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ABSTRACT 

 

 The Common Core State Standards call for more rigorous, focused, and coherent 

curriculum and instruction, has resulted in students being faced with more cognitively 

high-demanding tasks which involve forming connections within and between 

fundamental mathematical concepts. Because mathematical comprehension generally 

relates back to one’s ability to form connections to prior knowledge, this study sought to 

examine the extent to which current learning environments expose students to 

connection-making opportunities that may help facilitate mathematical understanding of 

elementary multiplicative inverses. As part of an embedded mixed-methods design, I 

analyzed curriculum materials, classroom instruction, and student assessments from four 

elementary mathematics teachers’ classrooms. A situation model perspective of 

comprehension was used for analysis. The aim of this study was thus to determine how 

instructional tasks, representations, and deep questions are used for connection-making, 

which is the foundation of a situation model that can be used for inference-making. 

Results suggest that student comprehension depends more on connection-making 

opportunities afforded by classroom teachers, rather than on learning opportunities found 

solely within a curriculum. This included instruction that focused on deeply unpacking 

side-by-side comparison type examples, situated examples in personal concrete contexts, 

used semi-concrete representations to illustrate structural relationships, promoted 

efficiency through the sequence of presented representations, and posed deep questions 

which supported students’ sense-making and emphasized the interconnectedness of 

mathematics. By analyzing these key aspects, this study contributes to research on 
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mathematical understanding and provides a foundation for helping students facilitate 

transfer of prior knowledge into novel mathematical situation.  
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CHAPTER 1 

 

INTRODUCTION TO STUDY 

 

The goal of mathematics instruction has arguably always been to facilitate 

learning for understanding (Hiebert & Carpenter, 1992; Hiebert et al., 1997; Stylianides 

& Stylianides, 2007; Silver, Mesa, Morris, Star & Benken, 2009). In the current field of 

mathematics education, the ever-increasing emphasis on students’ comprehension of 

fundamental mathematical ideas reflects this goal. How to achieve this goal, however, 

does not seem to be simplistic. Learning for understanding has been a central theme in 

mathematics education research since at least the 1930’s (Greeno, 1978); but, it does “not 

have a single referent” (Greeno & Riley, 1987, p. 289) and the question of what exactly 

mathematical comprehension entails seems not to have a simple answer (Nickerson, 

1985). This may be in large part due to the debate that has historically centered on 

whether what to learn (content) or how to learn (pedagogy) is most important for 

developing mathematical comprehension (Baroody, 1992; Resnick & Ford, 1981; Rittle-

Johnson, Siegler, & Alibali, 2001). Today’s mathematicians, mathematics educators and 

cognitive psychologists still do not seem to have a consensus on what constitutes 

mathematical understanding/comprehension (used interchangeably from this point 

forward; Cai & Ding, 2015). 

The recent Common Core State Standards (The Common Core State Standards 

Initiatives [CCSSI], 2010) however, call for more rigorous, focused, and coherent 

curriculum and instruction. This has resulted in students being faced with more 

cognitively high-demanding tasks, which according to Stein and colleagues (2000) 

includes mathematical processes that involve building connections to prior knowledge. 
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When faced with unknown quantitative situations, Johnson-Laird (1983) suggest that 

students have a better chance of increasing comprehension when they are able to form 

connections among various relationships in order to create coherent mental models. 

Known as situation models in the reading comprehension research of van Dijk and 

Kintsch (1983), these mental models are an internal network of connections that form a 

“cognitive representation of the events, actions, persons and in general” that is to be 

learned in current and future situations. Whereas the process of forming these 

connections is known as connection-making, the reasoning process involved in using 

these connections to make conclusions in unfamiliar situations is known as inference-

making. A situation model therefore acts as a catalyst for converting connections into the 

inferences that lead to increased comprehension. Recent empirical evidence indicates that 

comprehension does in fact improve when students use conceptually relevant connections 

to prior knowledge (Sidney & Alibali, 2015) in order to make inferences. 

Although past researchers have explored mathematical understanding from both a 

processes lens (what leads to understanding) and a product lens (the outcome of 

understanding, Cai & Ding, 2015), overall understanding generally relates back to one’s 

ability to form connections to prior knowledge (Hiebert & Carpenter, 1992). Achieving 

understanding by means of forming connections is therefore a common theme found 

across most current educational research on mathematical comprehension (Anthony & 

Walshaw, 2009; Barmby, Harries, Higgins & Suggate, 2009; Blum, Galbraith, Henn & 

Niss, 2007; Businskas, 2008; Sidney & Alibali, 2015). Few researchers however, have 

explored a cognitive construct for which to facilitate mathematical connection-making. 

How current learning environments (i.e., curriculum materials, classroom instruction) 
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provide learners with opportunities to develop mathematical understanding thus remains 

largely unknown. In this study, I explore opportunities that facilitate the creation of 

situation models in order to support the development of students’ mathematical 

comprehension of multiplicative inverse relations. 

Inverse relations is a fundamental concept that transcends various mathematical 

contexts (Baroody, Torbeyns, & Verschaffel, 2009; Carpenter, Franke, & Levi, 2003; 

Nunes, Bryant, & Watson, 2009; Piaget, 1952; Resnick, 1983, 1992), and therefore 

provides a promising domain for investigating how students develop mathematical 

comprehension. Even though the importance of this fundamental mathematical idea has 

been acknowledged (CCSSI, 2010), today’s students often find inverse relations hard to 

comprehend (Nunes et al., 2009). This lack of comprehension may be related to the fact 

that in most U.S. mathematics classrooms, “instructional tasks tend to emphasize low-

level rather than high-level cognitive processes” (Silver et al., 2009, p. 503), as teaching 

students how to synthesize or evaluate knowledge in order to develop connections rarely 

occurs (McKenna & Robinson, 1990). Further, U.S. instructional preference for 

procedural focused learning (Baroody, 1999; DeSmedt et al., 2010; Torbeyns et al., 2009) 

with few references to tasks that assess targeted concepts (Crooks & Alibali, 2014), may 

be limiting connection-making opportunities during classroom instruction. In other 

words, expecting students to carry out procedures that are not conceptually connected, 

represents a low-level cognitive demand. Students’ inability to comprehend fundamental 

mathematical ideas may therefore be a consequence of not being able to make 

connections within concepts such as inverse relations that transcend across various 

contexts. To position the current study around the comprehension of multiplicative 
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inverse relations, I will first present a historical look at the topic of mathematical 

understanding, followed by the current status of this problem, both of which indicate that 

there has never been a consensus on what mathematical understanding entails and how 

one may achieve it (Cai & Ding, 2015). 

The Problem of Mathematical Comprehension: A Historical Perspective 

 

Prior to the 20th century, teaching mathematics in the U.S. was considered a 

formal means by which mental discipline was practiced (Grouws & Cebulla, 2000). This 

traditional view of mathematics education was based solely on student’s ability to arrive 

at the correct answer (Walmsley, 2007). Mathematical content primarily consisted of 

procedures based computational arithmetic whereas pedagogy entailed root 

memorization. Assessments often involved drill-and-skill type activities and thus students 

were rarely asked to work with mathematical propositions or implied content. As a result, 

learning environments lacked connection-making opportunities. By the early 1900’s 

however, calls for a more progressive style education system began to “cast doubt on the 

value of mental discipline” (Klein, 2003, p. 177). Brownell and Chazal (1935) are often 

credited with providing the first empirical evidence to support this notion when they 

found that arithmetic drills within a third grade classroom did not guarantee recall nor 

contribute to “growth in quantitative thinking” (p. 26). In essence, memorization of 

procedures, without understanding, resulted in “fragile learning” (Stylianides & 

Stylianides, 2007, p. 104). Specifically, the use of basic skills to assess understanding 

was found to inhibit transfer, the ability to apply skills learned in one situation to another 

situation (Klein, 2003). Thus, in order to help facilitate connections between learning 

situations, the reformed view of mathematics education placed an emphasis on 
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understanding. The student was no longer passive in a teacher-directed classroom; rather, 

instruction consisted of problem solving and discovery-based learning. 

Although the idea of teaching and learning for understanding has largely 

dominated American schools since the early 20th century (Klein, 2003), Walmsley (2007) 

uses the analogy of a pendulum swing to explain how mathematics education in the U.S. 

has historically oscillated between the traditional and the reform ideas surrounding 

content and pedagogy. For example, the inception of “New Math” in the 1950’s saw 

mathematics instruction take on a meaning-centered approach that stressed 

comprehension over computation. In hopes of helping the U.S. win the race to the moon, 

mathematicians for the first time became involved with school curriculum, and as a 

result, problem solving involving difficult abstract concepts replaced basic skills 

instruction (Klein, 2003). By the 1970’s however, educators realized that “New Math” 

resulted in children having weaker computational skills, and thus procedural 

memorization once again became important as the pendulum swung “Back to the Basics” 

(Walmsley, 2007, p. 35). This swing back to the traditional curriculum was met by a huge 

push to create a conceptual framework that could identify specific characteristics related 

to the acquisition of mathematical understanding. Among this research, Erlwanger (1973) 

reiterated the idea that arriving at a correct answer did not imply comprehension, and 

Skemp (1976; 1978) proposed a theory of relational understanding (knowing what to do 

and why) versus instrumental understanding (executing mathematical rules and 

procedures) in attempt to increase knowledge transfer in new situations.  

By 1989, the National Council of Teachers of Mathematics (NCTM) published 

Curriculum and Evaluation Standards for School Mathematics, a list of mainly 
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procedural skills that all students were expected to master. Even though most schools 

adopted NCTM’s standards based curriculum during the 1990’s, a decade of “math wars” 

raged on between those who favored drill-and-skill versus those who favored a problem 

solving approach for implementation of the standards (Walmsley, 2007). In an attempt to 

resolve these debates, researchers turned toward finding a middle ground between the 

traditional and reform views on mathematics education. In one of the most robust 

findings surrounding mathematical understanding, Bransford, Brown, and Cocking 

(1999) concluded that along with factual knowledge, conceptual understanding and 

procedural capabilities were both critical components of mathematical comprehension. 

Wu (1999) also argued for a common ground by stating that in the discipline of 

mathematics, “skills and understanding are completely intertwined…precision and 

fluency in the execution of the skills are the requisite vehicles to convey the conceptual 

understanding” (p. 14).  

Instead of a benchmark that could identify specific characteristics related to the 

acquisition of mathematical understanding, the 1989 NCTM standards promoted an 

American mathematics curriculum that was a mile wide but only an inch deep (Schmidt 

et al., 2001). Even after the release of curriculum focal points (NCTM, 2006), individual 

state’s curriculum expectations were still requiring teachers to cover anywhere from 26 to 

89 procedural-based content topics per grade level (Rey, et al., 2006). This resulted in 

little time being spent on helping students build the connections necessary for conceptual 

understanding (Schmidt et al., 2001). Moreover, even if time was not an issue, the 

standards based curriculum provided no guidance on how to structure learning 
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environments in order to maximize students’ learning opportunities (Stylianides & 

Stylianides, 2007).  

The Problem of Mathematical Comprehension: The Current Status 

 

Realizing the importance of making connections, the Learning Principle released 

by NCTM (2000) suggested that “students must learn mathematics with understanding, 

[while] actively building new knowledge from experience and prior knowledge” (p. 2). 

Initializing the inference-making process in order to make connections to prior 

knowledge is a critical component of mathematical comprehension, especially when 

students must solve problems in unknown situations. Providing students with learning 

opportunities to make inferences and create connections is aligned with van Dijk and 

Kintch’s (1983) notion of situation models, and therefore should increase mathematical 

comprehension. In the view of the situation model perspective, comprehension refers to 

the construction of a mental representation of what the to-be-learned content is about and 

predicts that learners are influenced by the nature of how they form connections between 

the current situation and prior knowledge (Zwaan & Radvansky, 1998). Not only do 

learners “consistently form causal connections during comprehension, but these 

connections have also been shown to facilitate the retrieval of information from long-

term memory” (p. 178).  

The Common Core State Standards (CCSSI, 2010) provide the most current and 

comprehensive view on mathematical understanding. They were built from components 

of previous standards (i.e., NCTM 2000; 2006), and they call for three key shifts in 

mathematics education: rigor, focus and coherence.  In terms of rigor, this latest round of 

curriculum reform emphasizes that both “mathematical understanding and procedural 
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skill are equally important, and both are assessable using mathematical tasks of sufficient 

richness” (CCSSI, 2010, p. 4). This has led to a call for K-12 mathematics curricula to 

include “more coverage of higher levels of cognitive demand” (Polikoff, 2015, p. 1194), 

such as connection-making. In contrast to previous curriculum frameworks (Porter et al., 

2011), the CCSS is also more focused, providing descriptions of only the most significant 

mathematics concepts at each grade level, while also identifying important connections 

that teachers should help their students make. For instance, the inverse relations between 

addition and subtraction and between multiplication and division are systematically 

emphasized across all elementary grade levels. In an effort to create a greater emphasis 

on coherence of mathematics education, the CCSS suggest a need to link topics and 

thinking both within and across grade levels. This call for well-connected and 

conceptually grounded mathematical ideas which may help facilitate transfer of learning, 

occurs when students “build logical progressions of statements” (CCSSI, 2010, p. 6) in 

order to form connections for the purpose of applying “the mathematics they know to 

solve problems arising in everyday life” (p. 7). Forming deeper connections among 

mathematical experiences in order to make inferences is the essential component of a 

situation model (van Dijk & Kintsch, 1983).  

With the publication of the CCSS, a national curriculum aimed at improving 

mathematical understanding finally highlights the importance of making connections 

between ideas in mathematics in order to facilitate the transfer of prior knowledge to 

novel situations. This current belief on connection-making is perhaps best summarized by 

the following definition of mathematical understanding provided by Hiebert and 

Carpenter (1992): 
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A mathematical idea or procedure or fact is understood if it is part of an internal 

network. More specifically, the mathematics is understood if its mental 

representation is part of a network of representations. The degree of 

understanding is determined by the number and the strength of the connections. A 

mathematical idea, procedure, or fact is understood thoroughly if it is linked to 

existing networks with stronger or more numerous connections (p. 67). 

If understanding results from the process of creating mental representations and 

generating connections within internal networks, then teaching for understanding “should 

consider the mental activities that a student must perform in order to understand” 

(Greeno, 1978, p. 267).  Further, with the Common Core’s call for more rigor, greater 

focus, and stronger coherence, the need to examine the quantity and nature of learning 

opportunities for connection-making, has become increasingly more relevant.  

Purpose of the Study 

 

Recent empirical studies have indicated that U.S. curriculum materials and 

mathematics instruction generally lack connections within and across topics (Ding, 2016; 

Ding & Li, 2010; Schmidt, Wang, & McKnight, 2005), which most likely is detrimental 

to the development of mathematical understanding. Even in the CCSS era, teaching and 

learning for mathematical understanding therefore remains problematic. Perhaps the 

foundational components of the Common Core have not yet reached current curriculum 

and instruction practices, or perhaps they have not had positive influences on today’s 

learning environments. Examining the extent to which current learning environments 

expose students to connection-making opportunities should therefore be at the forefront 

of current research on mathematical comprehension. 
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The purpose of this study is to examine how current learning environments 

provide opportunities for connection-making in order to develop students’ mathematical 

comprehension. Specifically, this study analyzes the learning opportunities afforded to 

elementary students in regards to multiplicative inverse relations. As part of this study, I 

analyzed both curriculum materials and classroom instruction for the purpose of 

identifying how best to structure learning environments in order to maximize students’ 

mathematical comprehension. From a situation model perspective of comprehension, this 

study explores how reformed CCSS textbooks and classroom instruction facilitate 

connection-making. In particular, this study explores the following research questions: 

(1)     How do reformed elementary CCSS textbooks facilitate connection-making 

through the presentation of instructional tasks, representations, and deep 

questions in order to promote students’ comprehension of multiplicative 

inverses? 

(2)   How do expert elementary mathematics teachers facilitate connection-making 

through the use of instructional tasks, representations and deep questions in 

order to promote students’ comprehension of multiplicative inverses? 

(3)   How do connection-making opportunities afforded by reformed CCSS 

textbooks and provided by expert teachers' classroom instruction relate to 

elementary students’ comprehension of multiplicative inverse relations? 

 

Significance of the Study 

 

Current research suggests that comprehension improves when conceptually 

relevant connections to prior knowledge are formed (Sidney & Alibali, 2015), yet few 
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have explored how to facilitate mathematical connection-making from the situation 

model perspective of comprehension. Even though the Common Core State Standards 

(CCSSI, 2010) include a call for students to make connections between fundamental 

mathematical concepts such as inverse relations, rarely studied, are the ways to facilitate 

these relationships. This has resulted in a limited understanding about how reformed 

CCSS mathematics textbooks and current classroom instruction facilitate connection-

making. Because text comprehension shares features with problem solving in that 

learners are presented with information and must try to form connections through 

explanatory inferences, this study takes an integrated comprehension perspective in 

which mathematical understanding is explored through connection-making, the 

foundation of a situation model that can be used for inference-making. This study is 

important because few have integrated a situation model perspective with research 

outside of the reading comprehension domain. Even rarer, are studies that have explored 

how textbooks and classroom instruction facilitate the creation of situation models to 

support the learning of fundamental mathematical ideas. 

The second importance of this study is to explore how students are exposed to 

fundamental mathematical concepts that are emphasized by the Common Core (CCSSI, 

2010). This study involves inverse relations, a fundamental mathematical idea that 

transcends various mathematical contexts (Bruner, 1960; CCSSI, 2010), and is critical for 

comprehension across all levels of mathematics (Baroody, Torbeyns, & Verschaffel, 

2009; Carpenter, Franke, & Levi, 2003; Nunes, Bryant, & Watson, 2009; Piaget, 1952; 

Resnick, 1983, 1992). I expect that the findings from this study will contribute to 

improving curriculum design and will help to enhance classroom teaching of inverse 
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relations. The coding framework developed for this study may also be useful for future 

studies surrounding the comprehension of other fundamental mathematical concepts. 

This chapter has provided both a historical perspective and the current status 

surrounding the problem of mathematical comprehension. I have outlined the research 

questions that will be explored in this study and have linked them to both the purpose and 

overall significance of this project. Chapter 2 will provide more details on the situation 

model theoretical framework used in this study and will review current literature on how 

to facilitate connection-making. This review of literature will also include the current 

state of knowledge surrounding children’s comprehension of inverse relations. An 

examination of prior studies involving U.S. mathematics textbook analyses, as well as a 

review of past research that has studied expert teachers will also be included in Chapter 2. 

The third chapter of this dissertation will explain the research design of this study and 

will include a detailed description of the data sources and procedures that were used to 

analyze each research question. Chapter 4 will present the findings surrounding the three 

research questions involving connection-making opportunities afforded by textbooks and 

elementary expert teachers. The final chapter of this dissertation, Chapter 5, will provide 

conclusions and implications for practice and future research involving mathematical 

comprehension.   
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CHAPTER 2  

 

LITERATURE REVIEW 

 

This chapter begins by outlining the situation model theoretical framework. This 

includes a discussion on the theory of mental modeling, a review of seminal research in 

the domain of reading comprehension, and a description of how reading comprehension 

viewed through the lens of mental modeling leads to the situation model perspective of 

comprehension. Next, how to facilitate situation models is explored through a review of 

literature that involves analyzing connection-making opportunities that can be afforded to 

learners through the use of instructional tasks, representations and deep questions. A 

discussion on the current knowledge surrounding elementary school children’s 

comprehension of inverse relations will follow. Finally, prior research on expert 

elementary teacher’s classroom instruction and prior findings of studies involving U.S. 

mathematics textbook analyses will lead to the justification and research questions for 

this study.  

Situation Model: What is it? 

 

As described in the previous chapter, mathematical comprehension has evolved to 

require conceptual understanding. Conceptual understanding is a “deep understanding of 

the subject matter, so that the information acquired can be used productively in novel 

environments" (Kintsch, 1998, p. 294). In contrast to the act of simply doing 

mathematics, comprehension involves the ability to make connections and easily transfer 

knowledge between different aspects of mathematics, in order to form coherent mental 

representations of quantitative situations (Langer, 1984; Shepherd, Selden & Selden, 

2012). Known as situation models (van Dijk & Kintsch, 1983) these mental 
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representations are a critical component of comprehension. Ultimately, they determine 

one’s ability to make connections among various relationships in the surrounding world, 

which leads to improved mathematical comprehension (Johnson-Laird, 1983).  

Kintch (1986) suggests that a mental model serves as both a representation of 

what is to be learned and a tool that learners use to develop and assess their own 

comprehension. This suggests that comprehension requires both a process and a product. 

Specifically, Kintch (1988) claimed that in order for the deepest level of comprehension 

to occur, a situation model must be formed for propositions to be transformed into 

understanding. Other researchers agree that the most influential factor of comprehension 

is a learner’s ability to construct a coherent situation model (Glenberg, Kruley, & 

Langston, 1994; Graesser, Millis & Zwaan, 1997; Perfetti, 1989; Zwaan, Magliano, & 

Graesser, 1995). In order to determine how specific learning opportunities can lead to the 

construction of situation models, it is important to analyze the mental processes involved 

in making connections within mental representations. 

Mental Modeling 

The concept of a mental model, an internal representation of the thought process 

that occurs when an individual attempts to create meaning from external experiences 

encountered with the world (Bruner, 1990), developed as a result of the epistemological 

paradigm shift from behaviorism towards constructivism. First introduced in 1943, 

cognitive psychologist Kenneth Craik hypothesized that an internal model is created 

when someone has a restricted knowledge of some unknown phenomena. In order to 

provide rational explanations about that phenomena, an individual creates practicable 

methods that consist of forming integrated and connected internal models of both 
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semantic and situation specific knowledge (Seel, 2006). Craik’s hypothesis was centered 

on the notion that the mind processes information similar to the way that mechanical 

devices (i.e. calculating machine, anti-aircraft predictor, Kelvin’s machine for predicting 

tides) were used to aid thought and calculation (Craik, 1943). In essence, the mind acts as 

a machine in the process of creating small-scale models of reality for drawing testable 

inferences about future situations (Johnson-Laird, 1983). One might relate this to current 

research on conceptual change (see, for example, Dole & Sinatra, 1998; Lombardi, 

Sinatra & Nussbaum, 2013), which is based on learners’ modifying and restructuring 

internal mental models through the process of assessing whether knowledge presented in 

current external situations is more plausible and convincing than their prior knowledge. 

Bransford, Barclay, and Franks (1972) provided the early evidence that 

comprehension was significantly influenced by the nature of a situation when they argued 

that linguistic input of text merely acted as a cue which people used to recreate and 

modify previous knowledge of the world whereas, comprehension involved making 

connections in order to construct a model of a described situation. Using undergraduate 

psychology students as subjects, they examined the difference between an interpretive 

versus a constructive view of sentence memory. They looked at sentences that provoked 

only simple recall of facts versus sentences that provoked students to draw inferences. 

Subjects were given either a non-inference (NI) scenario (e.g., Three turtles are sitting 

beside a log. A fish swam under them.), or a potential-inference (PI) scenario (e.g., Three 

turtles are sitting on a log. A fish swam under them). In PI, but not in NI, it is possible to 

infer that the fish had swum under the log as well as under the turtles. The results of 

asking the subjects whether the fish swam under the log, revealed that those given NI 
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tended to not recall the wording that the fish swam under the log, whereas those given PI, 

were confident that they had received the under the log wording. This false recognition 

suggested that when given PI scenarios, the subjects related proposition as integrated 

concepts and went beyond the semantic structure of the sentences to construct an internal 

visual image of the entire scenario. By 1983, Johnson-Laird had coined the term mental 

model to describe this assumption that individuals create internal representations of 

external situations.  

Mental models serve as an important tool for reasoning and making connections 

in that learners must interact between prior knowledge and current stimuli in order to 

determine how current or future actions might change their thought process (Long, Seely, 

Oppy & Golding, 1996). Through means of making connections, it is believed that 

individuals learn from the reasoning process of their “subjective experiences, ideas, 

thoughts and feelings” (Seel, 2006, p. 86). The idea that reasoning depends on mental 

models and not on logical form is the basis of Johnson-Laird and Byrne’s (1991) theory 

of mental models. According to their theory, the reasoning that occurs as a result of the 

creation of mental models is not based on formal rules of reasoning, but on the structure 

of the external situation that the models are formed to represent. They argued that mental 

models are based on a principle of truth, in that they represent only situations that are 

possible. This idea of truth however does not leave out the possibility that the model 

could represent counterfactual beliefs (Byrne, 2005). Instead, they proposed that 

reasoning occurs in a recursive manner that involves making connections to “thought, 

meaning, grammar, discourse, and consciousness” (Johnson-Laird, 1983, p. xi). The 

recursive process involved in establishing valid conclusions therefore includes relying on 
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counter-examples to refute or refine prior inferences. This in turn strengthens and creates 

numerous connections. Without a counter-example or external stimuli to challenge 

current knowledge, individuals deem their mental models as valid representations of 

reality to the point that no further connections are made and comprehension is therefore 

not enhanced (Johnson-Laird, 1983). 

Reading Comprehension 

One important application of being able to construct meaning in an externally 

located situation is when a learner is trying to comprehend written language. Cognitive 

and educational psychologists have extensively explored reading comprehension as a 

means by which to explore both the process and the ability to cognitively interact with 

external stimuli in order to create meaning (Lorch & van den Broek, 1997). While it is 

widely believed that comprehension can take the form of either a shallow or a deep level 

of meaning (Craik & Lockhart, 1972), reading comprehension literature illustrates that 

comprehension should not be considered a binary phenomenon. Instead, the connections 

and the level of understanding that an individual forms can fall across a wide spectrum of 

possibilities and are shaped by the context and learning opportunities presented within the 

learning environment. Like all research on understanding, reading comprehension 

research initially focused primarily on memorization. 

Bartlett (1932) challenged this passive and receptive view of understanding, by 

identifying reading as an active and constructive process. In one of his most famous 

experiments, Bartlett showed that subjects who were asked to recall a Native American 

reading passage about ghosts often drastically changed details and the overall context of 

the story. He concluded that the reconstructive nature of human memory is often 
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influenced by cultural background and one’s prior knowledge about the world. By 

distinguishing between a text’s surface representation and a reader’s mental 

representation, he found that “readers’ memories for textual information were 

systematically distorted to fit their own factual and cultural knowledge” (Lorch & van 

den Broek, 1997, p. 214). Barrlett’s findings represented the first empirical reading 

comprehension evidence that people’s memory depends highly on prior knowledge and 

the ability to reconstruct instead of merely duplicate previous experiences. Thus, early 

reading comprehension literature often focused on advanced organizers (Ausubel, 1960) 

and adjunct questions (Frase, 1968; Rothkoph, 1966), tools used to facilitate connections 

to prior knowledge.  

Advancements in linguistic and artificial intelligence research during the 1970’s 

(Lorch & van den Broek, 1997) shifted the focus of reading comprehension toward 

examining mental processes that occur during reading. Topics such as encoding, the use 

of representations, and the way in which forming connections helped to retrieve 

knowledge, became the backbone of new reading comprehension theories that attempted 

to serve as models for knowledge acquisition. Among these noteworthy cognitive 

theories, Kintsch’s (1974) theory of reading comprehension along with the mental 

modeling theory of Johnson-Laird and Miller (1976) suggests a text processing theory 

that views reading comprehension as mental modeling. This theory views reading as the 

process of constructing mental models of written text and comprehension refers to the 

coherence of the situation model that a reader constructs. 
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Reading Comprehension as Mental Modeling 

The Construction-Integration (CI) reading comprehension model presented by 

Walter Kintsch (1988) suggests that a learner creates a mental model when reading text. 

Not only does this mental model serve as a representation of the text, but also it is used 

by the reader to develop and assess comprehension. According to Kintsch (1986), mental 

models are created as a result of the inferential process of evaluating propositions in 

relationship to three components of mental representations: surface components, textbase 

representations, and situation models. The surface component includes a verbatim 

representation of the text in which the words and phrases themselves are encoded into 

memory. A textbase component represents the semantic structure of the text in that it 

captures the linguistic relations among propositions represented in the text. In short, the 

textbase describes the meaning of the text. The final component, the situation model, 

involves a reader’s drawing on prior knowledge to create a more complete mental 

representation that is based upon making connections between the situation the text 

represents and other contexts to which that text may be applied.  

The process of forming these mental representations begins with the reader 

creating an initial list of propositions based solely on the words that they are reading 

(surface component). These propositions turn into a network of propositions (textbase 

component) as entire sentences are read and the reader attempts to begin making meaning 

of the text. Indications of understanding based on the surface and textbase components 

include a learner’s ability to verify and recall statements from the text, answer questions 

about explicit content discussed within the text, and form a summary of what they have 

read (McNamara, Kintsch, Songer & Kintsch, 1996). Because these first two components 
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mainly involve direct translation of what is explicitly written in the text, learners are 

required to make few inferences and therefore limited connections to prior knowledge are 

needed. The first two components constitute procedural understanding, whereas the final 

component of a situation model represents the conceptual understanding process of 

connection-making. In order for the deepest level of comprehension to occur, a situation 

model must be formed so that propositions can be transformed into understanding that 

can be applied in future situations (Glenberg et al., 1994; Graesser et al., 1997; Zwaan et 

al., 1995).  

A situation model is a catalyst that gives students the ability to make strong 

connections within mental representations, for the purpose of solving problems, making 

inferences, and drawing conclusions in unfamiliar situations. Figure 1 illustrates the 

relationship between the three mental representations of Kintch’s (1988) CI model, 

concerning the depth level of comprehension. The figure indicates that as the learner 

interacts with propositional representations, the surface component has the potential to 

evolve into the textbase component and/or the situation model, which in turn indicates the 

depth level of comprehension that is achievable. Stronger connections formed within 

propositional representations lead to a deeper level of comprehension, as indicated by the 

downward comprehension arrow.  
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Figure 1.  Depth level of comprehension within Kintch’s (1988) CI model. 

 

Because “text comprehension is defined as the process of constructing a connected 

memory representation” (Lorch & van den Broek, 1997, p. 219), Kintsch’s CI model is 

based upon an inferential process that evaluates propositions in relationship to the three 

types of mental representations that a reader forms during the act of reading. The 

emphasis that the situation model component places on inference allows it to be 

transferable to the process of acquiring mathematical comprehension, a context where 

making inferences about unknown quantitative situations is highly dependent on one’s 

ability to form connections. Further, whereas reading comprehension involves more of an 

internal reasoning process, mathematical comprehension most often requires students to 

articulate their reasoning process step-by-step explanations of written solutions.   

Integrating reading comprehension and mental modeling research to create a situation 

model framework for mathematical comprehension is therefore in direct alignment with 

the CCSS suggestion that students must be able to form better connections among 
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mathematical experiences in order to make better inferences involving their quantitative 

reasoning process. 

Creating an effective situation model entails that a learner must implement a deep 

level of inference making that demands connecting explicit and implicit information to 

one’s prior knowledge (Zwaan & Madden, 2004). Because the three components of 

mental representations compete for a limited amount of working memory resources, the 

degree to which a situation model is formed is likely hindered by the capacity of the 

working memory (van Dijk & Kintch, 1983; Schmalhofer & Glavnov, 1986). When 

learners encounter pieces of content that do not agree with their current mental 

representations, they must activate their long-term memory and begin searching for 

similar prior experiences (Pinker & Bloom, 1990). Inferences may be limited if one 

cannot create or find connections to a prior experience related to the current learning 

situation. Without a well-developed situation model, propositions remain propositions 

and a deep level of comprehension is difficult to achieve. Instruction that provides 

numerous opportunities for connection-making will help students construct and 

strengthen their situation models and will ultimately lead to an increase in mathematical 

comprehension. 

Situation Models 

To form mental models, Rumelhart, Hinton and Williams (1986) claimed that the 

cognitive process consists of two parts. The first part is concerned with the activation of 

schema. A schema, first introduced by Piaget (1928), is a generic cognitive data structure 

that an individual forms in order to organize, interpret, and store knowledge. When a 

schema is activated, an individual recalls a past action and is able to manipulate that 
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action in order to apply it to a new situation. The second part of the cognitive process is 

concerned with the construction of a situation model that represents the external world. 

The construction of this model is based on intended actions present in the schema and the 

interpretations of what would happen if those actions were executed (Rumelhart et al., 

1986). In other words, as described by Zwaan and Radvansky (1998), schema are mental 

models of stereotypical situations whereas a situation model is a mental representation of 

a specific real life experience. Whereas, the first part of the cognitive process takes input 

from the world and through interpretation produces reactions; the second part predicts 

how the input would change in response to those reactions in future situations. This 

illustrates that a critical component of the learning process involves cognitively 

constructed situational representations.  

Greeno (1991) explained that a situation model “works because operations with 

mental objects in the model have effects that are like the effects of that operation on the 

objects that the model represents” (p. 178). By stating that understanding involves 

“knowledge that results from extensive activity in a domain through which people learn 

to interact successfully with various resources of the domain” (p. 170), Greeno further 

argued that mathematical comprehension involves the ability to find and use concepts 

that have been triggered by an external situation. Take for example if a + b = c then  

c – a = b, the arithmetic conjecture that illustrates the complement principle of the inverse 

relation between addition and subtraction (Baroody, 1999). When encountering this 

statement in text, students first need to be well versed with the symbolic notation of 

mathematics. If the student’s surface and textbase components have been established, all 

symbols are properly interpreted and mathematical meaning is developed. However, if 
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the construction of meaning ceases at this point, although students might be able to recall 

this conjecture or even replicate the mathematical procedures needed to simplify this 

inverse expression, they are often unable to transfer their knowledge to new situations. 

According to Bloom, Krathwohl and Massia (1984), when transfer does not occur, 

comprehension does not occur. This suggests that the construction of a situation model is 

needed for full comprehension of this mathematical conjecture. Figure 2 presents a 

possible situation model that a student might form for this mathematical conjecture. 

 

 

 

 

 

 

 

 

Figure 2. Part-Whole Model (Ginsburg, Leinwand, Angstrom & Pollok, 2005). 

 

Although this is an example of an external model of the specific situation representing the 

fact that if 3 + 2 = 5 then 5 – 2 = 3, if given adequate connection-making opportunities to 

develop a schema that is based on deep structural knowledge (i.e., part + part = whole, 

whole – part = part), students will be able to transfer the principle-knowledge to novice 

situations (Goldstone & Son, 2005). In other words, if presented with the equation  
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7 + 4 = 11, a student with a well-defined part-whole situation model may activate 

connections that allow for the updating of new model parameters and in turn this will 

most likely lead to the inference that 11 – 4 must equal 7.  

A well-developed mathematical situation model is therefore connected to prior 

mathematical knowledge and allows a learner to use new content knowledge in “novel 

environments and for unanticipated problem solving tasks” (McNamara et al., 1996, p.4). 

Multiple studies (e.g., Kintsch, 1994; Osterholm, 2006; Weaver, Bryant & Burns, 1995) 

have shown the important role that situation models have in altering the definition of 

learning from not what is simply to be remembered, but rather what conclusion can be 

drawn based on the inference making process. Kintch (1986) noted that in both a first 

grade and a college setting, comprehension increased once a situation model was formed 

for a mathematics based word problem. This occurred because learners were able to make 

inferences based on prior mathematical knowledge and were able to reconstruct the 

problem using their situation model instead of simply recalling the problem by use of the 

textbase component. The mental representation on which recall is based differs from the 

representation on which inference is based, and thus additional factors other than the 

ability to form a coherent textbase are needed for the creation of a situation model. 

Analyzing experimental variables within learning opportunities that affect the ability for 

readers to make connections and draw inferences is essential in the pursuit of helping 

students enhance their ability to create mathematical situation models.  

Viewing the cognitive process as a reasoning process built on creating a mental 

model of an external situation, illustrates the key connection that must be made between a 

learner’s available schema (internal) and the presented external input. Namely, as a 
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learner is presented with new information, a continuous updating of his or her mental 

representation occurs (Zwaan & Madden, 2004). This suggests that the development of 

schemas lays the foundation for the construction of a situation model (Rumelhart et al., 

1986). Although no literature was found specific to developing situation models for 

comprehension of inverse relations, Kintsch and colleagues (Cummins, Kintsch, Reusser 

& Weimer, 1988; Greeno & Kintsch, 1985; Weaver & Kintsch, 1992) performed a series 

of studies illustrating the role that situation models have in simulating the construction of 

cognitive representations needed for enhancing children’s comprehension surrounding 

the conceptual structure of both arithmetic and algebraic word problems. Similarly, Leiss 

and colleagues (2010) investigated the overall role that situation models played in 

comprehension of the Pythagorean Theorem and linear functions among a sample of 

ninth graders. Their results showed that strategies for constructing an adequate situation 

model have a significant influence on mathematical comprehension. Further, how much a 

situation model influences comprehension is related to intra-mathematical competencies. 

Procedural skills alone will therefore not suffice to convey complex competencies such as 

connection-making that are required for conceptual understanding of mathematics. 

Viewing mathematical comprehension from a situation model perspective provides “an 

important support in the diagnosis of student learning processes” (p. 139), which is 

evident by the fact that when students are asked to “consciously construct and thus 

externalize their situation model…students’ difficulties become visible to the teacher at 

an early phase of development” (p. 139).  
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Situation Model: How to facilitate it? 

 

Cognitive and educational psychologists, as well as mathematics educators, have 

found that providing students with worked examples facilitates the development of 

schemas that ultimately cause an increase in later transfer of solving new problems (Chi 

& VanLehn, 2012; Sweller, & Cooper, 1985). It has been shown that an increase of 

variability of examples helps to better support a learner’s ability to make connections to 

the abstract principles underlying these example tasks (Renkl, Atkinson, Maier & Staley, 

2002). In addition, literature suggests that during initial learning, activation of a learner’s 

current schema is best done through concrete representations (Resnick & Omanson, 

1987); however, fading from concreteness into abstract representations has been shown to 

deepen comprehension (Goldstone & Son, 2005). Rubin (2009) argues that 

comprehension is also increased when students are asked questions aimed at developing 

deep connections between and within concepts. Taken together, instructional tasks, types 

of representations, and deep questions used during instruction, have all been shown to 

affect a student’s ability to form connections and make inferences, the critical 

components of how mathematical comprehension can be facilitated by situation models. 

In fact, these components have been recommended as key principles to organize 

instruction to improve student learning (Pashler et al., 2007). 

Instructional Tasks 

Using a greater variability of instructional problems can establish deep 

connections that result in an increase of encoding and extraction of core underlying 

mathematical principles (Renkl et al., 2002). The creation of a situation model is thus 

facilitated by empirical evidence that students’ mathematical comprehension is enhanced 
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by forming connections within instructional tasks. For example, Rittle-Johnson and Star 

(2007) found that seventh graders learning to solve algebra equations gained more 

procedural and more conceptual knowledge when the use of contrasting alternative 

solution methods (drawing connections between methods) were used during instruction, 

as opposed to when solution methods were analyzed one at a time. Moreover, Booth and 

colleagues (2013) revealed that when students form connections between correct and 

incorrect examples, both procedural and conceptual understanding improves in Algebra 1 

students. Specifically, their results suggest, “incorrect examples, either alone or in 

combination with correct examples, may be especially beneficial for fostering conceptual 

understanding” (p. 24).  This means that not only does the use of incorrect examples help 

reinforce students’ surface and textbase components of comprehension (procedural), but 

their use also helps to strengthen situation models (conceptual) by forcing students to 

make inferences involving the similarities and differences between quantitative 

situations.  Further empirical evidence of instructional tasks suggest that students perform 

better when teachers alternate between examples and practice problems, as opposed to all 

examples occurring at the beginning of instruction (Trafton & Resier, 1993). 

Literature in mathematics education suggests that providing students with worked 

examples, “a step-by-step demonstration of how to perform a task or how to solve a 

problem” (Clark, Nguyen & Sweller, 2006, p. 190), is one way to increase initial 

comprehension within cognitively high demanding tasks (van Merriënboer, 1997; Renkl, 

1997). Several empirical studies have supported the use of worked examples. For 

example, Sweller and Cooper (1985) conducted one of the first empirical studies of 

worked examples in mathematics when they studied how students solved algebraic 
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manipulation problems (e.g., express b in terms of the other variables in an equation 

similar to b = a × b + g). Their study consisted of comparing performance between two 

groups of ninth graders, one that was given worked examples during knowledge 

acquisition and one that was not. The results indicated that the use of worked examples 

improved test performance, but only on questions that were similar to the worked 

examples. In other words, the experimental group had no advantage when presented with 

dissimilar problems, which suggested that transfer was not enhanced by the use of 

worked examples. As a follow up, Sweller and Cooper (1987) found that significant 

learning time was needed in order for students to form connections and to demonstrate 

transfer. Given adequate time, students in the worked example group outperformed their 

peers whom were not provided with worked examples. In addition to allowing sufficient 

time on worked examples, other researchers have suggested that students be actively 

engaged in the knowledge-construction process of unpacking worked examples (Ding & 

Carlson, 2013), and yet other have argued for the need to space learning over time 

(Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; Ding, 2016; Pashler et al., 2007). 

