et al., 2003; National Mathematics Advisory Panel [NMAP], 2008). Even though the
development of students’ algebraic thinking in elementary school has received increas-
ing attention (Carpenter et al., 2003; Carraher & Schliemann, 2007; Common Core State
Standards Initiatives [CCSSI], 2010; Kieran, 2018), the teaching of early algebra, including
inverse relations, continues to be a challenge for elementary teachers (Kieran, 2018). As
such, an examination of classroom teaching on inverse relations may bring insights into
ways to better support student learning. To examine these lessons, we focus on the three
aforementioned cognitive instructional principles, the use of worked examples, represen-
tations, and deep questions (Pashler et al., 2007, elaborate upon later). In particular, we
ask: (1) How do sampled elementary teachers use worked examples when teaching inverse
relations in elementary classrooms? (2)Howdo sampled elementary teachers use represen-
tationswhen teaching inverse relations in elementary classrooms?And (3) howdo sampled
elementary teachers use deep questions when teaching inverse relations in elementary
classrooms? It is expected that this study will inform the fields of mathematics education
and cognitive research about how the targeted instructional principles are used in elemen-
tary mathematics classrooms, which may further contribute to a science of improvement
(Berwick, 2008; Bryk, 2009; Cai et al., 2019; Lewis, 2015) of mathematics teaching.

2. Literature review

Any successful learning entails integrating new knowledge to existing knowledge, which
further leads to the changes of long-term memory resulting in more coherent mental
models of concepts (Anderson, 2010; Mayer, 2010). In other words, unless students are
cognitively engaged in classroom instruction, the learning outcome would be limited (Chi
& Wylie, 2014; Chi et al., 2018). In this study, the three targeted instructional principles –
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the use ofworked examples to enhance problem solving,making connections between con-
crete and abstract representations, and asking deep questions to elicit deep explanations –
were aligned with the above overachieving learning theory. These three instructional prin-
ciples were modified from the IES recommendations (Pashler et al., 2007), which contains
seven instructional principles drawn frombest available evidence in cognitive research and
classroom experiments on various subjects.We collapsed the recommendation of ‘combine
graphics with verbal descriptions’ (p. 9) into ‘connect and integrate abstract and concrete
representations’ (p. 15) because the former is related to concrete representations. Our pri-
ority in selecting the above principles is due to the consideration that the rest principles –
‘space learning over time’ (p. 5), ‘use quizzing to promote learning’ (p. 19), and ‘help stu-
dents allocate study time efficiently’ (p. 23) – are relatively distant from classroom teaching.
Below, we review the powerfulness of the targeted instructional principles and associated
challenges for implementation in the classroom setting, followed by a review of our prior
findings on teachers’ use of these principles in lesson planning. Since our investigation is
situated in the topic of inverse relations, we also provide a brief analysis of this research
topic.

2.1. Usingworked examples to enhance problem solving: powerfulness and
challenges

Worked examples refer to problems with solutions given and researchers have been exam-
ining the use of worked examples for decades. Prior studies have found that worked
examples were effective in helping students acquire necessary schemas to solve new prob-
lems (Catrambone & Yuasa, 2006; Sweller & Cooper, 1985; van Gog et al., 2011; Zhu
& Simon, 1987). Schemas are mental constructs that allow for classifying a new prob-
lem into a previous category and selecting an appropriate solution mode for that specific
category (Sweller & Cooper, 1985). Research on expert-novice found that domain spe-
cific knowledge in the form of schema was a main factor that distinguishes expert and
novice in problem solving (Chi et al., 1981; Sweller, 1988). As such, worked examples were
recommended as an effective means for new learning in comparison with conventional
problem-solving (Kirschner et al., 2006; Pashler et al., 2007). This is because problem solv-
ing contains a search process used by novice to obtain a solution, which increases students’
cognitive load (Sweller, 1988) and slows the schema acquisition rate, resulting in low effec-
tiveness of learning (Sweller & Cooper, 1985). The effect of worked examples is relevant
and critical for learning early algebra topics like inverse relations because well-understood
worked examples have the potential to develop students’ structural understanding (Kieran,
2018). In fact, Mason (2018) recommended that teachers discuss worked examples in
classrooms to develop students’ algebraic thinking.

Despite the well-known worked example effect (Catrambone & Yuasa, 2006; Sweller
& Cooper, 1985; van Gog et al., 2011; Zhu & Simon, 1987), many mathematics class-
rooms have neglected this cognitive principle with limited classroom time spent onworked
examples (Stigler & Hiebert, 1999). This is more of a concern in current reformed class-
rooms where teachers often step back with minimum instruction on an example task
(Kirschner et al., 2006). For instance, teachers in reformed classes often moved quickly
to problem solving where students were encouraged to work with peers through cooper-
ative, or discovery, or project-based learning (Kirschner et al., 2006). Consequently, the
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worked examples often received little attention during classroom instruction. However,
as explained above, without a relevant schema established through worked examples, the
subsequent problem solving process would be questionable and ineffective (Ding et al.,
2007).

To apply what was learned from a worked example, students ought to practice prob-
lems relevant to the given example. In fact, to enhance the worked example effect, some
researchers suggest fading examples into practice (Renkl et al., 2004) by asking students
to solve some steps of a worked example task. This indicates the necessity of linking
worked example and practice problems. Pashler et al. (2007) also recommended alternating
between worked examples and practice problems, which, however, was found unnecessary
in van Gog et al. (2011). In this study, we examine whether teachers in our study appear to
pay attention to the worked examples and whether their subsequent practice problems are
related to the worked examples. Of course, any learning process should actively engage stu-
dents. When teachers simply ‘show and tell’ students the full example solutions, teachers
might have replaced students’ knowledge-construction activities (Wittwer & Renkl, 2008),
which does not promote the worked example effect (Catrambone & Yuasa, 2006). This
calls for attention to the other two instructional principles (representations, questions) that
promote active learning.

2.2. Linking concrete and abstract representations: powerfulness and challenges

Active learning demands students’ engagement in the process of modelling and sense-
making (Mayer, 2010). Situating classroom teaching of abstract concepts in concrete
contexts supports students’ initial learning because familiar situations may facilitate sense-
making (Resnick et al., 1987). In mathematical learning, concrete contexts often refer
to real-world situations presented in a format of word problems. Researchers of Real-
istic Mathematics Education (RME) has emphasized that mathematics must be taught
in ways that are close to children and which are relevant to every day life. Gerofsky
(2009) argued that real-world situations ‘have the potential to offer memorable imagery
that can act as a touchstone for teachers and learners in building and discussing abstract
concepts’ (p. 36). In comparison with real-world situations embedded in word prob-
lems, physical manipulatives seem to be less ‘concrete’ in the sense of activating stu-
dents’ imagery of every day life. In addition, students’ learning of real-world problems
in the written text can also be enhanced by adding relevant pictures and graphs (Pashler
et al., 2007). Mathematics textbooks in high achieving countries (e.g. China, Singapore,
and Japan) demonstrated this feature (Cai & Moyer, 2008; Ding & Li, 2014; Murata,
2008).

However, overexposing students to concrete representationsmay hinder students’ trans-
fer of the learned knowledge because these representations often contain irrelevant and
distracting information (Kaminski et al., 2008). To overcome this representational diffi-
culty, it is necessary to make connections between concrete and abstract representations of
the targeted concept (Pashler et al., 2007). This is because only abstract representations of
mathematical knowledge have the power to transfer over contexts to solve new problems
(Goldstone & Son, 2005; Kaminski et al., 2008). To facilitate the transition from con-
crete to abstract, recent research suggests using a concreteness fading approach by fading
from concrete (e.g. real objects and pictures) into semi-concrete (e.g. dots, lines, schematic
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diagrams) and then finally into abstract representations (e.g. number sentences; Goldstone
& Son, 2005). According to Fyfe andNathan (2019), the general notion of concreteness fad-
ing is aligned with Bruner’s (1966) three stages of representation shifting from enactive
(action based) to iconic (image-based) and eventually to symbolic (notation-based).
Experimental studies have shown that the concreteness fading approach, in comparison
with concrete only, abstract only, and from abstract to concrete, is most effective in sup-
porting students’ learning and transfer of mathematical concepts (Fyfe et al., 2015; McNeil
& Fyfe, 2012). However, Duval (2006) noted that the translation between representations
is challenging, serving as a source of mathematics incomprehension because students had
difficulties seeing structural commonalities and thus struggled to map the structures of
concrete and abstract representations. Classroom research has reported teachers’ missed
opportunities to promote such translation. For instance, Kazemi and Stipek (2001) found
that when students presented two strategies using different concrete representations but
with the samemathematical idea, the teacher did not facilitate connectionmaking between
concrete and abstract and thus treated these strategies as mathematically different. These
findings indicate significant challenges for teachers when facilitating representational
connections.

