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Opportunities to Learn: Inverse Relations in U.S. and Chinese
Textbooks
Meixia Ding

Temple University

ABSTRACT
This study, focusing on inverse relations, examines how representative U.S.
and Chinese elementary textbooks may provide opportunities to learn
fundamental mathematical ideas. Findings from this study indicate that
both of the U.S. textbook series (grades K-6) in comparison to the Chinese
textbook samples (grades 1–6), presented more instances of inverse rela-
tions, while also containing more unique types of problems; yet, the
Chinese textbooks provided more opportunities supporting meaningful
and explicit learning. In particular, before presenting corresponding prac-
tice problems, Chinese textbooks contextualized worked examples of
inverse relations in real-world situations to aid in sense making of computa-
tional or checking procedures. The Chinese worked examples also differed
in representation uses especially through concreteness fading. Finally, the
Chinese textbooks spaced learning over time, systematically stressing struc-
tural relations including the inverse quantities relationships. These findings
shed light on ways to support students’ meaningful and explicit learning of
fundamental mathematical ideas in elementary school.

It is widely agreed that students should learn and understand fundamental mathematical ideas such as
the basic concepts, relationships, properties, and structures that may transcend over contexts (Bruner,
1960; Common Core State Standards Initiative [CCSSI], 2010). International tests, such as the Trends in
International Mathematics and Science Study (TIMSS) or the Programme for International Student
Assessment (PISA), have consistently revealed that many students have difficulties with understanding
and using fundamental mathematical ideas. Students’ difficulties may be largely attributed to the quality
of their learning environments including textbooks that provide opportunities to learn (Thompson,
Kaur, Koyama, & Bleiler, 2013). This study, focusing on the fundamental mathematical idea of inverse
relations, examines learning opportunities presented in representative U.S. and Chinese elementary
textbooks. Given that inverse relations are a critical concept in which students often find hard to grasp
(CCSSI, 2010; Nunes, Bryant, & Watson, 2009), it is expected that this study will contribute to the
development of students’ understanding of this concept and beyond.

Review of literature

Mathematical significance of inverse relations

Inverse relations are important relationships throughout mathematics. For example, there exist
functions and inverse functions in algebra and differentiation and integration in calculus.
Historically, mathematicians developed logarithms by finding the inverse of exponentials (Hobson,
2012). As such, it is important in all aspects of mathematics to understand and be able to reason with
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inverse relations (Baroody, Torbeyns, & Verschaffel, 2009; Carpenter, Franke, & Levi, 2003; Nunes
et al., 2009; Piaget, 1952; Resnick, 1983, 1992). Because of this mathematical significance, the
Common Core State Standards for Mathematics in the United States have emphasized that inverse
relations should be learned in each grade of elementary school (CCSSI, 2010).

In elementary school, inverse relations refer to the relationships between addition and subtraction
(additive inverses) and between multiplication and division (multiplicative inverses; Baroody et al.,
2009; Carpenter et al., 2003; Nunes et al., 2009). Resent research on inverse relations (Baroody et al.,
2009; Gilmore & Bryant, 2008) pointed out that arithmetic inverse relations mainly included
two closely related but different principles: the two-term complement principle (e.g., if a + b = c,
then c − b = a; if a × b = c, then c ÷ b = a) and the three-term inversion principle (e.g., a + b − b = a;
a × b ÷ b = a). Due to the desire for in-depth research within a limited scope, the current study
focuses only on the two-term complement principle (simply called “inverse relations” hereafter).

An understanding of inverse relations is necessary to fully comprehend the four basic arithmetic
operations and to develop essential algebraic reasoning skills (Baroody, 1987; Nunes et al., 2009;
Vergnaud, 1988). Carpenter and colleagues (2003) suggested two ways to demonstrate inverse
relations: fact family (e.g., 3 + 4 = 7, 4 + 3 = 7, 7–3 = 4, and 7–4 = 3) or a group of related word
problems, the solution of which can form a fact family (termed as “inverse word problems” in this
study). Students also need to use inverse relations to flexibly compute [e.g., 81–79 = () can be
thought of 79 + () = 81 (Torbeyns, De Smedt, Stassens, Ghesquière, & Verschaffel, 2009), check
computations (e.g., verifying that 35–17 = 18 by computing 18 + 17 = 35; Baroody, 1987), and solve
hard word problems such as initial unknown change problems in which a quantity may increase but
the solution may involve subtraction (e.g., Ali had some Chinese stamps in his collection and his
grandfather gave him 2; now he has 8; how many stamps did he have before his grandfather gave
him the 2 stamps? Nunes et al., 2009). Moreover, an understanding of inverse relations at a
structural level could contribute to students’ algebraic thinking such as equation solving (e.g., if
a + b = c, then a = c—b; if a × b = c, then a = c ÷ b’ Carpenter et al., 2003). Longitudinal studies also
have shown that second graders’ performance on inverse tasks significantly predicted their algebraic
achievement when they were in eleventh grade (Stern, 2005).