In other recent research on worked examples, Renkl and colleagues (2002) 

studied forty-eight student teachers’ abilities to learn probability calculations. This study 

included one experimental group of student teachers who were given worked examples 

and one control group of student teachers who were left to learn the content on their own. 

Although there was no difference in performance between the experimental and control 

group for problems that were similar to the worked examples, the experimental group did 

significantly outperform the control group when presented with far-transfer problems in 

which the structure remained constant but the surface feature of the questions were 
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different from the worked examples. This suggests that the learned worked examples may 

be more of an influential factor when students form connections in order to activate the 

inference making process for situations that occur across, rather than within, 

mathematical contexts. A critique of this study is that subjects in the worked example 

experimental group were encouraged to partake in think-aloud activities, which could 

have had a significant effect on transfer. Further, empirical evidence surrounding worked 

examples and instructional tasks has primarily only focused on high school aged students 

and has not looked at their effect on long-term transfer. 

The evidence that does exist for the use of worked examples suggests that 

introducing a formulated problem that includes steps leading to a final solution provides 

students with an expert’s mental model that can be used to form connections and 

facilitate transfer (Chi & VanLehn, 2012; Sweller, & Cooper, 1985). In order to 

strengthen these mental models, “multiple examples with constant structure (i.e., 

underlying solution rationale) and varying surface characteristics” (Renkl et al., 1998, p. 

94) should be used during instruction. When a limited amount of working memory is 

available worked examples help to reduce intrinsic cognitive load (Paas, Renkl & 

Sweller, 2003). The instructional purpose of worked examples is to develop schema that 

will increase the likelihood of transfer (Paas, Renkl & Sweller, 2003). This occurs when 

connections are formed between worked examples and as a result, learners can extract the 

underlying mathematical principle. In turn, enhanced mental models can be applied to 

problems with different surface characteristics (Renkl et al., 1998) and eventually to 

problems that arise within completely new relevant situations.  
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From the perspective of a mathematical situation model, the use of worked 

examples helps students develop a schema by facilitating connection-making between 

prior knowledge in order to increase the likelihood of transfer (Kirschner et al., 2006; 

Paas, Renkl & Sweller, 2003). Corresponding practice problems should therefore have 

connections to the worked examples in order to practice the learned knowledge. In 

addition, because worked examples should be built on student’s prior understanding, 

review tasks used during instruction should also provide opportunities to review and form 

connections to relevant prior knowledge. Unfortunately, U.S. mathematics teachers spend 

little time unpacking worked examples (Ding & Carlson, 2013) and the amount of 

instructional time allocated to review is limited (Jones, 2012). This may in large part be 

due to the desire that U.S. teachers have for allowing enough classroom time for student 

practice (Stigler & Hiebert, 1999), which most likely results in learners’ not having 

ample opportunities to develop connections to targeted mathematical concepts. 

Paas and VanMerrienboer (1994) also suggested the use of highly variable 

examples (in contrast to using uniform examples) for increasing the likelihood of 

transfer. It should be noted however that although problem variability within instruction 

helps to support a learner’s ability to form connections to fundamental underlying 

principles (Renkl et al., 2002), it has also been shown that as students develop greater 

expertise, decreased worked examples and increased problem solving opportunities 

appears to improve comprehension (Renkl, Atkinson & Grobe, 2004; Schwonke, et al., 

2007). Moreover, considering the time constraint of a mathematics lesson, a classroom 

teacher may not be able to discuss too many worked examples within a short lesson 

(Ding & Carlson, 2013). Nonetheless, according to Kaluga and colleagues (2003), 
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worked examples are more favorable in earlier stages of learning. This is most likely 

because initial learning opportunities require students to use more working memory when 

forming connections to prior knowledge that are needed to acquire understanding (Renkl 

& Atkinson, 2007). It appears as if there may be many opportunities to enhance 

connection-making within the instructional tasks used during elementary school 

mathematics instruction. 

Representations 

Objects that students can physically grasp their hands around (e.g., blocks, rods, 

tiles) are often found within elementary school mathematics instruction (Clements, 1999). 

These concrete objects are designed to allow students to explore a hands-on experience 

with various mathematical concepts. By interacting with concrete manipulatives, the goal 

is that students will be able to form stronger connections to their internal mental models. 

The use of concrete representations during instruction have in fact been shown to activate 

student’s internal mental representations (Baranes, Perry & Stigler, 1989; Kotovsky, 

Hayes, & Simon, 1985). Hauser (2009) mentioned, “students who use concrete materials 

develop more precise and more comprehensive mental representations” (p. 1). Martin and 

Schwartz (2005) support this notion and believe that by interacting with concrete 

manipulatives, students form stronger connections to their internal mental models, which 

helps to increase mathematical comprehension. The belief that concrete representations 

help to strengthen mathematical situation models, has been empirically supported by 

Harrison and Harrison (1986), who provided descriptions of successful learning activities 

that use concrete objects such as rulers and place value cards. This is similar to findings 

that suggest appropriately teaching students how to interact with concrete manipulatives 
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help them to better formulate connections to their own abstract ideas (Brown, McNeil & 

Glenberg, 2009). 

Although literature suggests that concrete representations seem to best activate 

schemas during initial learning (Resnick & Omanson, 1987), they also often contain 

irrelevant information that can prevent students from making connections to underlying 

principles (Kaminiski, Sloutsky & Heckler, 2008). In fact, several studies have shown 

that using only concrete materials may hinder the creation of a situation model used for 

transfer to different unknown situations (e.g., Gentner, Ratterman, & Forbus, 1993; 

Goldstone & Sakamoto, 2003; Son, Smith & Goldstone, 2011). This includes a series of 

experiments by Goldstone and colleagues (Goldstone & Sakamoto, 2003; Goldstone & 

Son, 2005; Son & Goldstone, 2009; Son, Smith & Goldstone, 2001) who have 

investigated ideal ways to help students make connections across a variety of 

superficially dissimilar scientific topics. They have shown that although concrete 

representations may facilitate initial learning, focusing only on particular characteristics 

of situations makes transfer more difficult. For example, in one study (Goldstone, 2003) 

students were presented with the topic of the foraging behavior of ants, in which one 

group was presented with a concrete representation (pictures of ants and food) while the 

other group was taught with a more abstract representation (small dots and large blobs 

represented the ants and the food). Like several other studies, results of this study showed 

that the students in the concrete group found it more difficult to transfer their knowledge 

to a generalizable situation, namely the topic of complex adaptive systems. This study 

also revealed that among those students who had the most trouble with initial 
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comprehension, transfer was best increased through instruction that involved abstract 

representations.  

Similar to these findings, Koedinger and Nathan (2004) found that high school students’ 

comprehension of simple word problems increased when they were presented with 

grounded representations (e.g., verbal descriptions of concrete and familiar situations), 

rather than abstract representations (e.g., numeric expressions or equations). However, 

when Koedinger and colleagues (2008) extended their research to include more complex 

word problems, grounded representations were actually not as effective for increasing 

comprehension as were the use of abstract representations. Thus, it appears as if the 

benefit of different types of representations depends on the level of the learner and the 

type of task. This dependency is closely related to Realistic Mathematics Education 

(RME), a Dutch approach to mathematics education that is based on Freudenthal’s (1977) 

belief that comprehension increases when mathematical concepts are initially connected 

to reality. As understanding increases, REM suggests that initial informal context-

connected solutions help students to form schemas, which are then later used to make 

formal mathematical principles more general. In essence, connecting mathematical 

principles to real life experiences during initial learning, will later result in higher levels 

of inference-making. Van Den Heuvel-Panhuizen (2003) demonstrated the power of 

REM through describing how a bar model (i.e., a type of schematic diagram) was used in 

a U.S. middle school curriculum in order to support various levels of understanding. 

Specifically, the bar model was described as evolving “from a drawing that represents a 

context related to percentage, to a strip for estimation and reasoning, to an abstract tool 

that supports the use of percentage as an operator” (p. 9). Because of the aforementioned 
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research, it is commonly believed that concrete representations alone do not guarantee 

comprehension (McNeil & Jarvin, 2007), and thus should not be the only representations 

used to facilitate mathematical situation models. 

In contrast to concrete representations, abstract representations in mathematics 

include the use of only numbers and symbols. For example, completing mathematics 

problems by paper and pencil, without the use of manipulatives or external drawings, is a 

common example of abstract representations in mathematics. Since abstract 

representations of quantitative situations are purely symbolic, reasoning abstractly occurs 

because of interactions with internal (abstract) situation models. From the perspective of 

a situation model, abstract representations therefore need to be an integral part of 

instruction because they are essential in the inference making process of many advanced 

mathematical tasks (Fyfe, McNeil & Borjas, 2015). Although reasoning abstractly is the 

goal of advanced mathematics, children often struggle to attain mathematical 

comprehension when only abstract representations are used during instruction (McNeil & 

Alibali, 2000; Rittle-Johnson & Alibali, 1999).  

Carraher, Carraher and Schliemann (1985) found that the ability for Brazilian 

street vendor children to solve basic computational mathematics problems was dependent 

on the context and representations of the problems. Although the children could count 

aloud to determine the price of several products that a customer wished to purchase (e.g., 

“If I purchase four coconuts and each coconut costs 35 centavos, how much do I owe 

you?”), when asked to do the same computation with paper and pencil (e.g., 35 × 4 = __), 

they could not arrive at the correct solution. One possible interpretation of these findings 

is that when given a concrete context, the children were able to work with their mental 
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representations of mathematical concepts because of “contexts which allow them to be 

sustained by human daily sense” (Carrraher et al., 1985, p. 28); however, when given an 

abstract situation they were unsuccessful at utilizing the procedures taught in school. On 

the other hand, one might interpret these findings to indicate that knowledge learned from 

concrete contexts alone, do not promote transfer. This is supported by more general 

research that indicates that the use of symbols can lead to inflexible application of learned 

procedures (McNeil & Alibali, 2005). Regardless of one’s interpretation, these findings 

(Carraher, Carraher & Schliemann, 1985) at a minimum suggest that instruction should 

not rely solely on the use of concrete or abstract representations. Instead, instruction 

should be designed to facilitate connection-making between these concrete context and 

abstract representations. 

Abstract representations of mathematical concepts are essential in the inference 

making process of mathematical tasks and they need to be an integral part of instruction 

(Fyfe, McNeil & Borjas, 2015). Pashler et al. (2007) suggested that by integrating 

concrete and abstract representations into instruction, students are better able to make 

connections to prior knowledge, which in turn improves the chances that they will be able 

to transfer new skills into different contexts. Instruction involving various representations 

has repetitively been shown to increase comprehension (Ainsworth, Bibby & Wood, 

2002; Goldstone & Sakamoto 2003; Richland, Zur & Holyoak, 2007). Concreteness 

fading (Goldstone & Son, 2005), the act of using concrete representations for initial 

learning and over time replacing parts of these representations with abstract 

representations, appears to be an important feature in this growing body of research.  
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In coding distributive property representations found in a Chinese elementary 

mathematics textbook series, Ding and Li (2014) highlighted the importance of using 

semi-concrete representations (e.g., schematic diagrams such as number lines) to help 

with the transition from purely concrete to entirely abstract representations. They claimed 

that this intermittent type of representation helps to highlight the structure of a problem, 

which allows novice learners to form connections between representations that they 

otherwise may have missed. Overall, the idea of beginning with concrete examples and 

progressing to representations that are more abstract has been suggested by both 

cognitive theorists (e.g., Bruner, 1966; Piaget, 1952) and educational researchers (Fyfe, 

McNeil, Son & Goldstone, 2014; Gravemeijer, 2002; Lehrer & Schauble, 2002).  

Empirical evidence has recently been found to support the notion that students’ 

transfer ability increases when concreteness fading is used during instruction. For 

example, McNeil and Fyfe (2012) presented undergraduate students with one of three 

instructional conditions for learning modular arithmetic. These conditions included 

concrete (meaningful images), abstract (abstract symbols) and concreteness fading 

(meaningful images faded into abstract symbols). The transfer assessments completed by 

the subjects after instruction revealed that transfer was highest at all three time points 

(immediately, 1 week, and 3 week post-instruction) for those subjects who were in the 

concreteness fading condition. Although this provides evidence that concreteness fading 

increases transfer, it remains unknown what effects concreteness fading has on long-term 

transfer (more than 3 weeks post-instruction). Nonetheless, as noted by Barnett and Ceci 

(2002), if considerable time is spent teaching children important concepts, then transfer 

should hold up over months and even years between learning and assessment. According 
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to a situation model perspective of comprehension, connection-making opportunities that 

help students focus on the structure and relationships of these important concepts will 

best facilitate inference-making. It therefore becomes important to analyze the degree to 

which concrete and abstract representations are integrated into learning opportunities for 

the purpose of transitioning formed connections into inferences. Specifically, research is 

needed on how concreteness fading can be used to facilitate the development of 

elementary students’ situation models for fundamental mathematical ideas such as 

inverse relations. 

Deep Questions 

According to the Institute of Education Sciences (IES) recommendations for 

improving student learning (Pashler et al., 2007), teachers need to “help students build 

explanations by asking and answering deep questions” (p. 29) in order to help students 

build connections to underlying principles. Defined as a question that elicits deep 

explanations, deep questions include questions that target “causal relationships” (p. 29) 

and structural connections to the underlying principles. Examples of deep questions that 

prompt deep explanations are “why, why-not, how, and what-if” (p. 29) type of 

questions. Specific to mathematics, these might include questions involving the logical 

progression of solving equations or proofs, or questions such as “what is the evidence for 

X” (p. 29) and “how does X compare to Y” (p. 29)? Comparison type questions might 

especially help students form effective connections between and within mathematical 

principles (Ding & Li, 2014), which may lead to increased comprehension.  

More broadly speaking, classroom discourse, the use of language within social 

contexts (Gee, 2010), helps to facilitate the development of student conceptual 
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understanding (Chin, 2007; Mortimer & Scott 2003; Franke et al., 2009). Costa (2001) 

and Swartz (2008) provide empirical evidence that students attain higher comprehension 

when they are provided with opportunities to converse within instructional settings, 

which Greeno (1991) agrees may contribute positively to the development of mental 

models. These opportunities include verbal interactions with teachers, which often 

involves the act of asking and answering questions. Questioning student understanding 

during classroom instruction is a critical opportunity that shapes student learning (van 

den Oord & Van Rossem, 2002) through eliciting students’ explanations of underlying 

principles (Craig, Sullins, Witherspoon, & Gholson, 2006). Different types of questions 

however, often have different effects on learning.  

Creating a taxonomy for questioning techniques has been the focus of several 

recent studies surrounding learning opportunities (e.g., Chin, 2007; Ginsburg, 2009; 

Heritage & Heritage, 2013; Hopper, 2009; Smart & Marshall, 2013). Although types and 

levels of questions vary, all classification systems involve a spectrum beginning with 

lower-order recall questions and progressing toward higher-order inference questions. 

While the beginning of this spectrum represents procedural based questions, the end 

focuses on conceptual based questions that help students transfer knowledge to alternate 

contexts, the process of inference-making. This indicates that as questions approach the 

higher end of the spectrum, they help to better facilitate the development of situation 

models. Perhaps the best-known and most widely used system for classifying cognitive 

levels of learning is Bloom’s (1956) taxonomy. Assuming that “the cognitive level of a 

question is determined by the response requested by the teacher” (Wimer, Ridenour, 

Thomas & Place, 2001, p. 85), Hopper (2009) used this taxonomy to classify cognitive 
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categories of question types. These categories classified lower-order questions as ones 

that elicit responses based on knowledge recall and procedural application; whereas, 

higher-order questions elicit analysis, synthesis and evaluation (i.e., the process of 

transforming connections into inferences). Higher-order/deep questions (used 

interchangeably from this point forward), are therefore often open-ended, challenging, 

and are of great importance for facilitating the use of situation models when students are 

presented with cognitively high demanding mathematical tasks.  

Deep questions are the stimulus of classroom conversations and have been shown 

to directly influence student cognitive processes (Chapin & Anderson, 2003; Chin, 2006; 

Morge 2005). Sigel and Saunders (1979) suggested that deep questions are critical 

because they often force students to distance themselves from the present in order to 

think about past or future events. In doing so, students must mentally represent what has 

happened or what soon will happen in order to make valid inferential statements. This is 

in alignment with Nussbaum and Edwards (2011) suggestion that these type of questions 

can and should be used to help students think more critically about the plausibility of 

their own arguments as is related to connections between empirical evidence and 

scientific models. Furthermore, when questions are focused and deliberate, Rubin (2009) 

found that students were able to form stronger connections to prior knowledge. These 

connections led to the ability to transfer deeper levels of understanding across various 

contexts, the fundamental outcome of a well-defined situation model.  

Student self-explanations of worked examples also seems to lead to an increase in 

knowledge transfer (Renkl et al., 1998). This agrees with Chi et al.’s (1994) findings that 

higher learning gains occur when learners are prompted with questions during the act of 
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reading. The elicitation of explanations is particularly beneficial for students who have 

low levels of prior knowledge (Renkl et al., 1998). In order to elicit students’ self-

explanations, Pashler et al. (2007) suggests that deep questions are essential because they 

promote students to form connections between explicit material and their “subjective 

explanations…that link the [explicit] material to personal knowledge and experiences” 

(p. 29). Moreover, in order to engage students in cognitively high demanding 

mathematical tasks, teachers must practice flexibility in adjusting questions based on 

student responses (Chin, 2007), and must provide adequate time for students to establish 

well thought out responses (Kazemi & Stipek, 2001; Weimer, 1993).  

Several researchers have noted that an increase in question variety (i.e. lower- and 

higher-order questions) leads to an increase in comprehension (Ellis, 1993; Wilen, 1991). 

Creating a cognitive ladder to scaffold student understanding (Chin, 2006) that is based 

on the types of questions students are asked, may therefore support development of 

conceptual understanding and help to create learning environments that maximize 

students’ connection-making opportunities (Boaler & Brodie, 2004; Kazemi & Stipek, 

2001; Stein, Remillard & Smith 2007). Khan and Inamullah (2011) found however that in 

most U.S. secondary classrooms, very few deep questions are being asked. This is 

consistent with Wimer et al. (2001) who recorded that very few deep questions were 

posed during the instruction of sixteen third and fourth grade teacher’s mathematics 

lessons. Instead, the teachers asked many lower-order questions which mainly focused on 

simple recall of information. While the researchers admit that lower-order questions do 

have a place in instruction, they argue that “higher level questioning leads to higher level 

learning” (p. 85). Especially for elementary school children who may have only limited 
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informal knowledge of a mathematical concept such as inverse relations, it seems as if 

lower-ordered questions that are based on formal memorized facts, will lead to inflexible 

and limited comprehension. The asking of deep questions on the other hand, should help 

novice learners develop connections to prior informal knowledge and in turn create a 

foundation for the development of children’s situation models.  

The Case: Domain of Inverse Relations 

 

Inverse relations are a fundamental mathematical idea that often involve 

cognitively high demanding tasks. In elementary school, inverse relations mainly refers 

to the inverse relationship between addition and subtraction and between multiplication 

and division, which serve as a fundamental building block for many quantitative concepts 

(Baroody et al., 2009; Carpenter et al., 2003).  Because inverse relations transcend across 

all levels and various contexts of mathematics, numerous connection-making 

opportunities exist when studying inverse relations. This critical mathematical topic 

therefore provides a promising domain for investigating how situation models facilitate 

mathematical comprehension.  

Research reveals elementary school children generally lack a formal 

understanding of inverse relations (Baroody, Ginsburg & Waxman, 1983; De Smedt, 

Torbeyns, Stassens, Ghesquiere, & Verschaffel, 2010; Resnick, 1983). This presents a 

problem far beyond elementary classroom doors, since longitudinal empirical evidence 

(Baroody, 1987; Stern, 2005; Vergnaud, 1988) suggest that an elementary student’s 

comprehension of inverse relations significantly predicts both algebraic and overall 

mathematical achievement in later years. The Common Core has recognized the 

importance of inverse relations by identifying them as a critical piece of mathematical 
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competency across all elementary grades levels (CCSSI, 2010). This supports the need to 

help elementary children facilitate the development of a well-connected situation model 

for inverse relations (i.e., # of groups × group size = total, total ÷ group size = # of 

groups). 

Research on inverse relations has typically been conducted in both the 

mathematics education and the cognitive psychology fields (Nunes et al., 2007). While 

mathematics education research aims to improve teaching and learning of the content 

within inverse relations, cognitive psychologists have used the domain of inverse 

relations to investigate the dynamics of cognitive development (Nunes et al., 2009). 

Inverse relations provide a great domain in which to explore the longstanding 

developmental question of whether content should drive pedagogy or pedagogy should 

drive content. This is because “children’s understanding and use of inverse relations 

provides an excellent vehicle for studying the interactions between different kinds of 

knowledge in the development of mathematical thinking” (Bisanz, Watchorn, Piatt & 

Sherman, 2009, p.11).  

Comprehension of inverse relations was first linked to cognitive development by 

Piaget’s (1952) assertion that very young children are not capable of reversible thought 

(Man, 2011). He claimed that reversibility, the ability to recognize that numbers or 

objects can be transformed and then returned to their original condition, is only 

achievable once children (aged 7-11) reach the concrete operational stage of his cognitive 

development theory. For example, during this stage, a child understands that a favorite 

ball that deflates is not gone but can be filled with air again and put back into play 

(Piaget, 1952). Interestingly, today’s mathematics education literature on children’s 
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comprehension of inverse relations suggests this very notion that students have a higher 

rate of success with inverse problem solving tasks that include the use of concrete objects 

(Nunes, Bryant & Watson, 2009). More recent research findings suggest that the 

comprehension of inverse relations is not just related to cognitive development; it is 

related to the effectives of classroom instruction (Man, 2011; Nunes, et al., 2007) and 

most likely also the curriculum (Ding, 2016). 

Investigating children’s use and understanding of inverse relations has led to 

improved instruction that is “designed to optimize conceptual and procedural 

competencies in mathematics” (Bisanz, et al., 2009, p.11). The literature however 

indicates that instructional practices primarily focus on procedural knowledge instead of 

conceptual understanding of inverse relations, which has largely resulted in past research 

omitting the process of developing comprehension. To illustrate this, the following 

sections provide a review of prior and current research on both additive and 

multiplicative inverse relations. Although the focus of the current study will only be 

multiplicative inverses, a review that includes additive inverses is necessary to situate the 

current study within the status quo of relevant mathematical learning opportunities within 

elementary school classrooms. 

Additive Inverses 

Research suggests that elementary aged students typically struggle with solving 

problems that involve additive inverses (Nunes et al., 2009; Stern, 1992). This has been 

shown to inhibit the level of comprehension that students have in regards to the overall 

operations of addition and subtraction (Bryant, Christie & Rendu, 1999). Specifically, 

research illustrates that many elementary age students do not use the inversion principle 
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when presented with three term arithmetic problems that have the form a + b – b = a 

(Bisanz et al., 2009; Siegler & Stern, 1998). The mathematical inversion principle states 

that “inverse operations involving the same value results in no net change” (Prather & 

Alibali, 2009, p. 236) to an original quantity. Instead of using the more efficient inversion 

shortcut to cancel the b’s, most students tend to simplify these expressions by first adding 

the values of a and b before subtracting b from the resulting quantity (a left-to-right 

approach) (Bisanz et al., 2009). Perhaps this is due to students not wanting to deviate 

from their procedural understanding of the order of operations.  

Students can often apply procedural knowledge to arrive at correct answers, but 

they frequently do so without a conceptual understanding of the inverse relation between 

addition and subtraction (Bisanz, et al., 2009). While the shortcut approach of cancelling 

the b’s might appear procedural in nature, Gilmore and Papadatou-Pastou (2009) argue 

that conceptual knowledge of the inversion principle directly underlies the use of the 

shortcut. Robinson and LeFevre (2012) agree with this notion that “fast and accurate 

solutions have been interpreted as evidence that solvers use their conceptual knowledge 

of the inverse property” (p. 410). Likewise, Crooks and Alibali (2014) believe that the 

use of the inversion shortcut demonstrates a deeply connected structural understanding of 

inverse relations. Because “most studies…do not distinguish between children’s 

understanding of a concept and their ability to identify situations in which it might be 

relevant” (Gilmore & Bryant, 2008, p. 301), Gilmore and Bryant (2008) investigated this 

notion of connection knowledge. They compared children’s use of the inversion shortcut 

in problems where inversion was transparent (i.e., 17 + 11 – 11) to problems where it was 

non-transparent (i.e., 17 + 11 – 5 – 6). As one might expect, students had more difficulty 
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recognizing and using the inversion shortcut for the non-transparent problems. Because 

transfer was limited in the face of a new unknown situation (non-transparent problems), 

this might suggest that students’ situation models for the inversion principle were not yet 

well defined. Bisanz and colleagues (2009) also found that the way in which inverse 

relations are presented to students could influence comprehension.  

The complement principle (if   a + b = c, then c – b = a) is another way in which 

researchers study the teaching and learning of inverse relations (Baroody, 1983, 1987; 

Ding, 2016; Li, Hassler & Ding, 2016). The two term complement principle (if  a + b = c, 

then c – b = a) is closely related to the three-term inversion principle (a + b – b = a, 

Baroody et al., 2009). In regards to the complement principle, Baroody et al. (1983) 

found that many elementary students (61% of those sampled) could not use addition as a 

method for solving subtraction problems. More recently, Li and colleagues (2016) noted 

that after effectively computing 9 + 3, only 41% of sampled grade 1 students could get 

the correct answer for 12 – 3 and 0% of those indicated that they did so based on using 

inverse thinking. Other studies (Baroody et al., 2009; De Smedt et al, 2010; Torbeyns et 

al., 2009; De Smedt et al, 2010) have also shown that even with instruction, elementary 

age students struggle with using addition to solve subtraction problems. Most 

commentaries on the complement principle (Resnick, 1983; Putnam, de Bettencourt, & 

Leinhardt, 1990) point out that c consist of two parts, a and b, and claim that the main 

reason for children’s failure is due to the difficulty in making connections between the 

part-whole relationship (Li et al., 2016) or their part-whole schema might be loosely 

constructed. In other words, when attempting to use this principle in new situations, 
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students “struggle with retrieving inverse thinking strategies” (p. 13) which suggests that 

student situation models for inverse relations are not well-connected.  

Another layer of research hypothesizes that comprehension of inverse relations 

consists of both a qualitative and quantitative aspect. Bryant, Christie and Rendu (1999) 

noted that elementary children had an easier time understanding the removal and 

replacement of physically identical bricks (qualitative) than they did with quantitative 

problems in which the same number of physically different bricks were added and then 

subtracted. Although their findings only involved additive inverses, if both a qualitative 

and quantitative aspect is needed for comprehension of inverse relations, Nunes et al. 

(2009) suggested that teaching children about the connections between these aspects 

would be an efficient way to improve comprehension. This further supports the need for 

teachers to form connections between concrete and abstract representations in order to 

help students enhance their situations models. However, little research has been 

conducted on the connections that teachers make when teaching inverse relations.  

Multiplicative Inverses 

The majority of prior research on inverse relations has only focused on additive 

inverses (Cowan & Renton, 1996; Squire, Davies & Bryant, 2004) and thus there exists a 

large gap in literature involving how connection-making facilitates the comprehension of 

multiplicative inverses. The limited research that is available (Robinson & Dubé, 2009b; 

Thompson, 1994; Vergnaud, 1988) suggests that similar to the well-documented 

problems children have with comprehending additive inverses (Nunes et al., 2009; Stern, 

1992; Bryant, Christie, Rendu, 1999), multiplicative inverses are also a struggle for 

elementary aged students (Robinson & Dubé, 2009b; Thompson, 1994; Vergnaud, 1988). 
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Analogous to addition and subtraction, problems at the elementary level that use the 

inversion principle of multiplication and division take the form a × b ÷ b = a. Like 

additive inverses, findings from recent studies (Dubé & Robinson, 2010; Robinson & 

Dubé, 2009a; 2009b) illustrate that students do not use an inverse shortcut to simplify 

these multiplicative inverse problems; rather, they routinely use the left-to-right solution 

approach instead of first simplifying b ÷ b to obtain 1. This might again be due to 

students not wanting to deviate from their procedural understanding of the order of 

operations. Although Bisanz et al. (2009) only studied additive inverses it seems likely 

that students who can apply procedural knowledge to arrive at correct multiplicative 

inverse solutions might also be doing so without a conceptual understanding of inverse 

relations.  

Elementary students’ use of multiplicative inverses lags behind that of additive 

inverses. Baroody (2003) found that only 25% of children use the inversion principle as a 

shortcut in applicable multiplicative inverse problems as compared to 39% who do so in 

with additive inverses (Baroody et al., 1983). Not only is applying a shortcut thought to 

illustrate conceptual knowledge (Gilmore & Papadatou-Pastou, 2009), but McNeil (2007) 

found that U.S. students who did not apply the inversion shortcuts were more prone to 

procedural errors when simplifying inverse problems. In some European countries where 

connections to mental representations are emphasized and practiced, students apply 

shortcuts more frequently which leads to greater transfer across other mathematical 

operations (Verschaffel, Luwel, Torbeyns & Van Dooren, 2009). According to Hatano 

(2003), the most important issues in the psychology of (mathematics) education is how to 

facilitate the development of adaptive expertise, the ability to apply prior knowledge both 

“flexibly and creatively” (p. xi). Providing connection-making learning opportunities should 
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therefore help students strengthen their situation models and in turn lead to increased 

comprehension of inverse relations that extends far beyond routine expertise, the ability to 

“complete school mathematics exercises quickly and accurately without (much) 

understanding” (p. xi). 

The complement principle (if a × b = c, then c ÷ b = a) has also been researched 

in the domain of multiplicative inverses. Concerning this principle, both Grossi (1985) 

(as cited in Vergnaud, 1988) and Thompson (1994) found that elementary students were 

unable to recognize the appropriateness of using either equation when solving application 

problems. Recent research on student comprehension of the multiplicative complement 

principle seems limited; however Ding and Carlson (2013) did indicate that current 

instruction of inverse relations does not support conceptual connection making. As a 

result, students are more prone to make computational errors such as 7 ÷ 35 = 5 or  

5 ÷ 35 = 7.  Together these indicate that the teaching and learning of elementary inverse 

relations does not focus on facilitating well-connected situation models. 

The Role of Curriculum and Instruction on Mathematical Comprehension 

When learning a new mathematical concept, students must be afforded learning 

opportunities that activate existing mental representations that are used to facilitate 

connections between prior knowledge and the new targeted content (Sidney & Alibali, 

2015; Zwaan & Madden, 2004). Although the amount and the ability to activate 

conceptually relevant prior knowledge has been shown to be a significant and reliable 

predictor of comprehension (Langer, 1984; McNamara et al., 1996; Pearson, Hansen & 

Gordon, 1979), novice learners often struggle to make connections to relevant prior 

knowledge (Novick, 1988). It is therefore of utmost importance to teach beginning 

learners how to make connections to relevant prior knowledge (Pearson et al., 1979), 
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which can be done by helping students construct situation models so as to activate the 

inference making process. Research indicates that curriculum and instruction should be as 

coherent and explicit as possible when attempting to facilitate understanding for learners 

with little prior knowledge (Kintsch, 1994; Reed, Dempster & Ettinger, 1985). 

Textbooks 

Textbooks are a critical part of a student learning environment in that they are a 

vital curriculum resource that provide opportunities to learn (Ding, 2016; NRC, 1999; 

Thompson, Kaur, Koyama & Bleiler, 2013). As reported by Malzahn (2013), 85% of 

grade K-5 mathematics classrooms in the U.S. use commercially published textbooks. It 

therefore is no surprise that teachers most often use textbooks as the primary source for 

content knowledge (Ding, 2016; Dossey, Halvorsen & McCrone, 2012). Most prior 

research that has been conducted on U.S. textbooks, analyzes teacher editions because 

they suggest “minimum opportunities that a teacher may use in the classroom” (Ding, 

2016, p. 49) and often provide additional insight into instructional strategies that teachers 

may use with different types of learners. Thus, exploring the design of teacher edition 

textbooks in relation to analyzing the connection-making opportunities involving 

instructional tasks, representations and deep questions, should provide insight into how 

curriculum materials provide opportunities to facilitate student’s situation models for 

multiplicative inverses.  

As evident by the emphasis placed on numerical calculations, prior studies reveal 

that U.S. textbooks focus mainly on facilitating procedural understanding (Cai et al., 

2005; Ding, 2016; Ding & Li, 2010). Underlying mathematical principles are also seldom 

made explicit in U.S. textbooks (Ding & Li, 2010). This is in contrast to international 
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textbooks that provide “more opportunities supporting meaningful and explicit learning” 

(Ding, 2016, p. 45). For example, in comparison to Chinese textbooks, Ding found that 

U.S. elementary mathematics textbooks do not always situate “the initial learning 

opportunities of a fundamental idea in concrete situations for sense making” (p. 48). This 

has also been found to be true for the fundamental mathematical ideas of the concepts of 

equivalence (Li, Ding, Capraro & Capraro, 2008), the distributive property (Ding & Li, 

2010), the associative property (Ding, Li, Capraro, & Capraro, 2012), and most recently 

inverse relations (Ding, 2016). 

Instructional tasks (i.e., worked examples and practice problems) for inverse 

relations found within two different representative U.S. textbooks mainly focus on 

procedural understanding (Ding, 2016). These tasks tend to emphasize multiple 

procedural-based solution strategies rather than attempting to form structural connections 

that could lead to increased conceptual understanding of inverse relations. Chinese 

textbooks on the other hand, tend to use instructional tasks to focus on sense making by 

stressing the structural relationships of inverses (Ding, 2016). This agrees with Zhou and 

Peverly’s (2005) observation that first grade Chinese textbooks used the composing-

decomposing and part-whole methods to illustrate the underlying structural relationships 

of additive inverses. In general, Ding (2016) concluded that U.S. textbook worked 

examples primarily serve as “pretext for computation with a focus on procedures” (p. 64) 

instead of facilitating connection-making by activating “students’ personal experiences 

and informal understanding to aid in learning” (p. 64).                     

Another interesting finding from Ding’s (2016) analysis involves a cross-cultural 

difference in the proportion of worked examples that textbooks use for teaching inverse 
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relations. Whereas U.S. textbooks include a larger amount of worked examples for 

multiplicative inverses in comparison to additive inverses, Chinese textbooks exhibited 

the opposite frequency. A likely possibility for why this difference exists is because the 

structural connections established for additive inverses in Chinese textbooks helps 

students at an earlier age form well-connected situation models for inverse relations. If 

true, less explicit instruction on multiplicative inverses would be needed because Chinese 

students would be able to activate their inference-making process by using their previous 

inverse situation model to draw on connections from previous knowledge. This notion of 

strengthening a student’s situation model seems to be in direct contradiction to U.S. 

classroom instruction that lacks connections to underlying principles (Crooks & Alibali, 

2014; De Smedt et al., 2010). Likewise, the U.S. teacher belief that students will 

eventually master difficult concepts if given enough repetitive examples (Ding & 

Carlson, 2013), also does not indicate a U.S. instructional focus on facilitating the use of 

situation models.  

 Concerning the use of representations, Ding (2016) found that in both U.S. 

textbooks analyzed, less than 20% of coded additive inverse relation instances and less 

than 26% of coded multiplicative inverse relation instances were concrete in nature. 

Specific to worked examples, these concrete representation percentages dropped to 6% or 

below for both additive and multiplicative inverses. An even smaller percentage of 

worked examples were situated in real-world contexts (Ding, 2016). Instead, concrete 

representations used within instructional examples of U.S. textbooks, were “most often 

only physical or visual in nature (i.e., dominoes, cubes, diagrams) and therefore had very 
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little contextual support” (p. 64). Together with the fact that other textbook 

representations did not focus on the structural relationship of multiplicative inverses,   

Ding (2016) concluded that U.S. textbooks provide an incomplete use of representations. 

This incomplete use of representations within the U.S. textbooks appears to be a result of 

missed connection-making opportunities. 

 Missed opportunities to make connections between concrete and abstract 

representations most likely also occurs because U.S. textbooks generally are not designed 

to be “faded out from worked examples to practice problems with variations” (Ding, 

2016, p.55). Instead, worked examples and practice problems in U.S. textbooks are 

mainly abstract in nature, creating minimal opportunities for students to form connections 

to concrete representations. In contrast to U.S. textbooks, Ding (2016) found that Chinese 

textbooks situate worked examples in concrete context, fade worked examples into 

abstract scenarios, include varied numerals across problems, and gradually minimize 

student instruction throughout a lesson. Together these attributes of Chinese textbooks 

promote connection-making opportunities that allow students to move beyond a surface-

level understanding of worked examples. None of these concreteness fading (Goldstone 

& Son, 2005) tasks were found within U.S. textbooks, which may suggests that U.S. 

students are given limited opportunities to form connections to underlying mathematical 

concepts. This in turn may hinder the growth of their situation models for inverse 

relations. 

Deep questions directly influence student cognition (Chapin & Anderson, 2003; 

Chin, 2006; Morge, 2005) because they elicit students’ explanations to underlying 

mathematical concepts (Craig et al., 2006). The inclusion of deep questions within 
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textbooks thus seems to be an essential component for facilitating the use of situation 

models for cognitively high demanding mathematical tasks. However, U.S. elementary 

mathematics textbooks do not generally include many deep questions (Ding, 2006) and 

do not explicitly indicate a desire for teachers or students to provide deep explanations 

(Ding & Carlson, 2013).  

Specific to the Common Core (CCSSI, 2010), Chingos and Whitehurst (2012) 

claim that new curriculum “standards will only have a chance of raising student 

achievement if they are implemented with high-quality materials” (p. 1). Thus, recent 

research has begun to explore methods for measuring the quality of Common Core 

curriculum materials. In one of the first studies of this nature, Polikoff (2015) reviewed 

four Common Core aligned fourth grade mathematics textbooks and concluded that there 

exists a “good deal of misalignment at the cognitive-demand level in textbooks—all of 

them systematically fail to cover the more conceptual skills called for by the standards” 

(p. 1203). There is a pressing need therefore “to investigate the extent to which textbook 

content may be associated with effectiveness” (p. 1207).  

Some researchers have argued that textbooks that lack connections within and 

across topics might actually be desirable for the formation of situation models (Mannes & 

Kintch, 1987; McNamara et al., 1996). This argument is rooted in the belief that a less 

coherent text forces readers to actively search for their own ways to facilitate connection-

making. On one hand, a minimally coherent text may be problematic for teaching 

elementary inverse relations because many elementary aged students are beginning 

learners who struggle to make connections to relevant prior knowledge (Novick, 1988; 

Pearson et al., 1979). On the other hand, a lack of coherence may be beneficial for 
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promoting connection-making opportunities when students possess prior knowledge and 

get comfortable with targeted content. An appropriate level of instructional coherence 

(i.e., when to use concreteness fading and when to ask deep questions to elicit deep 

understanding of targeted content) may therefore depend on the ability to assess the status 

of children’s prior knowledge, an assessment that may require teacher expertise. 

Although U.S. elementary teachers are not typically mathematical content experts, 

expertise on knowing when to provide appropriate learning opportunities that facilitate 

connection-making appears to be an important component in the teaching of fundamental 

mathematical concepts. The root cause of students’ limited comprehension of inverse 

relations may not be the curriculum itself, rather it may be due to elementary teachers not 

enacting curriculum in an adequate manner consistent with connection-making. While 

further research is arguably needed across other Common Core aligned textbooks, it 

nonetheless has become “essential to move from the textbook into the classroom to 

understand how curriculum materials influence teachers’ instructional responses to the 

standards” (Polikoff, 2015, p. 1208). 