2.3. Asking deep questions to elicit self-explanations: powerfulness and challenges

Active learning also demands students’ articulation of theirmathematical thinking (Mayer,
2010). Research on self-explanations found that this process enables students to integrate
new concepts and ideas to prior ones, thus generating new inference which produces more
coherent mental models (Chi, 2000). Worked example research also found that it is impor-
tant to promote students’ self-explanation of worked examples to enhance the worked
example effect (Catrambone & Yuasa, 2006; Chi et al., 1989). However, students may lack
the motivation or the ability to spontaneously provide explanations, which calls for teach-
ers’ deep questions to elicit such explanations (Pashler et al., 2007). Deep questions refer to
those targeting the underlying principles, relationships, and structures (Craig et al., 2006).
Examples of deep questions include why, why-not, what caused X, how, how did X occur,
what-if, what-if-not, how does X compare to Y, what is the evidence for X, and why is
X important? (Pashler et al., 2007). Through deep questioning, teachers can invite stu-
dents into classroom dialogues, providing explanations and justifications and modifying
interpretations when needed.

Research on teacher questioning is not at all new. A century ago, Stevens (1912) already
viewed teacher questioning as ameasure for instructional efficiency. Gall (1970) conducted
a thorough review of teacher questions in classrooms. Recently, there was a call for fun-
damental change from teaching by telling to teaching by questioning (Chi et al., 2018).
However, asking deep questions has been consistently a challenge for classroom teachers
especially inmathematics classrooms (Franke et al., 2009;Martino &Maher, 1999). Franke
et al. (2009) reported that teachers in cognitive-guided classrooms were able to ask initial
deep questions such as ‘How did you get that?’ However, when deep explanations were
not elicited, they struggled with asking follow-up questions. This may be due to teachers’
limited knowledge of concept connections because asking effective follow-up questions to
facilitate students’ sense-making demands teachers’ onsite recognition of the relevant prior
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concepts on which the new concept was built on (Hiebert et al., 1997). In fact, some teach-
ers tended to provide instructional explanations themselves, which may be due to their
teaching habits or beliefs. However, such habits or beliefs may deprive students of rea-
soning and sense-making opportunities (Wittwer & Renkl, 2008), resulting in superficial
learning.

2.4. Teacher implementation of the cognitive instructional principles in a prior
study

The above three instructional principles – the use of worked examples, representations,
and deep questions – form a conceptual framework for this current study. To our best
knowledge, very few classroom studies have explored how elementary teachers implement
this set of instructional principles to teach early algebra. Our prior study on elementary
teachers’ lesson planning explored these aspects (Ding&Carlson, 2013). Since lesson plans
are closely related to classroom teaching and reflect teachers’ thinking about how a lesson
should be taught (Stein et al., 2007), we review our prior findings that may inform the
current study.

In our prior study, we provided an intervention based on the above three instructional
principles through a summer course involving 35 grades K-3 teachers who were selected
to a research project. Prior to intervention, we asked teachers to read the IES recommen-
dations (Pashler et al., 2007), which was expected to inform their initial lesson planning on
early algebra topics such as inverse relations. After intervention, we asked teachers to revise
their lesson plans incorporating the instructional principles discussed in class. At the end
of the course, we also asked teachers to develop an independent lesson plan using a differ-
ent early algebra topic. Teachers’ three lesson plans were compared both quantitatively and
qualitatively.

It was found that when reading the IES recommendations themselves, teachers had
tremendous difficulties with translating these instructional principles to their lesson plans.
For instance, with regard to worked examples, some teachers planned a series of repet-
itive worked examples with only minimal discussion devoted to each example. We also
found that teachers who involved concrete representations in their lesson plans did not link
them well to abstract representation; when multiple representations were used, the con-
nections between these representations were often lacking. Moreover, we found that some
teachers who asked ‘why’ questions in their lesson plans only expected superficial explana-
tions from students. After the course discussion of these instructional principles, teachers
made significant improvement on their initial lesson plans. They also maintained their
learned skills in their end-of-course independently prepared lesson plan. However, chal-
lenges remained with making connections from concrete to abstract representations and
asking deep questions to elicit students’ self-explanations. Given that lesson plans are only
teachers’ lesson images rather than actual classroom practices, it is necessary to examine
the degree to which experienced teachers’ classroom teaching in the current study aligns
with these instructional principles andwhether these teachers face similar challenges in the
teaching context. This endeavour is extremely important because one of the purposes of
cognitive science research is to make an impact on human practice; on the other hand, the
current need to improve mathematics classroom teaching also calls for scientific guidance
of cognitive research.
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2.5. Inverse relations: a case of early algebra

To explore how cognitive instructional principles occur in experienced teachers’ mathe-
matics classrooms, we focus on the case of inverse relations. This narrowed focus allows
in-depth and close comparisons among classroom instructions. As previously mentioned,
inverse relations is an important early algebra topic, which calls for bringing out the alge-
braic characteristics of arithmetic (Russell et al., 2011; Schliemann et al., 2007). To do
so, early algebra researchers (Carraher & Schliemann, 2007; Kaput, 2008; Kieran, 2018)
stressed the importance of focusing on fundamental mathematical ideas such as princi-
ples, relations, and structures that govern both arithmetic and algebra. Further, inverse
relations is a fundamental mathematical idea that is given much attention by the Common
Core State Standards (CCSSI, 2010) throughout elementary grades.

‘Inverse relations’ in the current study refers to the complement principle (Baroody
et al., 2009), which includes both additive inverses (e.g. if a+ b = c, then c – b = a) and
multiplicative inverses (if a × b = c, then c ÷ b = a; Vergnaud, 1988). Such structural
relationships may be initially learned through arithmetic tasks such as fact family (e.g.
7+ 5 = 12, 5+ 7 = 12, 12–7 = 5, and 12–5 = 7; Carpenter et al., 2003), inverse word
problems (the solutions form a fact family; Carpenter et al., 2003), start-unknown prob-
lems (Nunes et al., 2009), and using inverse relations to compute or check (e.g. 81–79 = ?
may be solved/checked by using 79+ 2 = 81; Torbeyns et al., 2009). Students’ understand-
ing of inverse relations likely contributes to their full comprehension of the four basic
operations and overall algebraic thinking (Carpenter et al., 2003; Nunes et al., 2009).

Despite the importance of inverse relations, prior research on this topic revealed at least
two limitations of classroom instruction. First, instruction concentrates on numbermanip-
ulations rather than sense-making. Our previous study (Ding & Carlson, 2013) indicates
that very few teachers planned to make use of concrete contexts presented by textbooks to
teach inverse relation. This is problematic because the meaning of symbols is distant from
students’ real-life experiences. Therefore, concrete contexts that are familiar to students
should be used to provide a space for students’ sense-making (Radford & Roth, 2011).
Otherwise, students tend to make mistakes such as 7 ÷ 35 = 5 and 5 ÷ 35 = 7 (Ding
& Carlson, 2013). Second, existing instruction focuses on inverse-based strategies rather
than the underlying relations. Torbeyns et al. (2009) reported that to solve 81–79 using
79+ 2 = 81, students were taught to draw a little arrow from the subtrahend to the minu-
end, yet the underlying inverse relation was not made explicit. Instructional explanations
that focus on procedural strategies rather than the underlying concepts do not contribute
to students’ deep learning (Chi & VanLehn, 2012; Wittwer & Renkl, 2008). The above
findings suggest an examination of current classroom practice regarding how those avail-
able cognitive instructional principles such as usingworked examples, representations, and
deep questions may be used in classrooms to develop students’ understanding of inverse
relations and thus algebraic thinking.