Difficulties of student learning with inverse relations

Although it is important in all aspects of mathematics to understand and be able to reason with
inverse relations, prior research has demonstrated that elementary school children generally lack a
formal understanding of this relation (Baroody, Ginsburg, & Waxman, 1983; De Smedt, Torbeyns,
Stassens, Ghesquière, &Verschaffel, 2010; Resnick, 1983). For example, Baroody and colleagues
(1983) found that about 61% of the sampled first- and second-graders could not use addition to
solve subtraction problems (e.g., using 3 + 4 = 7 to solve 7–4). In a later study (Baroody, 1999) it was
found that the K–1 graders who were trained to solve subtraction using addition did not acknowl-
edge this relation. In addition, Baroody (1987) observed that a child practiced a whole page of
problems using addition to check subtraction but could not spontaneously apply this procedure in
new tasks. Recently, Torbeyns and colleagues (2009) in their study with Belgium children, found that
when solving multidigit subtraction problems with small differences (e.g., 81–79), most second-to-
fourth graders could not call on an effective strategy based on inverse relations (e.g., 79 + ? = 81),
even though it had been explicitly taught. Similar findings were obtained from third graders who had
experienced six weeks of instruction that aimed to develop inverse understanding (De Smedt et al.,
2010).

With regard to the inverse relation between multiplication and division, children exhibit a parallel
lack of understanding. For instance, students who used P ÷ M = N to check whether P is a multiple
of M failed to recognize that obtaining M · N = P should produce the same conclusion (Vergnaud,
1988). Likewise, Thompson (1994) reported elementary students possessed difficulties in multi-
plicative reasoning, especially in the development of the concept of speed (including the relations
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between speed, time, and distance) and its relation to the concept of rate. Such conceptual difficulties
extend beyond integers to include more complex numbers such as fractions, decimals, and propor-
tions (Greer, 1994).

These findings about elementary students’ lack of formal understanding of inverse relations
sharply contradict the reports on preschoolers’ (from 3–6 years) surprising level of informal under-
standing of this relation (Gilmore & Bryant, 2008; Klein & Bisanz, 2000; Sherman & Bisanz, 2007;
Sophian & McGorgray, 1994). For example, children could provide correct directional responses to
addition and subtraction story problems (e.g., for an addition story problem, children provided a
“bigger” number than the given quantities; Sophian & McGorgray, 1994) and demonstrate inverse
understanding when “approximate numbers” were involved (Gilmore & Bryant, 2008). These
findings may be explained by Resnick’s (1992) assertion that children possessed protoquantitative
schemas of “increasing-decreasing” and “part-whole,” which are the keys to understanding inverse
relations. Why then, is there a gap between students’ informal and formal understanding? Why is
inverse relation, a ubiquitous mathematical concept, so hard to learn? These questions call for
reconsideration of the existing learning environments that students are exposed to with inverse
relations.

Limitations of existing learning environments with inverse relations

The term “learning environment” in this study refers to situational characteristics and cultural
factors (e.g., instructional methods, textbooks) that influence students’ learning (Lizzio, Wilson, &
Simons, 2002). An analysis of literature reveals two limitations in the existing learning environments
that hinder students’ opportunities to learn inverse relations. First, instruction on inverse relations
tends to focus on number manipulations without using concrete contexts to activate students’
informal knowledge (e.g., Baroody, 1999; De Smedt et al., 2010; Torbeyns et al., 2009). Under this
situation, students may obtain only inert knowledge and generate mistakes such as 7 ÷ 35 = 5, and
5 ÷ 35 = 7 (Ding & Carlson, 2013). As such, some researchers argued for “relational” (as opposed to
“numeral”) calculation during which, concrete contexts were used for quantitative reasoning (Nunes,
Bryant, Evans, Bell, & Barros, 2012; Thompson, 1994). Nunes and colleagues found that when
students made sense of inverse relations, they outperformed their peers in difficult story problems
that demanded inverse understanding (e.g., initial unknown change problem), which was also shown
to be transferrable to numeral contexts.