Expert Teachers 

 It seems reasonable to begin and exploration of learning opportunities that 

facilitate mathematical situation models for multiplicative inverses with elementary aged 

students because of the relevance that prior knowledge has on connection-making. It also 

seems reasonable to begin the investigation by analyzing instruction that has the highest 

likelihood of creating a supportive learning environment that may lead to maximizing 

mathematical comprehension of inverse relations. Together these point to the analysis of 

expert elementary teachers’ mathematics instruction. Not only has the study of expert 
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teachers been popular in recent mathematical comprehension research (Cai & Ding, 

2015; Cai, Ding & Wang, 2013; Ding, Hassler, Li & Chen, 2016; Hassler, 2016; Hassler 

& Ding, 2016), but the study of experts’ knowledge has also had a long tradition in 

cognitive psychology (Leinhardt & Smith, 1985). Chi (2011) describes an expert as 

“someone who is relatively more advanced, as measured in a number of ways, such as 

academic qualifications, years of experience on the job, consensus among peers, 

assessment based on some external intendent task, or assessment of domain-relevant 

content knowledge” (p. 18). While most expert U.S. elementary teachers are not 

mathematical content knowledge experts, general teaching knowledge along with any 

several of the aforementioned characteristics may classify them as experts. Bransford and 

colleagues (1999) suggest the use of experts in helping gain professional knowledge from 

classroom instruction because experts tend to notice meaningful patterns of information, 

have well organized and conditionalized knowledge and are able to flexibly retrieve and 

apply that knowledge to new situations. While the first two reasons for analyzing expert 

teachers seem to center around their ability to create connections to prior and current 

targeted knowledge, the last reason suggests that experts themselves understand when 

and how to activate their own situation models. 

In an attempt to determine how practitioners view instructional coherence, Cai et 

al. (2014) interviewed 16 U.S. and 20 Chinese expert elementary mathematics teachers. 

The results showed that the majority of the U.S. teachers viewed coherence as the 

connectedness of teaching activities between and within instructional lessons. U.S. 

textbooks that include the same titled lessons across various grade levels, with only 

minimal surface level changes (e.g., vary numerals used in problems), may in part foster 
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this view (Ding, 2016). U.S. teachers also “referred to connections to prior knowledge as 

a result of rather than a condition of achieving instructional coherence” (Cai et al., 2014, 

p. 273) which suggests they might not view situation models as a tool useful for 

achieving comprehension. On the other hand, Chinese teachers “emphasized the 

interconnected nature of mathematical knowledge” (p. 267) and as confirmed by Cai and 

Ding (2015) view understanding as “a web of connections, which is a result of 

continuous connection making” (p. 17). Taken in combination with U.S. student’s lower 

scores on international mathematical assessments (TIMSS, 2013; PISA, 2013), this 

cultural difference of expert teachers’ views on connection-making suggest a need to 

examine how current U.S. learning environments (i.e., curriculum materials, classroom 

instruction) provide learners with opportunities to develop mathematical understanding. 

Justification for Study and Research Questions 

 The reality of the Common Core’s (CCSSI, 2010) call for strengthening 

connections between fundamental mathematical ideas, is that reformed curriculum 

materials are not meeting the necessary “advanced levels of cognitive demand” (Polikoff, 

2015, p. 1188) and that U.S. children continue to struggle with comprehension. A review 

of literature has suggested that of utmost importance for improving comprehension is the 

need to teach beginning learners how to make connections to relevant prior knowledge 

(Pearson et al., 1979). I argue that students are best supported in this process when they 

are presented with connection-making opportunities useful for enhancing their situation 

models. To date however, little is known about how curriculum materials and classroom 

instruction in current learning environments afford elementary students these 

opportunities.  
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The goal of this research is to explore the opportunities that appear to be the most 

contributing factor in the creation of a situation model: (a) the presentation of 

instructional tasks, (b) the types of representations, and (c) the use of deep questions. 

Because text comprehension shares features with mathematical problem solving in that 

learners must form connections through an active inference making process, an integrated 

comprehension perspective in which mathematical understanding is explored by means of 

a situation model is justified for this study. Further, past research has primarily focused 

on if and when children show evidence of understanding inverse relations, not how and 

why this understanding occurs. The exploration of how connection-making opportunities 

enhance comprehension of inverse relations is thus also justified for study.  

Due to the limited scope and the desire for an in-depth analysis, this study will 

focus solely on the complement principle of multiplicative inverses (if a × b = c, then  

c ÷ b = a), a difficult principle to comprehend and an under researched domain as 

supported by the literature. Since curriculum and instruction should be as coherent and 

explicit as possible for learners with little prior knowledge (Kintsch, 1994; Reed, 

Dempster & Ettinger, 1985), learning opportunities for inverse relations should focus on 

facilitating the connection-making process in order to help elementary students develop 

situation models for multiplicative inverses that can be used for inference-making. Thus, 

in response to Linn’s (2006) call for future empirical research to explicitly search for 

ways to facilitate children’s connections to prior knowledge, the following three research 

questions have emerged: 

(1)     How do reformed elementary CCSS textbooks facilitate connection-making 

through the presentation of instructional tasks, representations, and deep 
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questions in order to promote students’ comprehension of multiplicative 

inverses? 

(2)   How do expert elementary mathematics teachers facilitate connection-making 

through the use of instructional tasks, representations and deep questions in 

order to promote students’ comprehension of multiplicative inverses? 

(3)   How do connection-making opportunities afforded by reformed CCSS 

textbooks and provided by expert teachers' classroom instruction relate to 

elementary students’ comprehension of multiplicative inverse relations? 

Specific to the first research question, and because past studies have revealed that 

U.S. curriculum materials generally lack connections within and across topics (Ding, 

2016; Schmidt, Wang, & McKnight, 2005), I hypothesize that the materials on 

multiplicative inverses found within the two CCSS textbooks analyzed in this study will 

still share cultural-based features with missed opportunities for connection-making 

(Research Question #1). Past studies suggest that missed opportunities within 

instructional tasks may result from procedurally dominated worked examples and 

practice problems that do not focus on the structure of underling mathematical principles. 

I also believe that due to the literature suggesting that concrete representations have little 

contextual support in U.S. textbooks, missed opportunities to connect concrete 

representations to abstract number sentences will exist. I do not expect concreteness 

fading to occur, which similar to past findings will also limit the strength of connections. 

Several missed connection making opportunities due to a lack of deep questions are also 

expected. Although it might be expected that Common Core (CCSSI, 2010) linked 

textbooks integrate some of the aforementioned connection-making features, early studies 
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on these textbooks (e.g., Polikoff, 2015) suggest they fail to promote conceptual 

understanding. 

Past research reveals that comprehension is strengthened when “teachers assist 

students in classifying and formalizing structures and explicitly linking them to existing 

knowledge” (Chapin & Anderson, 2003). I therefore hypothesize that the classroom 

instruction of the expert teachers in this study will overall tend to emphasize connection-

making (Research Question #2). I further hypothesize that because of their expertise, 

teachers in this study will be able to fill in missed connection-making opportunities that 

may exit in their textbook (e.g., adding deep questions to instruction). Although Ding and 

Carlson (2013) found that non-defined expert teachers struggle to implement effect 

instructional techniques, the teachers in the current study are expert teachers and thus are 

expected to promote connection-making opportunities consistent with the literature 

review on instructional tasks, representations and deep questions. However, it should be 

noted that because literatures suggests that expert U.S. teachers view instructional 

coherence as the connectedness of teaching activities and not the interconnectedness of 

mathematical concepts, it would not be a surprise if some missed connections occur 

during expert teacher’s instruction. After all, teaching has been identified as a cultural 

activity (Stigler & Hiebert, 1999). Connection opportunities that relate to the 

interconnectedness of mathematics (i.e., connections to prior or future mathematical 

content knowledge) might be the most vulnerable.  

Finally, I hypothesize that both higher connection-making textbook scores and 

higher connection-making teachers scores will strengthen students’ situation models for 

multiplicative inverses whereby resulting in increased comprehension (Research 
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Question #3). When connections within instructional tasks are established, concrete and 

abstract representations are integrated throughout a lesson, and deep questions are posed 

during instruction (Pashler et al., 2007), students are more likely to be able to transfer 

new skills into different contexts because of an increase in encoding and extraction of 

core underlying mathematical principles (Renkl et al., 2002). This also lends me to 

anticipate that students in classrooms with higher textbook and higher teacher 

connection-making scores will achieve greater learning gains from a pre- to a post-test 

assessment on understanding multiplicative inverse relations.  
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CHAPTER 3 

 

METHODS 

 

This chapter provides a detailed description of the methodology that I used to 

explore how textbooks and expert elementary mathematics teachers facilitate connection-

making opportunities for enhancing students’ comprehension of multiplicative inverses.  

The chapter begins with an explanation of the research design of this study and continues 

with a description of the participants. An explanation of the data sources and procedures 

follows. Finally, the last part of this chapter describes the data analysis approach that was 

taken in order to answer the three research questions.  

Research Design 

The purpose of this study was to explore how textbooks and expert elementary 

mathematics teachers provide connection-making opportunities for the learning of 

multiplicative inverse relations. Investigating the three research questions in this study 

involved a collective use of induction (discovering patterns within textbooks and 

classroom instruction), deduction (testing the theory of situation models based on 

connection-making) and abduction (uncovering the best set of connection-making 

opportunities that can lead to increases in comprehension), which classifies this study as 

mixed methods research (Johnson & Onwuegbuzie, 2004, p. 17). Originating in the late 

1980’s, mixed methods design is a relatively new methodology which Creswell (2014) 

defined as the class of research that “focuses on collecting, analyzing, and mixing both 

quantitative and qualitative data in a single study” (p. 6) and should be used when 

“quantitative and qualitative approaches in combination provides a better understanding 

of the research problems than either approach alone” (p. 6). As opposed to using only one 
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method, the analysis of each of the first two research questions in the current study 

involved the integration of qualitative and quantitative data. This provided a stronger 

understanding of how textbooks and expert elementary mathematics teachers facilitate 

connection-making. Further, although the third research question called for an exclusive 

quantitative analysis, it was designed to provide empirical evidence in support of the 

overall qualitative nature of connection-making opportunities. According to Creswell 

(2014), these specific features classify the current study as an embedded mixed methods 

design.   

The embedded mixed methods research design involves using a secondary type of 

data to support a study’s primary data set (Creswell & Plano Clark, 2011). Embedding a 

secondary type of data into a research design provides researchers with a methodology 

that can be used to investigate complex phenomena in which asking different types of 

questions within a single study may require different types of data. The premise of this 

advanced mixed methods design is that a single data type is not sufficient for a complete 

understanding of a study’s research questions. Researchers therefore have traditionally 

used this type of mixed methods design to either nest a qualitative data analysis within a 

largely quantitative study or nest a quantitative data analysis within a largely qualitative 

study. In the current study, quantitative components are embedded within the overall 

qualitative content analysis (see Figure 3) in order to gain a more complete understanding 

of how learning opportunities may facilitate the creation of situation models that are 

useful for increasing student comprehension of multiplicative inverses.  
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Figure 3. Embedded mixed methods design (Creswell & Plano Clark, 2011). 

 

The qualitative approach to research involves investigating fundamental questions 

surrounding the how and why of decision making (Caelli, Ray & Mill, 2003; Merriam 

1998). To gain a better understanding of current learning opportunities afforded to 

elementary students, a qualitative content analysis was conducted to identify the typical 

ways in which textbooks (Research Question #1) and expert teachers (Research Question 

#2) formed connections through the presentation of multiplicative inverse relations. 

Traditionally, content analysis has been used as a systematic method for compressing text 

data in order to examine trends and patterns (Cavanaugh, 1997; Stemler, 2001). However, 

Holsti’s (1969) broader description that inferences can be made through analysis of most 

any type of conveyed message does not restrict content analysis to only textual 

examination. Instead, recent researchers have used content analysis to examine student 

drawings (Wheeelock, Haney & Bebell, 2000) and evaluate videotaped classroom 

instruction (Stigler et. al, 1999).  

A directed content analysis (Hsieh & Shannon, 2005) was selected for the current 

study because this approach uses prior research to create an initial coding framework in 

which preconceived categories are operationally defined by existing theory. This is in 

contrast to a conventional content analysis in which coding categories evolve as data is 

collected and analyzed on a phenomenon that has rarely been researched. The direct 
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content analysis framework used in this study was derived from research corresponding 

to the Institute of Education Sciences’ (IES) recommendations for improving student 

learning (Pashler et al., 2007), and from the existing situation model theory of 

comprehension (van Dijk & Kintsch, 1983). Specifically, the focus of this study was how 

textbooks and expert teachers facilitate connection-making through the use of 

instructional tasks, representations and deep questions. The goal of direct content analysis 

is to either confirm or find evidence against categories in the framework in order to 

improve and enrich existing theory (Hsieh & Shannon, 2005). It is expected that the 

content analyses in this study will lead to a rich and meaningful categorization of 

connection-making opportunities that ultimately may extend the situation model theory of 

comprehension.   

In addition to this qualitative exploration, the categories within the content 

analysis framework were quantified for the purpose of providing a more complete answer 

to the first two research questions in this study. The reason behind quantifying the 

connection-making opportunities in this study was three-fold. First, because the 

quantitative approach to research views discovery of knowledge as a development that 

occurs because of examining a specific set of variables within a cause-and-effect mindset 

(Creswell, 2014), creating a quantitative connection-making scale allowed for easy 

comparison between the potential effect that each textbook and each teacher had on 

improving student comprehension. Second, by quantifying the variables in the 

framework, it became clearer how each variable (e.g., instructional tasks, representations 

and deep questions) contributed to the overall connection-making opportunities afforded 

by the textbooks and expert teachers. Lastly, the quantitative scale provided a means for 
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evaluating the extent to which different expert teachers enhanced textbook connection-

making opportunities. It should be noted that the process of quantifying qualitative data 

has been conducted by numerous other researchers (Chi, 1997; Goldin-Meadow, Alibali, 

& Breckinridge Church, 1993; Jordan & Henderson, 1995). Overall, analyzing the first 

two research questions through the combination of both a qualitative and a quantitative 

lens provided a more complete understanding of how current learning environments (i.e., 

curriculum materials and classroom instruction) provide learners with opportunities to 

enhance mathematical comprehension. 

The third research question in this study was designed to determine how 

connection-making opportunities relate to student comprehension of multiplicative 

inverses. Unlike the first two research questions, the investigation of this question was 

purely quantitative. Quantifiable data is often collected using an instrument that measures 

pre- and post-test performance and is analyzed through robust statistical procedures. Most 

often, the conclusion of a hypothesis test is used in quantitative research to make a 

decision that either supports or refutes an existing claim or theory (Creswell, 2014). In 

this study, student comprehension of inverse relations (Research Question # 3) was 

examined through a multivariate linear regression analysis consistent with the 

aforementioned quantitative approach. A more detailed explanation of both the 

qualitative and quantitative methods that were used to investigate the three research 

questions involving connection-making opportunities afforded by textbooks and expert 

instruction can be found in the data analysis section of this chapter.  
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Participants 

Teachers 

This study involved four elementary school expert teachers who are participants 

of a five-year National Science Foundation (NSF) funded project on early algebra in 

elementary schools. The data from these four teachers was gathered during the first year 

of the project. Although eight U.S. teachers participated in year one of the NSF project, 

only the four participants included in this study taught the targeted content for this study, 

multiplicative inverse relations. Amy, Esther, Jackson and Lily were the pseudonyms 

assigned for the four teacher participants. Amy and Esther were third grade teachers, and 

Jackson and Lily were fourth grade teachers at the time of this study. The teachers were 

selected from grades 3 and 4 because according to the Common Core State Standards 

(CCSSI, 2010) multiplicative inverses are taught across these two grade levels. In 

addition, all four teachers were employed by the same large high-needs urban school 

district in Pennsylvania; however, they each taught at different elementary schools within 

that district.  

The following characteristics were considered when selecting these four expert 

teachers to be part of the overall NSF project (a) years of teaching experience, (b) having 

a good teaching reputation among peers (e.g., recommended by the principal or the 

school district), (c) having remarkable teaching recognition (e.g., earned teaching awards 

or certificates), (d) having a high score on a teacher survey instrument (Appendix A) and, 

(e) demonstrating high algebraic knowledge for teaching (AKT) on an open-ended 

multiplicative inverse teaching instrument (Appendix B). In particular, two of the 

teachers (Esther and Jackson) were National Board Certified Teachers (NBCT), and the 
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other two teachers (Amy and Lily) were highly recommended by their respective 

principals. All teachers except for Esther reported participating in 3+ professional 

development (PD) activities in the previous three years leading up to this study; Esther 

reported 1-2. Moreover, Amy reported that her average daily mathematics lesson (Time) 

lasted between 41-60 minutes, Lily reported 61-80 minutes, and Esther and Jackson both 

stated that they spent more than 81 minutes each day teaching mathematics. At the time 

of this study, all three females in the study held a master’s degree in education (M.Ed) or 

an equivalence (M.Eqv), and Jackson had earned a doctorate degree in education (Ed.D). 

Table 1 provides a summary of the demographic information of the four expert teachers 

in this study. 

Table 1: Teacher Participant Demographic Information 

Name Sex Grade Years NBCT PD Time Degree 

Amy F 3 0-6 No 3+ 41-60 M.Ed. 

Esther F 3 21-25 Yes 1-2 81 + M.Ed. 

Jackson M 4 6-10 Yes 3+ 81+ Ed.D. 

Lily F 4 26 + No 3+ 61-80 M.Eqv 

 

According to the teacher survey instrument (Appendix A), all four teachers 

believed that the inadequacy of a student’s mathematics background can be overcome by 

good teaching. However, while Amy and Jackson agreed that a student’s mathematics 

grade is likely to improve when a teacher employs a more effective instructional 

technique, Ester and Lily indicated that they were not sure if this association exists. 

Further, all four teachers alleged that they knew the steps necessary to teach mathematics 

concepts effectively. According to the open-ended multiplicative inverse teaching 
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instrument (Appendix B), all four teachers reported instructional techniques consistent 

with the reviewed literature on connection-making. Specifically, individual teachers 

noted a desire to use worked examples for building the structure of inverse relations, 

described the process of fading concrete manipulatives into abstract representations, 

and/or provided examples of deep questions that could be asked during instruction in 

order to solicit students’ deep understanding.  

Students 

The students who participated in this study were from each of the four expert 

teachers’ classes (nAmy = 24, nEsther = 24, nJackson = 29 and nLily = 25) and were participants 

in the overall NSF study. As indicated in Table 2, there were both similarities and 

differences in student demographics across the four classrooms. Concerning gender, the 

percent of female students in each of the four classrooms was around 50%. Although 

slight differences existed, the majority of students in all four classrooms were not 

disabled and were not classified as limited English proficiency (LEP) learners. In 

contrast, the race/ethnicity of students in these classrooms was not as consistent. For 

instance, while 79.2% of Esther’s students were Caucasian, 72% of Jackson’s students 

were African American. In addition, while approximately 30% of Amy, Esther and Lily’s 

students were provided a free/reduced lunch, 68% of Jackson’s students were granted this 

service. A more complete picture of the demographics of students in each of the four 

classrooms is provided in Table 2.  
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Table 2. Student Demographic Information 

 

Data Sources and Procedures 

Curriculum Sources 

Investigations in Number, Data and Space (simply Investigations) was used by 

one third grade (Amy) and one fourth grade (Jackson) teacher in this study (Wittenberg et 

al., 2012). Investigations is a K-5 elementary mathematics reformed curriculum that is 

supported by the National Science Foundation (NSF) and was developed and maintained 

by the Technical Education Research Center, a nonprofit research and development 

organization whose mission is to improve mathematics, science, and technology teaching 

and learning. According to Barshay (2013), Investigations is one of the most widely used 

mathematics curriculums in U.S. elementary schools. This curriculum was developed 

  Amy Esther Lily Jackson 

Gender 
Female 50.0% 54.2% 44.8% 44.0% 

Male 50.0% 45.8% 55.2% 56.0% 

Race/Ethnicity 

Caucasian 29.2% 79.2% 44.8% 12.0% 

African American 16.7% 12.5% 20.7% 72.0% 

Hispanic 20.8% 4.2% 10.3% 4.0% 

Asian 20.8% 4.2% 13.8% 12.0% 

Multi-racial 12.5% 0.0% 10.3% 0.0% 

Disability 

Status 

No 95.8% 83.3% 86.2% 80.0% 

Yes 4.1% 16.7% 13.8% 20.0% 

LEP Status 
No 83.3% 100% 100% 96.0% 

Yes 16.7% 0.0% 0.0% 4.0% 

Free/Reduced 

Lunch 

No 70.8% 62.5% 69.0% 32.0% 

Yes 29.2% 37.5% 31.0% 68.0% 
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based on extensive classroom testing with a focus on allowing time for students to 

develop a strong mathematical conceptual skill set and has the full support of the 

National Science Foundation. Investigations, claims to “address the learning needs of real 

students in a wide range of classrooms and communities” in such a way that “invite(s) all 

students in mathematics—girls and boys; members of diverse cultural, ethnic, and 

language groups; and students with a wide variety of strengths, needs and interest” 

(Wittenberg et al., 2012). For each grade level, Investigations is broken down into 

various units that include individual textbooks for each unit. Implementation of 2 to 5 ½ 

weeks is suggested for each unit. At the time of this study, Amy and Jackson were using 

the second edition of Investigations, which was not yet aligned with the Common Core 

(CCSSI, 2010). However, both teachers had received common core supplemental 

materials from the publisher that they could use in conjunction with their existing 

textbooks. 

The other third grade teacher (Esther) and the other fourth grade teacher (Lily) in 

this study used GO Math, another Common Core reformed curriculum (GO Math!, 

2012). GO Math is a registered trademark of Houghton Mifflin Harcourt and claims to be 

the first K-8 mathematics program written to fully support the Common Core State 

Standards (CCSSI, 2010) through a focused, coherent and rigorous curriculum. GO Math 

claims to support critical thinking and application knowledge. Moreover, GO Math is a 

“21st-century educational technology with modern content, dynamic interactivities and a 

variety of instructional videos to engage today’s digital natives” (GO Math!, 2012). To 

help facilitate a blended approach to instruction, GO Math claims to offer adaptive on-

the-go instructional opportunities and comprehensive teacher support. 
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A full version of each curriculum (Grades K-5) was accessed for this study. From 

each textbook, four grade 3 and four grade 4 lessons were selected as part of the larger 

NSF project for examining classroom instruction. The lessons selected covered the major 

aspects of multiplicative inverse relations discussed in the literature and suggested by the 

Common Core (e.g., Baroody, 1999; Carpenter et al., 2003; CCSSI, 2010; Nunes et al., 

2009; Torbeyns et al., 2009). In particular, among the four grade 3 lessons on inverse 

relations, two of them were related to fact families, one was about using multiplication to 

compute division, and one was a teacher choice on inverse relations. In grade 4, two 

lessons were related to multiplicative comparisons (find how many times, find the small 

or large quantity) which implicitly indicate inverse relations. In addition, there was one 

lesson on using multiplication to check division and one lesson on two-step word 

problems (operations were inverses). Table 3 lists the structure of the selected lessons 

topics. 

Table 3. The Overall Structure that Guided the Selection of Lessons 

 

Multiplicative Inverse Topics   

G3  Fact family (1)  G4  Comparison word problem  (1) - 

find how many times 

  Fact family (2)     Comparison word problem  (2) - 

find the small or large quantity  

  Using multiplication to compute 

division 

   Using multiplication to check for 

division 

  A topic suggested by teachers     Two-step word problems  

 

Across the two textbook series, common themed multiplicative inverse lessons were 

chosen in order to create the best scenario for comparison of connection-making 

opportunities across curriculums. In this study, both Investigations and GO Math were 

used by one third and one fourth grade teacher participant, which allowed for comparison 

of textbooks across and within grade level. As suggested by Ding (2016), the teacher 
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textbook editions were used for the textbook coding and analysis. Although originally 16 

textbook lessons were selected, only 14 were coded for analysis because both Jackson 

and Lily taught two lessons based on the same textbook lesson. This was not known to 

the researcher prior to data collection.  

Videotaped Lessons 

Each expert teacher agreed to be videotaped enacting his or her four 

corresponding textbook lessons. All 16 lessons were videotaped using two digital video 

cameras, one that followed the teacher throughout the lesson and one that was set up to 

capture student interactions. Members of the NSF project research team jointly collected 

and transcribed the footage from each lesson. These transcriptions were used to code the 

connection-making opportunities that the teachers provided during classroom instruction 

and to identify typical teaching episodes that promote the use of situation models for 

multiplicative inverses. The videotaped lessons had an average length of 43 minutes and 

were all collected during the 2014-2015 academic school year.   

Teacher Interviews 

 A structured interview was immediately conducted with each teacher after each 

videotaped lesson was completed. These interviews were conducted for obtaining 

immediate self-reporting teacher feedback about the effectiveness of his or her 

instruction. The questions asked during these interviews included specific inquiries about 

the effectiveness of the instructional tasks, the uses of representations and the asking of 

deep questions that took place during instruction. For instance, the teachers were asked—

What do you think about the representations you or students used during this lesson?—

and—Did using the representations communicate mathematical ideas the way you 
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thought they would? The full questionnaire can be found in Appendix C. The transcribed 

teacher interviews were used for triangulation with the coded textbook and classroom 

enacted lessons and provided further evidence to help explain how and why teachers 

make instructional decisions during classroom teaching. 

Student Assessments 

To analyze students’ comprehension of multiplicative inverses, a student pre-

assessment was conducted at the beginning of the school year prior to any direct 

instruction on multiplicative inverses. The same test was administered as a post-

assessment at the end of the school year after all four of the multiplicative inverse lessons 

were enacted by the teacher. Each item on this eight-question assessment (Appendix D) 

was adapted from the literature in order to assess comprehension of the complement 

principle of multiplicative inverses (Broody, 1987, 1999; Nunes et al. 2009, Resnick, 

1989, Torbeyns et al. 2009). These items contain tasks on fact families, using inverse 

operations for computation or checking, and solving inverse unknown problems. In order 

to get a relatively complete picture of students’ understanding of inverse relations, these 

items included both non-contextual and contextual items. 

Data Analysis  

The situation model theoretical framework generated from the review of literature 

suggests that mathematics instruction should focus on teaching students how to activate 

and facilitate the inference making process by making connections to relevant prior 

knowledge (Pearson et al., 1979). The instructional tasks, types of representations, and 

the use of deep questions during mathematics instruction have all been shown to affect a 

student’s ability to form connections and draw inferences, the critical components of a 
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situation model. Based on the IES recommendations for establishing connections to 

underlying principles (Pashler et al., 2007), the author of this dissertation developed a 

coding framework (Appendix E) that was used for the content analysis of both textbook 

presentation and teacher instruction. This framework was based on Ding and Carlson’s 

(2013) framework for coding teacher lesson plans, but was adapted for analyzing the 

existence and effectiveness of connection-making learning opportunities. It specifically 

was modified for coding both textbook and instructional opportunities that influence 

situation models. The initial version of the framework developed by the author was 

altered several times based on field tests and input from a second researcher working on 

the NSF project. These changes involved adding the words “targeted content” and 

“missed opportunities” for describing connection-making within several of the 

subcategories. For clarity, examples were also included in the highest connection-making 

category for concrete (i.e., story problems) and abstract (i.e., equations) representations. 

Finally, whereas the term “worked example” typically refers to instruction that involves 

providing students with already fully worked out problem solutions, it was decided this 

term would also refer to the sample tasks that teachers present during instruction. This 

decision was made because if the teachers in this study did not use “worked examples,” 

their instructional examples would still be coded for connection-making opportunities. 

The three main categories of this coding framework are based on the IES 

recommendations for improving student learning (Pashler et al., 2007) and were 

assembled from the reviewed literature (i.e., instructional tasks, Renkl et al., 2002; 

representations, Goldstone & Son, 2005; and deep questions, Chin, 2007). The 

connection-making framework included a 0-2 scale that was used to code the 
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effectiveness of forming connections within each of 9 subcategories. Concerning 

instructional tasks, the subcategories included review tasks, worked examples and 

practice problems. The subcategories for representations involved concrete, abstract and 

the sequence of representations. Finally, the framework included deep questions asked 

for establishing connections to prior, current and future knowledge.  

To answer Research Question 1 – how reformed elementary CCSS 

textbooks facilitate connection-making—a qualitative content analysis involving the 

presentation of instructional tasks, representations and deep questions of each selected 

multiplicative inverse textbook lesson was conducted. The aforementioned connection-

making framework based on the situation model theory of comprehension (Appendix E) 

was used for this analysis. In addition to identifying typical ways in which the two 

curriculums (Investigations and GO Math) facilitated connection-making, each textbook 

lesson was coded using a quantitative 0-2 scale which was applied to each subcategory in 

the framework. Table 4 provides an example of how the coding framework was 

implemented when coding Jackson’s first textbook lesson involving multiplicative 

comparisons. The rationale of the textbook score for each category is provided (see Table 

4) and the full textbook lesson can be found in Appendix F. More detailed explanations 

of the textbook codes are provided in the results section (Chapter 4) of this dissertation.  

Table 4. Example of Textbook Coding: Jackson’s First Lesson  
Category Subcategory Score Rational 

Instructional 

Tasks 

Review 0 - The task was a routine review 

of prior content but no connections 

to the targeted content was made.  

The only task provided was 

“Ten-Minute Math” which 

reviewed basic arithmetic.  

Worked 

Examples 

1 - Implicit connections to the 

targeted content were made, but 

not well established or discussed. 

Activities 1 & 2 only discussed 

the multiplication structure. 

Discussion 3 states students 

might provide both a 

multiplication and a division 
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Clear opportunities to make 

connections are missed. 

equation; no suggestion on 

forming a connection to 

multiplicative inverses. 

Practice 

Problems 

2 - Practice problems have an 

explicit connection to the targeted 

content. 

Practice invoked multiplicative 

thinking (problems 1, 2, 4 & 6) 

and division thinking (problems 

3 & 5).  

Representations Concrete 2 - Instructional tasks are situated 

in rich concrete contexts (i.e. story 

problems) and are used to form 

well developed connections to 

prior or targeted content within 

instructional tasks. 

Every example and practice 

problem was situated within a 

real world story context. 

Concrete representations 

included pictures of apples and 

stick figures. 

Abstract 1 - Abstract representations are 

used to form connections to prior 

or targeted content within 

instructional tasks, but the 

connections are not well 

developed. 

Multiplicative equations are 

provided in activities 1 and 2 but 

are not connected to division 

equations. Discussion 3 provides 

both but does not explicitly 

connect them to stress inverse 

relations. 

Sequence of 

Representations 

1 - Connections between concrete 

and abstract representations are 

established during instructional 

tasks, but they do not always 

progress from concrete to abstract. 

Activity 1 begins with pictures 

of apples & then provides a 

multiplicative equation. Activity 

2 starts with multiplicative 

equation and then suggests 

drawing stick figures. 

Questions Prior 0 - No deep questions for the 

purpose of making connections to 

prior knowledge are posed.  

No deep questions provided 

connections to prior knowledge. 

Current 1 - Some deep questions are posed 

for the purpose of making 

connections to targeted content, 

but connections remain at the 

surface level (ie. procedural) 

Surface level questions: “where 

is the 2 in this problem?” -“what 

is unknown?”-“do you multiply 

or divide?” -“How did you solve 

this problem?” 

Future 0 - No deep questions are posed 

for the purpose of making 

connections to future content. 

No deep questions provided 

connections to future 

knowledge. 

 Total Score: 8 / 18 Possible Points  

 

All subcategory scores for each textbook lesson were summed resulting in a 

connection-making score for each textbook lesson (total possible score of 18). Averaging 

the four textbook lesson scores for each teacher yielded an overall textbook connection-
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making score for each teacher. Further, an overall textbook connection-making score was 

calculated for each curriculum (see Appendix H). Along with a qualitative analysis that 

included typical ways in which these textbooks use instructional tasks, representations 

and deep questions to promote connection-making, these quantitative scores were used to 

examine and compare learning opportunities that contribute to the development of 

situation models for multiplicative inverses. To check the reliability of the coding 

process, a second researcher from the NSF project independently coded one textbook 

lesson from both curriculums in both grade levels (n = 4). Among these 36 codes (25% of 

all textbook codes), 2 codes were different, resulting in an initial reliability of 94%. In the 

case of the discrepancies, an in-depth dialogue led to a consensus and thus reliability 

reached 100%. After this reliability checking of the coding framework, all other textbook 

lessons were coded.  

To answer Research Question 2 –how expert elementary mathematics teachers 

facilitate connection-making through the use of instructional tasks, representations and 

deep questions – each teacher’s four enacted lessons were examined by means of the 

same content analysis framework (Appendix E) and through using similar procedures. 

Analogous to the coding of the textbook lessons, a 0-2 quantitative scale was used to 

code connection-making opportunities found within the subcategories of instructional 

tasks, representations, and deep questions within each teacher enacted lesson. Again, 

detailed explanations of these codes are provided in the results section (Chapter 4) of this 

dissertation.  

Next, all subcategory scores were summed which resulted in a teacher 

connection-making score for each enacted lesson. The average of these four scores 
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yielded an overall teacher connection-making score for each teacher (see Appendix I). 

Along with qualitative analysis which identified typical teaching episodes that facilitated 

connection-making, these averages were used to determine the extent to which learning 

opportunities found within classroom instruction promote the development of situation 

models for multiplicative inverses. A second researcher coded the four videotaped 

enacted lessons corresponding to the textbook lessons that were used to check reliability 

of the textbook codes. Among these 36 codes (25% of all teacher codes) 3 were different, 

resulting in an initial 92% reliability. All 3 disagreements occurred in the asking of deep 

questions category, specifically between the scores of 0 (no deep questions) and 1 (some 

deep questions). For instance, while one researcher coded Jackson as asking no deep 

questions connected to prior knowledge because he did not review the meaning of 

multiplication (equal groups), the other researcher coded his review of procedural based 

questioning as indication that some deep questions had been asked for forming 

connections to multiplication. After negotiation and a discussion that involved this 

study’s definition of deep questions (i.e., questions that elicits deep explanations), both 

researchers agreed that the “why” and “how” type questions that Jackson used to review 

the procedures involved in multiplication were indication that he had asked some deep 

questions (a score of 1) but important missing connections to prior knowledge remained. 

Thus, after reliability reached 100%, all other videotaped lessons were coded.  

Based on the coding of the textbook lessons and enacted teaching, a quantitative 

comparison was conducted between teacher instruction and textbook presentation. The 

embedded mixed methods design used in this study allowed for further investigation of 

the second research question and was completed with an eye on determining if the expert 
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elementary teachers enhanced curriculum by increasing connection-making opportunities. 

When analysis suggested that expert teachers did enhance opportunities, calculated 

subcategory scores were analyzed to determine specific ways in which this occurred and 

qualitative analysis provided examples of those common enhancements. Although not 

generalizable due to the small sample size of teachers, the results of these comparisons 

were used to begin a discussion pertaining to how expert elementary teachers transition 

textbook connection-making opportunities into their enacted lessons. The teacher 

interviews conducted after the enacted lessons also helped to support this discussion 

because they provided a valuable qualitative component of practitioner insight 

surrounding the effectiveness of connection-making opportunities used during 

instruction.  

To answer Research Question 3 –how textbook and instructional opportunities 

relate to student comprehension of multiplicative inverses– a quantitative multivariate 

linear regression analysis was conducted using SPSS version 22.0 software. Regression 

was selected because of the need to control for confounding variables when quantifying 

the effect that connection-making opportunities had on student comprehension. Further, 

regression models are considered robust tools for inference (Angrist & Pischke, 2010) if 

model assumptions are met. These assumptions include the existence of a linear 

relationship, multivariate normality, no or little multicollinearity between variables, 

residuals that are independent and fitted data points that are homoscedastic (equal 

variance) about the regression line (Montgomery, Peck & Vining, 2006). Moreover, the 

sample size of students (n = 102) in this study is sufficiently large enough to support 

statistical analysis as evident by the following power analysis. In a multivariate linear 
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regression analysis with α = .05, k (the number of independent variables) = 9, an effect 

size of R2 = .20 and a power = .90, a sample size of 90 is required (Cohen, Cohen & 

West, 2014). 

The primary goal of the regression analysis in this study was to isolate the 

contribution that the textbook connection-making score and the teacher connection-

making score had on student comprehension. As such, it was hypothesized that both 

textbook and teacher connection-making score would have a significant positive effect on 

comprehension. While correctness is certainly a huge contributing factor for 

comprehension, the focus of this study was on facilitating the creation of situation models 

for inverse thinking. Thus, instead of coding for correctness on the student assessment 

(Appendix D), the student pre- and post-test comprehension scores were determined 

based on a framework that specifically coded the existence of students’ inverse 

understanding. In collaboration with the other NSF project researchers, the following 

rubric for inverse understanding was determined. Items 1-4 of the student assessment 

(Appendix D) were each coded as evidence of inverse understanding if a student 

generated all requested correct number sentences (all 3 parts of Q3 were required to be 

correct). Although providing all correct number sentences for these items may not 

guarantee a student possesses explicit understanding of inverse relations, this was 

considered the least evidence needed to show the possibility of inverse understanding. 

For items 5-8 on the assessment, inverse understanding was coded as existing if the 

student clearly used the complement principle to compute or check the solution. The full 

range of scores for inverse comprehension was therefore 0-8, with a score of 8 

corresponding to the highest demonstration of a student’s explicit understanding of 
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multiplicative inverses. Table 5 provides an example of how this inverse understanding 

coding framework was implemented for one of Amy’s student’s post-test (Appendix G). 

Table 5. Example of Inverse Understanding Post-Test Coding: A Student in Amy’s Class 
Question Score Rationale 

1 1 All 3 correct number sentences provided. 

2 1 All 4 correct number sentences provided. 

3 0 Part c was incorrect; Although the correct answer was provided the 

student did not provide the correct equation   (27 ÷ 3 = 9) consistent 

with inverse understanding. 

4 1 All 4 correct number sentences provided. 

5 0 No indication of the inverse complement principle. 

6 1 Belonging to “the same fact family” was considered use of the 

inverse complement principle. 

7 0 The word “elimination” was not considered indication of the inverse 

complement principle. 

8 0 The word “elimination” was not considered indication of the inverse 

complement principle.  

Total Score: 4/8  

 

A second researcher on the NSF project team coded n = 24 students (384 total 

codes) for reliability and the number of inconsistent codes was 23. As such, the interrater 

reliability was 94%. After discussing the discrepancies, reliability reached 100% and the 

remaining student pre and post-test assessments were then coded in a manner consistent 

with the example in Table 5. During this discussion, two main decisions were made to 

address the unclear aspects of coding. First, it was agreed upon that repeated addition 

strategies represented “multiplicative thinking” and therefore would be coded as 

demonstration of inverse understanding. Figure 4(a) illustrates this case. Second, it was 

decided that an incorrect number sentence such as 2 ÷ 10 = 5 [Figure 4(b)] would be 

coded as no knowledge of inverse understanding. This decision was based on Ding and 

Carlson’s (2013) discussion of computational errors. In addition, there were some 

instances in which a student arrived at a numerically correct solution but did not convey 

inverse understanding. Figure 4(c) provides an example of student work that was not 
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credited with demonstrating inverse understanding even though the numeric solution was 

correct.   

 

(a) The use of 

Skip Counting 

Coded as 

Inverse 

Understanding 

(1) 

 

 

 

(b) Computational 

Errors Coded 

as No Inverse 

Understanding 

(0) 

 

 
 

 

 

(c) Correct but 

Coded as No 

Inverse 

Understanding 

(0) 

 

 
 

Figure 4.   Samples of student solutions from the multiplicative inverse assessment.  

 

The post-test inverse understanding score was the dependent variable in this 

multivariate regression analysis. The independent variables of interest included the 

textbook connection-making scores (Research Question #1) and the teacher connection-

making scores (Research Question #2). Both of these connection-making variables could 

take on any value between 0 and 18 (see coding framework in Appendix E). In addition, 

the pre-test inverse understanding score (a value from 0 to 8) was entered as an 

independent variable to help control for variation among initial student understanding. 

This allowed conclusions to be made involving the role that prior knowledge had on 

comprehension. Further, the following student demographics were also considered as 
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independent variables during the analysis and served as further controls in the regression 

model: (1) disability status (indicator variable, 0 = not disabled and 1 = disabled), (2) 

gender (indicator variable, 0 = male and 1 = female), (3) race/ethnicity (indicator 

variable, 0 = Caucasian and 1 = not Caucasian), (4) LEP status (indicator variable, 0 = 

proficient English and 1 = limited English proficiency), (5) free/reduced lunch status 

(indicator variable, 0 = no and 1 = yes), (6) grade level.  