3. Methods

This study is part of a five-year National Science Foundation (NSF) project on early alge-
bra. The large project aimed to identify, in alignment of the aforementioned conceptual
framework, the necessary knowledge to teach early algebra based on cross-cultural video-
taped lessons in U.S. and China. For the current study, we employ a case study method
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Table 1. Teacher characteristics and textbook uses.

Teacher Grade Gender Year of Teaching Reputation Textbook

Ann G1 F > 26 Principal Recommended Go Mathb

Bea G1 F 16–20 Principal Recommended Investigationc

Carla G2 F > 26 NBCTa Investigation
Daria G2 F 16–20 Principal Recommended Go Math
Emily G3 F 16–20 NBCT candidate Investigation
Faith G3 F 21–25 NBCT Go Math
Gia G4 F > 26 Principal Recommended Go Math
Henry G4 M 6–10 NBCT Investigation

Note: aNBCT refers to National Board Certified Teachers. b,cNames of the mathematics textbook series used by the teacher
participants in this study.

(Creswell & Poth, 2018) exploring how the sampled U.S. teachers teach inverse relations in
their classrooms without any input from project researchers.

3.1. Participants

Eight experienced teachers from grades 1–4 participated in the current study. These teach-
ers were our year 1 teacher participants who were selected from a candidate pool. Except
for one, all teachers hadmore than 15 years of experience andwere scored above their peers
in the recruitment pool for the written knowledge survey. Note that the teacher who taught
less than 10 years was a National Board Certified Teacher (NBCT) at the time he joined the
project. Overall, three of the eight teachers were NBCT and one was an NBCT candidate.
The other teachers were highly recommended by the school district and their principals.
The following pseudonyms were given to the teachers: Ann and Bea (Grade 1 or G1), Carla
and Daria (G2), Emily and Faith (G3), and Gia and Henry (G4). Seven of these teachers
were female, and only one (Henry) was male. Table 1 summarizes the teacher characteris-
tics in this study. The teachers taught at four different elementary schools in the same large,
high-needs urban school district on the east coast of the U.S. The school district profile
indicates that 86.19% of its students are non-white, 85.00% are economically disadvan-
taged, 14.05% receive special education services, and 10.47% are English language learners.
Regardless of student diversity, state standardized test scores in mathematics indicate that
all of these schools were above the overall school district average.

3.2. Instructional tasks

Each of the eight teachers taught four lessons (n = 32) that were part of their existing
textbooks. It happened to be the case that for each grade level, one teacher used Inves-
tigations while the other used Go Math (see Table 1). Investigations is an NSF-supported
curriculum which focused on student explorations. By the time of videotaping, teachers
had received supplemental lessons from the textbook publisher to align with the Common
Core. Go Math was a new textbook series adopted by the school district. This textbook
series was developed based on the Common Core and thus incorporated recent research
assertations (e.g. the use of schematic diagrams/bar model). Regardless of textbook differ-
ences, all lessons selected for this study either explicitly or implicitly involved the concept
of inverse relations. Table 2 summarizes the detailed structure that guided lesson selection.
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Table 2. The structure that guided lesson selection.

Additive Inverse Multiplicative Inverse

G1 • Fact family (or related facts) G3 • Fact family (1)
• Find the missing number • Fact family (2)
• Using addition to compute subtraction • Using multiplication to compute division
• Initial unknown problem (to find how many
initially)

• A topic suggested by teachers

G2 • Comparison word problem (1) – find the
difference

G4 • Comparison word problem (1) – find how
many times

• Comparison word problem (2) – find the large
or small quantity

• Comparison word problem (2) – find the small
or large quantity

• Using addition to check for subtraction • Using multiplication to check for division
• A topic suggested by teachers • Two-step word problems

As indicated by Table 2, teachers in G1 and G2 taught additive inverse lessons, while
teachers in G3 and G4 taught multiplicative inverse lessons. Both part-whole and compar-
ison word problems were included because these are major problem structures (Ng & Lee,
2009) that can be used to facilitate inverse relations (Carpenter et al., 1999). Lesson topics
included fact family, finding the missing number, using inverse operations to compute (or
check), initial unknownproblems, comparisonword problems (e.g. find the difference, find
the large/small quantity), and two-step word problems where the solutions steps indicate
inverse relations. These topics were recommended by the literature (e.g. Baroody, 1999;
Baroody et al., 2009; Carpenter et al., 2003; Ding 2016; Nunes et al., 2009; Resnick et al.,
1987; Torbeyns et al., 2009) and available in both textbooks.

3.3. Data sources

All 32 lessons were videotaped using two different cameras. One camera followed the
teacher during instruction, while the other was focused on the students. The lessons lasted
between 34 and 84min. All lessons were first transcribed by the trained student workers
of the project. Next, the first author watched all videos and commented on all transcripts
about teachers’ use of worked examples, representations, and deep questions. To obtain
a more accurate measure, we further analyzed each lesson using the coding framework
detailed below.

3.4. Coding framework

The coding framework was first modified from our prior study on teachers’ lesson plan-
ning (Ding & Carlson, 2013). Because a lesson plan is closely related to the actual teaching
(Stein et al., 2007), we found it is feasible to use this rubric as a basis to code the enacted
lessons. This coding framework (see Table 3) contains three large categories aligned with
the conceptual framework of this study – worked examples, representations, and deep
questions – each containing two subcategories (worked examples and practice problems,
concrete representations and abstract representations, deep questions and deep explana-
tions). A 0–2 scale was used to score each of the six subcategories for a lesson (the total
full score is 12). A score of ‘0’ denoted that the subcategory was not addressed well, with a
‘2’ representing fully addressed. For a teacher who’s lesson was scored the full scores (12),
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we would expect that teacher to spend sufficient time discussing worked examples with
relevant practice problems connected to those worked examples. We also expected that
discussions, especially those surrounding worked examples, would be situated in concrete
contexts to support sense-making. Meanwhile, we expected concrete representations to be
linked to abstract representations to promote explicit understanding. Finally, we expected
that a teacher who received a full score, would ask deep questions to elicit students’ deep
explanations.

The above coding framework was further validated through two coders’ independent
scoring of a few lessons. A comparison of these codes informed further revisions. For
instance, a score of 2 in the category of worked examples initially stated, ‘Worked exam-
ples are sufficiently discussed with the underlying ideas made explicit’. However, one
coder pointed out that when the underlying idea was stressed, the scores of some par-
ticipants would be lowered twice for the same reason because the underlying idea was
also emphasized in deep questions. Based on this discussion, we removed the require-
ment of making the underlying idea explicit for worked examples. As long as a teacher
spent sufficient time discussing at least one worked example, we acknowledged that the
teacher paid attention to the worked example effect. Our rationale of focusing on time
is that, it is hard to code a teacher’s ‘attention’ to a worked example. However, the overt
behaviour, instructional time spent on a worked example(s), at least indicates a teacher’s
attempt.We acknowledge that the length of a worked example does not necessarily suggest
the ‘quality’ of its discussion. However, rushing through a worked example is arguably not
desirable. In addition to the revision of the worked example category, we added a bullet
to the description of a score of 1 in the explanations category: ‘Teacher directly provides
deep explanations’. We believed this was better than ‘No deep explanations or teachers
provide little or surface explanation’ (a score of 0) but worse than ‘Students provided deep
explanations or a teacher rephrased student explanation to make it deep’ (a score of 2).

3.5. Data coding and analysis

The first author used the finalized coding framework to score each of the 32 lessons. Ratio-
nale for each score was documented through comments. Typical examples of coding is
reported in the Results section. Two challenges occurred during the coding process which
were resolved through discussions within the research team. First, when coding worked
examples of a lesson, what it meant by ‘sufficient’ was subjective. After discussion, we
decided to justify our decision based on our sense referring to the length, focus, and com-
pleteness of class discussion of a worked example(s). We further recorded the time spent
on each worked example to confirm our ‘sense’. As reported later, the average time on each
worked example was about 8min.We were aware that ‘8min’ was not a magical number to
follow. However, our video observation confirms that when a teacher spent about 8min or
more, they were generally able to provide a complete discussion involving representation
uses and student discussion of the worked example, which may arguably have potential to
generate some worked example effect.

The other challenge that occurred during coding was that we found that the three cate-
gories cannot be completely separated in a lesson, (e.g. A teacher may ask a question about
representations when teaching a worked example). For the purpose of this research, we
decided to focus on different aspects of each category. Consider, for example, a teacher
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Table 3. A coding framework for videotaped lessons.

Category Subcategory 0 1 2

Worked Examples Example Examples and guided
practice cannot be
differentiated.

Worked examples are
discussed in a brief
manner.

Worked example is
sufficiently discussed.

Practice Practice problems have
no connection to the
worked examples.

Practice problems have
some connections to the
worked example.

Practice problems have
clear and explicit
connection to the
worked example.

Representations Concrete Discussions, especially
of worked examples,
are completely limited
to the abstract. No
manipulatives, pictures,
or story situations are
used.

• Concrete contexts (e.g.
word problems) are
involved but not
utilized sufficiently for
teaching the worked
example;

• Semi-concrete
representations such as
dots or cubes are used
as a context for
teaching the worked
example

Discussions, especially
of worked examples,
are well situated in
rich concrete contexts
(e.g. pictures and word
problems). Concrete
materials are used to
make sense of the target
concepts.

Abstract Discussions are limited to
the concrete and are
not at all linked to the
abstract representations
of the target concept.

• Both concrete and
abstract
representations are
involved but the link
between both is lacked;

• Since all discussions
remain abstract, the
link between the
concrete and abstract is
invisible;

• Opposite: from abstract
to concrete.

Concrete representations
are used to purposefully
link the abstract
representations to the
target concept.

Deep questions Question No deep questions are
asked when discussing
a worked example or
guided practices.

Some deep questions are
posed to elicit deep
explanations.

Deep questions are
sufficiently posed
to elicit student
explanation of the
targeted concepts.

Explanation • No deep student
explanations are
elicited.

• Teacher provides little
or surface explanations.

• A few deep student
responses are elicited.
However, most of the
student explanations
still remain at a surface
level.

• Teacher rephrases
students’ explanations
without promoting to a
higher level.

• Teacher directly
provides deep
explanations.

• Deep student
explanations are
elicited. In particular,
these explanations are
related to the target
concepts.

• Teacher rephrases
student explanations to
make them deep.

who situated the new teaching in a story context which was faded into numerical solutions.
We would score both concrete and abstract representations as 2. However, if this teacher
failed to ask deep questions to elicit students’ deep explanations of these representations,
we would deduct points from the subcategories of ‘deep questions’ and ‘deep explanations’
rather than from ‘representations’.

To check for reliability, another author who was familiar with the coding rubric inde-
pendently coded 20% of the lessons (n = 6). Results were compared with those of the
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first author. Among the 72 codes, 8 were different, resulting in an inter-rater reliability of
88.9%. In addition, the first author re-scored all the 32 lessons one year later and checked
the latest codes against the initial records. Among 192 individual codes (8 teachers× 4
lessons/teacher× 6 codes/lesson), only 16 were changed, an intra-rater reliability of 92%.
Disagreements were resolved before data analysis. The scores from the 32 coding sheets
were then compiled using an Excel spreadsheet.

To obtain enriched understanding, the first author conducted systematic inspections
of all lessons documenting the lesson features. An Excel spreadsheet was used to record
the total length of each lesson, the number of worked examples, and the length of each
worked example. A second Excel spreadsheet was used to document the types of represen-
tations and connections that were observed between concrete and abstract. Finally, a third
Excel spreadsheet was used to list teachers’ typical ‘deep questions’ and corresponding stu-
dents’ explanations. Comments on missed questioning opportunities were also recorded.
After all of these fine-grained analyses were completed, we checked these observations
against teachers’ lesson scores to ensure consistency. We also identified typical instruc-
tional episodes that illustrated teachers’ successes and challenges in terms of each cognitive
instructional principle. Finally, we examined teachers’ lesson scores and their textbooks
uses (either Go Math or Investigations) to identify if there was a pattern between them.

4. Results

In this section, we first report the sampled teachers’ overall performance based on their
lesson scores.We then report features of teachers’ use of worked examples, representations,
and deep questions.

4.1. An overview of teaching performance

Table 4 indicates each teacher’s average video scores across four lessons. As previously
introduced, the full score for each sub-category was 2, totalling up to 12 for each lesson.
Despite the fact that all participating teachers were considered as experienced teachers in
this study, there was clear variation among teachers’ video scores, ranging from 6.75–11.25.
The average score was 8.9 out of 12. Three teachers (Ann, Bea, and Gia) were scored at 7 or
lower while the rests scored at 9 or above; a third grade teacher (Emily) obtained the high-
est score. Across the six sub-categories, the lesson scores indicate that teachers performed
best in using worked examples (Mexamples = 1.78, Mpractice = 1.84) but worst in asking
deep questions (Mquestions = 1.16,Mexplanations = 0.91). Teachers’ average performance on
representation uses fell in between (Mconcrete = 1.63,Mabstract = 1.59).

In comparison with our prior study (Ding & Carlson, 2013) where the same six subcat-
egories were used to evaluated teachers’ initial lesson plans, findings in our current study
appeared to be more positive (see Figure 1). Except for the average score of ‘question’ was
slightly lower, the other sub-categories in the current study were all higher. Despite this
positive observation, the overall pattern in using worked example, representations, and
deep questions indicate similar overall successes and challenges as in our prior study.

Our further comparison between teachers’ lesson scores and their textbooks used, how-
ever, did not show a clear pattern. Even though the average lesson scores of teachers who
used Investigations (M = 9.4) is higher than those who used Go Math (M = 8.4), each
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Table 4. Individual teachers’ average video acores across four lessons.

Teacher Grade Example Practice Concrete Abstract Question Explanation Total Textbook

Ann G1 1.75 2 1.25 1.25 0.5 0 6.75 Go Math
Bea G1 1 1.5 1 1.25 1.25 1 7 Investigation
Carla G2 2 1.75 1.75 1.5 1 1 9 Investigation
Daria G2 2 1.75 2 2 1 1 9.75 Go Math
Emily G3 1.75 2 2 2 1.75 1.75 11.25 Investigation
Faith G3 2 2 1.75 1.75 1.5 1 10 Go Math
Gia G4 1.75 1.75 1.5 1 0.75 0.25 7 Go Math
Henry G4 2 2 1.75 2 1.5 1.25 10.5 Investigation
Average 1.78 1.84 1.63 1.59 1.16 0.91 8.9 (out of 12)

Figure 1. A comparison of teacher scores on six sub-categories in current and prior studies.

textbook was associated with both high and low scores (see Table 4, last two columns).
This seems to make sense because there were diverse styles in textbook implementation
(Nicol & Crespo, 2006) and an experienced teacher could enhance the cognitive demand
of a textbook regardless of its quality (Hassler, 2016). Given that teachers’ textbook use is
beyond the scope of this study, we focus our report below on the instructional features in
terms of the targeted cognitive principles.

4.2. The use of worked examples

4.2.1. Attending to worked examples
Results show that most teachers in this study attended to worked examples before ask-
ing students to practice (Mexamples = 1.78), which is more positive than other classrooms
where minimum guidance was provided (Kirschner et al., 2006). In this study, four teach-
ers were judged as spending sufficient time on at least one worked example in all lessons,
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three teachers spent sufficient time in most lessons (75%), and only one (Bea) never dis-
cussed any worked example in a sufficient manner. Teacher Bea used the inquiry-based
textbook, Investigations,which suggested games for each lesson. During the worked exam-
ple time, Bea mainly explained how to play the games which often went quickly. However,
‘textbook’ seemed not necessarily to be the factor that hindered teacher’s use of worked
examples; in our study, the other three teachers (Daria, Emily, Henry) who also used Inves-
tigations were able to set up plenty of time for worked examples before students’ own
exploration.