A backwards elimination multivariate regression analysis was applied to these 9 

independent variables. The backwards elimination method involves starting with the 

regression model that includes all independent variables and then testing the effect of 

deleting the least significant variables one at a time as indicated by the p-values of the 

standardized beta coefficients (Montgomery, Peck & Vining, 2006). Computing an F 

statistic between models determined if deletion of the variables improved the regression 

model. This process was repeated until no improvements in the model were possible and 

the assumptions of the regression were confirmed. The adjusted-R2 value was then used 

to determine the percent of variation in comprehension that was accounted for by the 

remaining independent variables in the “best” multivariate regression model. When 

applicable, individual subcategory scores were entered as independent variables in an 

attempt to further determine the role that instructional tasks, representations, and deep 

questions have on facilitating situation models for multiplicative inverse understanding. 
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CHAPTER 4 

 

RESULTS 

 

In alignment with the three research questions, this study sought to explore how 

elementary reformed Common Core (CCSSI, 2010) textbooks and expert elementary 

mathematics teachers who use those textbooks facilitate connection-making in order to 

establish and enhance students’ comprehension of multiplicative inverses. Viewing 

comprehension from a situation model perspective in which understanding is influenced 

by the nature of how learners form connections between current situations and prior 

knowledge, the findings below examine how the presentation of instructional tasks, uses 

of representations and the asking of deep questions afford students connection-making 

opportunities. In this chapter, I will first discuss the connection-making opportunities that 

exist in the teacher edition textbooks of both Investigations and GO Math. These 

opportunities were found as a result of performing a direct content analysis on 

multiplicative inverse lessons from each curriculum (Research Questions #1). Next, I will 

describe the opportunities for connection-making found during classroom instruction by 

revealing the findings from a content analysis on the corresponding lessons that were 

enacted by expert teachers (Research Question #2). Finally, I provide the results of a 

multivariate linear regression analysis that examined the effect that textbook and teacher 

connection-making opportunities have on facilitating situation models for multiplicative 

inverses (Research Question #3). 

Connection-Making Opportunities Afforded by Textbooks 

 Averaging all of the textbook scores (n = 14) across curriculums revealed a total 

average textbook connection-making score of M = 12.13 (out of 18 possible points; SD = 
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3.45). This suggests that reformed Common Core curriculum materials provide at least 

some connection-making opportunities for learning the targeted content of multiplicative 

inverses. When broken down by curriculum however, there appears to be a sufficiently 

large difference between the Investigations (M = 9.25; SD = 1.91) and Go Math (M = 

15.28; SD = 1.48) connection-making scores. Although differences exist among all sub-

category scores, Figure 5 reveals that the greatest differences revolve around the use of 

instructional review tasks and worked examples, as well as the sequence of 

representations and the asking of deep questions (see also Appendix H). In the figure, the 

horizontal line at 18 represents the highest possible connection-making score. 

 

Figure 5. Average connection-making scores within each textbook. 
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Instructional Tasks 

According to Figure 5, the instructional tasks provided by GO Math appear to 

offer well-developed explicit connections to multiplicative inverses. In contrast, the 

Investigations curriculum seems to form only implicit connections between and within 

instructional tasks. A closer inspection of how these instructional tasks are presented in 

both curriculums reveals three key findings. First, the level of cognitive demand found in 

review tasks is different between curriculums. Second, a difference exists in the use of 

worked examples for creating connections to the structural relationship of multiplicative 

inverses. Third, whereas GO Math tends to fade similarly structured worked examples 

into practice problems involving variations, Investigations does not. The following three 

sections explore these differences in detail.  

Cognitive Demand of Review Tasks 

The initial activation of conceptually relevant prior knowledge (schema) is the 

crucial first step in creating a mathematical situation model. Instructional review tasks 

that afford this initial activation opportunity are therefore an important part of learning. 

While it is promising that all textbook lessons in this study include some form of a review 

task, a close inspection of Figure 5 reveals a curriculum difference in how these tasks 

facilitate situation models for multiplicative inverses. In regards to the connection-

making sub-category score for review tasks, GO Math scored an average of M = 1.86 (out 

of 2; SD = 0.35); whereas, Investigations scored an average of M = 0.75 (SD = 0.45). 

This suggests that the Investigations curriculum does not tend to explicitly connect 

review tasks to the targeted content. Instead, review tasks found in Investigations are 

categorized as “Ten-Minute Math,” and they often appear to have little or nothing to do 
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with multiplicative inverses. For example, the “Ten-Minute Math” for all of the third 

grade coded lessons focused on helping students tell time on an analog clock. On the 

surface, this task appears to have little to do with inverse relations; however, in two cases, 

multiplicative thinking (repeated addition) was invoked when students were told to count 

by 5’s. In another instance, students were asked to use five-minute intervals in order to 

identify the relative location of 11:18 on a clock. By dividing the clock into five-minute 

intervals, this task invoked division thinking. No discussion in the textbook however 

actually referred to using multiplication or division, and so at most, these review tasks 

offered only implicit connections to the targeted content. In the case of the fourth grade 

Investigations lessons, all “Ten-Minute Math” focused on practicing multiplication facts 

based on the method of repeated addition. This included having students write 

corresponding multiplication equations after listing out several multiples of a given 

number. Not having students count backwards in order to relate this process to division, 

revealed another missed connection-making opportunity during review. In general, the 

review tasks observed in the Investigations curriculum required low cognitive demand 

(i.e., stating facts, following procedures, solving routine problems; Van de Walle & Bay-

Williams, 2012) and therefore provided only limited opportunities for activation of 

relevant prior knowledge, the first important component of developing a mathematical 

situation model. 

On the other hand, the review tasks found within the GO Math curriculum 

afforded numerous opportunities to facilitate connection-making (i.e., high cognitive 

demand tasks; Smith & Stein, 1998). These opportunities were presented across three 

sections of the lesson:  “Daily Routines,” “Response to Intervention Reteach Tier 1,” and 
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“Access Prior Knowledge.” Typical “Daily Routines” in the lessons coded involved 

building fluency with a review of either multiplication facts or relevant vocabulary. 

While some of these tasks were procedural in nature, others explicitly stressed the 

conceptual relationships inherent in inverses. For example, Figure 6(a) illustrates part of a 

“Daily Routine” that required students to list explicit connections to the word quotient. 

The semantic nature of this task is likely to move a learner beyond the simple activation 

of prior knowledge and begins laying a structural foundation for the creation of a 

situation model for multiplicative inverses. “Daily Routines” also included a multiple 

choice “Problem of the Day” which often involved further explicit connections to 

targeted content. As indicated in Figure 6(b), these problems sometimes forced students 

to rely on reasoning involving counter-examples to refute or refine prior inference, a 

technique that can strengthen and create connections within one’s situation model 

(Johnson-Laird, 1983). The “Reteach Tier 1” section of the “Response to Intervention” 

found within each GO Math lesson provided other review tasks that often explicitly 

connected multiplication and division. The “Reteach Tier 1” example in Figure 6(c) 

demonstrates one way in which the textbook reviewed the structural connection between 

a multiplication and a related division equation. Analyzing and comparing quantitative 

relationships that are explicitly connected to the targeted content appeared to also occur 

within the “Access Prior Knowledge” part of the GO Math lessons. Figure 6(d) includes a 

suggestion for reviewing the concept of additive comparison through use of the 

previously learned bar model (also known as strip or tape diagrams; Murata, 2008), 

which may contribute to students’ new learning of the multiplicative comparison 

structure. Collectively, the connection-making opportunities afforded by the cognitively 
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high demanding review tasks in GO Math serve to activate prior knowledge in order to 

lay a foundation for increased encoding of core underlying mathematical principles, 

whereby initiating the process of forming a situation model. 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

 

(d) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Explicit connections to multiplicative inverses found in GO Math review tasks. 

 

The Use of Worked Examples to Create Constant Structure 

In the situation model perspective of mathematical comprehension, worked 

examples provide students with the opportunity to observe how experts use activated 

prior knowledge during the inference-making process. Because this opportunity helps 
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novice learners create their own internal network of connections, worked examples 

should be explicitly connected to core underlying mathematical principles. Likewise, 

corresponding practice problems should also be connected to the targeted content so that 

learned knowledge can be reinforced for the purpose of strengthening connections within 

students’ situation models. As indicated by Figure 7, while both Investigations and GO 

Math appear to provide practice problems that are explicitly connected to inverse 

relations (MI = 1.57, SD I = 0.49; MGM = 1.86, SDGM = 0.35), there seems to be a 

curriculum difference among worked examples (MI = 1.29, SD I = 0.45; MGM = 1.86, 

SDGM = 0.35). In the figure, the vertical line at 2 represents the highest possible 

connection-making score. 

 

Figure 7. Between curriculum connection-making differences in worked examples and 

practice problems. 
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The worked examples in the coded textbook lessons of Investigations often lacked 

a clear connection to the structural relationship of multiplicative inverses. In six of the 

seven coded lessons in fact, only implicit connections between the worked examples and 

the targeted content were established. Although the worked examples in these lessons did 

involve both multiplication and division, they were often only computationally driven. In 

other words, Investigations tended to focus the use of worked examples around the 

procedures instead of the relationships within multiplication and division problems, 

which seems not to reinforce the development of a situation model for multiplicative 

inverses. For instance, in the third grade lesson entitled “Multiply or Divide,” the worked 

example for multiplication and the worked example for division were presented in 

isolation. Even though the same numerals (4, 5 and 20) were used in both problems, the 

text did not explicitly suggest making the structural connection for how the division 

problem could be used to solve the related multiplication problem. Instead, at the very 

end of the lesson the textbook provided a chart (Figure 8) and instructed teachers to have 

students fill in the equation column with an equation that best represents each problem. It 

is promising that the first example in the chart provided both a multiplication and a 

division equation; however, the second does not, and the teacher edition of the textbook 

failed to emphasize the use of or connection between the two equations. Although a note 

to the teacher mentioned that this chart was designed to teach inverse relations, the 

potential learning opportunity for understanding inverse relations at a structural level 

(i.e., developing a situation model for multiplicative inverses) was never explicitly made.  
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Figure 8. Multiply or Divide chart from Investigations. 

 

Instead of focusing on the structure of multiplicative inverses, commentary across 

lessons within the teacher’s edition of Investigations included side-bar “Math Notes” that 

often focused attention on notation and placed an emphasis on the desire for students to 

develop various solution strategies (i.e., tallies, skip-counting, and multiplication facts). 

As seen through these “Math Notes,” the main goal of worked examples in Investigations 

appeared to be for teaching procedural computations as opposed to helping students gain 

a structural foundation for inverse relations. This goal was reinforced by another coded 

Investigations lesson in which the worked examples involved writing story problems for 

the expressions 6 × 3 and 18 ÷ 3. This was another potential opportunity to teach inverse 

relations in a meaningful way. Unfortunately, the worked examples used different 

contexts when writing these two stories, and as a result, the relationships between the 

parts of the two expressions remained implicit. The practice problems for this particular 

lesson also did not request the use of the same context for similar expressions, thus 

confirming another missed opportunity to form explicit connections to the structural 

relationships necessary for the development of a situation model for multiplicative 

inverses.  

 



 94 
 

 
 

In contrast to Investigations, all but one of the GO Math lessons used worked 

examples to make explicit connections to multiplicative inverses. Further, these 

connections were almost entirely focused on the structural relationship of multiplicative 

inverses and were often presented in the format of side-by-side solutions related to 

multiplication and division equations. Figure 9 shows two instances which the GO Math 

textbook suggested teachers use to form a connection to the structural relationship of 

multiplicative inverses. 

(a) Array 

 

  

 

 

 

(b) Bar Model 

 

 

 

 

 

 

 

Figure 9. Side-by-side examples in which the text suggested teachers use to form a 

connection to the structural relationship of multiplicative inverses in GO Math. 

 

The first visual depiction [Figure 9(a)] of the structural relationship of multiplicative 

inverses was accompanied in the GO Math teacher textbook with a note that read, “the 

same array can represent a multiplication fact and its related division fact. The array is 

used in different ways to find a product or quotient…depending on the situation” (Grade 
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3, p. 235b). The second example [Figure 9(b)] included instructions for the teacher to use 

“Math Talk to have students focus on how multiplication and division are related by 

comparing parts of the two models” (Grade 3, p. 235), the part-whole relationship (i.e., 

the situation model) for multiplicative inverses.  This directive went on to state that “it is 

important for students to notice the relationships between factors, products, divisors and 

quotient” (Grade 3, p. 235) and provided exemplary deep questions for the teacher to use 

when making these explicit connections.  The “Reteach Tier 1” section of Figure 6(c) 

provides yet another alternative method which GO Math suggested that teachers use 

when forming connections within the structure of inverse relations. 

What is also particularly powerful about the teacher’s edition of the GO Math 

textbook is the “Professional Development” sections that are included within each lesson 

in order to provide commentary to teachers “About the Math.” These excerpts serve to 

help teachers form connections between targeted content and prior or future knowledge. 

In the reviewed lessons, the “About the Math” included examples of inverse thinking 

relative to the operations of addition/subtraction (prior), multiplication/division (current) 

and algebraic equations (future). These explicit connections extended beyond what was 

simply learned yesterday or what will be learned tomorrow to include the reasons why 

students need a solid understanding of the structural relationship of multiplicative 

inverses. One of these “Professional Development” passages in GO Math that is titled 

“Look for and make use of structure” is provided below: 

When students are able to identify important mathematical relationships 

by noticing a pattern, they can use those relationships to solve problems. 

Students can use the structure of a division problem to solve a related 

multiplication problem in order to find a quotient, dividend, or divisor. 

They should recognize that a quotient and divisor of a division problem 
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are related to the factors of a multiplication problem, and that the dividend 

is related to the product. Using this structure will help students solve more 

complex multiplication and division problems in future lessons and 

algebraic equations in future grades. (Grade 3, p. 237) 

 

Comparing this level of support with the Investigations curriculum which simply tells 

teachers to have students “think about what is the same or different” (Grade 3, p. 117) but 

provides no instructional support for how to connect possible student responses to the 

targeted content of multiplicative inverses, perhaps best summarizes the curriculum 

differences in facilitating connection-making through the use of worked examples. The 

focused attention that GO Math places on the underlying structure of multiplicative 

inverses helps to illustrate the inter-connectedness of mathematics which is crucial for the 

strengthening of a student’s situation model. 

Fading Worked Examples into Practice 

From the situation model perspective, worked examples should all have an 

underlying constant structure that students can use to develop and apply their own 

schema when presented with new situations such as practice problems that have varied 

surface characteristics. The GO Math curriculum was found to agree with this perspective 

in that worked examples (MGM = 1.86, SDGM = 0.35) established a constant structure that 

was maintained in practice problems (MGM = 1.86, SDGM = 0.35) that had varied surface 

characteristics (see Figure 10). Investigations on the other hand tended to vary the 

structure within practice problems. Although the Investigations lessons included practice 

problems (MI = 1.57, SD I = 0.49) that were more likely to be explicitly connected to 

multiplicative inverses, only implicit connections to targeted content seemed to be made 

through the presentation of the worked examples (MI = 1.29, SD I = 0.45). In the figure, 

the vertical line at 2 represents the highest possible connection-making score. 



 97 
 

 
 

 

Figure 10. Within curriculum connection-making differences in worked examples and 

practice problems. 

 

In other words, the worked examples in Investigations did not tend to discuss inverse 

relations, yet students were required to use inverses for self-guided practice. A close 

inspection of the individual textbook lesson scores revealed that worked examples had 

lower connection-making scores than practice problems in half (n = 4) of the coded 

Investigations lessons. For example, the two worked examples in one of the fourth grade 

lessons involving multiplicative comparisons were as follows: 

1. Darlene picked 7 apples. Juan picked 4 times as many apples. How many 

apples did he pick?  

  

2. Franco’s daughter is 2 feet tall. Franco is 3 times as tall as his daughter. How 

tall is he? 
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Clearly, these examples were repetitive in nature and only stressed multiplicative 

thinking. When completing independent practice however, students were prompted with 

the following questions that invoked division thinking: 

3. A tree in Helena’s yard is 25 feet tall. Helena is 5 feet tall. The tree is how 

many times as tall as Helena? 

 

4. Amelia has 24 marbles. She has 6 times as many marbles as Steve. How many 

marbles does Steve have? 

 

These problems illustrate how Investigations did not tend to fade worked examples into 

practice problems that consist of varied surface characteristics. Instead, an incomplete 

structure seemed to be presented in the worked examples, and practice problems tended 

to vary at a structural level. Only after students had the opportunity to possibly form a 

structural connection to inverse relations themselves during practice did the text suggest 

the teacher make this structural connection explicit.  

This finding was consistent with the third grade Investigations lesson on solving 

division problems which presented students with only one worked example but expected 

them to be able to visualize each situation (i.e., grouping and sharing) when completing 

practice problems. Further, only at the very end of these practice problems did the 

textbook suggest the need to “explain to students that the story problems they solved 

were all division problems” (Grade 3, p. 119). This further supports the notion that 

Investigations overall tended to not form explicit connections during worked examples. 

Interestingly, in a different lesson that did use worked examples to form explicit 

connections to multiplicative inverses, the practice problems only involved division. In 

this case, expecting students to use multiplication to find the answer to a division 

problem was emphasized but only illustrated the use of inverse relations for the purpose 
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of computation, not for creating a structural connection to the targeted content. Taken 

together, the presentation of content in Investigations did not tend to support the fading of 

worked examples into varied practice problems. Rather, students are often expected to 

form their own connections to the underlying principle of inverse relations during their 

own independent practice. Overall, the presentation of instructional tasks in the 

Investigations curriculum did not tend to contribute to the development of a situation 

model for multiplicative inverses. 

The GO Math curriculum on the other hand tended to use worked examples that 

were connected to the underlying structure of inverse relations and reiterated the structure 

with practice problems that had varied surface characteristics. Instead of having students 

“investigate” connections on their own, GO Math “Unlocks the Problem” during the first 

worked example in each lesson. This “Unlocking” in the initial example serves to 

establish a connection to the core underlying mathematical concept being presented in the 

lesson, the important first step in the mathematical situation model perspective of 

comprehension. This connection is made explicit with step-by-step interactive procedures 

in the teacher’s edition of the textbook and is facilitated by examples of deep questions 

that teachers can use in order to illicit deep conceptual understanding. The worked 

examples and practice problems that follow are grounded by this foundational structure 

and are gradually varied in order to further comprehension. Figure 10 provides an 

example of how this fading of worked examples into varied practice problems occurred 

in a typical GO Math lesson involving multiplicative inverses.  
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(a) Unlock the 

Problem 

 

 

 

 

 

 

 

 

 

 

 

(b) Try This! 

 

 

 

 

(c) Share and 

Show 

 

 

 

 

(d) Independent 

Practice 

 

 

 

 

 

(e) Test Prep 

 

 

 

 

Figure 11. Fading of worked examples into varied practice problems in GO Math. 
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In this lesson on related facts, the “Unlock” problem [Figure 11(a)] used an array 

model to make the explicit connection to the structure of inverse relations by presenting 

all four related multiplication and division equations for the fact family of 2, 4, and 8. 

Although this is a specific numeric example and therefore may not promote transfer, the 

teacher is told to make explicit connections between the rows and columns in both 

images which lays the structural foundation of multiplicative inverses. It should be noted 

however that the highlighting of the boxes (white dashed-lines) does not seem to agree 

with the structure of the multiplication problems under the arrays. For instance, in the 

first array where a group of 2 boxes is highlighted to represent 4 groups of 2, it would 

have been better to connect this representation to 4 × 2 = 8, the multiplication statement 

that directly represents 4 groups of 2. The second worked example “Try This” [Figure 

11(b)] used the same multiplicative inverse structure but varied a surface characteristic of 

the problem which required students to think about how the underlying concept could be 

applied in a slightly new situation. Specifically, a fact family that involved two of the 

same factors (a square number) was presented which resulted in only two related 

equations. Next, the textbook lesson presented students with “Share and Show” [Figure 

11(c)] which bridges the gap between worked examples and completely independent 

practice. The first problem in that section contained one of the same factors (2) as the 

first worked example, and students were provided with the same concrete representation 

(array with 2 rows) to support the constant underlying structure. Students also only had to 

provide two related equations since the other two (one multiplication and one division) 

were already provided. To emphasize the connection to multiplicative inverses, students 

were encouraged by the “Math Talk” to “look at the multiplication and division equations 
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in the set of related facts” (Grade 3, p. 240) in order to determine that the “product of a 

multiplication is the dividend of a related division” (Grade 3, p. 240). Further 

independent practice problems [Figure 11(d)] included a chance for students to practice 

writing related equations both with (write the related facts for the array) and without 

(write the related facts for the set of numbers) the support of the array model. Next, 

instead of writing out all related equations, students were asked to complete a set of 

related facts (complete the related facts). While this task maintained the structural 

connection to inverse relations, the process of filling in missing unknown factors 

challenged students to move beyond the surface characteristics of the worked examples 

and in turn began to facilitate algebraic thinking. In addition, this task required students 

to find missing factors, which was different from the worked examples that used the 

product or the quotient as the unknown components. Varying the missing unknown 

components represents a change in the surface characteristic of the worked examples. 

This may also help students strengthen their own schema surrounding the underlying 

constant structure of multiplicative inverses and thus help in the development of their 

situation models. Finally, the last practice problem entitled “Test Prep” presented a 

drastic surface characteristic change from all previous examples and problems. Instead of 

focusing on which equations were related, this problem involved asking students to 

determine which equation was not part of a related fact family. Reasoning with counter-

examples, as presented by GO Math in this question, helps students to refute or refine 

prior inferences and in turn should create and strengthen the numerous connections 

within their situation models for multiplicative inverses. 
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Representations 

 All 14 coded textbook lessons included both concrete and abstract 

representations. Many of the instructional tasks found in both curriculums involved story 

problems that were situated in concrete contexts (e.g., frogs in a pond, desks in a 

classroom, and tickets per ride). Situating early learning of inverse relations in 

completely real-world contexts likely creates an opportunity to initiate the beginning 

stages of creating a situation model, because connection-making begins as a result of 

activating students’ informal prior knowledge. As a result, concrete representations are 

frequently used to model these real-world situations. In Investigations, these 

representations most commonly involved drawings and tally marks. In GO Math, they 

included arrays and bar models. Both curriculums also suggested that classroom 

instruction include the use of concrete manipulatives such as cubes or counters. In 

addition, abstract representations used in both curriculums included the standard 

multiplication notation of a × b and both the a ÷ b and b a representations of division. 

Upon inspection of the connection-making scores involving representations, there seems 

however to be curriculum differences in the purpose behind the use of representations 

and in the sequence of how representations appeared throughout a lesson.  

Purpose of Representations across Grades and Curriculums 

The purpose behind using concrete representations for teaching inverse relations 

appeared to be different for both the third grade and fourth grade lessons. The third grade 

lessons coded in Investigations tended to use concrete representations as a means for 

calculation. The third grade lessons in GO Math on the other hand were more inclined to 

use concrete representations to form connections to the structural relationship of 
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multiplicative inverses. In the fourth grade lessons, GO Math tended to further develop 

these connections; whereas, Investigations tended to initiate these connections. In other 

words, GO Math used concrete representations to develop connections sooner and to a 

better degree than Investigations, which most likely leads to the increased development 

of a student’s situation model. Figure 12 (the horizontal line at 2 represents the highest 

possible connection-making score) illustrates that the third grade connection-making 

scores for both concrete and abstract representations are collectively lower than the fourth 

grade scores, possibly indicating that the connections established between representations 

and the target content of multiplicative inverses seemed to be better developed in both 

fourth grade curriculums. This suggests that the textbooks might have intended to 

develop implicit understanding in third grade and explicit understanding in fourth grade.  

 

Figure 12.  The use of representations to form connections in textbooks. 
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The third grade Investigations lessons tended to place a large emphasis on 

arriving at a correct solution. As a result, multiple solution strategies were endorsed. 

Developing efficient strategies however was not emphasized, and thus representations 

tended to focus on numerical calculations. Analyzing the representations in the third 

grade Investigations lessons revealed that tallies and stick figures were mainly used for 

the purpose of calculating the product or quotient within worked examples. For instance, 

in one example that involved dividing 28 classroom desks into groups, the teacher’s 

textbook suggested using an illustration of 28 tally marks for computing the quotient 

[Figure 13(a)]. Although the math focus point for that lesson was “using the inverse 

relationship between multiplication and division to solve problems,” only the last of a list 

of six different possible solution strategies mentioned the use of known multiplication 

facts. Further, the abstract equations that were used in the third grade Investigations 

lessons were often not connected to the concrete representations and rarely were they 

used to form connections to multiplicative inverses. Figures 13(b)(c) are two examples of 

sample student work included in the third grade Investigations curriculum that do not 

connect to abstract representations, which confirms the computational focus of concrete 

representations. 
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(a) 

(b)  

 

 

 

 

 

(c) 

 

 

 

Figure 13. Computational purpose of concrete representations in third grade 

Investigations. 

Although concrete representations were also used for computation in the GO 

Math third grade curriculum, unlike Investigations, these representations were 

supplemented by structural support. For example, when determining how many apples 

were used to make 28 pies, GO Math presented two different concrete representations. 

First, students were instructed to create an array model by drawing 1 tile in each of 7 

rows until all 28 tiles were drawn. Second, students were instructed to draw 7 circles and 

place 1 counter at a time into each circle until all counters were assigned a circle. The 

first representation invoked multiplicative-thinking, the second division-thinking. By 

including both of these concrete representations in the worked example, the 

computational aspect of each individual representation was overshadowed by the 

structural connection to multiplicative inverses that was established as a result of 

including both types of thinking.  

As previously shown in Figure 9(b), GO Math also introduced the concrete bar 

model representation during third grade instruction for the purpose of forming units in 
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order to build connections to the part-whole structural relationship (i.e., the situation 

model) of multiplicative inverses. Figure 14 provides an illustration of how GO Math 

used the bar model in conjunction with the concrete representations explained in the 

apple pie example in order to further emphasize the structural nature of multiplicative 

inverses. This example involved first sharing 20 dog treats evenly among 5 dogs (using 

multiplication thinking to determine how many in each group), and then second, 

distributing 20 treats five at a time in order to determine how many dogs (using division 

thinking to determine how many groups). Although a connection to the abstract equation 

20 ÷ 5 = 4 was made by the textbook, 5 × 4 = 20 was never mentioned. Although rare in 

the GO Math curriculum, this was a missed opportunity to use abstract representations to 

form connections to the targeted content of multiplicative inverses. 

 

 

 

Multiplication  

Thinking 

                                               Division 

                                               Thinking 

Figure 14. Concrete representations connected to multiplicative inverses in GO Math. 

 

Abstract equations were commonly provided alongside concrete representations 

in the GO Math third grade lessons, and they often were used to form explicit 

connections to multiplicative inverses. This was different from the third grade 

Investigations curriculum that tended not to include side-by-side concrete and abstract 

representations. However, in one instance in which Investigations did attempt to form 

connections between concrete and abstract, the connections were not as explicit as the 

connections found in Go Math. Figure 15 illustrates this difference in how GO Math and 
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Investigations used the semi-concrete array model to represent the inverse relationship 

between multiplication and division. As seen in Figure 15(a), GO Math explicitly 

provided both the abstract multiplication and division equations that represent the 

pictured array. This was different from Investigations, which only depicted the abstract 

multiplication expressions 4 × 6 and 6 × 4 on a similar array representation [See Figure 

15(b)]. Although a connection to multiplicative inverses exists based on the structure of 

the array in Figure 15(b) (i.e., the rows and columns), this connection at first only 

appeared implicit since no division expressions were provided alongside the array. 

Instead, Investigations only made this connection explicit by telling teachers to ask 

students for the division expressions if students did not first suggest them. This was 

consistent with the finding that no other worked examples or practice problem that 

involved arrays in the Investigations curriculum began with an abstract division 

expression. Showing side-by-side multiplication and division expressions and asking 

students to provide all fact family expressions during independent practice most likely 

would have helped students form better connections between concrete and abstract 

representations, whereby strengthening their situation models for multiplicative inverses. 

Both of these instructional techniques were used by the third grade GO Math curriculum.  

 

Figure 15 . The use of arrays to teach multiplicative inverses in third grade lessons. 

 

(a) GO Math (b) Investigations 
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 Even though differences in the purpose of representations existed in the third 

grade curriculums, multiplicative inverse connections to representations were 

strengthened from the third to the fourth grade lessons in both curriculums. This is 

consistent with the Common Core’s (CCSSI, 2010) emphasis of forming fundamental 

mathematical connections across grade levels. In GO Math, this occurred as a result of 

strengthening the foundational connection already created by the previous use of the bar 

model representation. The third grade GO Math lessons used both concrete arrays and 

counters to supplement the semi-concrete bar model representation. By fourth grade, 

these purely concrete representations were no longer used, and the bar models had 

become the focal point of instruction for multiplicative inverses. In fact, in most of the 

coded fourth grade worked examples, students were explicitly asked to draw and explain 

how a bar model could be used to represent both multiplication and division situations. 

Independent practice problems in the fourth grade GO Math lessons also required 

students to create bar models which was an extension to the third grade practice problems 

that only expected students to be able to use the bar models. Using the constant structure 

of the bar model but providing a reduced amount of support (i.e., having students self-

create bar models), illustrates how GO Math strengthened the structural connections for 

inverse relations between grade levels that in turn most likely enhanced students’ 

situation models for multiplicative inverses. 

In the fourth grade Investigations lessons, multiplicative inverse connections to 

representations were strengthened as a result of the creation of a foundational connection 

that was missing in the third grade curriculum. Although not as well-developed as the 

third grade GO Math representational connections to inverse relations (see Figure 12), the 
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purpose of using representations in the fourth grade Investigations lessons appeared to be 

less computational and more structural in nature. For example, in a lesson on 

multiplicative comparisons where students were presented with the following question—

Franco’s daughter is 2 feet tall. Franco is 3 times as tall as his daughter. How tall is 

he?—a side-by-side picture of the two individuals was drawn in order to compare heights 

[Figure 16(a)]. The structure of this representation was similar to how GO Math extended 

the use of the bar model for fourth grade multiplicative comparison problems [Figure 

16(b)]; however, there was an inconsistent use of the abstract representations in this 

Investigations problem. Although the textbook instructed the teacher to write 2 × 3 = Δ 

on the board, the image showed 3 × 2 = Δ. Clearly, the structure of the problem is 3 

groups of 2, but this was not made explicit to students through the use of abstract 

equations. This inconsistency was similar to the aforementioned discrepancies found by 

the highlighting of boxes in the Go Math array representations [Figure 11(b)]. Further, 

even though teachers were told that students could use either a multiplication or a 

division equation for these comparison problems, neither Investigations nor GO Math 

provided abstract division equations when presenting the multiplicative comparisons 

examples illustrated in Figure 16. This illustrates that missed opportunities to use 

representations to form connections to the targeted content of multiplicative inverses 

were found in both fourth grade curriculums. To various degrees, the concrete and semi-

concrete representations used by both curriculums were sometimes found to form 

inconsistent and incomplete connections to the abstract, which most likely would hinder 

the development of a student’s situation model.  
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(a)  Investigations 

 

 

 

 

 

(b) GO Math 

Figure 16. Fourth grade multiplicative comparison representations.  

 

In general, Investigations did use representation to establish connections to the structure 

of multiplicative inverses; however, those connections were not as well developed and 

did not occur as early as those in the GO Math curriculum. Nonetheless, the use of 

concrete and abstract representations in both curriculums, provided students with initial 

connections they could use to develop their own situation models that could be applied in 

future inverse situations. 

Sequence of Representations 

Situating initial learning opportunities in real-world concrete settings has been 

shown to help activate students’ informal knowledge of inverse relations. The goal of 

mathematics instruction is to help transform informal concrete knowledge into formal 

abstract understanding that can be applied across various mathematical contexts. The use 

of a situation model can therefore facilitate the transformation that involves converting 

connections into inferences. Using a sequence of representations that starts with concrete 

connections and progresses towards abstract thought is thus in alignment with the 

situation model perspective of comprehension. Connection-making scores for the 

sequence of representations within the textbook lessons coded for this study indicated a 
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curriculum difference in the suggested placement of representations throughout 

instruction.  

The sequence of representation connection-making score for GO Math  

(MGM = 1.71, SD GM = 0.45) indicates that connections were established between concrete 

and abstract representations, and these connections tended to be presented as a linear 

progression from concrete to abstract (concreteness-fading, Goldstone & Son, 2005). The 

third grade dog treat problem represents a typical example of how GO Math facilitated 

this progression (see Figure 17).  

(a) Concrete representation  

(story situation & pictures) 

A dog trainer has 20 dog treats for 5 dogs in 

his class. If each dog gets the same number of 

treats, how many treats  

will each dog get? 

 

 

 

(b) Semi-Concrete representations  

(dots & bar diagrams) 

 

 

 

 

 
 

 

(c) Abstract representation  

(number sentence) 

 

 

 

 

 

Figure 17. Sequence of representations used within worked examples in GO Math.  
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By accompanying the problem in Figure 17(a) with the vivid image of the five dogs 

(concrete representation), the worked-example was situated in a real-world context which 

may better invoke students’ informal knowledge. Based on the concrete representation 

(image of the dogs), the teacher was told to first elicit a classroom discussion that focused 

on the task at hand (e.g., the number of treats each dog would get). Once this was 

established, a semi-concrete representation of five circles [Figure 17(b)] was drawn to 

represent the five dogs, and students were instructed to place one dot at a time into each 

circle until all 20 dots were used. The solution was then elicited from this semi-concrete 

representation, and the teacher’s textbook provided a reference to multiplicative thinking 

(i.e., 5 groups of 4 = 20). This example however did not cease with computation. Rather, 

the bar model in Figure 17(b), a more abstract semi-concrete representation, was 

introduced for the purpose of focusing student thinking on the part-whole relationship of 

multiplicative inverses, an essential component of comprehension. Whereas the discrete 

dots diagram is more closely related to the vivid image of the dogs, the bar-diagram is 

more abstract, and its depiction of the part-whole relationship makes it a more efficient 

semi-concrete representation. In fact, because of the more abstract nature of the bar 

model, the teacher’s textbook suggested that students should draw a line from each dog to 

one of the boxes on the bar model. This was an explicit attempt to connect a concrete 

with a semi-concrete representation, which may ease students’ transition to abstract 

understanding. Students were also directed to compare how the bar model and the dots 

were alike and different, further strengthening the connections between representations. 

Finally, Figure 17(c) connected the abstract division number sentence to the other 

representations, which completed the overall progression from concrete to abstract. It 
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should also be noted that the typical set of practice problems presented to students in the 

GO Math lessons similarly progressed from concrete representations to tasks that 

involved only abstract expressions.  

The Investigations sequence of representation connection-making score  

(MI = 1.13, SD I = 0.64) indicates that connections between concrete and abstract 

representations were established but did not fade from concrete to abstract. Although 

most worked examples were situated in rich concrete contexts, on several occasions these 

contexts were introduced after students were presented with abstract representations and 

thus did not necessarily serve to initiate students’ prior knowledge. For example, in one 

fourth grade Investigations lesson on relating multiplication and division problems, the 

introductory activity involved presenting students with the expressions 15 × 6 =___ and 

90 ÷ 6 = ___. The teacher was told to allow several minutes for students to solve the 

problems before soliciting various solution strategies. Commentary from the teacher 

textbook also suggested that “some students may notice that the two problems are related 

and use the work they did in the first problem to help answer the second. Others may not 

notice this relationship or may notice it only after both problems have been solved” 

(Grade 4, p. 85). This statement clearly connects the abstract representations to the 

targeted content of multiplicative inverses; however, the next step in the worked example 

was to allow students to use cubes or grid paper to construct a concrete representation for 

the expression 15 × 6. The sequence of representations in this example revealed 

“abstractness-fading,” a reverse of the concreteness-fading approach which treats 

concrete representations as tools for finding answers to abstract number sentences. The 

progression from abstract to concrete was found to also exist in multiple third grade 
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Investigations lessons. Moreover, the Investigations chart provided in Figure 8 included 

both concrete contexts and abstract equations; however, it appeared to be used as an 

organization tool as opposed to forming connections between concrete and abstract 

representations. The sequence of representations in the Investigations curriculum 

therefore did not always support ideal connection-making opportunities needed for the 

development of situation models for multiplicative inverses.   

Deep Questions 

According to Figure 5 (see also Appendix H), deep questions appears to be the 

category in which there exists the greatest opportunities for improving connection-

making within both coded textbook curriculums. As might be expected based on 

discussions involving underlying content of worked examples, the teacher’s edition of 

both Investigations and GO Math provided a substantial amount of deep questions aimed 

at eliciting students to form connections within the current targeted content of 

multiplicative inverses (see Figure 18; the horizontal line at 2 represents the highest 

possible connection-making score). Few deep questions that targeted forming 

connections to prior or future knowledge were found in either curriculum. Overall, 

questions that were found in the GO Math curriculum (MGM = 1.47, SD GM = 0.46) were 

more likely to facilitate connection-making than were the questions found in 

Investigations (MI = 0.62, SD I = 0.37), indicating a curriculum difference in questioning. 

Upon closer inspection of the questions presented in all 14 coded textbook lessons, the 

difference appears to be a due to how questions were presented and for what purpose they 

were asked. 
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Figure 18. The use of deep questions to promote connection-making in Investigations 

versus GO Math.  

 

Presentation of Questions 

The physical manner in which questions were presented in the teacher’s textbook 

of Investigations and GO Math differed. In the Investigations curriculum, questions were 

imbedded into the main body of the text and were integrated within the worked examples. 

In the GO Math curriculum, questions were provided within side-bars that provided 

commentary to teachers about how to present the worked examples found in the main 

body of the text. In addition, although the layout of the textbooks was different, both 

curriculums provided example questions that teachers could use when differentiating 

instruction (i.e., English Language Learners and intervention). Another curriculum 

difference observed was based on whom the questions targeted. Whereas all of the 
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questions in GO Math involved the teacher asking questions to students, Investigations 

actually asked questions to the teacher. Common questions asked to the teacher included, 

“can students answer the questions in each story problem” (Grade 3, p. 122), and “are 

students able to write multiplication equations and division equations to represent the 

problem accurately” (Grade 4, p. 80)? These questions were found under the “Ongoing 

Assessment: Observing Students at Work” section of the teacher’s Investigations 

textbook, and in general, they elicited simple yes/no responses without providing teachers 

with support on how to evaluate student understanding. GO Math on the other hand, 

provided teachers with example questions that could be asked of students in order to 

assess comprehension, which seems to be an important component in helping students 

use and enhance their situation models. These questions often took the form of “how do 

you know your answer is correct” (Grade 3, p. 221), and “how do you know when to 

divide and when to multiply to solve a word problem” (Grade 3, p. 235)? These examples 

also suggested that there exists a fundamental difference in the purpose behind why each 

textbook included questions.  

Existence and Purpose of Deep Questions 

An analysis across curriculums revealed that the largest number of deep questions 

were posed within worked examples for the purpose of forming connections to the 

current targeted content (see Figure 18). Between curriculums however, the questions 

posed by GO Math appeared to provide deeper connection-making opportunities. This 

was in large part because most of the questions provided in the Investigations curriculum 

focused on procedures and computations; whereas, GO Math predominantly asked 

questions that were comparative in nature and elicited conceptual understanding. For 
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example, Investigations often suggested that teachers ask questions such as “How many 

groups of 4 can you make with 28 cubes” (Grade 3, p. 118) or “What did she have to do 

next to find out how many apples will be in each row” (Grade 4, p. 62)? This does not 

stimulate connection-making for inverse relations. When Investigations did ask deep 

questions, the anticipated connections from students often remained at a surface level. 

For instance, when comparing a multiplication problem to a division problem, one third 

grade lesson suggested that the teacher ask students, “What is the same about these 

problems? What is different” (Grade 3, p. 123)? Follow-up teacher commentary 

suggested that students might recognize that both problems involved the same numbers, a 

surface level similarity according to Ding and Carlson (2013). This same surface level 

connection was also made in a fourth grade Investigations lesson that asked students 

“What do you notice about the numbers in these two problems” (Grade 4, p. 85)?  