Recall that our evaluation of teachers’ use of worked examples focusedmainly on ‘quan-
tity’. Taking the length of worked examples into consideration, we found that among 32
lessons (1842 total minutes) about 33% of class time was devoted to worked examples
(603min). Overall, there were 76 worked examples with an average of 8min per example
(603/76 ≈ 7.9). As acknowledged, there was nomagic number that indicated teachers’ suf-
ficient use of a worked example. However, in hindsight, our video observation confirmed
that when a teacher spent about 8min on one worked example, the process of unpack-
ing an example task was generally complete. Otherwise, the discussion appeared to be
rushed.

Taking the number of worked examples into consideration, we found there were vari-
ations across lessons, ranging from 1 to 6 worked examples. Specifically, 25% of the 32
lessons (n = 8) discussed one worked example. The rest of the lessons contained multiple
examples, with 38% involving 2 examples, 35% involving 3–4 examples, and 2% involv-
ing 5–6 examples. For instance, while Emily used 14min to discuss one example, Ann
used 19min to cover 6 examples, resulting in an average of 3min per example (none
reached 8min). In this case, we scored Emily’s use of worked example as 2 and Ann’s
as 1. Given that 75% of the lessons discussed multiple examples, although not factored
into our scoring, we inspected the nature of these example tasks. We noticed that when
multiple worked examples were used, the nature of the examples was often repetitive. For
instance, Ann’s lesson 1 included four worked examples of fact family, which involved dif-
ferent number pairs (8, 4, and 12; 6, 3, and 9; 7, 5, and 12; 2, 3 and 5) and she only guided
students to find the answer for each task without involving additional conceptual aspects.
The repetitive nature of worked examples within a lesson was indeed common in this
study.

4.2.2. Linking to practice problems
Practice problems in most lessons were found to be relevant to worked examples
(Mpractice = 1.84). However, in a few lessons, the practice problems were irrelevant tasks,
whichmay not help reinforce what was taught through the worked examples. For instance,
the worked examples of Bea’s lesson 2 focused on fact family. Using a ten-frame, the class
generated four worked examples involving numbers (a) 7, 3, 10, (b) 5, 5, 10, (c) 10, 4, 14,
and (d) 12, 2, 14, respectively. However, the practice problem was only to play the game of
‘tens go fish’ in pairs (see Figure 2, Bea). That is, if a student pulled an ‘8’ card, the other
student should give him/her a ‘2’ because 8 plus 2 makes 10. Mathematically, the goal of
the game was to find the missing number such as 8+ () = 10, which is a different task
from a ‘fact family’ (Ding, 2016). To solve 8+ () = 10, a student may need to retrieve and
apply their prior knowledge of ‘10–8 = 2’, which is a harder process than seeing a given
fact family. Another reason of difference is that to find missing numbers like 8+ () = 10,
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a student does not necessarily need to use inverse relations. As seen from Bea’s lesson 2,
some students used strategies such as counting up from 8 to 10, which involved direct
rather than inverse thinking (Ding & Auxter, 2017). In this sense, the worked example and
practice problems in Bea’s lesson 2 was not fully connected (scored a 1). Likewise, Carla’s
two worked examples in lesson 2 were initial unknown problems. However, none of her
three practice problems was directly aligned with the worked examples.

4.3. The use of representations

4.3.1. Using concrete representations
Teachers’ use of concrete representations in this study was overall encouraging
(Mconcrete = 1.63). Concrete (or semi-concrete) representations in this study included
using manipulatives (e.g. fingers, cubes, dominos, base-ten blocks), charts (e.g. fact trian-
gles, ten-frame sheets, number grid), diagrams (e.g. number lines, tape diagrams, pictures),
and story problems (see Figure 2). The use of multiple representations was a common fea-
ture across lessons. Typically, there were 3–4 different types of concrete representations
used in each lesson. Students in all classrooms were allowed to choose their own manip-
ulatives (e.g. cubes, blocks, fingers) to solve inverse relations problem. Some teachers (e.g.
Carla) asked students to choose their favourite animals or food to create story problems
based on a given bar model.

Encouragingly, themajority of the teachers situated worked examples in real world con-
texts (scored a 2 for concrete representations). This included all four of Daria and Emily’s
lessons (100%), three of the four lessons (75%) fromCarla, Faith, andHenry’s, two of Gia’s
lessons (50%) and one of Ann’s lessons (25%). Figure 2 illustrates typical examples includ-
ing Ann and Carla’s balloon problem, Daria’s soccer ball problem, Emily’s robot-hands
problem, Faith’s bagel problem, and Henry’s apple problem. As we can see from these
pictures, some teachers guided students to understand the story situation by drawing cor-
responding pictures or diagrams, which was consistent with the IES recommendation for
combining graphics with verbal descriptions. In fact, Daria also asked students to imagine
the story context: ‘Raise your hand if you can picture the locker room, and there is a big bag
with 15 soccer balls in it’ (See Figure 2, Daria). Note that the example of Ann in Figure 2
was the only case where the teacher situated her new teaching in a story context (scored
a 2). However, her purpose for using these concrete representations, as indicated by her
questions, was to help students seek computational answers rather than to understand the
quantitative relationships. We captured this lack of depth in categories of ‘deep questions’
and ‘deep explanations’ (elaborated upon later).

While the majority of lessons situated the teaching of worked examples in concrete con-
texts, the rest of the lessons limited the new teaching only to semi-concrete representations
such as dominos, cubes, and dice. In fact, all four of Bea’s lessons (100%), three of Ann’s
lessons (75%), two of Gia’s lessons (50%), and one each of Carla, Faith, andHenry’s lessons
(25%) shared the same pattern. For these cases, ‘concrete representation’ were scored a 1.
In Figure 2, Bea drew the aforementioned ten-frame with 7 boxes shaded, leading to a
fact family (7+ 3 = 10, 3+ 7 = 10, 10–3 = 7, and 10–7 = 3). However, the Investigations
teacher’s guide actually suggested a pair of story problems about pencils involving num-
bers of 7, 3, and 10 (the first problem is solved by 7+ 3 = 10 and the second is solved by
10-3= ?). The teacher guide also reminded teachers,
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Figure 2. Teachers’ use of concrete representations.

After posing the second problem, ask students to consider how the problem they have already
solved might help them solve the new problem. Keep in mind that for many first graders, the
second problem will seem like a new, unrelated problem.

Unfortunately, this teacher did not include these story problems in her teaching. Bea could
have started with the textbook suggested story context, which could have worked together
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Figure 2. Continued.

with her ten-frame to help students make sense of the inverse relations. Likewise, Carla
in her first lesson only asked students to use cubes to illustrate a fact family that served as
a worked example. Also, Faith and Henry only used array models to teach multiplicative
inverses in one of their lessons, which resulted in a lack of contextual support (see Figure 2,
Henry for an example).

4.3.2. Making connections between concrete and abstract
In this study, teachers in the majority of their lessons made rich connections between
concrete and abstract (Mabstract = 1.59), which often indicated concreteness fading (Fyfe
et al., 2015; McNeil & Fyfe, 2012). This included all four (100%) of Daria, Emily, Faith,
and Henry’s all lessons, two (50%) of Bea and Carla’s lessons, and one (25%) lesson from
both Ann and Gia. Ideally, a teacher could ask questions to explicitly request connections
between concrete and abstract. However, during our scoring, even if a teacher did not ask
a question about the representational connections, we assumed that the same context (e.g.
bagels, robots) would assist students to sense the connections. For instance, in Figure 2,
Faith drew a barmodel to transition from theword problems (21 bagels equally sharedwith
7 customers) and the corresponding number sentences (__× __ = __, and 21 ÷ 7 = ?).
In this case, we scored ‘linking to abstract’ as 2. Similarly, Emily connected concrete and
abstract representations using the multiplication and division chart (see Figure 2). Emily
first discussed amultiplication problem: ‘A robot has 4 hands. Each hand has 6 fingers. How
many fingers does the robot have altogether?’ She guided the class to use the chart to identify
the role of each quantity (e.g. ‘4 hands’ indicated the number of groups), which led to the
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associated equation ‘4× 6 = �’. Next, she requested that the students change this problem
to a related division problemwhichwas not proposed by her textbook, Investigations. Using
the same chart, the class analyzed the roles of quantities in the division problem, which led
to numerical solutions (See Figure 2). Emily’s recording of this pair of inverse word prob-
lems using the chart indicated her structural awareness of inverse relations (number of
groups× number in each group = product/total, total ÷ number of groups = number in
each group).