In contrast, the purpose of questions provided in the GO Math curriculum 

appeared to be for developing deep connections to the targeted content of multiplicative 

inverses. This purpose was achieved by posing questions about the structural relationship 

of inverses and by forming deep connections within and between representations. The 

deep structural relationship was emphasized by two different third grade lessons that 

asked students to explain “which number in the multiplication fact is the quotient in the 

division fact” (Grade 3, p. 280) and to discuss “how the products relate to the dividends 

in a set of related facts” (Grade 3, p. 241). One question even asked students to re-write 

the multiplication equation factor × factor = product into a division equation, reinforcing 

their understanding and use of their situation model for multiplicative inverses. 

Interestingly, these questions were listed under a section in the teacher’s textbook entitled 
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“Go Deeper.” GO Math also asked deep questions for the purpose of forming connections 

within and between representations. For example, a connection to multiplicative inverses 

within representations was made when students were asked, “How can an array show 

both division and multiplication” (Grade 3, p. 239)? Further, after an array model and a 

counter representation for the same division equation were created, the teacher’s textbook 

suggested asking the question “How is making equal groups like making an array to solve 

the problem” (Grade 3, p. 2.80)? This deep question formed a connection between 

representations for the purpose of encouraging students to reason more abstractly. Similar 

attempts to use questions to make deep connections between representations throughout 

the Investigations lessons likely only resulted in surface-level understanding. In one third 

grade Investigations lesson for instance, students were asked to use cubes to model the 

abstract expression 3 × 4, but were never prompted with questions that connected these 

representations to multiplicative inverses.  

The biggest difference in deep questions that formed connections to prior 

knowledge revolved around comprehension of knowing when to use multiplication or 

division for different situations. Whereas Investigations tended to ask students to recall 

strategies that could be used for solving these problems, GO Math asked students why 

and how they knew which operation was appropriate. Further, the only deep questions 

provided in the textbooks for making connections to future knowledge involved having 

students think about the case when only two equations could be written for a set of 

related facts (i.e., 4 × 4 = 16 and 16 ÷ 4 = 4). These questions created connections for the 

future study of square numbers. Overall, very few deep questions in either curriculum 

targeted prior knowledge, and even fewer questions attempted to form connections to 
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future content (see Figure 18). From the situation model perspective of comprehension, 

deep questions therefore do not appear to be a tool that textbooks suggest using for the 

purpose of activating students already existing schema (prior deep questions) or for 

helping students recognize how to use their multiplicative inverse situation models to 

make inferences in unknown situations (future deep questions).  

Summary of Curriculum Findings 

In summary, although both curriculums provided connection-making 

opportunities for learning multiplicative inverses, the reviewed GO Math textbook 

lessons created more explicit connections than did Investigations and thus was more in 

alignment with the situation model perspective of mathematical comprehension. 

Concerning instructional tasks, the review exercises found in Investigations required low 

cognitive demand (i.e., stating facts, following procedures, solving routine problems; Van 

de Walle & Bay-Williams, 2010), and therefore did not provide optimal opportunities for 

activation of relevant prior knowledge. In contrast, GO Math tended to use cognitively 

high demanding review tasks that often explicitly stressed conceptual connection-making. 

GO Math also tended to use worked examples for creating connections to the structural 

relationship of multiplicative inverses, whereas, Investigations often only used procedural 

and computationally focused examples. As a result of varying surface characteristics, the 

practice problems found in GO Math reiterated the underlying structure of inverse 

relations. This was different from Investigations, which did not fade worked examples 

into practice, but rather expected students to investigate structure on their own during 

independent practice. With regards to representations, GO Math used concrete 

representations to form connections to the structural relationship of multiplicative 
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inverses sooner and to a better degree than did Investigations. In addition, connections 

established between concrete and abstract representations tended to progress linearly 

(concreteness-fading, Goldstone & Son, 2005) in the GO Math curriculum, but not in the 

Investigations curriculum. Finally, deep questions posed by the GO Math curriculum 

were more likely to facilitate connection-making within the targeted content of 

multiplicative inverses, because they emphasized structural relationships within and 

between different representations. However, very few questions in either curriculum were 

asked for forming connections to prior or future content.  

Connection-Making Opportunities Afforded by Teachers 

Averaging all of the classroom instructional lesson scores (n = 16) across teachers 

revealed a total average teacher connection-making score of M = 13.13 (out of 18 

possible points; SD = 3.77). This score was slightly higher than the overall textbook-

connection making score of M = 12.13 (SD = 3.45), which suggests that on average these 

teachers provided more connection-making opportunities than were found in the 

elementary school curriculum materials. While one might expect this to be true based on 

the reviewed literature of expert practitioners (e.g., Bransford et al., 1999; Cai et al., 

2014), with regards to facilitating connection-making opportunities during instruction, 

there were notable differences between the teachers in this study. Whereas Amy appeared 

to provide connection-making opportunities across all aspects of her instruction (highest 

connection-making score of M = 17.25, SD = 0.43), Lily missed many connection-

making opportunities (lowest connection-making score of M = 7.50, SD = 1.50). Esther’s 

connection-making score of M = 14.25 (SD = 1.09) and Jackson’s score of M = 13.50 (SD 

= 1.80) fell in between these two endpoints. Figure 19 and Appendix I provide detail 
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about the differences in teacher connection-making scores relative to instructional tasks, 

representations, and the use of deep questions. In the figure, the horizontal line at 18 

represents the highest possible connection-making score. 

 

Figure 19: Average connection-making scores across teacher lessons.  

 

According to Figure 19, even though not all teachers in this study explicitly 

connected their instructional worked examples to multiplicative inverses, the practice 

problems used by all teachers seemed to reinforce targeted content. In addition, Amy, 

Esther and Jackson appear to have effectively used multiple concrete and abstract 

representations during instruction; however, Lily’s use of representations to facilitate 

connection-making was not as well developed. All four teachers also do not fully 

embrace the idea of concreteness-fading, as indicated by the sequence of representations 

subcategory scores. Figure 19 also indicates that while all of the teachers posed deep 
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questions aimed at forming connections within the current targeted content, this 

instructional technique was not often used to form connections to future content. Finally, 

significant differences involving the use of instructional review tasks and the posing of 

deep questions that target prior knowledge were found among the teachers’ instruction.   

When pairing individual teacher connection-making scores against their 

corresponding textbook connection-making scores, differences between curricula also 

became apparent (see Figure 20; the horizontal line at 18 represents the highest possible 

connection-making score). The two teachers who used the Investigations curriculum 

appeared to enhance the connection-making opportunities that were found in their 

textbook. On the other hand, the two teachers who used the GO Math curriculum 

appeared to fall short in implementing their textbook’s connection-making opportunities. 

The following sections provide detailed findings involving both the classroom instruction 

and the differences between textbook and classroom instruction in relation to the 

connection-making opportunities afforded by the use of instructional tasks, 

representations, and deep questions. 
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Figure 20: Overall textbook and teacher connection-making scores within each 

classroom.   

 

Instructional Tasks 

All four teachers in this study included some form of review, worked examples 

and independent student practice in each of their four enacted lessons. A close inspection 

of how these instructional tasks were used revealed two main differences. First, there 

exists a difference in the degree to which teachers used review tasks to form explicit 

connections to targeted content. Second, although teachers tended to use the instructional 

tasks provided in their respective textbooks, a difference exists in the degree to which 

individual teachers enhanced those tasks during instruction. Specifically, some teachers 

enhanced textbook worked examples by forming more explicit connections to the 

structural relationship of multiplicative inverses. No substantial teacher difference was 
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found in the use of practice problems, as all teachers used practice problems that were 

aligned with their worked examples.    

Purpose of Review 

A failure to activate relevant prior knowledge may cause difficulties with 

comprehension that relies heavily on an interconnected web of fundamental concepts that 

are needed for inference-making. From the situation model perspective of 

comprehension, review tasks therefore appear to be an important component in classroom 

instruction of mathematics. All teachers in this study appeared to recognize the need for 

review; however, these review tasks were used for three different purposes during 

instruction. These purposes corresponded to the three levels of connection-making found 

in the connection-making framework: (0) routine review with no connections to 

multiplicative inverses; (1) implicit connections to multiplicative inverses; and (2) 

explicit connections to multiplicative inverses.  

In all four of her lessons, Amy used review tasks to make explicit connections to 

the targeted content of multiplicative inverses. This was evident by her sub-category 

review task score of M = 2.00 (SD = 0). Her review tasks were always connected to the 

content from the prior day’s lesson and focused on formerly learned problem solving 

strategies involving these conceptually relevant concepts. For example, in one lesson, 

Amy reviewed the structure of multiplication (prior lesson) as multiple sets of equal 

groups. This involved using a student’s previously created word problem involving 

placing shoes into shoeboxes to review the concept of how many groups (boxes), how 

many were in each group (shoes), and how many there were altogether. Although she 

never used abstract vocabulary (i.e., factor and product), she made an explicit connection 
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between addition and multiplication (skip-counting) when talking about the solution 

strategies for this problem. Later in the lesson, Amy used this connection to set-up the 

structure (i.e. the situation model) of the inverse relationship between multiplication and 

division, the targeted content. In a different lesson, Amy linked geometry knowledge 

(area of a rectangle) to multiplicative inverses. This facilitated a deep connection to 

content that had been learned in the more distant past. Through the process of bisecting 

the rectangle into rows and columns, she helped students understand why the area of a 

rectangle was calculated by the expression, length × width. Interestingly, past studies 

(e.g., Simon & Blume, 1994) have found that most elementary teachers only understand 

the procedural formula for the area of a rectangle, and therefore, they do not possess the 

conceptual understanding needed to form connections between the multiplicative 

relationships inherent in area problems. Along with other facets of her instruction, this 

example illustrated Amy’s use of interconnected mathematical knowledge, which the 

reviewed literature (e.g., Cai & Ding, 2015; Ding, 2016) suggests is generally not part of 

elementary teacher instruction. In summary, Amy’s use of review tasks not only involved 

activating prior knowledge about the structure of multiplication; rather, it included 

forming deep connections to this knowledge by applying it to other familiar content (area 

of rectangles) in an unfamiliar way (inverse relationship) whereby creating new 

connections. In terms of a situation model, Amy afforded her class the opportunity to 

both activate and manipulate their already existing schema surrounding inverse relations.  

In comparison to Amy, Esther formed slightly less-developed connections to 

multiplicative inverses during review tasks. This was evident by her review task 

connection-making score (M = 1.75; SD = 0.43). For instance, Esther helped her students 
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recall the explicit connection between addition and subtraction, but only used this 

connection for having students recall the word inverses and to review prior computation 

strategies that involved addition and subtraction fact families (surface-level connections). 

Although she did use this opportunity to make a connection between addition and 

multiplication (repeated-addition), no explicit connection to the structure of 

multiplicative inverses occurred during the time spent reviewing additive inverses. 

Further, instead of using concrete representations to review informal concepts (i.e., 

groups and total) like Amy did with the shoeboxes, Esther had students “shed some light” 

on relevant vocabulary words such as multiplication, division and relationship. This 

review activity involved students using a flashlight (to highlight) or a yardstick (to point 

out) to identify and define key words that they recognized in the daily learning 

objectives. In general, Esther used review tasks to remind students about non-contextual 

abstract ideas (i.e., vocabulary and fact families), and therefore she did not always create 

explicit connections between prior knowledge and the targeted content.  

Among all four teachers, Jackson spent the most amount of time on reviewing 

students’ prior knowledge. The review tasks that he used during instruction however 

were primarily procedural in nature and were often only implicitly connected to 

multiplicative inverses. Jackson’s review task connection-making score (M = 1.25; SD = 

0.43) reflects this finding. Taken from the Investigations curriculum, Jackson used the 

“Broken Calculator” activity as a review task in three of his lessons. This activity 

involved having students discover various methods for arriving at certain quantities 

without using “broken buttons” on a calculator. For instance, during one review students 

had to produce the number 40 without using a 0, 1, 2 or the operations of addition (+) and 
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multiplication (×). After several correct solutions were provided by students, Jackson 

noted to his class that no one had used division. This created an opportunity for Jackson 

to discuss the use of division as the inverse for the broken multiplication button; 

however, he did not make this explicit connection to the targeted content. Thus, the 

“Broken Calculator” review task provided at most an implicit connection to 

multiplicative inverses. 

On the other hand, Jackson’s use of skip-counting (“Ten Minute Math” in the 

Investigations lesson) during one lesson to review multiples of various numbers 

facilitated the use of situation models and created deep connections to multiplicative 

inverses. Excerpt 1 (involving skip-counting by 11’s) reveals Jackson’s intention to use 

this review task for promoting inference-making. 

Excerpt 1:  

Matthew:  Counting by 11’s is easy before you get to the 100’s because when 

you do 11 and 22 that’s adding the numbers. 

Jackson:  So adding 1 to both the 10’s place and the ones place. So that’s 

pretty up to here. Matthew. Why was it easier counting by 11’s 

than counting by 9’s? 

Matthew:  …because people know the pattern 

Jackson:  So people know the patterns…how it works. Is there still a pattern 

after you get to 100? 

Students:  Yes (collectively) 

Jackson:  Lisa 
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Lisa:  So after you get to 110, so you are in the 100’s but in the 10’s and 

1’s, the 10’s just goes up 1 and the 1’s is the number before the 

10’s number. 

Jackson:  But that is also going up by 1 isn’t it? So, if we had 110 now we 

have 121, so the 10’s place went up by 1 and the 1’s place went up 

by 1. But you said the 1’s place is behind. So, let’s see. We have 

132 so it goes from 2 to 3 and 1 to 2. 3 to 4. 2 to 3. 4 to 5. 3 to 4. 

So we kind of have this pattern that could come up pretty quickly 

and easily. So if I were to put down the 1’s place for the next 5 

numbers, what would it be? If we ended with 242, what would the 

next 1’s place be?  

Asking students to generate and analyze patterns is an important aspect of promoting 

fourth graders’ algebraic thinking (CCSSI, 2010); however, the pattern that Jackson 

emphasized in this excerpt was recursive (i.e., the next term depends on the previous 

term) which is not very powerful in developing connections among fundamental 

mathematical concepts. Although not related to the targeted content of multiplicative 

inverses, perhaps Jackson could have formed a connection to the pattern that involved the 

distributive property. For example, he could have used 16(10 + 1) to show that 

16 × 10 = 160, and then when one more 16 is added, the 10’s place becomes 6 + 1 = 7 

and the 1’s place becomes 0 + 6 = 6. Nonetheless, by helping his students first realize a 

pattern that exists with the multiples of 11 and then asking them to make conclusions 

based off that pattern, Jackson used his expert knowledge (Bransford et al., 1999) to help 

students develop the reasoning skills inherent in using situation models to transform 



 130 
 

 
 

connections into inferences. During this review task, Jackson also stressed the structure 

of multiplication when he had students explain to him that in the expression 3 × 11, the 

three represented the third student (analogous to the number of groups) who provided 

him with a multiple of 11 (analogous to the number in each group). He took this review 

task one step further and created an explicit connection to multiplicative inverses when 

he asked students to provide him with the division equation that could be used to 

determine which student provided the multiple of 165 (i.e., 165 ÷ 11= 15th student). This 

represents an instance in which Jackson enhanced a connection-making opportunity 

afforded by his textbook, because the Investigations curriculum only suggested reviewing 

multiplication during this task. 

 In contrast to the other three teachers, Lily’s review tasks (M = 0.50; SD = 0.50) 

were routine in nature and did not create well-developed connections to the targeted 

content of multiplicative inverses. This review often included drilling students on abstract 

vocabulary (e.g., identifying in an expression which number represented the divisor, 

dividend and quotient) and memorized multiplication facts that could be used for 

checking long division computations. Lily did begin one lesson by explicitly asking 

students “What does the word inverse mean?” However, by accepting the first student’s 

response of “opposite,” Lily illustrated that perhaps she herself had a conceptual 

misunderstanding about inverse relations. In fact, throughout the course of Lily’s four 

lessons, she emphasized to students that the words opposite, reciprocal, reversal, and 

backwards were all synonyms for the word inverses. In mathematical language however, 

these words do not always translate into the same meaning and do not seem to be 

consistent with the complement principle of multiplicative inverses adopted for this 
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study. For instance, the word opposite is used to describe two numbers that have a sum of 

zero (e.g., 8 + -8 = 0), and the word reciprocal is used to describe two numbers that have 

a product of 1 (e.g., 8 and 0.125 are reciprocals). These vocabulary words are therefore 

more in line with the additive (a + b – b) and multiplicative (d × e ÷ e) inversion 

principles. Although Lily was most likely trying to activate informal knowledge of 

inverses by using language that students might have encountered in other instances, her 

students’ minimal explanations suggest that her inconsistent use of vocabulary appeared 

to hinder the understanding and development of a situation model involving the 

complement principle of multiplicative inverses. 

Interestingly, while Lily tended to use review tasks for the purpose of simply 

triggering students’ vocabulary memory, she was the only teacher who explicitly used the 

word “connections” during review. To introduce the use of variables in one lesson, she 

asked students how the ABC’s connected to mathematics. After student responses that 

included using letters in geometry (e.g., let x represent an unknown angle or finding the 

lines of symmetry in the letter X), she wrote the expression 3 × R = 18 on the board and 

told students, “I am making connections for you…instead of saying blank…you can put 

in a letter…you will do this more and more with Algebra as you get older.” All four of 

Lily’s interviews recorded immediately after her enacted lessons also illustrated her 

desire to help her students facilitate connection-making. In fact, after her first lesson, she 

broadly admitted that she needed to find ways to make better connections during 

instruction. It appears as if she was referring to forming connections to informal 

knowledge and to the interconnectedness of mathematics. For instance, when discussing 

her attempt to form connections between multiplicative inverses and literacy she stated, 
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“I was trying to make that connection with multiplication…compare and contrast in 

literacy…I feel like I try to simplify, and sometimes I don’t…I try my best to put higher 

level thought processes into teaching” (Lily Lesson 3 Interview). Even though Lilly 

claimed to “know some of the higher level skills and…throw out the higher level terms” 

(Lily Lesson 2 Interview), she also appeared to have a clear desire to improve her ability 

to facilitate connection-making. This became evident when she described her own missed 

opportunities to include fractions and percents in order to develop “more of a connection 

to other math” (Lily Lesson 2 Interview). Lily’s connection-making score was the lowest 

of the four teachers in this study; however, she appeared to understand the importance 

that connection-making has in “helping them [students] retain and apply” (Lily Lesson 3 

Interview) targeted content and was eager to seek out ways in which she could better 

facilitate these connections. This understanding would seem to be an important 

characteristic of a teacher who embraces a situation model perspective of mathematical 

comprehension.  

Enhancement of Worked Examples 

 Worked examples were used during instruction by each teacher in this study. 

Almost all of these examples were drawn from the teacher’s respective textbook lessons. 

As seen in Figure 21 (the horizontal line at 2 represents the highest possible connection-

making score), the teachers in this study differed in the delivery of these textbook 

examples. For instance, Amy and Jackson both scored M = 2.00 (SD = 0) on the teacher 

worked example connection-making score, which was higher than both of their respective 

textbook worked example connection-making scores of M = 1.25 (SD = 0.43) and M = 

1.33 (SD = 0.47) respectively. On the other hand, Esther (M = 1.25; SD = 0.43) and Lily 

(M = 1.00; SD = 0) both scored lower than their individual textbook scores (M = 1.75, SD 
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= 0.43; M = 2.00, SD = 0) respectively. This difference corresponded to the two different 

curriculums. For the inquiry-based curriculum of Investigations, Amy and Jackson were 

able to enhance the non-explicit connections to multiplicative inverses found in the 

textbook. For the GO Math curriculum, which provided more explicit textbook 

connections within worked examples, Esther and Lily were unable to fully transfer those 

connections to their classroom instruction. This was similar to the pattern found for the 

instructional review tasks.  

 

Figure 21: Differences in connection-making within worked-examples between textbook 

and teacher. 

 

Across lessons, Amy showed explicit awareness for creating deep connections to 

inverse relations during classroom instruction of worked examples. She primarily 

facilitated connection-making by comparing side-by-side examples (see Figure 22) 

involving the same context in order to illustrate the structure of multiplicative inverses. In 
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contrast, her curriculum (Investigations) often presented worked examples in isolation 

(i.e., provided a multiplication example with no explicit connection to a division 

example). One case that illustrated her tendency to enhance the worked examples found 

in her textbook, involved the multiplication story problem– A robot has 4 hands. Each 

had 6 fingers. How many fingers does the robot have altogether? After finding the 

solution through a process that formed deep structural connections to multiplication, Amy 

facilitated a classroom discussion about the process of rewriting this problem to illustrate 

a division situation. Using the ideas of “how many in each” and “how many in total,” the 

class determined the division problem to be –There are 24 fingers from a robot. This 

robot has 4 hands. How many fingers in each hand? Although Investigations did 

emphasize the need for the teacher to compare and contrast a multiplication and a 

division problem, the problems suggested by the textbook involved different contexts.  

 

Figure 22: Amy’s use of side-by-side multiplicative inverses involving robots. 

 

Amy’s ability to effectively unpack this one example provided her students two 

key connection-making opportunities that were not afforded by the textbook. First, using 

the same context for the multiplication and the division problem allowed for a 

meaningful connection to the structural relationship (i.e., the situation model) of 
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multiplicative inverses. For example, Amy made the connection that both problems 

involved a total (number of fingers), the number of groups (hands) and the number in 

each group (fingers). She also pointed out that the only difference was which component 

the problem asked the students to determine. Focusing on the structure and the 

relationships in this example, most likely helped Amy’s students extract and make 

connections to the underlying mathematical concepts needed for strengthening their own 

situation models for multiplicative inverses. If Amy would have used the examples 

suggested by the curriculum, the context of the groups would have changed to muffins in 

one example and yogurt cups in the other, whereby eliminating the deep structural 

connection afforded by using the same context. Secondly, by making her students rewrite 

the multiplication problem into a division example, she engaged her students in a higher-

level cognitive task that moved beyond the computational features of the textbook to 

include the process of transforming connections into inferences, the main function of 

using a situation model.  

 Similar to Amy, Jackson was able to enhance the worked examples in the 

Investigations curriculum in order to change missed textbook opportunities into explicit 

connections to multiplicative inverses. He also did so as a result of providing paralleled 

multiplication and division problems involving the same story context. In one of his 

enacted lessons, Jackson included the textbook’s missing factor example which simply 

involved using an array card to determine the solution to 56  ÷ 4. Like Amy, he created a 

story problem (chocolate candies) when using this example and required his students to 

think about multiplicative inverses. Excerpt 2 below indicates this request:  
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Excerpt 2:  

Jackson: So what I want you to think about today is…I’ll have you use these tiles, 

and you’ll have a chance to organize them into your rows with whatever 

the question is asking you. But, I also want you thinking about how you 

use multiplication to solve the problem as well. Okay, so here is how I 

use these arrays, and Eric told us that he got 40 first, added 16 more to 

get 56 pieces of chocolate. Use your piles first and then see if you can 

come up with equations to help you solve a division problem. Because I 

want to tell you, sometimes solving a multiplication problem is a lot 

easier than solving a division problem. 

Mallory: No… 

Student(s): Yes, yes it is! 

This small excerpt shows an explicit connection to the structure of multiplicative inverses 

and illustrates Jackson’s desire to create efficient methods of problem solving. When 

having his students use array models to represent worked examples similar to the above 

problem, Jackson made the connection that the rows and columns of the array correspond 

to the number of groups and the number in each group. In addition, during the lesson on 

multiplicative comparisons, the textbook presented two worked examples that had a 

repetitive multiplicative structure (how many times more). Instead of using both of these 

examples, Jackson used one of the textbook’s practice problems that involved a division 

structure (how many times as large) for his second worked example. Although he did not 

use the same context to compare these two examples, he did make explicit connections to 

the structure of multiplicative inverses by requesting that his students search through a 
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sample of problems to identify and explain how the structure of the problems were 

similar and different to the worked examples. This distinction most likely helped his 

students develop stronger situation models for multiplicative inverses. 

According to Figure 21, both Esther and Lily were unable to maximize the 

explicit connections that were provided by GO Math in the curriculum’s worked 

examples. During Esther’s first lesson, students made a 3 × 4 array card and were asked 

to write a representative multiplication and division statement. Although most students 

were able to write both 3 × 4 =12 and 12 ÷ 4 = 3, Esther did not make an explicit 

connection to how the array connected to the structure of the two multiplicative inverse 

number sentences. Furthermore, when presenting students with the notion of reversing a 

story problem from multiplication to division, she showed an already reversed worked 

example from the textbook. This did not allow her students to have the same connection-

making opportunities afforded by Amy and Jackson’s instructional approach that 

involved the unpacking of worked examples by engaging students’ thinking. Similarly, 

on one occasion, Lily requested that the boys in her class create a multiplication 

representation for a given example and that the girls create a division representation. 

Even though the students then shared-out their individual examples, the connection to 

multiplicative inverses was only implicit since each student only worked with one 

operation. This was a missed opportunity to help students create connections within their 

own situation models for multiplicative inverses. If Lily would have created and worked 

with side-by-side examples such as Amy did, most likely her students would have been 

able to better extract the underlying mathematical structure of inverse relations, thereby 

increasing the likelihood of transfer (Paas, Renkl & Sweller, 2003).  
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 Relative to Amy and Jackson, both Esther and Lily did not spend as much time 

unpacking worked examples for drawing deep explicit connections to the targeted 

content. This may partially be due to a difference in classroom technology use that was 

noted among the four teachers in this study. Although all four teachers used a digital 

smart-board in almost every lesson, Esther and Lily mainly used it for accessing the 

online digital GO Math textbook. This was in contrast to Amy and Jackson who used the 

smart-board for their own teacher-created guided notes that seemed to provide them with 

more flexibility during instruction. During all four of Esther’s lessons and one of Lily’s 

lessons, the projected textbook was used as a systematic framework for presenting the 

curriculum’s worked examples. Students in both classes were even exposed to the audio 

capabilities of the digital text when the teachers had the textbook read aloud instructions 

that requested students underline certain words or fill in the blanks (see Figure 23). The 

underlining of words during these lessons was not focused on creating connections to the 

structural relationship of inverses, but rather was used to have students concentrate on 

using key words for distinguishing the problem type. In one instance, Lily even explained 

to her students, “here, look at the wording, look at the wording. What operation might 

you use? The wording should help you figure it out.”  Instructing children to look for key 

words during mathematical problem solving has often been criticized by educational 

researchers (Drake & Barlow, 2007; Stigler & Hiebert, 1999) who believe that this 

process inhibits the ability for students to reason and make sense of why certain 

operations are used in certain situations. Unfortunately, the practice of searching for key 

words still appears to be part of some teachers’ classroom instruction, and does not seem 

to be of any benefit in the development of a student’s situation model.  
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(a) Esther 

 

 

 

 

 

(b) Lily 

Figure 23: Esther and Lily using the digital GO Math textbook to deliver classroom 

instruction.  

 

Although the examples in the GO Math textbook did tend to provide many 

explicit connection-making opportunities, this was most often due to the fact that the 

side-notes (i.e. “About the Math” and “Go Deeper”) in the teacher’s textbook provided 

guidance and support for unpacking the worked examples. Using the student textbook as 

a template and not referring to the teacher’s textbook during instruction resulted in Esther 

and Lily missing several opportunities to fully transfer the curriculum’s deep connections 

into their classroom instruction. Insufficiently unpacking worked examples made each 

teacher’s instruction seem rushed. Specifically, during the occasions in which Esther (for 

one lesson) and Lily (for three lessons) did not use the digital textbook to present worked 

examples, their instruction did not contain as much depth and lacked variability. For 

example, worked examples in Lily’s one lesson on using multiplication to check division 

were repetitive and involved only procedural computations. Overall, Esther’s and Lily’s 

inability to fully transfer the explicit GO Math connections into their classroom 

instruction appears to be a result of not using the suggestions in the teacher’s textbook for 

unpacking the worked examples. As admitted by Esther during the interview following 
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her third lesson, her inability to fully unpack worked examples appeared to be at least 

partially due to the U.S. cultural belief that enough classroom time needs to be allocated 

for student practice (Stigler & Hiebert, 1999).  

Representations 

 All four teachers in this study used multiple representations throughout their 

enacted lessons. This included the use of both purely concrete and abstract 

representations, as well as semi-concrete representations (Ding & Li, 2014) which were 

used to bridge the gap between concrete and abstract. The common concrete 

manipulatives that were used during instruction included children’s fingers, base-ten 

blocks, number-cubes, paper tiles and jolly ranchers. The common semi-concrete 

representations used included pictures, tallies, arrays, bar models and fact triangles. In 

each lesson observed, abstract expressions or equations involving some connection to 

multiplicative inverses were also used. Figure 24(a)(b) show common examples of 

multiple representations that were used by Amy and Esther during instruction, and Figure 

24(c)(d) show multiple representations that were produced by Jackson and Lily’s 

students. 
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(a) Amy 

 

 

 

 

(b) Esther 

 

 

 

 

 

(c) Jackson 

 

 

 

 

 

(d) Lily 

Figure 24: Multiple representations found in teacher’s classrooms.  

 

Given that all teachers used both concrete and abstract representations during instruction, 

differences in connection-making scores seem to be due to the differences in using 

representations for the following three purposes: (1) situating instructional tasks in 

personal concrete contexts, (2) teaching the structure of multiplicative inverses, and (3) 

promoting efficiency. From the situation model perspective of comprehension, these 

correspond to: (1) using children’s informal or prior knowledge to activate schema, (2) 

facilitate connection-making for developing a situation model for multiplicative inverses, 

and (3) using the multiplicative inverse situation model to transform connections into 

inferences.  
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Using Representations to Promote Activation  

Almost every worked example and practice problem used by the teachers in this 

study were situated in rich concrete contexts. Although these contexts were typically 

extracted from the curriculum because of the teacher’s tendencies to use the textbook’s 

instructional tasks, on several occasions the teachers attempted to make these contexts 

personal to their own students. According to the literature (Van Den Heuvel-Panhuizen, 

2003), making connections to realistic informal contexts helps students form schemas, an 

important part in the development of a situation model. For instance, Amy referred to her 

own classroom when discussing a practice problem about the grouping of desks and used 

the names of her own children when creating a worked example involving the sharing of 

balloons. Amy also often made use of her students’ prior work (i.e., a storybook problem) 

involving additive inverses as a reference for the new targeted content. This seemed to 

incite personal connections as the students recalled the specifics of their own written 

problems. Likewise, in one textbook example that involved comparing Franco and his 

daughter’s height, Jackson changed the story context to include the name of a student 

(Mibsam) and a teacher (Chris) who each of the students knew [Figure 16(a)]. Having 

this personal context to individuals in their everyday life appeared to activate students’ 

informal knowledge as they joked about the idea of Mibsam only being two feet tall, but 

nonetheless reasoned that it would take three Mibsam’s to make up a teacher Chris (6 feet 

tall). In addition, although the dog treat worked example (Figure 17) used in Esther’s 

instruction was provided by GO Math, on several occasions she enhanced the example by 

creating contexts that were more personal for students in her class. This included asking 

students if they themselves had dogs. Also, when stressing that division represented equal 
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parts and therefore each dog should be given an equal number of treats, Esther said to her 

class, “I want to be fair…we don’t want a dog biting you if it doesn’t get enough treats.” 

The notion of a dog biting most likely activated a vivid image for students and reiterated 

the structural importance of creating equal groups.  

In addition to sometimes changing the context of the curriculum’s story problems, 

teachers in this study also tended to create story problems for the textbook’s concrete 

examples that did not have realistic contexts. For example, Jackson included the context 

of chocolate candies for the problem 56 ÷ 4 that was only represented as an array in the 

textbook. He also used tiles as physical representations of the candy pieces in order to 

have students form a more personal connection as they created an array model for the 

given problem. Unlike Jackson who did not actually use real candies, Lily introduced 

multiplicative comparisons based on having two students compare the weights of two 

envelopes containing different amounts of Jolly Ranchers. According to Lily, she used 

Jolly Ranchers because it was a context that “children can relate to” and in which they 

can make “self-connections” (Lily Lesson 3 Interview). Even for the students who did not 

feel the weights of the envelopes, using these candies most likely activated informal 

knowledge based on a previous experience the children had with holding a Jolly Rancher 

in their hands. This personal context appeared to help students’ reasoning skills 

associated with the targeted content of multiplicative comparisons. Moreover, the student 

practice worksheet that Lily made for this lesson was also personal, as it involved family 

situations about the children in her class (i.e., Jen’s older brother is 3 times her height). 

All four teachers in this study appeared to agree with the need to situate initial learning in 
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a concrete personal context, whereby activating children’s informal knowledge for 

creating a schema that lays the foundation for a mathematical situation model. 

Using Representations to Promote Structure 

 Three of the four teachers in this study seemed to effectively use both concrete 

and abstract representations to develop explicit connections to multiplicative inverses. 

Figure 25 indicates that Lily was the only teacher who on average created only implicit 

connections or missed clear opportunities to use representations for connection-making. 

In the figure, the horizontal line at 2 represents the highest possible connection-making 

score. 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Connection-making within concrete and abstract representations.  

 

All four teachers in this study first used concrete representations in the surface-

level format, which entailed using representations as a tool for helping children find the 
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solutions to a multiplication or a division problem. Figure 26 reveals that this was most 

often done by using counters and circles that were drawn to group the counters together. 

In Amy’s and Esther’s representations [Figure 26(a)(b)], the total number of groups was 

drawn out first, and then counters were placed one at a time into each group until the total 

number of counters were given out. The answer was then found by counting how many 

counters were in each group. Jackson’s representation [Figure 26(c)] illustrates how he 

used counters and circles to model a multiplicative comparison problem in which the first 

group contained 7 and the goal was to determine the solution to 5 times as many. By 

drawing out and counting all of the counters, the answer of 35 was revealed. Similarly, 

Figure 26(d) illustrates a representation created by a student in Lily’s class for the 

division problem 48 ÷ 4. In this picture, Lily’s hand can be seen holding the student’s 

slate as she circled the first group of four and explained to students how they would 

create equal groups in order to find the solution. The use of representations to find 

answers appeared to be common across all teachers.  
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(a) Amy 

 

 

 

 

 

(b) Esther 

 

 

 

 

 

(c) Jackson 

 

 

 

 

 

(d) Lily 

Figure 26: The use of concrete representations to find answers. 

 

However, using representation to find an answer was not the main goal in Amy, 

Esther or Jackson’s classrooms. This became obvious in Jackson’s classroom when he 

said to his students, “Now that we have the answer out of the way, now we can move into 

the more important question of how do you know?” Specifically, Jackson requested that 

his students explain the “how” question by “using pictures, using diagrams, using 

models, to help [them] show the relationship.” As illustrated by Figure 27, all teachers 

except for Lily proceeded to deepen their use of representations in order to facilitate 

connection-making involving the structural relationship inherent in multiplicative 

inverses.  
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(a) Amy 

 

 

 

 

 

(b) Esther 

 

 

 

 

 

 

 

(c) Jackson 

 

 

 

 

 

 

 

(d) Lily 

Figure 27: The use of representations to promote structure.  

 

In Amy’s classroom, when using concrete representations to create groups of 

equal quantities, students were repetitively forced to think about how the parts of a 

multiplication and a division problem were related. As seen in Figure 27(a), Amy made 

an explicit connection to the structural relationship of multiplicative inverses through her 

use of the multiplication and division chart. This chart shows three important 

characteristics of Amy’s use of representations to promote structure (i.e., the 

development of a situation model for multiplicative inverses). First, the examples filled in 
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on the first two lines of the chart involved the same context, namely the aforementioned 

robot problem. By using the chart to organize the components of both the multiplication 

problem and the student-formed reversed division problem, students could see how the 

structure of the two problems align. Second, Amy used this structural relationship to 

facilitate a classroom discussion that led to the creation of both abstract equations listed 

in the last column of the chart. Lastly, and of most importance, at the top of the chart 

Amy derived the general structure (Factor × Factor = Product) of a multiplication 

equation. This illustrates that her intention of the chart was to form connections between 

a particular concrete example and the abstract structural relationship of inverse relations. 

In other words, she used the chart to derive the constant underlying structure needed for 

students’ situation models of multiplicative inverses. Amy’s concrete (M = 2.00; SD = 0) 

and abstract (M = 2.00; SD = 0) connection-making scores (Figure 25) are a reflection of 

her ability to fully develop the previously discussed incomplete structural relationship 

that was missing in the third grade Investigations curriculum.  

 Figure 27(b)(c) illustrates how Esther and Jackson also deepened their use of 

representations for facilitating a connection to the structure of multiplicative inverses. 

Although Esther’s representation is of a bar model and Jackson’s is of a number line, 

both are forms of schematic diagrams that clearly illustrate structural relationships. 

Specifically, Esther used the bar model to illustrate the part-whole relationship for 

multiplication and division. This included breaking the initial whole bar into 7 equal parts 

(customers) in order to evenly distribute 21 bagels. She then had students determine the 

division equations 21 ÷ 7 based off using the part-whole structure of the bar model 

representation. At this point however, she missed the opportunity to connect this structure 



 149 
 

 
 

to multiplicative inverses because she asked students to write the inverse multiplication 

problem based off of the abstract expression, not based off of the structure that she had 

just facilitated by creating the bar model. Jackson’s use of a number line in Figure 27(c) 

resulted in the same missed connection-making opportunity. Although he had his students 

determine the multiplication problem based off the part-whole structure of the number 

line, as indicated by the arrow going from the multiplication to the division equation, he 

did not complete the representation’s connection to multiplicative inverses. This lack of 

completeness involving their respective use of schematic diagrams is reflected in both 

Esther’s (M = 1.50, SD = 0.43) and Jackson’s (M =1.75; SD = 0.34) abstract connection-

making scores (Figure 25). Further, Esther’s abstract connection-making score was 

slightly lower than Jackson’s because of her inconsistent use of abstract notation. In one 

example, she used 3 × 4 to represent a story problem involving 4 groups of 3, but later 

used 7 × 4 to represent 7 groups of 4. This may have been partially due to the inconsistent 

use of the abstract notation found in the GO Math curriculum [Figure 11(a)]. 

Nonetheless, this inconsistency appears to be particularly troublesome for the creation of 

situation models that rely on building connections and extracting underlying 

mathematical principles from constant structured problems.  

 In contrast to the other three teachers, Lily did not use representations to form 

connections to the underlying structure of multiplicative inverses. Her concrete  

(M = 1.00; SD = 0) and abstract (M = 1.00, SD = 0) representations instead involved 

only surface-level (implicit) connections dealing with finding and checking answers. This 

is illustrated in Figure 27(d) by the emphasis she placed on calculating 96 and by the 

absence of any abstract expression that would have connected this representation to the 
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targeted content. This missed connection-making opportunity was not a result of an 

incoherent text, as GO Math explicitly directed teachers to use the bar model to create the 

structural relationship of multiplicative inverses. Instead, Lily’s inability to use 

representations to facilitate deep connections appears to be a result of her own confusion 

surrounding the use of bar models. This is confirmed in the following excerpt taken from 

the interview following her third lesson. 

Excerpt 3: 

Interviewer:  Since this was a follow-up lesson… do you remember them 

struggling more? 

Lily:  I do remember, they were confused about it. The way it was 

presented in GO Math was a bit confusing. It took me two solid 

lessons for them to get… to understand even how to draw the 

picture by themselves. I don’t like the way GO Math presented it. I 

will present it differently next time. 

Interviewer:  Can you talk more about the confusion? 

Lily:   It was tricky because they said to draw the pictures…then they 

were asking  for the total…I would have to show you…but I do 

remember it was very confusing and it took me awhile.  

 

Sequencing Representations to Promote Efficiency 

 After using representations to both activate schema (initiate a situation model) 

and to create structure (develop the situation model), the final component of the situation 

model perspective of comprehension is to apply the established structure (use the 
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situation model) to promote an efficient method for converting connections into 

inferences. Mathematical efficiency is most often associated with abstract understanding, 

and therefore students should be afforded learning opportunities that stress the 

importance of abstract reasoning. In addition to forming clear connections between 

concrete and abstract representations in order to promote structure, a sequence of 

representations that progressively becomes more abstract will likely result in students 

more efficient use of this structure. A common theme found among the teachers in this 

study was the use of multiple solution strategies (i.e., using pictures, skip-counting, 

repeated addition and equations). Although connections were often made between 

strategies, these connections only sometimes progressed from concrete to abstract 

(concreteness-fading) and thus did not always promote the development of efficient 

strategies. This inconsistent sequence of representations is reflected in the corresponding 

teacher connection-making scores (MAmy = MEsther = MJackson =1.50, SDAmy = SDEsther = 

SDJackson = 0.50; MLily = 1.00, SDLily = 0.71). Further, although all of the teachers in this 

study mentioned a desire for students to develop more efficient solution strategies, there 

appeared to be slight differences in how they conveyed that message inside their 

classrooms.  