In contrast, lessons that did not receive a full score for making concrete-abstract con-
nections demonstrated three issues. First, a teacher may have limited the instruction to
semi-concrete representations. Bea’s first lesson taught a game named five in a row with
subtraction. Throughout this lesson, students only played game cards and there was not
a single number sentence written. As such, we scored her linking to abstract as 0. The
second case was due to an opposite representational sequence ranging from abstract to
concrete. As mentioned above, Carla’s first lesson started with a fact family (7+ 1 = , 8–1
= , 8–7 = , 1+ 7 = ). After discussion of the answers, she asked students to use cubes
to demonstrate the fact family. In this case, the sequence went from abstract to semi-
concrete. Therefore, we scored it a ‘1’. Finally, there were lessons that contained both
concrete and abstract presentations simultaneously. However, the connection between
concrete and abstractwas too distant for students to discover. Figure 2 illustrated one exam-
ple. In Gia’s lesson, she requested that half of the class draw pictures (concrete) while the
other half write numerical sentences (abstract) for the statement, ‘Sophia had 4 crackers,
and Nick had 12 times hers’ (scored a ‘2’ for concrete). She then asked four students to
explain their drawings or their number sentences in front of the class. (See Figure 2, Gia).
However, connections between the concrete and the abstract representations were never
made in this class. Since there was not a process like ‘concreteness fading’ that may have
focused students’ attention to the connections, we scored the category of linking to abstract
representation as a ‘1’.

4.4. The use of deep questions

4.4.1. Asking deep questions
Among the three instructional principles analyzed, teachers’ performance on deep ques-
tioning demonstrated the most challenges (Mquestions = 1.16). Among 32 lessons, only 9
lessons (28%) taught by four teachers (Bea, Emily, Faith, and Henry) received a full score
of 2. In contrast, three lessons (9%) taught by two teachers (Ann and Gia) received a score
of 0 due to a complete lack of deep questions. The other 20 lessons (62.5%) across all eight
teachers received partial scores.

The main issue of teacher questioning was its focus on computational answers, which
did not demand deep questions. For instance, in Ann’s Lesson 4, one student suggested
‘7–2 = I don’t know’ and another student suggested ‘2+ I don’t know = 7’, providing a
great opportunity to address inverse relations (See Figure 2, Ann). However, Ann only
reminded the class that these two number sentences were a ‘fact family’ and proceeded
with finding the answer for ‘I don’t know’ rather than uncovering the underlying inverse
relation. Another issue that diminished the need to ask deep questions was teachers’
instruction to look for key words. For instance, Ann reminded students, ‘There is a word
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in the story to help you decide if you add or subtract. Pick one word from this story’. Simi-
larly, Daria guided students to look for the keywords ‘in all’ for addition. Gia also reminded
students, ‘Here, look at the wording, look at the wording. What operation might you use?
The wording should help you figure it out’. Even though the use of key words has been
criticized for a long time (e.g. Nesher & Teubal, 1975), our findings show that this practice
frequently occurs even in experienced teachers’ classrooms.

Since asking deep questions appeared to be a challenge for many teachers, we inspected
the features of those available deep questions in this study. First, we found that these
questions stressed mathematical concepts (e.g. meaning of operations). One example was
Henry’s lesson that implicitly involved multiplicative inverses based on comparison prob-
lems. When discussing a multiplication problem – DJ picks 7 apples. Teacher Kelly picked
4 times as many apples. How many apples did Teacher Kelly pick? – Henry drew a diagram
about apples (see Figure 2, Henry) and asked a series of questions focusing on the concept
of ‘times’:

Excerpt 1:
T: What does ‘times’ mean?
S1: Uh, it means that when she has 7 more but 4 times.
T: What do you mean, she has 7 more but 4 times?
S1: Like, she has 7 more and then she has another 7 more, so it’s like . . .

T: Call on someone to help you out to clarify your thinking.
S2: Can I give an example?
T: Please.
S2: Do you see how you have 7 apples?
T: I do see I have 7 apples. That’s my favourite number.
S2: You just add on 4 more like. They saying like you’re adding on 4 more bags of 7 apples.
T: Well, what does it mean that I have to add on 4 more bags of 7 apples?
S2: Because it says 4 times.
T: Okay, because it says 4 times, but why do the bags have to have 7?
S2: Because of the number that you already have, that’s like the . . .

T: Ah, because of the number I have already. . . . Okay, because it’s 4 times as many apples
as I already picked. So she has to have 4 groups, with that same number inside of it.
So now, who can tell us an equation that can represent howmany apples teacher Kelly
picked?

In Excerpt 1, Henry grasped the word ‘times’ to help student understand the concept of
multiplicative comparison. According to the literature, comparison problems are challeng-
ing because they deal with relationships that are hard to manipulate (Nunes et al., 2009).
Yet, multiplicative comparisons can be referred to the basic meaning of multiplication (the
equal groups) to make them more understandable (Carpenter et al., 1999). In the above
excerpt, with continuous prompts, students were able to explain ‘4 times’ using their own
words: ‘Like, she has 7 more and then she has another 7 more, so it’s like . . . ’ ‘Do you see
how you have 7 apples? You just add on 4 more like. They saying like you’re adding on 4
more bags of 7 apples’. These responses indicated students’ linking between the concept of
‘times’ and their prior knowledge of the equal groups meaning.
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The second feature of deep questions was related to stressing of quantitative relation-
ships. As previously mentioned, Carla taught a lesson about an initial unknown problem:
‘Sally had a bunch of balloons. 10 balloons flew away. Then she had 8 balloons left. How
many balloons did Sally have at the start?’ (see Figure 2, Carla.) This type of problem is
challenging because the story describes a decreasing situation, yet the solution demands
the use of addition (Nunes et al., 2009). Childrenwho seek keywords (e.g. flew away)would
likely use subtraction (10–8 = 2) to answer this problem. To help students understand the
quantitative relationship, Carla guided the class in drawing the problem’s initial situation,
change, and result (see Figure 2). During student group work, she spent about 5min with
a student who used cubes but suggested 10–8 as a solution for this problem. Pointing to
the 10 cubes which represented the balloons that had flown away, Carla asked, ‘So did
these balloons fly away? (Mhmm). Okay, so did she have this many in the beginning?’ This
question prompted the student to focus on the relationship among ‘initial’, ‘change’, and
‘result’. With continuous guidance, this student understood that the 10 balloons that flew
away were part of the initial total amount. Thus, adding the balloons that had flown away
and the ones remaining in Sally’s hand would give him the answer to how many balloons
Sally had at the beginning. Because Clara only asked deep questions to an individual stu-
dent rather than the whole class, we scored this category a 1. Perhaps if the teacher had
asked these questions to the whole class, this may have led to the following relationship
being more explicit for more students: the flown-away+ the left over = the initial total.

An interesting finding in this studywas related to teachers’ questions on representations,
which revealed a dual purpose – targeting both quantitative relationships (or concepts)
and computational answers. As seen in Figure 2, Daria began her lesson by drawing the
textbook-suggested bar model on the board. She then highlighted the part-whole relation
and indicated that her purpose for using the bar model was to understand the inverse
relations. Later in the lesson, she read the class a pair of inverse word problems which
were represented by the bar models. Next, she suggested the solutions 8+ 7 and 15–7,
and shifted discussion towards computational strategies (e.g. double plus 1, using cubes).
It was not until one student reported that she did not need to use the cubes to compute
the subtraction problem that Daria oriented the class conversation back to the quantitative
relationships: ‘How many people didn’t need to use the cubes either because they realized
something?’One student referred to the twobarmodels.Daria then asked, ‘Howmanypeo-
ple noticed that both bar models had the same numbers but they just had a different one
missing?’ This question elicited another student comment that this pair of bar models was
just like the ‘fact triangles’ they learned before, indicating the student’s realization of the
inverse relation. The above dual purpose of questioning on representations was common
across lessons.

4.4.2. Eliciting deep explanations
Among six sub-categories, ‘deep explanation’ was scored the lowest in this study
(Mexplanations = 0.91). Among 32 lessons, only 4 (12.5%) taught by two teachers (Emily and
Henry) received a full score. In contrast, eight lessons (25%) taught by two teachers (Ann
andGia) completely missed deep explanations. The rest of the 20 lessons (62.5%) taught by
six teachers received a partial score. In other words, deep explanations were largelymissing
in most classrooms. One of the reasons may be related to the lack of deep questioning in
most lessons as reported above. Excerpt 2 demonstrates students’ limited thinking when
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deep questions were missed (scored a 0 for ‘explanation’). After presenting the set of repre-
sentations on the board (see Figure 2, Ann), Ann had the following conversation with the
students:

Excerpt 2:
T: All right. I need your final answer on your slate.
(Students raise their slates, and the teacher looks at them.)
T: (Goes back to the board and points to the unchecked circles on the ten frame.) Count

for me!
S: 1, 2, 3, 4, 5.
T: That way gives me 5.
T: (Points to the uncircled balloons in the picture.)
S: (Students count.) 1, 2, 3, 4, 5.
T: That way gives me 5.
T: (Points to ‘5’ on the number line.) I subtract 2 from 7, and the answer is?
S: 5!
T: So the answer must be 5. (Writes ‘5’ under ‘Final answer’ and fills the number sentences

with ‘5’).

All these representations in Excerpt 2 indicate the part-whole relationship. However,
Ann did not ask a single question about the part-whole structure. As a result, students
merely counted from 1 to 5 and computed the answer for 7-2. Ann could have asked
students why they could count in certain ways and why both addition (2+ ? = 7) and
subtraction (7–2 = ?) solved this problem, as well as why/how these two number sen-
tences were related to each other. Unfortunately, explanations to these deep questions were
completely missed.

We also observed that teachers who did ask deep questions only anticipated surface
explanations. For instance, Ann asked students how the number sentences in a fact fam-
ily were related. She was satisfied by students’ responding that they were the same three
numbers and thus did not ask follow-up questions to orient students’ attention to the
part-whole relationships. Similarly, we observed that all eight teachers encouraged mul-
tiple solutions (often multiple computation strategies) by asking questions such as, ‘who
has another solution?’ However, after different solutions were presented, the class usually
proceeded without explicit comparisons between multiple solutions in terms of structural
similarities and differences. Given that comparisons are an important strategy to promote
structural thinking (Kotovsky & Gentner, 1996; Star & Rittle-Johnson, 2009), the teach-
ers in the current study could have asked follow-up comparison questions to elicit deep
explanations.

A slightly better, but still problematic, situation is that some teachers did not ask
deep questions but provided deep explanations themselves. In the example of Carla (see
Figure 2), she drew bar models and created corresponding stories. Later, when she guided
students to see the connections between these two bar diagrams, she herself started by
explaining the similarities and only asked how many students also noticed those simi-
larities. Given that students should be part of the meaning-making process (Radford &
Roth, 2011), teachers’ giving out their own deep explanations likely deprives students of
important thinking and reasoning opportunities.
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5. Discussion

This study examines how cognitive instructional principles on the use of worked exam-
ples, representations, and deep questions (Pashler et al., 2007) are used by experienced
elementary teachers when teaching a critical early algebra topic, inverse relations (Baroody
et al., 2009; Torbeyns et al., 2009; Vergnaud, 1988). Results show differences in teachers’
instructional quality. This observation echoes Hiebert and Stigler’s (2017) insight that the
variation of mathematics teaching quality in U.S. classrooms is unnecessarily large. This
variation, however, has enabled us to identify teachers’ successes and challenges in using
worked examples, representations, and deep questions, which is informative for the fields of
mathematics education and cognitive research for better supporting teachers’ development
of students’ algebraic and overall mathematical thinking. Below, we discuss findings under
each category. Due to the interconnected nature of these cognitive aspects, our discussions
may occasionally relate all instructional principles together.

5.1. Unpacking oneworked example sufficiently

The literature notes that worked examples are rarely utilized in US classrooms because
teachers often present problem solving tasks for small group explorations with minimum
teacher instruction (Kirschner et al., 2006; Stigler & Hiebert, 1999). In this study, the sam-
pled teachers generally embraced the use of worked examples as measured by the time
spent on them (on average, 33% of class time). This is encouraging due to the well-known
worked example effect in developing students’ mental schema to enhance problem solving
(Sweller, 1988; Sweller & Cooper, 1985). However, it should be noted that our coding of
worked examples in this study focused mainly on the ‘quantity’ rather than ‘quality’. While
some teachers spent a good amount of time discussing worked examples, some teachers
rushed through several repetitive examples, resulting in limited time on each example. This
is similar to our prior finding about teachers’ lesson planning (Ding&Carlson, 2013)where
teachers seemed to hold a common belief that if students don’t understand the mathemat-
ical idea, they should see more examples until comprehension is reached. We argue that if
a teacher does not effectively guide the class to unpack one worked example to establish
the relevant mental schema (Sweller & Cooper, 1985), presenting many repetitive exam-
ples would still not help. Based on these findings, we propose that instead of presenting 2–3
extra short, repetitive worked examples, a teacher may cut off the extra examples to save
time for the discussion of the main worked example. This way, the underlying concepts
of the worked example may be adequately discussed to establish the targeted schema. As
Stigler and Hiebert (1999) reported, Japanese teachers only discuss one problem-solving
task in a lesson, which may even extend into follow-up lessons.

Now, the questionmay become, how can a teacher spend a long chunk of time discussing
only one worked example? As reported in this study, only 25% of the 32 lessons discussed a
single worked example. Effectively unpacking a single worked example may, therefore, be
a common challenge faced by teachers. Findings from this study suggest that teachers may
successfully use representations and deep questions to unpack worked examples. In other
words, it is not enough to simply encourage teachers to teach worked examples. Rather,
teachers need to know ‘how’ representations and deep questions may be incorporated in
the process of unpacking a worked example. We will discuss these two aspects in later
sections.
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Additionally, our findings reveal a disconnect between worked example and practice
problems in some classrooms. The purpose of teaching worked examples is to enhance
the follow up problem solving that share structural connections with the worked examples
(Catrambone & Yuasa, 2006; Sweller & Cooper, 1985; van Gog et al., 2011; Zhu & Simon,
1987). In this study, we notice that some teachers provided problems that share only surface
but not structural connections, which may not advance the worked example effect. One of
the reasons is that the teachers simply followed textbook presentation. This calls for atten-
tion of curriculum support in stream-lining the worked examples and practice problems to
ensure students’ deep learning of the core concepts. This also calls for knowledge support
for teachers in enhancing their understanding of structural connections of relevant tasks.

5.2. Using concrete support with concreteness fading formeaning-making

In this study, many teachers situated new teaching of inverse relation in a real-world con-
text, which is encouraging. This contextual support in learning early algebra is important
because these concepts generally refer to mathematics structures that are distant from stu-
dents’ real-world experiences (Kaput, 2008; Kieran, 2018). Situating the new teaching of
inverse relation in concrete situations may, therefore, help activate students’ prior knowl-
edge for sense-making (Gerofsky, 2009) and help address the limitation of focusing on
number manipulation (Baroody, 1999; Torbeyns et al., 2009). In this study, concrete sit-
uations used by teachers may or may not have come from the textbooks. In fact, when
the textbooks provided relevant real-word contexts, some teachers did not necessarily use
those contexts but rather encouraged students to create story problems involving their own
favourite objects. Moreover, there were teachers who asked students to create story situa-
tions that was not outlined by the textbooks. Likely, teachers’ use of concrete contexts is
related to their beliefs in the role of concrete contexts in supporting students’ learning. Of
course, we found that some teachers still limited the discussion of inverse relations to semi-
abstract (e.g. dominos) and abstract (e.g. fact triangle) representations. This echoes the
aforementioned instructional shortcoming about number manipulation (Baroody, 1999;
Torbeyns et al., 2009).