 During initial learning of multiplicative inverses, Amy emphasized the 

importance of multiple solution strategies and portrayed no preference for any one 

strategy. For example, acceptable solution methods for an instructional task involving a 

product of 24 and a factor of 4 [Figure 24(a)] included the strategies of repeated addition 

and skip counting, as well as the concrete tally and the abstract equation representations. 

How Amy presented these methods is indicated by the following excerpt:   
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Excerpt 4: 

Amy:  We can think of it as 24 pencils divided by 4 people equals how many 

pencils will they get each? How did you solve that? Damon? 

Damon:  I did um...I started to figure out what numbers again and again would 

equal 24. I came up with 6 + 6 + 6 + 6 = 24. 

Amy:  Ok, so you were using multiplication, you knew the product 24, equals 

4, here is 4 times something gave you 24 [teacher writes 24 = 4 × __ ] 

…so you were using multiplication to figure out division and that is a 

strategy that we said works. 

Amy:  Anybody else? Did anyone draw a picture with the lines we have been 

learning? Celeste. 

Celeste:  I did tallies. 

Amy:  …I know there are already 4 groups and I know the total is 24 so I’m 

going to share out equally 24 [teacher draw 4 circles on board and 

proceeds to place tallies into circles]. I can probably share 2 at a 

time…. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24…I notice I got to 24 so 

how many are in each group? 

Students:  6 

Amy:  6+6+6+6 [teacher writes 6’s under each circle] so I get 24, this is 

repeated addition. Did anyone use skip counted? Melvin? 
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Melvin:  I skip counted by 6 four times. 6, 12, 18, 24 [teacher writes these 

numbers above the circles]. 

Amy:  So again, another strategy…skip counting to get to the answer.  

Because the presentation of these methods did not progress from concrete to abstract (i.e., 

concreteness-fading), Amy’s sequence of representations connection-making score for 

the corresponding lesson was only coded as a 1. Beginning a worked example with an 

abstract solution (in this case the multiplication equation 24 = 4 × __ ) and then soliciting 

other more concrete strategies (i.e., tallies and skip counting) was also found during 

Esther’s and Jackson’s instruction. Even though individual students often manifest 

different levels of understanding, a teacher should purposefully guide students to make 

connections between concrete and abstract representation (e.g., concreteness-fading) so 

as to facilitate structural understanding.  

In this study, even if a student first provided a solution strategy based on abstract 

thought, the teachers often encouraged the use of other strategies that included using 

concrete tools for computation. By stressing the use of concrete representations as tools 

for finding answers, the importance of reasoning abstractly was downplayed. In turn, this 

possibly decreased the effect that concrete tools have on aiding students’ structural 

understanding. Not emphasizing efficiency during the initial stage of learning was the 

main reason for lowering a teacher’s sequence of representation connection-making 

score. It should be noted here that the Investigations curriculum (used by Amy and 

Jackson) also tended to suggest this “abstractness-fading” sequence during textbook 

examples.   
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Conversely, in several instances teachers in this study did explicitly adhere to the 

idea of concreteness fading. For example, in contrast to Amy’s sequence of strategies 

found in Excerpt 4, she used the multiplication and division chart [Figure 27(a)] to 

clearly facilitate the task of fading a concrete story problem into an abstract equation. 

Further, she promoted an abstract progression by using array cards [Figure 15(b)] to play 

a game called “the missing factor.” Her students had previously used the array cards to 

determine the product of two numbers based on the semi-concrete representation of rows 

and columns illustrated on the multiplication side of the cards. With the missing factor 

game however, the division side of the cards contained no drawn arrays. Amy facilitated 

a discussion about the similarities and differences between finding the product versus 

finding the missing factor and stressed the importance of using semi-concrete 

representations (arrays) to assist with abstract reasoning. Moreover, several of Esther’s 

and Jackson’s worked examples also faded from concrete to abstract. In the previously 

discussed chocolate candy example, Jackson faded from the real-life image of chocolate 

(concrete, contextual) into manipulative tiles (concrete, no context). The tiles (concrete, 

no context) were then used to create an array picture (semi-concrete), which was later 

used to set up multiplicative inverses equations (abstract).  

 Although Amy, Esther and Jackson’s sequence of representation scores were 

often lowered because they began instruction with abstract representations, Lily’s score 

was most often lowered because of missed connections between concrete and abstract 

representations. This was evident in one of the worked examples that she used during her 

lesson on multiplicative comparisons. In the example, students were told to use their 

individual white boards to illustrate a representation for the problem –Sophia ate 4 
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animal crackers. Nathan ate 12 times as many. How many did Nathan eat? Students in 

Lily’s class created a variety of representations that included various levels of 

abstractness; however, Lily never had students draw comparisons between 

representations. The side-by-side student examples in Figure 24(d) could have been used 

to facilitate a discussion about efficiency, but instead she simply asked the class if both 

representations yielded correct solutions. In contrast to the other teachers in this study 

who often requested that students create both a concrete and an abstract representation for 

the same story problem, Lily’s lack of doing so resulted in missed connection-making 

opportunities. Further, Lily’s instruction during a lesson on checking division with 

multiplication involved only computational long division examples that were not 

connected to concrete representations [Figure 28(a)]. Similarly, Esther’s use of the fact 

triangle [Figure 28(b)] also did not connect to a concrete context, which was different 

from Amy’s use of a fact triangle to fade a concrete story situation into abstract 

equations. Using abstract representations that have not been built on structure appears to 

promote only number manipulation and root memorization, not deep connections that 

could strengthen students’ situation models for the targeted content of multiplicative 

inverses.  
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Figure 28: Teacher abstract representations that are not connected to concrete.  

 

Several indications do suggest that the teachers in this study had at least some 

desire to implement concreteness fading for increasing efficiency; however, it just 

seemed as if this desire was not always made explicit during instruction. The use of 

concreteness fading by teachers appeared to be related to the teacher’s knowledge and 

desire to create an appropriate level of instructional coherence. For instance, in Amy’s 

interview after the lesson from which Excerpt 4 was drawn, she explained, 

I like the fact that we learn that every strategy is important, and we share 

out, and as long as you get to the answer, it’s okay to use that. Now of 

course I want those students who are drawing it out to be more efficient 

and get to where the other students are, and they will, and those students 

will just need extra practice. 

It is worth noting that the only time Amy explicitly talked about efficiency with her class 

was when students had incorrectly attempted to use their own hands as concrete 

representations for robots that had six fingers. After a quick discussion of why this 
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representation would not work, she stated that “we want more efficient…quicker ways” 

and then discounted the next student’s suggestion of using repeated addition. She 

proceeded to use the abstract equation. Jackson was the only other teacher in this study 

who brought up efficiency. During his last lesson he said to one student,  

If you are still doing repeated addition like this, you need to get some assistance 

from me or from your family at home to figure out how you can use 

multiplication equations, because this is no longer efficient. This takes too long 

and can be too prone to errors. We want to be moving toward ways that are 

efficient and make more sense to us. 

In general, these four teachers appeared to understand how forming connections between 

representations, and fading representations from concrete to abstract, could help promote 

efficiency. Unfortunately, they rarely articulated this understanding during classroom 

instruction.  

Deep Questions 

The biggest difference in connection-making scores across teacher instruction 

appeared to involve the use of deep questions, questions that target relationships and 

structural connections to underlying principles. As indicated in Figure 29, whereas all 

four teachers asked deep questions to elicit students to form connections within the 

current to-be-learned content knowledge, only three teachers used deep questions to form 

connections to prior knowledge, and only two teachers posed questions aimed at 

facilitating connection to future mathematical topics. Upon further analysis, it appears as 

if the deep questions that were posed during instruction either (a) targeted sense-making 

or (b) supported the interconnectedness of mathematics.  
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Figure 29: Connection-making scores for teacher’s deep questions.  

Questions that Target Sense-Making 

 According to Figure 29 (the horizontal line at 6 represents the highest possible 

connection-making score), all four teachers asked at least some deep questions for 

forming connections within multiplicative inverses (current deep questions). Of the deep 

questions that related to this targeted content, most were based around eliciting students 

sense-making. This included asking deep questions for having students examine why they 

were applying certain operations to new situations and exactly what those operations 

meant in context of that situation. In other words, teachers asked deep questions to help 

students not just form connections, but also to create situational awareness involving the 

understanding of those connections within their situation models. Thus, according to a 

situation model perspective of comprehension, these deep questions provided connection-

making opportunities that focused student reasoning on both the structure and 

relationships inherent within multiplicative inverses in order to facilitate inference-

making. 
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 Amy created a learning environment that was quite inference oriented and that 

was based on continuous conversations related to children’s mathematical reasoning. As 

a result, she used deep questions throughout her entire lessons as a means to guide 

instruction and force students to build connections by making sense of their own 

reasoning. On several occasions, Amy asked deep questions that were focused on having 

her students determine the relationships between multiplication and division scenarios. 

For instance, after discussing a solution to the aforementioned multiplicative robot 

problem, Amy asked her students to “come up with the reverse” story problem that would 

show division [Figure 30(a)]. This level of deep questioning (i.e., asking her students to 

create an inverse story) illustrates why her connection-making score for deep questions 

about multiplicative inverses was the highest possible score (M = 2.00; SD = 0). During 

the classroom discussion that followed students’ attempts to write the reversed robot 

problem, Amy asked questions that forced her students to reason about the known and 

unknown parts within the current situation. In addition to deep questions surrounding the 

structure of multiplicative inverses, her guidance included contextual support that helped 

her students (and even herself) make sense of the problem. 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 30: The robot problem used during Amy’s instruction.  
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Amy initially began the solution to the division problem by writing out 24 tallies, 

the number of total fingers given in the problem. Quickly however, she realized that the 

problem did not provide her with the number of fingers in each group, and thus she did 

not know how many tallies to circle at one time. This prompted a discussion about the 

importance of determining which pieces of information given in the problem were related 

to the structural components of multiplicative inverses. Deep questions asked during this 

discussion included, “Is 24 fingers the number of groups? Would 24 be the number of 

fingers in each group? Is 24 the total number of fingers? The product?” She also helped 

students make further sense out of inverse relations by asking questions to compare and 

contrast the similarities and differences seen in the multiplication and the division chart 

[Figure 30(b)].  Excerpt 5 below further illustrates her use of deep questions to orient a 

student’s sense-making.  

Excerpt 5: 

Amy:   What’s the problem? 

Jayden:  I have something to say about the last problem. You could do it the 

first way. 

Amy:  What’s that? 

Jayden: You could just do 24…[student draws 24 tallies on paper] You 

could circle all of the 4’s, and you can see how many circles there 

are, and that’s the fingers. 

Amy:  But did we know how many were in each group yet? 

Jayden:  Oh…. 
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Amy:  Do you see what I mean? Are there 4 fingers in each group? Was 

there 6 groups or 4 groups?  

Jayden:  Well I counted and got 6… 

Amy:  It is a strategy, but as a visual way, I want you to think…was there 

really 6 hands? 

Jayden:  No 

Amy:  There were 4 hands, and that is why we switched it. Does that 

make sense? 

Jayden:  Oh…yes. 

By using specific contextual questions to unpack a broader question, this excerpt reveals 

that Amy enhanced sense-making by providing students opportunities to correct their 

own reasoning. Other typical deep questions found within Amy’s classroom included 

“Can you describe?—What makes you think it is multiplication?—Can you compare 

these two strategies?”—all of which elicited deep conversations surrounding the 

conceptual understanding of multiplicative inverses. 

 In a similar manner, Jackson often posed questions to his students to direct their 

reasoning to inverse operations and to encourage sense-making (current deep question 

connection making score M = 2.00; SD = 0). For example, after students had used graph 

paper to form an array representing 15 × 6 = 90, he asked students to explain how the 

number 90 was represented by the array. Next, he solicited a division equation that could 

represent the array and asked deep questions involving the connection between the semi-

concrete array representation and the abstract equations. One question involved asking 

students, “Where can you see those numbers on this array?” This led to a discussion 
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about how the number of rows and the number of blocks in each row connected 

(structurally) to both the multiplication and the division equation. At several points 

throughout Jackson’s instruction, the structure of multiplicative inverses (i.e. the use of a 

situation model) was reiterated with the question, “How are the two related?” Like Amy, 

he also stressed sense-making through asking comparison type questions such as, “What 

made this different than the other problems we were just doing?” 

 Another aspect of Jackson’s questioning involved stressing the meaning of 

multiplication and division. Although some of his questions did tend to target word 

recognition (i.e., using the word “times” to infer a multiplication problem), on several 

other occasions he explicitly asked students to make sense of mathematical operations by 

posing the questions, “What does multiplication mean?”—“What does division mean?” 

These questions ultimately appeared to help his students make sense of why certain 

operations were being applied in different situations. Excerpt 6 includes one of these 

sense-making occasions drawn from Jackson’s lesson multiplicative comparisons. The 

problem being discussed in the excerpt is: 

 

DJ picks 7 apples. Teacher Kelly picked 4 times as many apples. How many 

apples did Teacher Kelly pick? 

 

 Excerpt 6: 

 Jackson: What does times mean? Sarah. 

Sarah:   Uh, it means that when she has 7 more but 4 times. 

Jackson:  What do you mean, she has 7 more but 4 times? 
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Sarah:   Like, she has 7 more and then she has another 7 more, it its like… 

Jackson:  Call on someone to help you out to clarify your thinking. 

Mark:   Can I give an example? 

Jackson:  Please. 

Mark:   Do you see how you have 7 apples? 

Jackson:  I do see I have 7 apples. That’s my favorite number. 

Mark:  You just add on 4 more like. They saying like you’re adding on 4 

more bags of 7 apples. 

Jackson:  Well, what does it mean that I have to add on 4 more bags of 7 

apples? 

Mark:   Cause it says 4 times. 

Jackson:  Okay, because it says 4 times, but why do the bags have to have 7? 

Mark:   Because of the number that you already have, that’s like the.. 

Jackson:  Ah, because of the number I have already. I picked 7, and then we 

said that teacher Kelly picked 4 times as many apples as I did. You 

can’t just pick a number out of the sky and say that I’m going to do 

4 times 7. Okay, because it’s 4 times as many apples as I already 

picked. So she has to have 4 groups with the same number inside 

of it. So now, who can tell us an equation that can represent how 

many apples teacher Kelly picked? 

This conversation illustrates Jackson’s expertise involving the act of turning incomplete 

student reasoning into deep questions, which ultimately helped guide his students to 

develop deeper situational connections. In making sense of the current situation, students 
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were able to turn “times 4” into four additional equal groups of 7 apples. Further, because 

reasoning that occurs as a result of the creation of mental models is based on the structure 

of the external situation that the models are formed to represent (Johnson-Laird & Byrne, 

1991), Jackson’s deep structural connection that multiplication involves “groups, with the 

same number inside” most likely enhanced student’s situation models for multiplication.  

In contrast to Amy and Jackson, Esther’s (M = 1.50; SD = 0.50) and Lily’s (M = 

1.25; SD = 0.43) ability to ask deep questions for the purpose of forming connections to 

the current targeted content, appears to have room for improvement. For Esther, although 

she often asked deep questions, she also often provided students with her own deep 

explanations. The following excerpt illustrates this finding.   

 

Excerpt 7: 

Esther:  Alright, let’s look over here. What if the problem said Pam went 

on the ride six times and used three tickets each time, how many 

tickets did she use in all? So look at this bar model. How is it the 

same and how is it different than the other one we just looked at? 

Turn and talk to your partner, I want to hear one way it’s the same 

and one way that it’s different. [Teacher monitors partners]. 

Alright, let’s take a look. Who wants to share with the whole class 

what you and your partner came up with? Joey. 

Joey:  Um it’s the same because, um, it’s the same types of numbers and 

it’s different because you use a different kind of strategy. 
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Esther: Yes. So for this one they told us the total tickets didn’t they? And 

we had to split them into different groups—that’s division. But in 

the bar model one, they gave us how many tickets the ride costs, 

three, and how many times she went on, six, but what did we need 

to figure out? We needed to figure out how many tickets she used 

altogether the six times she went on the ride. And how many was 

that? 

Students:  Eighteen.  

Esther:  Eighteen, very good. So they used multiplication in this one: six 

times three equals eighteen. So that is just a way to show you how 

multiplication and division are related and how you can use them 

to find the answer. So if you knew, if you had to say to yourself,  

“What times six would equal eighteen,” you could do this division 

problem. Okay, because you knew your fact family, or you knew 

the division was opposite. So Pam used blank tickets each time she 

went on the ride. What would you fill in here? Felicia. 

Felicia:  Three. 

Esther:  Three, okay. Can you read this part out loud for us? And boys and 

girls can you track this with your eyes while she is reading? This is 

important. 

Felicia:  “Multiplication and division are opposite operations. They are 

inverse operations.” 
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Although Esther posed the initial deep question involving a side-by-side comparison of 

multiplication and division problems, student responses included only surface-level 

comparisons (i.e., same numbers and different strategies). Instead of probing her students 

with more deep questions in order to guide their reasoning (as Jackson did in the previous 

excerpt), she simply explained the differences that existed between the two problems. 

This process involved having the students perform several procedural calculations as they 

concurrently confirmed her own answer to the original deep question. During this 

discussion, students were not given the opportunity to make sense of the current situation 

and were therefore deprived connection-making opportunities that could have enhanced 

their situation models for multiplicative inverses. While Esther did make a connection to 

multiplicative inverses, this connection focused only on the procedure of using 

multiplication to check division. Many of Lily’s questions (e.g., Can you prove it to me?) 

also only focused student reasoning on the computational checking procedure of inverse 

relations and thus did not support sense-making. Unlike Esther, Lily herself provided 

very few deep explanations, and so the students in her class were presented with even 

fewer connection-making opportunities.  

The differences found among the teacher’s deep (current) questioning abilities 

appears to be in large part due to differences in classroom discourse. Whereas Amy’s and 

Jackson’s students were continuously involved in investigative tasks throughout 

classroom instruction, Esther’s and Lily’s students were exposed to a more show-and-tell 

environment. Not surprisingly, this aligns with the presentation of content found within 

the two different curriculums used by teachers in this study (i.e., Amy and Jackson used 

Investigations and Esther and Lily used GO Math). The teachers who used the textbook 
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which appeared to be less coherent (Investigations) actually provided more deep 

questions surrounding the targeted content, than did the teachers who used the textbook 

that was more coherent (GO Math). Moreover, the teachers who used Investigations 

seemed to add deep questions into instruction that were not found in their curriculum, 

whereas the teachers who used GO Math actually missed asking several of the deep 

questions provided by that curriculum. 

Questions that Support the Interconnectedness of Mathematics 

Based on the connection-making scores for asking deep questions involving prior 

or future content, the teachers in this study appeared to have different views on 

instructional coherence. Although recent literature (e.g., Cai, Ding & Wang, 2014) 

suggests that U.S. teachers view instructional coherence as the connectedness of teaching 

activities rather than the interconnectedness of mathematical concepts, Amy’s and 

Esther’s use of deep questions which connected multiplicative inverses to prior and future 

knowledge, at least somewhat tend to contradict this claim. Amy provided further 

evidence that she viewed instructional coherence as a continuous process of connection-

making when she stated in a post-lesson interview that, “Obviously, whatever we have 

done previously I want them to relate that to division. Especially in this unit because it is 

so much related” (Amy Lesson 1 Interview). On the other hand, Jackson and Lily 

provided little indication that their view of instructional coherence was any deeper than 

forming connections between daily teaching activities. 

Specific to facilitating connections to prior knowledge, Amy and Esther both used 

deep questions to form connections between multiplicative inverses and students’ 

previous knowledge about additive inverses. In one case, when referencing students’ 
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prior work with addition and subtraction word problems, Amy asked her students, “What 

is different about this problem compared to problems that we had been working with 

before?” Later, she was more explicit when asking, “Do you think multiplication and 

division are related like addition and subtraction?” Illustrating the connection-making 

that occurred as a result of asking these prior knowledge deep questions, one student in 

Amy’s class deduced, “Multiplication is like addition...You are adding them all up, and 

division is separating them.” Likewise, after being asked a similar question by Esther 

(i.e., Do we know two other operations that are opposites?), a student formed the 

connection that, “Inverses…when you do division, you are subtracting groups. When you 

do multiplication you are adding groups.” Both of these student responses provided 

strong indication that well-connected situation models for inverse relations were being 

formed because of the teacher’s deep questions involving prior knowledge. In addition, 

Amy, Esther and Jackson all facilitated connections to prior knowledge by asking deep 

questions about concepts and previously learned quantities that were needed to set up the 

current targeted content of multiplicative inverses (e.g., groups, factors, times, and 

product).  

Deep questions were also used by Amy and Esther for forming connections 

between multiplicative inverses and future content. For Amy, these questions primarily 

focused on connections between division and the future study of fractions. One of these 

deep questions—“How come you didn’t say 2 divided by 6?”—was asked after students 

instructed Amy to write 6 ÷ 2 as the representation for the situation involving splitting six 

into two equal parts. Student responses included, “because you couldn’t do it,” and “it 

wouldn’t make sense,” a clear indication that her deep question prompted students to use 
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their current knowledge in order to make inferences about what would happen in a future 

unknown situation (i.e., when the dividend < divisor). Amy also asked several deep 

questions for forming connections to the future topic of improper fractions (i.e., when the 

dividend > divisor). For example, when discussing a practice problem that involved 

sharing 18 cards evenly among four friends, she asked, “What will happen if it was not 

even?—19—Who gets the last card?” Responses that involved the words “extra” and 

“remainder” indicated that her students were making inferences given these new 

unknown circumstances, the very outcome of using a situation model for mathematical 

comprehension. 

While Amy’s series of deep questions involving the future study of fractions was 

not suggested by her curriculum (Investigations), forming connections between 

multiplicative inverses and the future content of squared numbers was found in Esther’s 

corresponding textbook (GO Math). The following excerpt and Figure 32(a), together 

illustrate Esther’s enactment of this connection to future knowledge. 

Excerpt 8: 

Esther:  All right, draw an array with four rows of four. Four rows of four 

tiles in each row. Who thinks they can come add tiles to that? They 

already started it and you have to do it in your book. They have 

one tile but you need four tiles in each row. So you have 1, 2, 3, 4, 

but you have to keep adding so that all of your rows have four 

tiles.  

Patrick:  (Draws tiles on the board). 

Esther:  All right, let me see. I need four rows, four tiles in each row. Very 

good. If you’re not sure, look what Patrick did on the board. Here’s 

our four rows, first row, second row, third row, fourth row, here 

they are. There’s 1, 2, 3, 4 blocks in each row. He did a good job. 
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Okay, now the array shows related facts, 4, 4, and 16. 4, 4, and 16. 

Fill in four times four is the multiplication sentence that matches 

that. Who knows the answer for that? 

Justin:   Sixteen.  

Esther:  Mhm. If I counted all those blocks, it would be sixteen. Sixteen 

divided by four rows equals how many in each row? Charmaine 

what is 16 divided by four? 

Charmaine: Four. 

Esther:  It equals four. Can I write another division and another 

multiplication fact like we did for two, four, and eight? 

Students:  No 

Esther:  Why not? The last time we had three numbers we wrote two 

multiplication and two division equations, right? Can I write two 

more? 

Students:  No. 

Esther:  Zachary, what do you think? 

Zachary: Yeah. 

Esther:  Give me the other multiplication fact I could write for this. 

Zachary:  Wait, I don’t think you can because…oh yeah, you couldn’t 

because there’s only four times four. Like if it was two times four 

you could, but you’re not able to do that because it’s two fours.  

Esther:  Can you read this aloud? 

Zachary:  Since both factors are the same, there are only two related factors. 

Esther:  Yeah, so since the factors four and four are the same, then we can 

only write one division and one multiplication. Here’s what I want 

you to try, and you can work with the person next to you. I want 

you to try and think of another set of related facts that only has one 

set of related facts for multiplication and division, just like four 

times four equals sixteen, and sixteen divided by four equals four. 

Give me another example. Work with your partner, or talk to your 

partner.  
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Esther never mentioned the formal topic of a perfect square, but by asking a series of 

probing questions her students were able to determine that the fact family for a square 

number only contains two related inverses facts. Interestingly, as seen in Figure 31(b), 

Amy also brought up the idea of a fact family that contained two of the same factors. 

However, unlike Esther (and the GO Math textbook), Amy missed the opportunity to 

connect a squared number to multiplicative inverses because she only explicitly provided 

the abstract division equation. Further, paired together with soliciting her students to 

provide other examples of squared numbers, Esther’s discussion of equal rows and equal 

columns [based off her square image in Figure 31(a)] created a deeper connection to the 

future content of squared numbers. Nonetheless, both teachers used deep questions to lay 

a foundation for the creation of situation models involving a future mathematical topic. 

 

 

 

(a) Esther 

 

 

 

 

(b) Amy 

Figure 31. The use of squared numbers in multiplicative fact families.  
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Summary of Teacher’s Implementation of Curriculum 

According to the level to which instructional tasks, representations and deep 

questions were used for connection-making, GO Math was identified to be a more 

coherent text (M = 15.28; SD = 1.48) than Investigations (M = 9.25; SD = 1.91). This 

was also true for each category and subcategory (Appendix H). As might be expected due 

to the expertise of the teachers, connection-making scores for teachers who used the less 

coherent Investigations, was higher than the textbook scores (see Figure 32). In other 

words, they enhanced the curriculum and provided instruction that was more coherent. 

Interestingly, both teachers who used the more coherent GO Math curriculum, scored 

lower than their textbook scores. That is, they provided less coherent instruction than the 

textbook (See Figure 32). However, it should be noted that Lily, the fourth grade teacher 

who used GO Math, only explicitly used her textbook during one enacted lesson. 

Interestingly, this was the lesson that corresponded to her highest connection-making 

score of 10. Her other three lessons only have an average connection-making score of 

M= 6.67 (SD = 0.47). It thus appears as if the more coherent textbook was beneficial for 

Lily’s instruction. 

 

 

 

 

 

 

Figure 32: Transition of connection-making opportunities across curriculums. 
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Figure 32 reveals that the teachers who used the less coherent textbook (Investigations) 

actually provided stronger connections both within and across instructional tasks, within 

and between representations, and asked more deep questions than the teachers who used 

the more coherent GO Math textbook. In general, the high level of coherency found in 

the GO Math textbook, did not fully transfer into classroom instruction. Based on the 

situation model perspective of comprehension, this finding is similar to research that 

suggests that less coherency may actually support learning for high-learners. Perhaps the 

less coherent textbook (Investigations) was actually more appropriate for the teachers in 

this study (e.g., better supported teaching for expert-teachers). In other words, the 

inference-making nature of Investigations might force teachers to actively search for their 

own ways to facilitate connection-making.  

Regardless of the coherency, when teaching multiplicative inverses, it appears as 

if elementary mathematics teachers best facilitate connection-making as a result of 

enhancing the connection-making opportunities found within their curriculums. Figure 32 

below provides a side-by-side comparison of each teachers’ instructional connection-

making scores compared to his/her respective curriculum scores for each of the nine 

subcategories in this studies coding framework. 
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Figure 33: Instructional vs. curriculum connection-making scores for each teacher. 

 

Concerning instructional tasks, although review tasks and worked examples were used by 

all four teachers, differences existed in the degree to which teachers used these tasks to 

form explicit connections to the targeted content. Those who formed the strongest 

connections tended to focus their instruction on deeply unpacking side-by-side 

comparison type examples. With regards to representations, the teachers who best 

facilitated connection-making situated instructional tasks in personal concrete contexts, 

used semi-concrete representations to illustrate the structural relationship of 

multiplicative inverses, and promoted efficiency through the sequence of their presented 

representations. Finally, the teachers who asked deep questions appeared to do so in 

support of using instructional tasks and representations to promote connection-making. 

More specifically, the teachers who provided students with the highest level of  
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connection-making opportunities posed deep questions for the purpose of supporting 

students’ sense-making while emphasizing the interconnectedness of mathematics. 

Student Comprehension Relative to Connection-Making Opportunities 

In order to determine the effect that connection-making opportunities afforded by 

textbooks and expert elementary teachers had on student comprehension of multiplicative 

inverses (Research Question #3), a multivariate linear regression analysis was conducted 

on the inverse understanding scores (dependent variable) calculated from the post-

instructional student assessment. Table 6 below provides summary statistics for the pre 

and post-test student understanding scores for each teacher in this study.  

Table 6. Descriptive Statistics for Pre and Post-test Understanding Scores.  

Teacher Sample Size Pre-Mean Pre-SD Post-Mean Post-SD 

Amy 24 0.95 1.91 4.67 2.68 

Esther 24 0.64 1.49 4.05 2.29 

Jackson 29 2.29 2.34 4.04 2.19 

Lily 25 4.09 1.84 3.78 2.17 

 

Independent variables considered for regression included the textbook 

connection-making score, the teacher connection-making score, the pre-test inverse 

understanding score (included to control the effect that prior knowledge had on 

comprehension), along with the student demographics of disability status, gender, 

race/ethnicity, LEP (limited English proficiency) status, free/reduced lunch status and 

grade level. A backwards elimination analysis produced the multivariate regression 

model that included teacher connection-making scores, pre-test inverse understanding 

scores, disability status and ethnicity as significant predictors of students’ post-test 

inverse comprehension. The descriptive statistics for the variables entered into the final 
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analysis are listed in Table 7 (Note: * is a percentage as the variable is an indicator with 

only two options, present or not present).  

Table 7. Descriptive Statistics for Key Variables in the Regression Model.  

 Minimum Maximum Mean Standard Deviation 

Post-test (DV) 0.00 8.00 4.19 2.35 

Pre-test (IV) 0.00 7.00 1.99 2.37 

Teacher Connection (IV) 7.50 17.25 12.83 3.59 

Disability Status (IV) 0.00 1.00 0.14* 0.35 

Ethnicity (Caucasian) (IV) 0.00 1.00 0.38* 0.49 
 

Table 8 provides the bivariate correlations between all of the variables included in the 

final regression model. 

Table 8. Correlations Between Variable in the Regression Model.  

 Post-test Pre-test Teacher 

Connection 

Disability 

Status 

Ethnicity 

Post-test (DV) 1 .330 .092 -.300 .206 

Pre-test (IV)  1 -.536 -.129 -.115 

Teacher Connection 

(IV) 

  1 -.064 -.049 

Disability Status (IV)    1 .072 

Ethnicity 

(Caucasian) (IV) 

    1 

Table 9 provides the overall summary for the regression model, which includes an 

adjusted-R2 value of .289. This can be interpreted to mean that 28.9% of the variation in 

the post-test inverse comprehension scores has been accounted for by the four 

independent variables that were included in the regression model.  

Table 9. Model summary of the “best” regression model using backwards elimination.  

Model R R Square Adjusted R Square Standard Error of the Estimate 

1 0.538 0.289 0.253 2.061 

 

Although the adjusted-R2 value provides an estimate of the strength of the relationship 

between the independent and dependent variables in a multivariate regression model, it 
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does not provide a formal hypotheses test for this relationship. Table 10 provides the 

outcome of an F-test that determined that the relationship explained by the regression 

model is statistically significant (p-value < 0.001).  

Table 10. ANOVA Test for the Overall Significance of the Regression Model 

Model Sum of Squared df Mean Square F  Sig. 

Regression 134.82 4 33.70 7.93 < 0.001 

Residual 331.35 78 4.35   

Total 466.17 82    

 

Further, the adjusted-R2 value has few implications when the goal of research is 

exploratory in nature. For this exploratory study, determining how changes in 

connection-making opportunities (independent variables) affected student comprehension 

(prediction of a response variable) was of most importance. Table 11 provides the 

unstandardized regression coefficients (B), test statistics (t) and their significance levels 

(Sig.) and the collinearity statistics for each independent variable included in the final 

model. Unstandardized regression coefficients are reported for this study because 

standardizing coefficients removes the units from the variables and thus would only 

indicate the strength of each variable relative to the other variables in the model. Leaving 

units on the variables (unstandardized regression coefficients) allows for discussion about 

the implications that a one-point change in a variable would have on a student’s overall 

comprehension (see discussion below).   
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Table 11. Regression Model Coefficients  

Model Unstandardized 

Coefficients 

  Collinearity 

Statistics 

 B Standard Error t Sig. Tolerance VIF 

(Constant) -.469 1.211 -.387 .700   

Teacher 

Connection 

.263 .076 3.437 .001 .716 1.398 

Pre-Test .521 .114 4.564 <.001 .690 1.450 

Disability -1.449 .708 -2.047 .044 .964 1.037 

Ethnicity .900 .466 1.930 .057 .982 1.018 

 

Although it was hypothesized that both textbook and teacher connection-making scores 

would have a significant positive effect on comprehension, only the teacher score         

was statistically significant (p-value = .001) and therefore included in the final model. 

The regression coefficient for the teacher connection-making score indicates that for 

every one point higher a teacher scored on the facilitating connection framework, a 

student’s post-test comprehension score was predicted to increase by B =.263 points, if in 

fact the other predictor variables in the model were held constant. It should be noted that 

although this effect might appear small, this effect is only for a one point increase in 

connection-making scores. In other words, the difference between the highest teacher 

connection-making score (𝑀𝐴𝑛𝑛𝑎= 17.25; 𝑆𝐷𝐴𝑛𝑛𝑎= 0.43) and the lowest score (𝑀𝐿𝑖𝑙𝑦= 

7.5; 𝑆𝐷𝐿𝑖𝑙𝑦= 1.50) would be 𝑀𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒= 9.75 points, which when multiplied by the 

regression coefficient (B = .263) results in an average post-test difference of 9.75 × .263 

= 2.564 points. As would be expected, a student’s pre-test score was statistically 

significant (p-value< 0.001) and was the most closely related predictor (Beta = .525) to 

the post-test score. The regression coefficient for the pre-test score was B = .521, 

suggesting that prior knowledge influences comprehension. In addition, the presence of a 

disability had a significant negative effect on the post-test score (p-value = 0.044 and B = 
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-1.449) and a student’s ethnicity (i.e., being Caucasian) was found to be marginally 

significant (p-value = 0.057 and B = .900). It should be noted that effects of these 

variables are additive. For instance, if a teacher scored 10 on the connection-making scale 

but a student was disabled, there would be a predicted (10 × .263) + (1 × -1.449) = 1.181 

point increase on the post-test inverse understanding score.  

 All of the multiple linear regression assumptions were met for this analysis. Those 

assumptions included multivariate normality, residuals that were independent and 

homoscedastic about the regression line, and minimal multicollinearity. The multivariate 

normality assumption was verified through the linear trend illustrated on the normal 

probability plot [see Figure 34(a)]. A check of the standardized residual plot [Figure 

34(b)] revealed random scatter and equal variance among residuals. Because no clear 

pattern or unequal vertical distribution of residuals was found, the independent and 

homoscedastic assumptions were satisfied. Finally, the Tolerance and VIF statistics 

reported in Table 10, indicate that multicollinearity is not of concern in this model. The 

Tolerance statistic indicates the percent of variance in the independent variable that 

cannot be accounted for by the other independent variables, and thus small Tolerance 

values (typically less than 0.10) indicate redundancy in the predictors. The variance 

inflation factor (VIF) is defined as the inverse of the Tolerance statistic, and thus as a rule 

of thumb, VIF values greater than 10 are of concern. Because all Tolerance statistics are 

larger than 0.10 and all VIF statistics are smaller than 10 according to Table 10, there is 

at most only minimal multicollinearity in this regression model.  
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(b) 

 

 

 

 

 

Figure 34. Graphs used to assess multiple linear regression model assumptions. 

 After verifying the assumptions of the initial backwards elimination regression 

model, the teacher connection-making score was broken into the three individual 

category scores (i.e., instructional tasks, representations, and deep questions) that were 

previously summed to determine the overall teacher connection-making score. Using the 

same dependent variable (post-test inverse understanding scores), a second backwards 

elimination regression model was run on this new set of independent variables (i.e., 

teacher instructional task scores, teacher representation scores, teacher deep questions 

scores, pre-test scores, disability and ethnicity). The resulting statistically significant  
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(F = 9.404; p-value< 0.001) regression model included only the teacher deep question 

connection-making score, the pre-test inverse understanding score, and the disability 

indicator as significant predictors of the post-test scores. As a result of the teacher 

instructional task connection-making score and the teacher representation connection-

making scores being highly correlated with the teacher deep questions connection-

making score (r = .878; r = .866 respectively), both were removed from the model. This 

is also reflective of the qualitative finding that deep questions were used to facilitate 

connection-making among instructional tasks and with representations. Interestingly, this 

simplified model (only two predictor variables) yielded an adjusted-R2 of .225, only 

slightly less than the initial regression model. An ANOVA test conducted on the two 

models also determined no significant difference between the models (p-value = .060). 

Table 12 provides the regression coefficients (B) of this simplified model. All model 

assumptions were verified. Of particular interest with this second model, is the fact that 

the disability and ethnicity variables are no longer significant predictors of the post-test 

inverse understanding score. 

Table 12. Coefficients for Simplified Regression Model 

Model Unstandardized 

Coefficients 

  Collinearity 

Statistics 

 B Standard Error t Sig. Tolerance VIF 

(Constant) .849 .754 1.127 .263   

Pre-Test .561 .112 5.028 <.001 .699 1.431 

Teacher Deep 

Questions 

1.837 .476 3.864 <.001 .699 1.431 

 

The regression analysis has revealed that connection-making opportunities that expert 

teachers provide during classroom instruction have a significant impact on student 

comprehension of multiplicative inverse relations. Specifically, the asking of deep 
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questions appears to have the greatest effect on the situation model perspective of 

comprehension.  
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CHAPTER 5 

 CONCLUSIONS 

This study sought to examine the extent to which current learning environments 

expose students to connection-making opportunities that may help facilitate mathematical 

understanding of elementary multiplicative inverses. As part of this embedded mixed-

methods study, curriculum materials, classroom instruction, and student assessments 

were analyzed from a situation model perspective of comprehension. The aim was to 

determine how instructional tasks, representations, and deep questions are used for 

connection-making, the foundation of a situation model that can be used for inference-

making. Although results of this study are only directly related to four teacher’s 

classrooms, they provide important instructional and curriculum suggestions surrounding 

the Common Core State Standards’ (CCSSI, 2010) call for students to make connections 

between fundamental mathematical concepts. This chapter provides a summary of major 

findings, a list of limitations, and implications for practice and future research involving 

mathematical comprehension.  

Discussion of Findings 

The findings from this study support the situation model perspective of 

comprehension, which suggests that understanding is influenced by the nature of how 

connections between current situations and prior knowledge are formed (Zwaan & 

Radvansky, 1998). As indicated by the regression analysis, comprehension of 

multiplicative inverses was found to depend more on connection-making opportunities 

afforded by classroom teachers, rather than on learning opportunities found solely within 

a curriculum. Interestingly, the two curriculums used by teachers in this study provided 
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very different connection-making opportunities. The connection-making opportunities in 

the GO Math curriculum were more explicit than in the Investigations curriculum. In fact, 

according to Appendix H, this was true for all categories and all subcategories of the 

connection-making framework. An increase in curriculum connection-making 

opportunities however, did not exactly translate into a higher level of instructional 

opportunities, or vice-versa. Instead, the elementary mathematics teachers who best 

facilitated connection-making, did so as a result of integrating the curriculum into their 

students’ already existing knowledge systems. In other words, the teachers who 

demonstrated a more interconnectedness view of mathematics offered instructional 

opportunities for students to move beyond a simple textbase (Kintsch, 1986) 

understanding of the targeted content. This facilitated the creation and use of the most 

critical component for increasing comprehension, a situation model (Kintsch, 1986), a 

catalyst that can be used to convert connections into inferences. The following three 

sections summarize the connection-making opportunities that were afforded by the 

curriculums and teachers in this study for helping students initiate, develop, and apply 

situation models for increasing their comprehension of multiplicative inverses.  

Initiation of a Situation Model:  

Initiating conceptually relevant prior knowledge is the crucial first step in creating 

a mathematical situation model. This involves activating a learner’s already existing 

schema involving a past action of a stereotypical situation (Zwaan & Radvansky, 1998). 

For the connection-making framework developed in this study, initiation of a situation 

model encompassed the use of instructional review tasks, concrete representations, and 

the asking of deep questions for making connections to prior knowledge. The review 
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tasks that appeared to best initiate the creation of a multiplicative inverse situation model 

connected content from prior lessons in a way that did not just focus on previously 

learned procedural facts or computational strategies. Instead, they tended to also 

incorporate the cognitively high demanding tasks of forming conceptual relevant 

connections. These review tasks that pursued both procedural skills and conceptual 

understanding, coincide with the Common Core’s (CCSSI, 2010) call for more rigor. 

Specifically, these optimal review tasks were focused on activating both formal and 

informal prior knowledge surrounding the structure of multiplication. The formal 

knowledge involved an interconnectedness view of mathematics, which applied familiar 

content in an unfamiliar way. For instance, Amy reviewed the formula for calculating the 

area of a rectangle, by emphasizing the multiplicative inverse relationship between 

length, width and area. As suggested by past research (i.e., Cai & Ding, 2015; Cai, Ding, 

& Wang, 2014), forming connections to prior knowledge as a condition instead of a result 

of achieving instructional coherence appears to agree with the situation model 

perspective of comprehension.  

The teachers in this study activated students’ informal prior knowledge most 

effectively by situating instructional tasks in concrete contexts. Although literature 

(Resnick & Omanson, 1987) reveals that concrete manipulatives help activate existing 

schema, providing students with contextual support of those manipulatives appears to be 

most beneficial. In fact, the importance of contextual support in the initial stage of 

learning has been previously noted by research involving both the targeted content of 

inverse relations (Ding, 2016), as well as other fundamental mathematical concepts (Ding 

& Li, 2010; Ding et al., 2012). In this study, whereas almost every instructional task in 
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both curriculums was situated in rich concrete contexts, the teachers who activated the 

deepest connections to prior knowledge enriched those contexts by making them personal 

for their students. For each of the four teachers, this included changing the names of 

characters in their curriculum’s instructional problems to reflect the names of students in 

their own classes. In addition, some of the teachers modified their curriculum’s story 

contexts in order to better resemble situations that their students were sure to encounter in 

every-day life (e.g., when Esther changed a dog trainer problem into a problem which 

involved her students feeding their own dogs). For an instructional task in which the 

curriculum did not provide a concrete context, Lily even activated students’ informal 

knowledge by using candy pieces, a physical concrete representation that was much more 

personal than a non-contextual concrete manipulative such as blocks or tiles. Situating 

initial learning in concrete personal contexts may activate students’ personal experiences 

and their existing schema (Resnick & Omanson, 1987), whereby laying a foundation for 

the creation of a situation model for multiplicative inverses.  

Deep questions do not appear to be a tool that the textbooks in this study used to 

activate a learner’s already existing schema. In fact, very few deep questions in either 

curriculum targeted forming connections to prior knowledge. During instruction 

however, three of the teachers did ask deep questions that helped students form 

connections between multiplicative inverses and their prior knowledge of additive 

inverses. For example, both Amy and Esther asked there students to make comparisons 

between current multiplicative inverse problems and previously learned additive inverse 

problems. Deep questions about previously learned quantities that were needed to set up 

the targeted content of multiplicative inverses (e.g., groups, factors, times, and product), 
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were also asked by Amy, Esther and Jackson. Overall, student responses to these 

questions provided a strong indication that the situation model for multiplicative inverses 

was being initiated because of the teachers’ deep prior knowledge questions.  

Development of a Situation Model 

After the initial activation of a student’s prior knowledge, the construction of a 

situation model is facilitated by an ongoing development of schema (Rumelhart et al., 

1986). This development involves providing students with adequate connection-making 

opportunities so that they can draw on their prior knowledge to create a more complete 

mental representation of the to-be-learned content. According to Zwaan and Radvansky 

(1998), this stage of development includes transforming schema (e.g., mental models of 

stereotypical situations) into situation models (e.g., mental representation of a specific 

real life experience) that can be used in future inference-making opportunities. For the 

connection-making framework in this study, development of a situation model for 

multiplicative inverses encompassed the use of worked examples, the sequence of 

representations, and the asking of deep questions for making connections to the targeted 

content. As noted in the literature (Paas, Renkl & Sweller, 2003), worked examples are 

used during instruction to develop schema so that learners can more easily extract 

underlying mathematical principles. In this study, the worked examples that best 

facilitated the development of a situation model for multiplicative inverses were deeply 

unpacked through the use of side-by-side comparison problems that illustrated the inverse 

relationship between multiplication and division. These types of problems were primarily 

found in the GO Math curriculum and in Amy, Esther, and Jackson’s classroom 

instruction. As noted by past research (i.e., Gentner, Lowenstein & Thompson, 2003; 
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Rittle-Johnson & Star, 2011; Star et al., 2015), comparison is an especially powerful tool 

in mathematics instruction, especially for helping novice learners develop a more general 

schema (i.e., a situation model) that “primarily captures the common structure of the 

cases rather than the surface elements” (Genter et al., 2003, pg. 394). Although some 

comparison problems were found in both curriculums, the teachers in this study often 

enhanced textbook examples by situating them in the same concrete context (e.g., Amy’s 

use of the robot example), which allowed a greater focus to be placed on the underlying 

structure of multiplicative inverses. 

Focusing mathematics instruction on creating structural knowledge is perhaps the 

most important method for developing a students’ situation model for multiplicative 

inverses. This is because in order to use a situation model, students need to be able to 

understand and recognize deep structural connections between problems (Chi & 

CanLehn, 2012). According to Gick and Holyoak (1983), deep structure is achieved 

when learners form a “convergence schema” (i.e., a situation model). The most explicit 

opportunity in this study to create deep structure occurred through the use of semi-

concrete (Ding & Li, 2014) representations (i.e., schematic diagrams), an intermittent 

type of representation that helps novice learners bridge the gap between purely concrete 

and abstract knowledge. Further, several international studies (e.g., Cai et al., 2005; Ding 

& Li, 2014; Murata, 2008) have shown that schematic diagrams are powerful for creating 

deep structural relationships. As suggested by the Common Core (CCSSI, 2010), bar-

models (i.e., tape diagram; Murata, 2008) and number line models are two schematic 

diagrams that were used by the curriculums and teachers in this study. Unfortunately, 

students had little exposure creating these models because they were primarily used for 
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computation instead of for illustrating the part-whole structural relationship that is critical 

in understanding the connection between multiplication and division. This may partially 

be due to the fact that schematic diagrams have only recently drawn attention within the 

U.S. mathematics education field. It should also be noted that in both curriculums and in 

some teacher instruction, inconsistent and incomplete connections were sometimes 

formed between representations. Furthermore, connections established between concrete 

and abstract representations did not always progress linearly, as suggested by the research 

on concreteness-fading (Goldstone & Son, 2005). This perhaps inhibited the ability of 

learners to “strip away extraneous concrete properties and distill the generic, 

generalizable properties” (Fyfe et al., 2014, p. 9) that are foundational to the development 

of a situation model.  

To support the use of side-by-side comparison problems and schematic diagrams, 

the teachers in this study often posed deep questions to learners which were comparative 

in nature and which provoked conceptual understanding of the structural relationship 

inherent in multiplicative inverses. As suggested by the literature (Ding & Li, 2014; 

Pashler et al., 2007), the comparison type questions that were asked in this study—“What 

makes you think it is multiplication and not division?”—“How are these two related?”—

“How can this model illustrate both multiplication and division?”—seemed to be 

effective in helping students form connections between and within mathematical 

principles. This is supported by the regression analysis where revealed that the deep 

questions connection-making category was most predictive of student achievement. 

Moreover, deep questions that stressed meaning—“What does multiplication mean?”—

“What does division mean?”—appeared to be especially beneficial for supporting 
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students’ sense-making. Facilitating discussions that promote reasoning and which target 

sense-making has been shown to be an integral component for increasing students’ 

mathematical comprehension (Ball & Bass, 2003; Cengiz, 2013). The most effective 

teachers in this study actually provided opportunities for students to correct their own 

reasoning through asking specific contextual questions, which ultimately helped guide 

students to develop deeper situational connections. The previously discussed Excerpt 5 

reveals how Amy provided these opportunities for students. By asking students questions 

such as—“Are there 4 fingers in each group?”—and—“Was there 6 groups or 4 

groups?”—Amy helped students make sense of their reasoning. However, there were also 

occasions in which students in this study were simply provided with deep explanations 

instead of being afforded the opportunity to develop connections on their own.  

Application of a Situation Model 

The final component of the situation model perspective of comprehension is to 

use the developed structure (i.e., the situation model) in order to efficiently draw 

conclusions in unfamiliar situations. In other words, once a situation model has been 

developed, it may act as a catalyst for converting connections into inferences. In 

comprehension research, this is most commonly referred to as transfer, the ability to 

apply knowledge beyond initial learning (Lobato, 2006). For the connection-making 

framework developed in this study, using a situation model for multiplicative inverses 

occurred through practice problems, abstract representations, and the asking of deep 

questions for making connections to future situations or future content. Worked examples 

that faded into practice problems created the best opportunities to use a multiplicative 

inverse situation model in this study. This occurred when corresponding practice 
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problems were connected to the underlying structure developed in worked examples, but 

contained varied surface characteristics that most likely helped students reinforce learned 

knowledge while at the same time strengthening and creating new connections (Renkl et 

al., 1998). Although the practice problems in the Investigations curriculum at times 

varied at the structural level, all four teachers in this study seemed to embrace 

establishing a constant structure that was maintained throughout practice. This appeared 

to have promoted the use of a student’s situation model for multiplicative inverses.  

Because a situation model consists of an internal network of mental connections, 

they in essence are a learner’s abstract representation of knowledge. In mathematics 

education, efficiency is associated with abstract understanding (Cai, 2001; CCSSI, 2010); 

therefore, the goal of advanced mathematics is to reason abstractly (i.e., develop and use 

situation models). Learning opportunities that use mathematical situation models should 

thus stress the importance of abstract reasoning. In this study, this was not always the 

case. For instance, although all of the teachers and both curriculums mentioned a desire 

for students to develop efficient solution strategies, students were often exposed to 

“abstractness-fading.” This meant that reasoning abstractly was sometimes downplayed 

in place of using concrete tools for the sole purpose of computation. In turn, this created 

less than ideal opportunities for students to use multiplicative inverse situation models for 

converting connections into inferences. This finding was similar to Ding and Li’s (2010) 

critique of textbook presentation that used concrete context as a pretext for computation. 

In addition, students in this study were sometimes presented with abstract representations 

that either had not been built on structure (i.e., number sentences in isolation) or which 

were inconsistent with the structure they were built upon (i.e., 3 × 4 represents 4 groups 
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of 3, but 7 × 4 represents 7 groups of 4). Together, these instances created an atmosphere 

that promoted number manipulation and root memorization, not deep connections that 

enhanced students’ use of their abstract situation models of multiplicative inverses. 

Similar to the findings surrounding prior knowledge, deep questions do not appear 

to be an instructional tool that the textbooks in this study endorsed for helping students to 

recognize how to use their multiplicative inverse situation models in the inference-

making process. This seems problematic since the end goal of any comprehension 

perspective is to transfer learned knowledge into novice situations (Bransford et. al., 

1999). If teachers in this study viewed mathematics as an interconnected web of 

fundamental concepts, one would think that they might pose more deep questions aimed 

at facilitating connections to a much broader situation model, a model that could be used 

for future content involving the complement principle of the inversion. This did not 

happen. In fact, only two teachers asked questions that invoked forming connections to 

future knowledge, neither of which involved inverse relations. 

Limitations 

 Due to a few limitations in this study, one should be cautious when making 

generalizations based on the results described above. Because of a desire for an in-depth 

investigation of curriculum, instruction, and student assessment concerning connection-

making, only four elementary classrooms were chosen to be part of this study. First, this 

small sample of classrooms resulted in a curriculum limitation, since only two different 

textbook series (GO Math and Investigations) were used by participants. Even though 

these two curriculums have rather different levels of coherency, an analysis of other 

elementary mathematics curriculums might have yielded an overall different picture 
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(qualitative) of the connection-making opportunities that are afforded by textbooks. Other 

curriculums might have also had a greater impact on the regression analysis (quantitative) 

for student comprehension. In addition, although the GO Math curriculum used by two 

teachers in this study was a fully adapted Common Core edition, Investigations had not 

yet been aligned with the Common Core (CCSSI, 2010). Instead, the publisher of 

Investigations had provided supplemental Common Core materials that could be used in 

conjunction with the primary textbook. Perhaps the three key shifts called for by the 

Common Core (i.e., rigor, focus and coherence) were therefore not as integrated into the 

Investigations curriculum as they were the GO Math curriculum. This potentially could 

have contributed to the difference in curriculum connection-making scores. Moreover, 

although the teachers in this study were aware of which textbook lessons they were 

supposed to enact, no guidance was given about the extent to which they should use the 

curriculum. In fact, the teachers were not even aware that this study involved analyzing 

both curriculum and instruction. This lack of clarity resulted in one teacher solely using 

the textbook for one lesson, and another teacher spreading one curriculum lesson across 

two different classroom lessons. Direct comparison between similar instructional lessons 

was therefore sometimes difficult. To avoid this curriculum limitation, future research 

should analyze other Common Core aligned textbooks and future studies should be 

designed explicitly evaluate how different curriculums may support teacher learning. 

Second, as a result of only studying expert teachers, an instructional limitation 

exists in this study. Although experts were chosen because of an interest to examine 

instruction that had the highest potential for increasing students’ mathematical 

comprehension, characteristics specific to the type of teacher who participated in this 



 194 
 

 
 

study may prohibit more generalized findings. Expert teachers are practitioners that are 

more experienced and who have deeper content knowledge than their peers. Specifically, 

research shows that experts tend to notice meaningful patterns of information, have well 

organized and conditionalized knowledge and can flexibly retrieve and activate that 

knowledge (Bransford et al., 1999). While the first two characteristics suggest that 

experts tend to see and create structure by forming connections between prior and current 

targeted content, the third reveals that they might better understand how to use their own 

situation models. Therefore, perhaps expert teachers may use textbooks with less 

coherency (e.g., Investigations) better than textbooks that are more coherent (e.g., GO 

Math). This might not be true for non-expert teachers. If this study was reproduced with 

novice U.S. elementary teachers, perhaps several of the explicit and deep connection-

making opportunities afforded during instruction (e.g., use of schematic diagrams, 

creating structure, emphasizing sense-making) might not be as prevalent. Further, if this 

study was reproduced with Chinese expert teachers who more commonly embrace an 

interconnected view of mathematics (Cai et al., 2014; Cai & Ding, 2015; Ding, 2016), 

perhaps classroom instruction would include more explicit and deeper connection-

making opportunities. This might have also occurred if the expert teachers in this study 

held advanced degrees in mathematics. To avoid this instructional limitation, future 

mathematics comprehension studies should consider involving more varied teacher 

participants.   

The third major limitation of this study was that connection-making opportunities 

were only assessed on student comprehension of one core underlying mathematical 

principle, multiplicative inverse relations. Given that, multiplicative inverses are 
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essentially an examination of the relationship between two quantities (i.e., multiplication 

and division), the very nature of the content itself may have led to more numerous 

connection-making opportunities. An increased emphasis on connection-making within 

this study’s targeted content, might also be due to the third grade Common Core (CCSSI, 

2010) standard that explicitly mentions the need to help students “understand the 

relationship between multiplication and division.” Perhaps other important mathematical 

topics that are not as overtly emphasized or in which relational quantities are not as 

obvious may result in different connection-making opportunities. To avoid this 

assessment limitation, future mathematics comprehension studies should investigate how 

curriculum and instruction support connection-making for a wider range of fundamental 

mathematical concepts. 

Finally, the characteristics of the learners in this study might also have influenced 

the comprehension analysis. Although participants were from four different elementary 

schools, they were all students of the same large urban school district. One should 

therefore be cautious when generalizing the student comprehension results to populations 

of students who do not have similar demographics as those in this study. In addition, 

because this study was conducted in an elementary school setting, the students in this 

study can be considered novice learners. Novice learners benefit from curriculum and 

instruction that is coherent (i.e., explicit connection-making opportunities) (Kintsch, 

1994; Reed, Dempster & Ettinger, 1985); however, as students develop greater expertise, 

less coherency has actually been shown to improve comprehension (Renkl, Atkinson & 

Grobe, 2004; Schwonke, et al., 2007). Some of the explicit connection-making 

opportunities found in this study may therefore not be as beneficial for improving a more 
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experienced learner’s mathematical comprehension. Lastly, because student 

comprehension was not assessed immediately following each lesson, perhaps their final 

post-test understanding scores were influenced by other instructional lessons or other 

connection-making opportunities that were not revealed in this study. Future studies 

should therefore involve more varied student participants and should more precisely 

assess the effects that connection-making opportunities have on student comprehension. 

Implications for Practice and Future Research 

 Since mathematical understanding generally relates back to one’s ability to form 

connections (Hiebert & Carpenter, 1992), exploring how learning environments afford 

opportunities to facilitate connection-making should be a critical component of future 

research that aims to improve U.S. students’ mathematical comprehension. This includes 

research on both curriculum design and classroom instruction. Although the findings in 

this study suggest that the coherency level of a curriculum does not necessarily restrict or 

benefit a teachers’ instructional coherency, more research on this relationship is 

warranted. This should include a wider variety of textbooks and analysis of instruction 

from a larger group of teachers with a broader range of expertise. After all, this was one 

of the first comprehensive studies that examined how reformed curriculum materials 

influence teachers’ responses to the Common Core’s (CCSSI, 2010) call for more 

focused, rigorous, and coherent mathematics instruction.  

Specific to the theoretical framework in this study, educational researchers should 

continue to look for ways to help students improve the initiation, development, and 

application of mathematical situation models. Because of the emphasis that the Common 

Core (CCSSI, 2010) has placed on forming better connections in order to make better 
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inferences, expanding upon the connection-making framework used in this study seems 

promising for future research on mathematical comprehension. Of particular interest, 

from the findings in this study, would be research that further examines the role that 

comparison problems and schematic diagrams have in creating mathematical structure for 

aiding a student’s sense-making. Moreover, because the regression analysis in this study 

reveals that deep questions appear to have the biggest influence on comprehension, future 

studies should explore how to help teachers master the art of questioning. Further, 

exploring the relationship between teachers’ deep questions and the nature of student 

explanations to these questions may be of particular interest to future research on 

mathematical comprehension. Analyzing detailed components of classroom discourse 

may therefore provide additional guidance for helping teachers create connection-making 

opportunities during their use of instructional tasks and representations. 

Future research on mathematical comprehension should also more closely involve 

practitioners, as implementing an appropriate level of instructional coherence (i.e., 

knowing when to use concreteness fading and how to ask deep questions to elicit deep 

understanding of targeted content) seems to depend on a teacher’s view of connection-

making. The short post-instructional teacher interviews conducted in this study attempted 

to begin this exploration; however, much still remains unknown. The teachers in this 

study all seemed to understand the importance of connection-making, thus design-based 

research that involves collaboration between researchers and practitioners might be 

helpful in bridging the gap between curriculum and instruction. Although U.S. 

elementary teachers are not typically mathematical content experts, it comes as no 

surprise that their instruction is more intra-connected (i.e., forming connections within 
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day-to-day teaching activities) rather than inter-connected (i.e., forming connections 

between fundamental mathematical concepts; Cai, Ding & Wang, 2014). Giving 

elementary teachers professional development that focuses on the interconnectedness of 

mathematics would thus be beneficial for improving students’ mathematical 

comprehension. This might first involve training teachers how to assess the status of 

children’s prior knowledge; but also, should later focus on knowing how and when to 

provide appropriate learning opportunities that facilitate the development and use of 

mathematical situation models. Future research should thus surround the development of 

a taxonomy of connection-making opportunities.  

Conclusions 

 This study examined how current learning environments expose elementary 

students to connection-making opportunities for the learning of multiplicative inverse 

relations. It further explored the effect that those opportunities had on students’ 

mathematical comprehension. By uncovering effective connection-making strategies 

found in both curriculum materials and classroom instruction, this study is one of the first 

comprehensive analyses (i.e., curriculum, instruction and student assessment) to analyze 

the effects that the Common Core (CCSSI, 2010) has had on a specific fundamental 

mathematical concept. While the findings in this study have provided important 

implications for practice and future research of multiplicative inverses, of most 

importance is the justification for adopting a situation model perspective of mathematical 

comprehension. Although previous research has pointed out the importance of worked 

examples, representations, and deep questions, the situation model perspective adopted 

for this study has provided a deeper understanding of the whys behind these key aspects 
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involved in mathematical comprehension. Ultimately, this study has provided a 

foundation for helping students facilitate their transfer of prior knowledge into novel 

mathematical situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 200 
 

 
 

REFERENCES CITED  

 

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple 

representational systems in learning primary mathematics. The Journal of the 

Learning Sciences, 11, 25-61. 

Angrist, J. & Pischke, J. (2010). The credibility revolution in empirical economics: How 

better research design is taking the con out of econometrics. The Journal of 

Economic Perspectives, 24(2), 3-30. 

Anthony, G. & Walshaw, M. (2009). Characteristics of effective teaching of 

mathematics: A view from the west. Journal of Mathematics Education, 2(2), 

147-164. 

Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of 

meaningful verbal learning. Journal of Educational Psychology, 51, 267-272. 

Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. In J. 

Kilpatrick, W.G. Martin, & D. Schifter (Eds), A research companion to principles 

and standards for school mathematics, (pp. 27-44). Reston, VA: National Council 

of Teachers of Mathematics.  

Baranes, R., Perry, M., & Stigler, J. W. (1989). Activation of real-world knowledge in the 

solution of word problems. Cognition and Instruction, 6, 287-318. 

Barmby, P., Harries, T, Higgins, S., & Suggate, J. (2009). The array representation and 

primary children’s understanding and reasoning in multiplication. Educational 

Studies in Mathematics, 70, 217-241.  

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A 

taxonomy for far transfer. Psychological Bulletin, 128, 612-637. 



 201 
 

 
 

Baroody, A. J. (1987). Children’s mathematical thinking: A developmental framework for 

preschool, primary, and special education teachers. New York: NY: Teacher 

College Press.  

Baroody, A. J. (1992). The development of preschoolers’ counting skills and principles. 

In J. Bideaud, C. Meljac, & J. P. Fischer (Eds.), Pathways to number (pp. 99-

126). Hillsdale, NJ: Erlbaum. 

Baroody, A. J. (1999). Children's relational knowledge of addition and subtraction. 

Cognition and Instruction, 17, 137-175.  

Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The 

integration of conceptual and procedural knowledge. In A. J. Baroody & A. 

Dowker (Eds.), The development of arithmetic concepts and skills: Constructing 

adaptive expertise (pp. 1-33). Mahwah, NJ: Erlbaum. 

Baroody, A. J., Ginsburg, H., & Waxman, B. (1983). Children's use of mathematical 

structure. Journal for Research in Mathematics Education, 14, 156-168. 

Baroody, A.J., Torbeyns, J., & Verschaffel, L. (2009). Young children's understanding 

and application of subtraction-related principles: Introduction. Mathematics 

Thinking and Learning, 11, 2-9.  

Bartlett, F. (1932). Remembering: A study in Experimental and Social Psychology. 

Cambridge: Cambridge University Press.  

Barshay, J. (2013). Data analysis discredits widely used TERC math curriculum. 

Education by the numbers [web log]. Retrieved from http://educationbythe 

 numbers.org/content/data-analysis-discredits-widely-used-terc-math-

curriculum_535/ 



 202 
 

 
 

Bisanz, J., Watchorn, R., Piatt, C., & Sherman, J. (2009). On “understanding” children’s 

developing use of inversion. Mathematical Thinking and Learning, 11(1-2), 10-

24. 

Bloom, B. S. (1956). Taxonomy of educational objectives, handbook I: The cognitive 

domain. New York: David McKay Company Inc. 

Bloom, B. S., Krathwohl, D. R., & Massia, B. B. (1984). Taxonomy of educational 

objectives: the classification of educational goals. New York: Longman. 

Blum, W., Galbraith, P. L., Henn, H. W. & Niss, M. (Eds.) (2007). Modelling and 

applications in mathematics education: The 14th ICMI-study. New York: 

Springer. 

Boaler, J., & Brodie, K. (2004). The importance of depth and breadth in the analyses of 

teaching: A framework for analyzing teacher questions. Proceedings of the 26th 

meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Toronto, Ontario, Canada. 

Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example 

problems to improve student learning in algebra: Differentiating between correct 

and incorrect examples. Learning & Instruction, 25, 24-34.  

Bransford, J. D., Barclay, J. R., & Franks, J. J. (1972). Sentence memory: A constructive 

versus interpretive approach. Cognitive Psychology, 3, 193-209.  

Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn. Washington, 

DC: National Academy Press. 



 203 
 

 
 

Brown, M. C., McNeil, N. M., & Glenberg, A. M. (2009). Using concreteness in 

education: real problems, potential solutions. Child Development Perspectives, 

3(3), 160-164. 

Brownell, W. A. & Chazal, C. B. (1935). The effects of premature drill in third-grade 

arithmetic. The Journal of Educational Research, 29(1), 17-28.  

Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University 

Press. 

Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Belknap Press of 

Harvard University Press. 

Bruner, J. S. (1990). Acts of meaning. Cambridge, MA: Harvard University Press. 

Bryant, P., Christie, C., & Rendu, A. (1999). Children’s understanding of the relation 

between addition and subtraction: Inversion, identity and decomposition. Journal 

of Experimental Child Psychology, 74, 194-212.  

Businskas, A. M. (2008). Conversations about connections: How secondary mathematics 

teachers conceptualize and contend with mathematical connections. Unpublished 

PhD thesis, Simon Fraser University, Barnaby, Canada. 

Byrne, D. (2005). Social Exclusion. Maidenhead: Open University Press. 

Caelli, K., Ray, L., & Mill, J. (2003). ‘Clear as Mud’: Toward greater clarity in generic 

qualitative research. International Journal of Qualitative Methods, 2(2), 1-24. 

Cai, J., & Ding, M. (2015). On mathematical understanding: perspective of experienced 

Chinese mathematics teachers. Journal of Math Teacher Education. 



 204 
 

 
 

Cai, J., Ding, M., & Wang, T. (2014). How do exemplary Chinese and U.S. mathematics 

teachers view instructional coherence? Educational Studies in Mathematics, 85, 

265-280. 

Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Ng, S. F., & Schmittau, J. (2005). The 

development of students’ algebraic thinking in earlier grades: A cross-cultural 

comparative perspective. ZDM: The International Journal of Mathematics 

Education, 37(1), 5-15.  

Carpenter, T. P., Franke, L. P., & Levi, L. (2003). Thinking mathematically: Integrating 

arithmetic & algebra in elementary school. Portsmouth, NH: Heinemann. 

Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets 

and in schools. British Journal of Developmental Psychology, 3, 21-29.  

Cavanagh, S. (1997). Content analysis: concepts, methods and applications. Nurse 

Researcher, 4(3), 5-16. 

Cengiz, N. (2013). Facilitating productive discussions. Teaching Children Mathematics, 

19(7), 450-456.  

Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed 

practice in verbal recall tasks: A review and quantitative synthesis. Psychological 

Bulletin, 132, 354-380. 

Chapin, S. H., & Anderson, N. C. (2003). Crossing the bridge to formal proportional 

reasoning. Mathematics Teaching in the Middle School, 8(8), 4–20. 

Chi, M., DeLeeuw, N., Chiu, M., & LaVancher, C. (1994). Eliciting self-explanations 

improves understanding. Cognitive Science, 18, 439-477. 



 205 
 

 
 

Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: A practical guide. 

The Journal of the Learning Sciences, 6(3), 271-315. 

Chi, M. T. H. (2011). Theoretical perspectives, methodological approaches, and trends in 

the study of expertise. In Y. Li, & G. Kaiser (Eds.), Expertise in mathematics 

instruction: An international perspective (pp. 17-39). New York: Springer.  

Chi, M. T. H. & VanLehn, K. A. (2012). Seeing deep structure from the interactions of 

surface features. Educational Psychologist, 47(3), 177-188. 

Chin, C. (2006). Classroom interaction in science: Teacher questioning and feedback to 

students’ responses. International Journal of Science Education, 28(11), 13–15. 

Chin, C. (2007). Teacher questioning in science classrooms: Approaches that stimulate 

productive thinking. Journal of Research in Science Teaching, 44(6), 8–15. 

Chingos, M. M., & Whitehurst, G. J. (2012). Choosing blindly: Instructional materials, 

teacher effectiveness, and the Common Core. Washington, DC: Brookings 

Institution.  

Clark, R. C., Nguyen, F., & Sweller, J. (2006). Efficiency in learning: evidence-based 

guidelines to manage cognitive load. San Francisco: Pfeiffer. 

Clements, D. H. (1999). Concrete manipulatives, concrete ideas. Contemporary Issues in 

Early Childhood, 1(1), 45-60. 

Common Core State Standards (2010). Common core state standards for mathematics. 

Retrieved from http://www.corestandards.org/the-standards.  

Costa, A. L. (2001). Teacher behaviors that enable student thinking. In A. L. Costa (Ed.), 

Developing minds (pp. 359–369). Alexandria, VA: Association for Supervision 

and Curriculum Development. 



 206 
 

 
 

Cowan, R., & Renton, M. (1996). Do they know what they are doing? Children’s use of 

economical addition strategies and knowledge of commutativity. Educational 

Psychology, 16, 407-420. 

Craig, S. D., Sullins, J., Witherspoon, A., & Gholson, B. (2006). Deep-level reasoning 

questions effect: The role of dialog and deep-level reasoning questions during 

vicarious learning. Cognition and Instruction, 24(4), 565-591. 

Craik, F.M. & Lockhart R.S. (1972). Levels of processing: A framework for memory 

research. Journal of Verbal Learning & Verbal Behavior, 11(6), 671–84. 

Craik, K. (1943). The Nature of Explanation. Cambridge: Cambridge University Press. 

Creswell, J. W. (2014). Research design: Qualitative and quantitative, and mixed 

approaches. Thousand Oaks, CA: Sage. 

Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods 

research. Thousand Oaks, CA: Sage. 

Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge 

in mathematics. Developmental Review, 34(4), 344-377. 

Cummins, D. D., Kintsch, W., Reusser, K., & Weimer, R. (1988). The role of 

understanding in solving word problems. Cognitive Psychology, 20, 405-438. 

De Smedt, B., Torbeyns, J., Stassens, N., Ghesquiere, P., & Verschaffel, L. (2010). 

Frequency, efficiency and flexibility of indirect addition in two learning 

environments. Learning and Instruction, 20, 205-215.  

Ding, M. (2016). Opportunities to learn: Inverse operations in U.S. and Chinese 

textbooks. Mathematical Thinking and Learning, 18, 45-68. 

 



 207 
 

 
 

Ding, M., & Carlson, M. A. (2013).Elementary teachers’ learning to construct high  

quality mathematics lesson plans: A use of IES recommendations. The  

Elementary School Journal, 113, 359–385. 

Ding, M., Hassler, R., Li, X. & Chen, W. (April 2016). Algebraic knowledge for 

teaching: An analysis of US experts’ lessons on inverse relations. Paper 

presentation at the 2016 Annual Meeting of the American Educational Research 

Association, Washington, DC. 

Ding, M., & Li, X. (2010). A comparative analysis of the distributive property in U.S. 

and Chinese elementary mathematics textbooks. Cognition and Instruction, 28, 

146-180.  

Ding, M., & Li, X. (2014). Transition from concrete to abstract representations: The 

distributive property in a Chinese textbook series. Educational Studies in 

Mathematics, 87, 103-121.  

Ding, M., Li, X., Capraro, M. M., & Capraro, R. M. (2012). Supporting meaningful 

initial learning of the associative property: Cross-cultural differences in textbook 

presentations. International Journal for Studies in Mathematics Education, 5(1), 

114-130.  

Dole, J. A. & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive 

construction of knowledge. Educational Psychologist, 33(2/3), 109-128.  

Dossey, J. A., Halvorsen, K. T., & McCrone, S. S. (2012). Mathematics education in the 

United States 2012: A capsule summary fact book. Reston, VA: National Council 

of Teachers of Mathematics.  



 208 
 

 
 

Drake, J. M., & Barlow, A. T. (2007). Assessing Students’ Levels of Understanding 

Multiplication through Problem Writing. Teaching Children Mathematics, 14(5), 

272-277. 

Dubé, A. K., & Robinson, K. M. (2010). Accounting for individual variability in 

inversion shortcut use. Learning and Individual Differences, 20, 687-693. 

Duncan, A. (2013). The threat of educational stagnation and complacency: Remarks of 

U.S. Secretary of Education Arne Duncan at the release of the 2012 Program for 

International Student Assessment (PISA). Washington, DC: U.S. Department of 

Education. 

Ellis, K. (1993). Teacher questioning behavior and student learning: What research says 

to teachers. Albuquerque, NM: Paper presented at the Annual Meeting of the 

Western States Communication Association. 

Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. 

Journal of Children’s Mathematical Behavior, 1, 7-26. 

Franke, M., Webb, N., Chan, A., Ing, M., Freund, D., & Battey, D. (2009). Teacher 

questioning to elicit students’ mathematical thinking in elementary school 

classrooms. Journal of Teacher Education, 60, 380-392.  

Frase, L. T. (1968). Effect of question location, pacing, and mode upon retention of prose 

materials. Journal of Educational Psychology, 60, 49-55. 

Freudenthal, H. (1977). Wiskunde Onderwijs anno 2000 – Afscheidsrede IOWO. 

Euclides, 52, 290-295. 

Fyfe, E., McNeil, N., & Borjas, S. (2015). Benefits of “concreteness fading” for 

children’s mathematics understanding. Learning and Instruction, 35, 105-120. 



 209 
 

 
 

Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in 

mathematics and science instruction: a systematic review. Educational 

Psychology Review, 26(1), 9-25. 

Gagatsis, A., & Elia, I. (2004). The effects of different modes of representations on 

mathematical problem solving. In M. J. Hoines & A. B. Fuglestad (Eds.), 

Proceedings 28th Conference of the International Group for the Psychology of 

Mathematics Education (Vol. 2, pp. 447-454). Bergen, Norway: PME.  

Gee, J. P. (2010). A situated sociocultural approach to literacy and technology. In E. 

Baker (Ed.), The new literacies: Multiple perspectives on research and practice 

(pp. 165–193). New York: Guilford. 

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general 

role for analogical encoding. Journal of Educational Psychology, 95(2), 393-408. 

Gentner, D., Ratterman, M., & Forbus, K. (1993). The roles of similarity in transfer: 

Separating retrievability from inferential soundness. Cognitive Psychology, 25, 

524-575. 

Gick, M., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive 

Psychology, 15, 1-38.  

Gilmore, C. K., & Bryant, P. (2008). Can children construct inverse relations in 

arithmetic? Evidence for individual differences in the development of conceptual 

understanding and computational skill. British Journal of Developmental 

Psychology, 26, 310-316.  



 210 
 

 
 

Gilmore, C. K., & Papadatou-Pastou, M. (2009). Patterns of individual differences in 

conceptual understanding and arithmetical skill: A meta-analysis. Mathematical 

Thinking and Learning, 11 (1-2), 25-40. 

Ginsburg, A., Leinwand, S., Angstrom, T., & Pollok, E. (2005). What the United States 

can learn from Singapore’s world-class mathematics (and what Singapore can 

learn from the United States): An exploratory study. Washington, DC: American 

Institutes for Research.   

Ginsburg, H. P. (2009). Early mathematics education and how to do it. In Oscar A. 

Barbarin and Barbara H. Wasik (eds.), Handbook of Child Development and 

Early Education (pp. 403-428). New York: The Guilford Press. 

Glenberg, A. M., Kruley, P., & Langston, W. E. (1994). Analogical processes in 

comprehension: Simulation of a mental model. In M. A. Gernsbacker (Ed.), 

Handbook of psycholinguistics (pp. 609-640). San Diego: Academic Press. 

Goldin-Meadow, S., Alibali, M. W., & Breckinridge Church, R. (1993). Transitions in 

concept acquisition: Using the hand to read the mind. Psychological Review, 100, 

279-298. 

Goldstone, R. L., & Sakamoto, Y. (2003). The transfer of abstract principles governing 

complex adaptive systems. Cognitive Psychology, 46, 414-466. 

Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete 

and idealized simulations. The Journal of the Learning Sciences, 14, 69-110.  

GO Math! (Common Core edition). (2012). Boston, MA: Houghton Mifflin Harcourt. 

Graesser, A. C., Millis, K. K., & Zwaan, R. A. (1997). Discourse comprehension. Annual 

Review of Psychology, 48, 163-189. 



 211 
 

 
 

Gravemeijer, K. (2002). Preamble: from models to modeling. In K. Gravemeijer, R. 

Lehrer, B. Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in 

mathematics education (pp. 7-22). Dordrecht: Kluwer. 

Greeno, J. G. (1978). Understanding and procedural knowledge in mathematics 

instruction. Educational Psychologist, 12(3), 262-283. 

Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal 

for Research in Mathematics Education, 22(3), 170-218. 

Greeno, J. G. & Riley, M. S. (1987). Processes and development of understanding. In F. 

E. Weinert & R. H. Kluwe (Eds.), Metacognition, Motivation, and Understanding 

(pp. 289-313). Hillsdale, NJ: Lawrence Erlbaum Associates.  

Grouws, D. A. & Cebulla, K. J. (2000). Improving Student Achievement in Mathematics. 

Geneva, Switzerland: International Academy of Education. 

Harrison, M., & Harrison, B. (1986). Developing numeration concepts and skills. 

Arithmetic Teacher, 33, 18-21. 

Hassler, R. (April 2016). From elementary textbooks to classroom teaching: A situation 

model perspective on US mathematics lessons. Paper presentation at the 2016 

Annual Meeting of the American Educational Research Association, Washington, 

DC. 

Hassler, R. & Ding, M. (April 2016). Situation model perspective on mathematics 

classroom teaching: A case study on multiplicative inverse relations. Paper 

presentation at the 2016 Annual NCTM Research Conference, San Francisco, CA. 



 212 
 

 
 

Hatano, G. (2003). Forward. In A. J. Baroody & A. Dowker (Eds), The development of 

arithmetic concepts and skills (pp. xi-xiii). Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Hauser, J. (2009). Concrete-representational-abstract instructional approach. Retrieved 

from http://www.k8accesscenter.org/training_resources/CRA_Instructional_ 

Approach.asp 

Heritage, M., & Heritage, J. (2013). Teacher questioning: The epicenter of instruction 

and assessment. Applied Measurement in Education, 26, 176-190. 

Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. 

A. Grouws (Ed.), Handbook of research on mathematics teaching and learning 

(pp. 65-97). New York: Mcmillian. 

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., Olivier, 

A., & Human, P. (1997). Making sense: Teaching and learning mathematics with 

understanding: Portsmouth, NH: Heinemann. 

Holsti, O. R. (1969). Content analysis for the social sciences and humanities. Reading, 

MA: Addison-Wesley. 

Hopper, C. H. (2009). Practicing College Learing Strategies. (5th Ed). Boston, MA: 

Cenage Learning Inc. 

Hsieh, H., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. 

Qualitative Health Research, 15(9), 1277-1288. 

Wittenberg, L., Economopoulos, K., Bastable, V., Bloomfield, K. H., Cochran, K., 

Earnest, D., …Sillman, K. (2012). Investigations in Number, Data, and Space. 

Glenview, IL: Pearson Education. 



 213 
 

 
 

Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press. 

Johnson-Laird, P. N. & Byrnes, R. M. J. (1991). Deduction. Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Johnson-Laird, P. N. & Miller, G. A. (1976). Language and Perception. Belknap Press.  

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hope, UK: Lawrence 

Erlbaum Associates. 

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research 

paradigm whose time has come. Educational Researcher, 33(7), 14-26. 

Jonassen, D. (2009). Externally modeling mental models. In Learning and Instructional 

Technologies for the 21st Century (pp. 49-74). University of Missouri, St. Louis. 

Jones, A. M. (2012). Mathematics teacher time allocation. (Unpublished master’s thesis). 

Brigham Young University, Utah.  

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The 

Journal of the Learning Sciences, 4, 39-103. 

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect.  

Educational Psychologist, 38(1), 23-31. 

Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). The advantage of abstract 

examples in learning math. Science, 320, 454-455.  

Kazemi, E., & Stipek, D. (2001). Promoting conceptual thinking in four upper-

elementary mathematics classrooms. Elementary School Journal, 102, 59-80. 

Khan, W.B. & Inamullah, H. M. (2011). A study of lower-order and higher-order 

questions at secondary level. Asian Social Science, 7(9), 149-157. 