For connection-making between concrete and abstract, some teachers employed the
method of concreteness fadi2019ng, first starting with a word problem context which
was modelled through drawings (circles, tapes, tallies) and further faded into number
sentences. Such a sequence is recommended as a way to connect concrete and abstract
representations (Pashler et al., 2007) and is found to be supportive of students’ learning
and transfer (Fyfe et al., 2015; Goldstone & Son, 2005; McNeil & Fyfe, 2012).

To facilitate connection making, teachers’ use of bar model or tape diagrams (Murata,
2008) is promising. The tape diagram is a linear model that can effectively illustrate the
embedded quantitative relationships and serve as a transition from concrete to abstract
(Murata, 2008; Pashler et al., 2007). This type of schematic diagram has been widely used
in East Asian countries (Cai & Moyer, 2008; Ding & Li, 2014; Murata, 2008) and has been
found to be effective in supporting student learning (Ng& Lee, 2009). Therefore, the Com-
mon Core State Standards expect elementary students to learn to use them for problem
solving (CCSSI, 2010). In this study, seven of eight (87.5%) teachers used tape diagrams
during instruction. This is likely related to textbook influence as GoMath contained many
more bar models than Investigations.
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Despite these encouraging observations, our findings reveal that teachers used concrete
representations and linear models (e.g. tape diagrams) with different purposes. Elsewhere
(Ding et al., 2019), we reported detailed cross-cultural difference in teachers’ representa-
tional purposes between U.S. and Chinese teachers. Our U.S. teachers often used linear
models to find answers, which is indicated by their questions. As aforementioned, our
coding framework aims to separate these categories, yet, actual classroom teaching shows
that teachers’ representation uses and questioning often go together. It seems that merely
asking teachers to use real-world context, tape diagrams, and concreteness fading cannot
guarantee the depth of teaching. Teachers ought to ask deep questions to elicit students’
explanations of the deepmeaning embodied by these representations.We discuss this point
further in the next section.

5.3. Asking deep follow-up questions involving comparisons

To improve students’ learning, deep questions are recommended for classroom instruc-
tion (Pashler et al., 2007). Research on teacher questioning has a long history (Gall, 1970;
Stevens, 1912). Pomerance et al. (2016) also pointed out that asking deep questions was
the only IES recommendation frequently stressed by current textbooks in teacher educa-
tion programmes. Surprisingly, our classroom findings indicate that asking deep questions
is the weakest area among the three aspects investigated. Consequently, both the quan-
tity and the quality of students’ deep explanations are discouraging. When teachers did
ask deep questions, we found that they focused on either the concepts or the quantitative
relationships. As reviewed, early algebra refers to fundamental mathematical principles,
relations, and structures which are abstract in nature (Kaput, 2008; Kieran, 2018). Thus, it
is important for teachers to ask deep questions to orient students’ attention and elicit their
explanations of the structural aspects of a representation. Interestingly, we found teachers
in this study often asked questions on representations with a dual focus, targeting both
quantitative relationships/concepts and computational answers, which is certainly better
than a pure procedural focus on computational answers. However, the above dual focus
on both quantitative relationships and computational answers is still different from our
recent finding on Chinese teachers’ sole focus on quantitative relationships (Ding et al.,
2019). With the goal of developing algebraic thinking in mind, we argue for the impor-
tance of focusing on quantitative relationships/concepts over computational answers. This
may help overcome another instructional limitation on inverse relations, that is, focusing
on strategies rather than the undergirding ideas.

Our findings also indicate that a single deep question may not necessarily elicit stu-
dents’ deep explanations. Teachers’ persistence in asking follow-up deep questions (e.g.
Henry’s class), especially comparison questions, helped elicit students’ deep explana-
tions. This finding adds insights to IES recommendations (Pashler et al., 2007) and prior
literature on teacher questioning (Craig et al., 2006; Franke et al., 2009). Prior research sug-
gests that comparisons facilitate critical cognitive processes, promote relational thinking
(Kotovsky & Gentner, 1996), and are effective in learning mathematics (Star & Rittle-
Johnson, 2009). Unfortunately, although we found that many teachers in the current
study encouraged multiple solutions, they did not follow up with deep questions to elicit
students’ comparisons among these solutions. Instead, they were often satisfied with stu-
dents’ explanations of computational procedures and then moved toward other tasks. This
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finding echoes prior studies (Kazemi & Stipek, 2001; Richland et al., 2007) and calls for
further research on how comparisons may be incorporated in teacher questioning. To
date, we have no data to explain the exact reasons for teachers’ lack of follow-up deep
questions including comparison questions. Perhaps teachers’ own limited understand-
ing of structural similarities and differences is a factor; perhaps teachers’ concerns about
student motivation (not being over-challenged) affect their classroom decisions. Future
studies should explore why the practice of asking deep questions appears particularly dif-
ficult and whether the strategy of asking follow-up comparison questions serves as a path
to enhance this practice, resulting in increased ‘depth’ of teacher-student dialogues in
classrooms.

5.4. Limitations, implications, and future directions

This study examines experienced teachers’ classroom teaching of early algebra focusing on
inverse relations. We acknowledge that only eight teachers’ 32 lessons on one early algebra
topic were analyzed. Thus, findings should not be generalized. In fact, the purpose of a case
study is not for generalization but a deep understanding of the targeted case (Creswell &
Poth, 2018). In addition, our coding framework only contains a 0–2 scale which cannot
fully capture instructional features that may fall between the scores of 0–1 or 1–2. Possibly,
a more precise scale in future studies may serve this purpose better. Finally, our findings
are only based on videotaped lessons without linking to student performance.

Nevertheless, findings based on this case study provide insights into field, which have
implications for both cognitive and instructional research. For cognitive researchers, our
study shows that even though our participants are experienced teachers, they tend to
present multiple, repetitive ‘worked examples’, which may not ensure the worked example
effect. We suggest researchers design experimental studies to test whether an alternative
approach – unpacking one example in depth, as opposed to presenting multiple, repeti-
tive examples – can better enhance students’ subsequent problem solving. To unpack one
worked example in depth, we propose that representations (e.g. concreteness fading) and
deep questions (e.g. follow-up comparison questions) can be incorporated in the process of
unpacking aworked example. Future cognitive research designmay take these components
into consideration.

The above findings also have implications for mathematics educators and researchers.
In this study, teachers’ presentation of multiple, repetitive examples may be due to their
misconception, ‘more examples, the better’ or due to their lack of knowledge regarding
how to unpack an example in depth. Mathematics educators and researchers may start
with the joint aspect, ‘unpacking a worked example by asking deep questions on represen-
tations’ to provide professional development (PD). In fact, our findings reveal that some
experienced teachers have challenges in using representations for conceptual purposes and
asking follow-up deep questions like comparisons. Future PD effort may target these areas
to enhance classroom teaching. Of course, it is difficult to break teachers of their teaching
habits which many times might have been the way they were also taught. As such, an alter-
native path for future PD and educational research is to target prospective and beginning
teachers as they begin to develop their teaching knowledge. For instance, case studies may
be conducted on novice teachers to understand how they learn to implement the targeted
cognitive instructional principles in their teaching of mathematics.
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In this study, our findings do not indicate for a direct connection between textbooks
and classroom instruction. However, we have observed that when textbooks incorpo-
rate research assertations (e.g. bar models), teachers likely present these powerful models
in classrooms, which provides learning opportunities for students. Of course, even with
the same textbook series, teachers may use them differently (e.g. Bea and Emily’s dif-
ferent use of Investigations), resulting in different qualities of classroom teaching. This
seems to echo the pattern reported in Hassler (2016), that is, regardless of the textbook,
teachers can increase or decrease the cognitive demand of a textbook lesson during their
classroom teaching. Future studies may further explore how teachers can maximize their
textbook potential in terms of using worked examples, representations, and deep ques-
tions to increase students’ cognitive demand and to enhance early algebraic learning. With
joint effort based on detailed classroom observation, we think a science of improvement
in mathematics teaching (Cai et al., 2019; Lewis, 2015) is possible.
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