 214 
 

 
 

Kintsch, W. (1974). The representation of meaning in memory. Hillsdale, NJ: Lawrence 

Erlbaum Associates Inc. 

Kintsch, W. (1986). Learning from Text. Cognition and Instruction, 3(2), 87-108. 

Kintsch, W. (1988). The use of knowledge in discourse processing: A construction -

integration model. Psychological Review, 95, 163-182. 

Kintsch, W. (1994). Text comprehension, memory and learning. American Psychologist, 

49, 294-303.  

Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge: Cambridge 

University Press.  

Kintsch, W. & Greeno, J. G. (1985). Understanding and solving word arithmetic 

problems. Psychological Review, 92(1), 109-129. 

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during 

instruction does not work: An analysis of the failure of constructivist, discovery, 

problem-based, experiential, and inquiry-based teaching. Educational 

Psychologists, 41(2), 75–86. 

Klein, D. (2003). A brief history of American K-12 mathematics education in the 20th 

century. In J. M. Royer (Ed.), Mathematical cognition (pp. 175-225). Greenwich, 

CT: Information Age Publishing.  

Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade-offs between grounded 

and abstract representations: Evidence from algebra problem solving. Cognitive 

Science, 32, 336-397. 



 215 
 

 
 

Koedinger, K.R., & Nathan, M. J. (2004). The real story behind story problems: Effects 

of representation on quantitative reasoning. Journal of the Learning Sciences, 13, 

129-164. 

Kotovsky, K., Hayes, J. R., & Simon, H. A. (1985). Why are some problems hard? 

Evidence from the tower of Hanoi. Cognitive Psychology, 17, 248-294. 

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for 

categorical data. Biometrics, 33, 159-174. 

Langer, J. A. (1984). Examining background knowledge and text comprehension. 

Reading Research Quarterly, 19(4), 468-481. 

Lehrer, R., & Schauble, L. (2002). Symbolic communication in mathematics and science: 

co-constituting inscription and thought. In E. D. Amsel, & J. P. Byrnes (Eds.), 

Language, literacy, and cognitive development (pp. 167-192). Mahwah, NJ: 

Lawrence Erlbaum. 

Leinhardt, G., & Smith, D. A. (1985). Expertise in mathematics instruction: Subject 

matter knowledge. Journal of Educational Psychology, 77, 247-271. 

Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the 

situation model in mathematical modelling—Task analyses, student 

competencies, and teacher interventions. Journal für Mathematik-Didaktik,31(1), 

119-141. 

Li, X., Ding, M., Capraro, M. M., & Capraro, R. M. (2008). Sources of differences in 

children’s understandings of mathematical equality: Comparative analysis of 

teacher guides and student texts in China and the United States. Cognition and 

Instruction, 26, 195-217.  



 216 
 

 
 

Li, X., Hassler, R., & Ding, M. (April 2016). Elementary students’ understanding of 

inverse relations in the United States and China. Paper presentation at the 2016 

Annual Meeting of the American Educational Research Association, Washington, 

DC. 

Linn, M. C. (2006). The knowledge integration perspective on learning and instruction. 

In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 

243-264). New York: Cambridge University Press.  

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, 

and challenges for future research. The Journal of the Leaning Sciences, 15, 431-

449. 

Lombardi, D., Sinatra, G. M., & Nussbaum, E. M. (2013). Plausibility reappraisals and 

shifts in middle school students’ climate change conceptions. Learning and 

Instruction, 27, 50-62. 

Long, D. L., Seely, M.R., Oppy, B.J., & Golding, J. M. (1996). The role of inferential 

processing in reading ability. In Models of Understanding Text (pp. 189-214). 

Mahwah, NJ: Lawrence Erlbaum Associates.  

Lorch, R. F. & van den Broek, P. (1997). Understanding reading comprehension: Current 

and future contributions of cognitive science. Contemporary Educational 

Psychology, 22, 213-246. 

Malzahn, K. A. (2013). 2012 national survey of science and mathematics education: 

Status of elementary school mathematics. Chapel Hill, NC: Horizon Research.  



 217 
 

 
 

Man, Y. S. (2011). Students’ understanding of inverse relation between addition and 

subtraction at primary levels. (Unpublished master’s thesis). The University of 

Hong Kong, China. 

Mannes, S. M., & Kintsch, W. (1987). Knowledge organization and text organization. 

Cognition and Instruction, 4, 91-115. 

Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: adapting and 

reinterpreting physical environments in the development of fraction concepts. 

Cognitive Science, 29, 587-625. 

McKenna, M. C. & Robinson, R. D. (1990). Content literacy: A definition and 

implications. Journal of Reading, 34(3), 184-186.  

McNamara, D. S., Kintsch, E., Songer, N. B., & Kintsch, W. (1996). Are good texts 

always better? Interactions of text coherence, background knowledge, and levels 

of understanding in learning from text. Cognition and Instruction, 14(1), 1-43. 

McNeil, N. M. (2007). U-shaped development in math: 7-year-olds outperform 9-year-

olds on equivalence problems. Developmental Psychology, 43, 687-695. 

McNeil, N. M., & Alibali, M. W. (2000). Learning mathematics from procedural 

instruction: externally imposed goals influence what is learned. Journal of 

Educational Psychology, 92, 734-744. 

McNeil, N. M., & Alibali, M. W. (2005). Why won't you change your mind? Knowledge 

of operational patterns hinders learning and performance on equations. Child 

Development, 76, 883-899. 

McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness fading” promotes transfer of 

mathematical knowledge. Learning and Instruction, 22, 440–448. 



 218 
 

 
 

McNeil, N. M., & Jarvin, L. (2007). When theories don't add up: disentangling the 

manipulative debate. Theory into Practice, 46(4), 309-316. 

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. 

San Francisco: Jossey-Bass.  

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006). Introduction to linear 

regression analysis. Hoboken, New Jersey: John Wiley & Sons, Inc.  

Morge, L. (2005). Teacher-pupil interaction: A study of hidden beliefs in conclusion 

phases. Research report. International Journal of Science Education, 27(8), 9–35. 

Mortimer, E. F., & Scott, P. H. (2003). Meaning making in science classrooms. 

 Milton Keynes: Open University Press. 

National Council of Teachers of Mathematics. (2000). Principles and standards for 

school mathematics. Reston, VA: National Council of Teachers of Mathematics.  

National Council of Teachers of Mathematics. (2006). Curriculum focal points for 

prekindergarten through grade 8 mathematics: A quest for Ccherence. Reston, 

VA: National Council of Teachers of Mathematics.  

National Council of Teachers of Mathematics Commission on Standards for School 

Mathematics. (1989). Curriculum and evaluation standards for school 

mathematics. Reston, VA: The Council.  

National Research Council. (1999). Global perspectives for local action: Using TIMMS 

to improve U.S. mathematics and science education: Professional development 

guide. Washington, DC: National Academy Press.  

Nickerson, R. S. (1985). Understanding understanding. American Journal of Education, 

92(2), 201-239. 



 219 
 

 
 

Novick, L. R. (1988). Analogical transfer, problem similarity, and expertise. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 14, 510-520.  

Nunes, T., Bryant, P., Evans, D., Bell, D., Gardner, S., Gardner, A., & Carraher, J. 

(2007). The contribution of logical reasoning to the learning of mathematics in 

primary school. British Journal of Developmental Psychology, 25, 147-166.  

Nunes, T., Bryant, P., Hallet, D., Bell, D., & Evans, D. (2009). Teaching children about 

the inverse relation between addition and subtraction. Mathematical Thinking and 

Learning, 11(1-2), 61-78. 

Nunes, T., Bryant, P., & Watson, A. (2009). Key understandings in mathematics 

learning: A report to the Nuffield Foundation. Nuffield Foundation.  

Nussbaum, E. M., & Edwards, O. V. (2011). Critical questions and argument stratagems: 

A framework for enhancing and analyzing students’ reasoning practices. Journal 

of the Learning Sciences, 20(3), 443-488. 

Osterholm, M. (2006). Characterizing reading comprehension of mathematical texts. 

Educational Studies in Mathematics, 63, 325-346.  

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: 

Recent developments. Educational Psychologist, 38(1), 1-4. 

Paas, F. & VanMerrienboer, J. (1994). Variability of worked examples and transfer of 

geometric problem-solving skills: A cognitive-load approach. Journal of 

Educational Psychology, 86, 122-133.  

Pashler, H., Bain, P. M., Bottge, B. A., Graesser, A., Koedinger, K., McGaniel, M. et al., 

(2007). Organizing instruction and study to improve student learning (NCER 

2007-2014). Washington, DC: National Center for Education Research.  



 220 
 

 
 

Pearson, P. D., Hansen, J., & Gordon, C. (1979). The effect of background knowledge on 

young children’s comprehension of explicit and implicit information. Journal of 

Literacy Research, 11(3), 201-209. 

Perfetti, C. A. (1989). There are generalized abilities and one of them is reading. In L. 

Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert 

Glaser. Hillsdale, NJ: Lawrence Erlbaum Associates.  

Piaget, J. (1928). The Child's Conception of the World. London: Routledge and Kegan 

Paul. 

Piaget, J. (1952). The child’s conception of number. New York, NY: Humanities. 

Pinker, S. & Bloom, P. (1990). Natural language and natural selection. Behavioral and 

Brain Sciences, 13(4), 707-784.  

Program for International Student Assessment (2009). Highlights from PISA 2009: 

Performance of U.S. 15-year-old students in mathematics, science, and reading 

literacy in an international context. Retrieved from http://nces.ed.gov/pubs2014/ 

2014024rev.pdf.  

Program for International Student Assessment (2012). Performance of U.S. 15-year-old 

students in mathematics, science, and reading literacy in an international context: 

First look at PISA 2012. Retrieved from http://nces.ed.gov/pubs2014/2014024rev. 

pdf. 

Polikoff, M.S. (2015). How well aligned are textbooks to the Common Core standards in 

mathematics? American Education Research Journal, 52(6), 185-1211. 

Porter, A., McMaken, J., Hwang, J., & Yang, R. (2011). Common Core standards: The 

new U.S. intended curriculum. Educational Researcher, 40, 1103-116. 



 221 
 

 
 

Prather, R. W., & Alibali, M. W. (2009). The development of arithmetic principle 

knowledge: how do we know what learners know? Developmental Review, 29, 

221-248. 

Putnam, R. T., deBettencourt, L. U., & Leinhardt, G. (1990). Understanding of derived-

fact strategies in addition and subtraction. Cognition and Instruction, 7(3), 245-

285. 

Reed, S. K., Dempster, A., & Ettinger, M. (1985). Usefulness of analogous solutions for 

solving algebra word problems. Journal of Experimental Psychology, 11, 106-

125. 

Renkl, A. (1997). Learning from worked‐out examples: A study on individual 

differences. Cognitive Science, 21(1), 1-29. 

Renkl, A., & Atkinson, R. K. (2007). Interactive example-based learning environments: 

Using interactive elements to encourage effective processing of worked examples. 

Educational Psychology Review, 19(3), 375-386. 

Renkl, A., Atkinson, R. K., & Grobe, C. S. (2004). How fading worked solution steps 

works—a cognitive load perspective. Instructional Science, 32, 59-82. 

Renkl, A., Atkinson, R. K., Maier, U., & Staley, R. (2002). From example study to 

problem solving: Smooth transitions help learning. Journal of Experiential 

Education, 70, 293-315.  

Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out 

examples: The effects of example variability and elicited self-explanations. 

Contemporary Educational Psychology, 23, 90-108. 



 222 
 

 
 

Resnick, L. B. (1983). A developmental theory of number understanding. In H. P. 

Ginsburg (Ed.), The development of mathematical thinking (pp. 109-151). New 

York, NW: Academic Press.  

Resnick, L. B. (1992). From protoquantities to operators: Building mathematical 

competence on a foundation of everyday knowledge. In G. Leinhardt, R. Putnam, 

& R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (Vol. 19, 

pp. 275–323). Hillsdale, NJ: Lawrence Erlbaum. 

Resnick, L. B., & Ford, W. W. (1981). The psychology of mathematics for instruction. 

Hillsdale, NJ: Lawrence Earlbaum Associates.  

Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser 

(Ed.), Advances in instructional psychology (Vol. 3, pp. 41-95). Hillsdale, NJ: 

Erlbaum.  

Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogy in the 

mathematics classroom. Science, 316, 1128-1129. 

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of 

mathematics: Does one lead to the other? Journal of Educational Psychology, 91, 

175-189. 

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual 

understanding and procedural skill in mathematics: An iterative process. Journal 

of Educational Psychology, 93(2), 346-362. 

Rittle-Johnson, B. & Star, J.R. (2007). Does comparing solution methods facilitate 

conceptual and procedural knowledge? An experimental study on learning to 

solve equations. Journal of Educational Psychology, 99(3), 561-574.   



 223 
 

 
 

Rittle-Johnson, B. & Star, J. R. (2011). The power of comparison in learning and 

instruction: Learning outcomes supported by different types of comparisons. 

Psychology of Learning and Motivation, 55, 199-225.  

Robinson, K. M., & Dubé, A. K. (2009a). A microgenetic study of the multiplication and 

division inversion concept. Canadian Journal of Experimental Psychology, 63, 

193–200. 

Robinson, K. M., & Dubé, A. K. (2009b). Children’s understanding of the inverse 

relation between multiplication and division. Cognitive Development, 24, 310-

321. 

Robinson, K. M., & LeFevre, J. (2012). The inverse relation between multiplication and 

division: Concepts, procedures, and a cognitive framework. Educational Studies 

in Mathematics, 79, 409-428. 

Rothkopf, E. Z. (1966). Learning from written materials: An exploration of the control of 

inspection behavior by test-like events. American Educational Research Journal, 

3, 241-249. 

Rubin, C. (2009). The curious classroom: Answers about questions. ASCD Express, 

4(18). 

Rumelhart, D.E., Hinton, G. E., and Williams, R. J. (1986). Learning internal 

representations by error propaganda. In Parallel distributed processing, D. E. 

Rumelhart, J.L. McClelland, and the PDP Research Group, eds., Vols. I and II, 

Bradford Books and MIT Press, Cambridge, MA. 



 224 
 

 
 

Schmalhofer, F., & Glavanov, D. (1986). Three components of understanding a 

programmer’s manual: Verbatim, propositional, and situational representations. 

Journal of Memory and Language, 25, 279-294. 

Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H., Wiley, D. E., Cogan, L. S., 

& Wolfe, R. G. (2001). Why schools matter: A cross-national comparison of 

curriculum and learning. San Francisco: Jossey-Bass 

Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: An 

examination of mathematics and science content standards from an international 

perspective. Journal of Curriculum Studies, 37, 525-559.  

Schwonke, R., Wittwer, J., Aleven, V., Salden, R. J. C. M., Krieg, C., & Renkl, A. 

(2007). Can tutored problem solving benefit from faded worked-out examples? 

Paper presented at The European Cognitive Science Conference, Delphi, Greece.  

Seel, N. (2006). Mental models in learning situations. In Mental models and the mind 

(pp. 85-107). Amsterdam: Elsevier B.V. 

Shepherd, M. D., Selden, A. & Selden, J. (2012). University students' reading of their 

first-year mathematics textbooks. Mathematical Thinking and Learning, 14(3), 

226-256. 

Sidney, P.G. & Alibali, M.W. (2015). Making connections in math: Activating a prior 

knowledge analogue matters for learning. Journal of Cognition and Development, 

16(1), 160-185. 

Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: a 

microgenetic analysis. Journal of Experimental Psychology: General, 127, 377-

397. 



 225 
 

 
 

Sigel, I. E., & Saunders, R. (1979). An inquiry into inquiring. Question asking as an 

instructional model. In L. Katz (Ed.), Current topics in early childhood education 

(Vol. 2, pp. 169-193). Norwood, NJ: Ablex. 

Silver, E. A., Mesa, V. M., Morris, K. A., Star, J. R., & Benken, B.M. (2009). Teaching 

mathematics for understanding: An analysis of lessons submitted by teachers 

seeking NBPTS certification. American Educational Research Journal, 46(2), 

501-531.  

Simon, M. A., & Blume, G. W. (1994). Building and understanding multiplicative 

relationships: A study of prospective elementary teachers. Journal for Research in 

Mathematics Education, 25(5), 472-494. 

Skemp, R. R. (1976). Relational understanding and instrumental understanding. 

Mathematics Teaching, 77(December), 20-26.  

Skemp, R. R. (1978). Goals of learning and qualities of understanding. Mathematics 

Teaching, 88, 44-49.  

Smart, J. B., & Marshall, J. C. (2013). Interactions between classroom discourse, teacher 

questioning, and student cognitive engagement in middle school science. Journal 

of Science Teacher Education, 24(2), 249-267. 

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks. 

Mathematics Teaching in the Middle School, 3, 344-350. 

Son, J. Y., & Goldstone, R. L. (2009).  Fostering general transfer with specific 

simulations. Pragmatics and Cognition, 17, 1-42. 

http://asulearn.appstate.edu/pluginfile.php/515186/mod_page/content/19/Selecting%20and%20Creating.pdf
http://asulearn.appstate.edu/pluginfile.php/515186/mod_page/content/19/Selecting%20and%20Creating.pdf


 226 
 

 
 

Son, J. Y., Smith, L. B., & Goldstone, R. L. (2011). Connecting instances to promote 

children's relational reasoning. Journal of Experimental Child Psychology, 

108(2), 260-277. 

Squire, S., Davies, C., & Bryant, P. (2004). Does the cue help? Children’s understanding 

of multiplicative concepts in different problem contexts. British Journal of 

Educational Psychology, 74(4), 515-532. 

Star, J., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, 

C. (2015). Learning from comparison in algebra. Contemporary Educational 

Psychology, 40, 41-54. 

Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student 

learning. in F. J. Lester Jr. (Ed.), Second handbook of research on mathematics 

teaching and learning (pp. 319-369). Charlotte, NC: information Age.  

Stein, M. K., Smith, M. S., Henningsen, M., & Silver, E. A. (2000). Implementing 

standards-based mathematics instruction: A casebook for professional 

development. New York: Teachers College Press. 

Stemler, S. (2001). An overview of content analysis. Practical Assessment, Research & 

Evaluation, 7(17). Retrieved from http://PAREonline.net/getvn.asp?v=7&n=17 

Stern, E. (1992). Spontaneous use of conceptual mathematical knowledge in elementary 

school children. Contemporary Educational Psychology, 17, 266-277.  

Stern, E. (2005). Pedagogy- Learning for teaching. British Journal of Educational 

Psychology, Monograph Series, II, 3, 155-170. 

 

 



 227 
 

 
 

Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S. & Serrano, A. (1999). The TIMSS 

Videotape Classroom Study: Methods and Findings from an Exploratory 

Research Project on Eight –Grade Mathematics Instruction in Germany, Japan, 

and the United States. U.S. Department of Education National Center for 

Educational Statistics: NCES 99-074. Washington, D.C.: Government Printing 

Office. 

Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the worlds’ 

teachers for improving education in the classroom. New York: Free Press.  

Stylianides, A. J., & Stylianides, G. J. (2007). Learning mathematics with understanding: 

A critical consideration of the Learning Principle in the Principles and Standards 

for School Mathematics. The Mathematics Enthusiast, 4(1), 103-114. 

Swartz, R. (2008). Energizing learning. Educational Leadership, 65(15), 26-31. 

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for 

problem solving in learning algebra. Cognition and Instruction, 2, 59-89. 

Thompson, D. R., Kaur, B., Koyama, M., & Bleiler, S. K. (2013). A longitudinal view of 

mathematics achievement of primary students: Case studies from Japan, 

Singapore, and the United States. ZDM Mathematics Education, 24, 73-89.  

Thompson, P. (1994). The development of the concept of speed and its relationship to 

concepts of rate. In G. Harel & J. Confrey (Eds.). The development of 

multiplicative reasoning in the learning of mathematics (pp. 179-234). Albany, 

NY: State University of New York.  



 228 
 

 
 

Torbeyns, J., De Smedt, B., Stassens, N., Ghesquiere, P., & Verschaffel, L. (2009). 

Solving subtraction problems by means of indirect addition. Mathematical 

Thinking and Learning, 11, 79-91.  

Trafton, J. G., & Reiser, B. J. (1993). The contributions of studying examples and solving 

problems to skill acquisition. In M. Polson (Ed.), Proceedings of the 15th Annual 

Conference of the Cognitive Science Society (pp. 1017-1022). Hillsdale, NJ: 

Erlbaum.  

Trends in International Mathematics and Science Study. (2003). Highlights from the 

trends in international mathematics and science study (TIM22) 2003. Retrieved 

from http://nces.ed.gov/pubs2005/2005005.pdf. 

Trends in International Mathematics and Science Study. (2007). Highlights from TIMSS 

2007: Mathematics and science achievement of U.S. fourth and eighth-grade 

students in an international context. Retrieved from http://nces.gov/pubs2009/ 

2009001.pdf 

Trends in International Mathematics and Science Study. (2011). Highlights from TIMSS 

20011: Mathematics and science achievement of U.S. fourth and eighth-grade 

students in an international context. Retrieved from http://nces.ed.gov/pubs 

2013/2013009_1.pdf 

Van De Walle, J., Karp, K., & Bay-Williams, J. (2012). Elementary and middle school 

mathematics: Teaching developmentally. New York: Pearson 

Van Den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic 

mathematical education: An example from a longitudinal trajectory on 

percentage. Educational Studies in Mathematics, 54, 9-35. 



 229 
 

 
 

van den Oord, E.J. & Van Rossem, R. (2002). Differences in first graders’ school 

adjustment: the role of classroom characteristics and social structure of the group. 

Journal of School Psychology, 40(5), 369-394.  

van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. San 

Diego, CA: Academic Press.  

Van Merriënboer, J. (1997). Training complex cognitive skills: A four-component 

instructional design model for technical training. Englewood Cliffs, NJ: 

Educational Technology Publications. 

Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, 

investigating, and enhancing adaptive expertise in elementary mathematics 

education. European Journal of Psychology of Education, 24, 335-359. 

Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert., & M. Behr (Eds.) Number 

concepts and operations in the middle grades (pp. 141-161). Reston, VA: 

National Council of Teacher of Mathematics.  

Walmsley, A. L.E. (2007). A history of mathematics education during the twentieth 

century. Lanham, MD:  University Press of America. 

Weaver, C. A., III, Bryant, D. S., & Burns, K. D. (1995). Comprehension monitoring: 

Extensions of the Kintsch and van Dijk model. In Weaver, S. Mannes, and C. R. 

Fletcher (Eds.), Discourse comprehension: Essays in honor of Walter Kintsch, pp. 

177-192. Hillsdale, NJ: Erlbaum.  

Weaver, C. A., & Kintsch, W. (1992). Enhancing students’ comprehension of the 

conceptual structure of algebra word problems. Journal of Educational 

Psychology, 84(4), 419-428. 



 230 
 

 
 

Weimer, M. (1993). Improving your classroom teaching: Volume 1. Newbury Park, CA: 

Sage Publications. 

Wheelock, A., Haney, W., & Bebell, D. (2000). What can student drawings tell us about 

high-stakes testing in Massachusetts? Teachers College Record.  

Wilen, W. (1991). Questioning skills for teachers: What research says to the teacher. 

Washington DC: National Education Association. 

Wimer, J. W., Ridenour, C. S., Thomas, K., & Place, A. W. (2001). Higher order teacher 

questioning of boys and girls in elementary mathematics classrooms. Journal of 

Educational Research, 95(2), 84-92 

Wu, H. (1999). Basic skills versus conceptual understanding. American 

Educator/American Federation of Teachers, 23(3), 14-22. 

Zhou, Z., & Peverly, S. (2005). The teaching addition and subtraction to first graders: A 

Chinese perspective. Psychology in the Schools, 42, 259-272. 

Zwaan, R. A., & Madden, C. J. (2004). Updating Situation Models. Journal of 

Experiential Psychology: Learning, Memory, and Cognition, 30(1), 283-288. 

Zwaan, R. A., Magliano, J. P., & Graesser, A. C. (1995). Dimensions of situation model 

construction in narrative comprehension. Journal of Experimental Psychology: 

Learning, Memory, & Cognition, 21, 386-397.  

Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language and memory. 

Psychological Bulletin, 123, 162-185. 

 



 231 
 

 
 

APPENDICES 

 

APPENDIX A  

 

TEACHER SURVEY INSTRUMENT 

 

This survey takes about 20 minutes.  We ask for your name so that we can match your responses 

now with your responses at the end of the program.  Your name will not be included with your 

responses when data is reviewed, analyzed and reported in aggregate form to understand the 

effects of the program.  

 
1. Your full name (last, first).  _________________________________________ 

 

2. Your school name ___________________________________________________ 

 

3. Representative teaching honors or awards that you have received 

____________________________________________________________________________________________ 

4. How many years have you taught? Please check one box.   

 

 6-10         11-15              16-20         21-25   26 and above         
 

5. What grade level are you teaching at your current school? Please check one box. 

 

 1         2        3                     4                    5   
Please tell us a bit about your own past experiences learning mathematics: 

 
6. Please indicate what kinds of mathematics you took during your post-secondary studies (e.g., 

college and your certification process).  Also please indicate if it was required, if you liked it, 

and if you did well in it. (Circle one response in each applicable box.) 

 

Did you take one course or more in the 

following subject matter? (Circle yes or no 

for each subject area.) 

If yes, you did take at least one course… 

Why did you take the course? Was it 

required, did it fulfill credit hours, or 

was it an elective? If you have taken 

more than one course in the subject, 

please circle ALL answers that apply. 

Did you 

like the 

subject 

matter? 

Did you 

consider 

that you 

did well in 

it? 

 Yes    No  Yes      No Yes      No 

Calculus           Required        Credit Hours       Elective                    

Linear Algebra            Required        Credit Hours       Elective                    

Modern Algebra            Required        Credit Hours       Elective                    

Probability and Statistics            Required        Credit Hours       Elective                    

Differential Equations            Required        Credit Hours       Elective                    
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Numerical Analysis            Required        Credit Hours       Elective                    

Non-Euclidean geometry           Required        Credit Hours       Elective                    

 

7. How many professional development sessions in mathematics have you attended during 

the past three years? Please check ONE box.  

              None  1-2  More than three 

8. Please indicate the areas where you would like to receive more professional development 

support in mathematics, ranking them (1 – 4) in order of importance to you, with 1 being the 

most important 

 

  Learn more content (subject-matter) knowledge. 

  Learn more inquiry/investigation oriented strategies for the classroom. 

  Learn more about understanding student thinking with regard to MATHEMATICS 

learning. 

  Learn more about assessing student learning in mathematics. 
9. Please indicate how well prepared you feel to do each of the following. Please check ONE 

box per line. 

 

 Not 

Adequately 

Prepared 

Somewhat 

Adequately 

Prepared 

Fairly 

Well 

Prepared 

Very 

Well 

Prepared 

a. 
Lead a class of students using investigative 

strategies. 
    

b. 
Manage a class of students engaged in 

hands-on/project-based work.     

c. 
Help students take responsibility for their 

own learning. 
    

d. Recognize and respond to student diversity.     

e. 
Encourage students' interest in 

mathematics. 
    

f. 

Use strategies that specifically encourage 

participation of females and minorities in 

mathematics. 

    

g. 
Involve parents in the mathematics 

education of their students. 
    

 

10. How many lessons per week do you typically teach mathematics in your class? Please 

check ONE box. 

 

 1               2               3       4                5        6 or more 
 
11. Approximately how many minutes is a typical mathematics lesson? Please check ONE box. 
 

                 20 or fewer                    21-40                       41-60                      61-80                81 or more 

 

 

 

 

 



 233 
 

 
 

12. How many mathematics units has your class (or a typical class if you have more than one) 

worked on so far this academic year? (We are defining a "unit" as a series of related 

activities, often on a single topic such as addition or subtraction) Please check ONE box. 

 

 0  1  2  3  4  5  6  7  8  9  10 

 

13. How many weeks do your mathematics units typically last?  (Circle one response.) 

 

 1  2  3  4  5  6  7  8  9  10 or more 

weeks  

 

We just have a few more questions about your view on mathematics teaching.  Your responses 

are very important for our program evaluation, and we appreciate your time and thought.   

 

14. Please tell us how much you disagree or agree with the following statements about 

mathematics teaching and learning.  Please check ONE box per line.  

 

 
 

Strongly 

Disagree 

Disagree Not 

Sure 

Agree Strongly 

Agree 

a. 

When a student does better than usual in 

mathematics, it is often because the teacher 

exerted a little extra effort. 

     

b. 
I am continually finding better ways to teach 

mathematics. 
     

c. Even when I try very hard, I don't teach 

mathematics as well as I do most subjects. 
     

d. 

When the mathematics grades of students 

improve, it is most often due to their teacher 

having found a more effective teaching 

approach. 

     

e. I know the steps necessary to teach mathematics 

concepts effectively. 
     

f. 
I am not very effective in monitoring 

mathematics experiments. 
     

 
15. About how often do the students in your class (or typical class) take part in each of the 

following types of activities as part of their mathematics instruction? Please check ONE 

box per line. 

 

 

 

Never 

Rarely 

(e.g., a 

few times 

a year) 

Sometimes 

(e.g., once 

or twice a 

month) 

Often 

(e.g., once 

or twice a 

week) 

All or 

almost all 

math 

lessons 

a. Work on solving a real-world problem.      

b. 
Share ideas or solve problems with each 

other in small groups.      

c. 
Engage in hands-on mathematics 

activities. 
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d. 

Interact with a professional scientist, 

engineer, or mathematician, either at 

school or on a field trip. 

     

 

 

16. Please tell us how much you disagree or agree with the following statements about 

mathematics teaching and learning.  Please check ONE box per line.  

 

  Strongly 

Disagree 

Disagree Not 

Sure 

Agree Strongly 

Agree 

a. If students are underachieving in mathematics, it is 

most likely due to ineffective mathematics teaching. 

     

b. I generally teach mathematics ineffectively.      

c. The inadequacy of a student's mathematics 

background can be overcome by good teaching. 

     

d. The low mathematics achievement of some students 

cannot generally be blamed on their teachers. 

     

e. When a low achieving child progresses in 

mathematics, it is usually due to extra attention 

given by the teacher. 

     

f. I understand mathematics concepts well enough to 

be effective in teaching elementary mathematics. 

     

g. Increased effort in mathematics teaching produces 

little change in some students' mathematics 

achievement. 

     

h. The teacher is generally responsible for the 

achievement of students in mathematics. 

     

i. Students' achievement in mathematics is directly 

related to their teacher's effectiveness in 

mathematics teaching. 

     

j. If parents comment that their child is showing more 

interest in mathematics at school, it is probably due 

to the performance of the child's teacher. 

     

k. I find it difficult to explain to students why 

mathematics procedures work. 

     

l. I am typically able to answer students' mathematics 

questions. 

     

m. I wonder if I have the necessary skills to teach 

mathematics. 

     

n. Effectiveness in mathematics teaching has little 

influence on the achievement of students with low 

motivation. 

     

o. Given a choice, I would not invite the principal to 

evaluate my mathematics teaching. 

     

p. When a student has difficulty understanding a 

mathematics concept, I am usually at a loss as to 

how to help the student understand it better. 

     

q. When teaching mathematics, I usually welcome 

student questions. 
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r. Even teachers with good mathematics teaching 

abilities cannot help some kids learn mathematics. 

     

 

THANK YOU VERY MUCH FOR COMPLETING THIS SURVEY! 
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APPENDIX B 

 

MULTIPLICATIVE INVERSE TEACHING INSTRUMENT 

 

 

Teacher Name ___________ School Name _____________________ 

Grade__________ 

 Date ____________________Time used_____________(minutes) 

 

1. Imagine that your students have never formally learned the relationship between 

addition and subtraction (e.g., a × b = c; b × a = c; c ÷ a = b; c ÷ b = a).  

 

- What example problem may you design to teach this relationship?  

- What kinds of representations will you use when you teach this example?   

- What kinds of questions will you ask when you teach this example?   

 

 

 

 

 

 

 

 

 

 

 

2. Imagine that your students have never formally learned why multiplication can be 

used to check for division (e.g., to  check if “a ÷  b = c” is correct, one can 

compute “b × c” and see if it is equal to “a”) 

 

- What example problem may you design to help students make sense of this 

procedure?   

- What kinds of representations will you use when you teach this example?  

- What kinds of questions will you ask when you teach this example? 
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APPENDIX C 

 

INTERVIEW PROTOCAL 

 

Post Instruction Teacher Interview Questions 

 

1. Do you think you accomplished your teaching goals in today’s lesson? Why do you 

think so?  

 

 

2. Were there any unexpected things that happened during your teaching of this lesson? 

How did you deal with it?   

 

 

3.Would you teach the lesson again this way? Why or why not? 

 

 

 

4. How do you think your sample problems worked out? Did you use them as you 

planned?  Did you accomplish what you wanted to mathematically by using them? Please 

explain.  

 

 

 

5. What do you think about the representations you or students used during this 

lesson?  Please explain. Did using the representations communicate mathematical ideas 

the way you thought they would?  Did you use them as you had planned?  Explain. 

 

 

 

6. What do you think about the questions you asked in today’s class? Were they helpful 

for eliciting students’ deep understanding of mathematics? Explain.  Are there other 

questions you wished you had asked students? 

 

 

7. How satisfied were you with children’s reasoning during math class?  How satisfied 

were you with any of the discussions that occurred during math class?  Explain. 

 

 

8. At this point what are you planning to teach next?  

 

 

9. Is there anything else I should know about today’s math lesson, your teaching, or your 

students? 
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APPENDIX D 

 

STUDENT ASSESSMENT 

 

Name ______________ Grade _________ School ___________ Teacher____________ 

 

1. Write a family of related number facts suggested by the picture. 

 

 

             _____ × _____ = _____ 

 

_____ ÷ _____ = _____ 

 

_____ ÷  _____ = _____ 

 

2. Write a family of related number facts suggested by the picture. 
 

 _____ × _____ = _____ 

 

_____ × _____ = _____ 

 

_____ ÷  _____ = _____ 

 

_____ ÷  _____ = _____ 

 

 

3. (a) Hillary spent $9 on Christmas gifts for her family. Geoff spent 3 times as much 

money as Hillary. How much did Geoff spend? Show how you found your answer. 

 

 

 

 

 

(b) Hillary spent $9 on Christmas gifts for her family. Geoff spent $27. How many 

times as much did Geoff spend as Hillary?  Show how you found your answer. 

 

 

 

 

 

(c) Hillary spent some money on Christmas gifts for her family. Geoff spent 3 times 

as much as Hillary. If Geoff spent $27, how much money did Hillary spend? Show 

how you found your answer. 
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4. Please write a family of related number facts using 63, 9, and 7. 

 

 

 

 

 

Fill in the blanks. 

 

5. Joe tried to solve 59÷8=?. His answer was 7 with remainder 2. Is this correct? 

_____________________________________________________________________ 

How can you check if this is correct or not?   

_____________________________________________________________________    

 

6. 3  × 7 = (    ) 

21 ÷ 7 = (    ) 

How did you get the answer for 21÷7 = (    )?  

____________________________________________________________________ 

 

7. Use the equation 420 ÷ □ = 6 to answer the following question:  

 

What number should go in the □ to make this equation correct?    (          ) 

(A) 60                (B) 70                 (C) 80               (D) 90 

 

How you know if your answer is correct or not?   

 

_____________________________________________________________________ 
 

8. There are 3 tables. Each table has 2 plates. If 48 apples are evenly put on these plates, 

how many apples does each plate have? Show how you found your answer. 
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APPENDIX E 

 

CODING FRAMEWORK 

  

Coding Framework for Connection-Making: Facilitating a Situation Model 
 

Category Subcategory 0 1 2 

Instructional 

Tasks 

Review The task was a 

routine review of 

prior content but no 

connections to the 

targeted content was 

made.  

An implicit 

connection to the 

targeted content 

was made, but not 

well developed.  

An explicit 

connection to the 

targeted content was 

established and well 

developed.   

Worked 

Examples 

No connections to 

prior or targeted 

content were made.  

Implicit 

connections to the 

targeted content 

were made, but not 

well established or 

discussed. Clear 

opportunities to 

make connections 

are missed. 

Explicit connections 

to the targeted 

content were made. 

No clear 

opportunities to make 

connections are 

missed.  

Practice 

Problems 

Practice problems 

have no connection 

to the targeted 

content. 

Practice problems 

have an implicit 

connection to the 

targeted content. 

Practice problems 

have an explicit 

connection to the 

targeted content. 

Representations Concrete No concrete 

representations (ie. 

manipulatives, 

pictures, or story 

situations) are used 

to form connections 

to prior or targeted 

content within 

instructional tasks. 

Concrete 

representations are 

used to form 

connections to prior 

or targeted content 

within instructional 

tasks, but the 

connections are not 

well developed. 

Instructional tasks are 

situated in rich 

concrete contexts (i.e. 

story problems) and 

are used to form well 

developed 

connections to prior 

or targeted content 

within instructional 

tasks. 

Abstract No abstract 

representations (ie. 

numbers, symbols, 

or equations) are 

used to form 

connections to prior 

or targeted content 

Abstract 

representations are 

used to form 

connections to prior 

or targeted content 

within instructional 

tasks, but the 

Abstract 

representations (i.e. 

equations) are used to 

form well developed 

connections to prior 

or targeted content 
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within instructional 

tasks.  

connections are not 

well developed. 

within instructional 

tasks.   

Sequence of 

Representations 

No connections 

between concrete 

and abstract 

representations are 

established during 

the instructional 

tasks.  

Connections 

between concrete 

and abstract 

representations are 

established during 

instructional tasks, 

but they do not 

always progress 

from concrete to 

abstract.  

Connections between 

concrete and abstract 

representations are 

established during 

instructional tasks 

and they progress 

from concrete to 

abstract.  

Questions Prior No deep questions 

for the purpose of 

making connections 

to prior knowledge 

are posed.  

 

Some deep 

questions for the 

purpose of making 

connections to prior 

knowledge are 

posed, but 

important missed 

connections 

remain. 

Deep questions for 

the purpose of 

making connections 

to prior knowledge 

are posed and no 

important missed 

connections remain. 

Current No deep questions 

are posed for the 

purpose of making 

connections to 

targeted content  (ie. 

between and within 

worked examples) 

Some deep 

questions are posed 

for the purpose of 

making 

connections to 

targeted content, 

but connections 

remain at the 

surface level (ie. 

procedural) 

Deep questions are 

posed for the purpose 

of making 

connections to 

targeted content and 

the connections go 

beyond the surface 

level (ie. conceptual) 

Future No deep questions 

are posed for the 

purpose of making 

connections to 

future content. 

Some deep 

questions are posed 

for the purpose of 

making connections 

to future content, but 

these connections 

are implicit.  

Deep questions are 

posed for the purpose 

of making 

connections to future 

content and these 

connections are 

explicit.   
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APPENDIX F 

 

JACKSON’S FIRST TEXTBOOK LESSON (INVESTIGATIONS) 
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APPENDIX G 

 

A STUDENT POST-TEST FROM AMY’S CLASSROOM 
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APPENDIX H 

 

TEXTBOOK CONNECTION-MAKING SCORES 

 

 

 

 

 

 

 

 

 

 

 

 

Categories Investigations Go 

Math 

 Subcategories Investigations Go 

Math 

 

Instructional 

Tasks 

   Review 0.71 1.71 

1.21 1.86  Worked Examples 1.29 1.86 

   Practice Problems 1.57 1.86 

 

Representations 

   Concrete 1.43 1.71 

1.34 1.81  Abstract 1.29 2.00 

   Seq. of Rep. 1.14 1.71 

 

Deep Questions 

   Prior 0.43 1.57 

0.67 1.43  Current 1.14 1.86 

   Future 0.29 1.00 

Total Average     9.25 15.28 
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APPENDIX I 

 

TEACHER CONNECTION-MAKING SCORES 

 

 

 

 

 

Subcategories Amy Esther Jackson Lily 

Review 2.00 1.75 1.25 0.50 

Worked Examples 2.00 1.25 2.00 1.00 

Practice Problems 2.00 1.75 2.00 1.75 

Concrete 2.00 1.50 2.00 1.00 

Abstract 2.00 2.00 1.75 1.00 

Seq. of Rep. 1.50 1.50 1.50 1.00 

Prior 2.00 1.50 1.00 0 

Current 2.00 1.50 2.00 1.25 

Future 1.75 1.50 0.00 0 

Total Average 17.25 14.25 13.50 7.50 