The second limitation of current learning environments is procedural focus on strategies rather
than the underlying principles (e.g., De Smedt et al., 2010; Torbeyns et al., 2009). In Baroody’s (1987)
study, the teacher stressed using addition to check subtraction but did not help the student under-
stand why this strategy worked. Similarly, the graduate assistant in Baroody’s (1999) study only
trained students to think in the following way: “5 take away 3 makes what?” can be understood as “3
added to what makes 5?” It was not made clear to the students why they could think in this way. In
addition, the Belgium textbook in Torbeyns and associates (2009) presented procedures such as
drawing a little arrow from the subtrahend to the minuend without further explanation. Focusing on
procedures rather than the underlying principles fails to facilitate students’ automatic use of the
strategies (Torbeyns et al., 2009), possibly because the part-whole schema is loosely connected in
children’s minds (Baroody, 1999).

Students’ difficulties resulting from the existing learning environments call for a better support
for students’ learning of inverse relations. How to create a supportive learning environment,
however, has not been established by the current body of research (National Mathematics
Advisory Panel, 2008). This study aims to narrow the research gap by exploring alternative
opportunities from the perspective of textbook comparisons between the United States and China.
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Exploring opportunities to learn: Why international textbook comparisons?

Most teachers in the United States and China use textbooks as a main resource for mathematics
teaching. It was reported that Chinese mathematics teachers study textbooks frequently and imple-
ment them with fidelity (Ding, Li, Li., & Gu, 2013). Likewise, Malzahn (2013) reported that 85% of
grade K–5 mathematics classes in the United States used commercially published textbooks, parti-
cularly for guidance of overall structure and content emphasis. Even though teachers implement
textbooks in classrooms to different extents, textbooks as intended curricula provide opportunities to
learn, thus serving as a critical component of students’ learning environments (National Research
Council, 1999; Thompson et al., 2013).

Prior studies based on the TIMSS’s curriculum data (e.g., National Research Council, 1999;
Schmidt, Wang, & McKnight, 2005) revealed that U.S. textbooks generally lacked coherence and
focus, in comparison to those mathematically high-achieving countries. International textbook
comparisons (e.g., Cai et al., 2005; Murata, 2008; Stigler, Fuson, Ham, & Kim, 1986) have brought
many alternatives and insights to the field for improving the teaching and learning of fundamental
mathematical ideas. For example, Ding and colleagues compared U.S. and Chinese textbook pre-
sentations on the distributive property (Ding & Li, 2010), the associative property (Ding, Li, Capraro,
& Capraro, 2012), and the concept of equivalence denoted by the “ = ” (Li, Ding, Capraro, &
Capraro, 2008). It was found that Chinese textbooks uniquely situated the initial learning opportu-
nities of a fundamental idea in concrete situations for sense-making, which were gradually faded into
increasingly abstract and challenging contexts in practice problems. This approach was well aligned
with the cognitive and educational research recommendations on teaching fundamental concepts
and principles (Pashler et al., 2007); however, it remains unknown whether this approach exists
when presenting inverse relations. In addition, Zhou and Peverly (2005) studied Chinese first grade
textbook’s presentation and briefly reported that additive inverse was set up as one of the learning
goals, which was achieved through teaching composing-decomposing and the part-whole relation-
ships. Since the mastery of fundamental ideas takes time (Baroody, 1999), it remains unknown how
inverse relations may be presented beyond first grade. Moreover, prior studies on inverse relations
overall focused more on additive inverses as opposed to the equally important multiplicative inverses
(Nunes et al., 2009). To address the research gaps, this study compares typical U.S. and Chinese
textbooks on both additive and multiplicative inverses across elementary grades.

Conceptual framework for textbook examination

To examine textbook presentations of inverse relations, this study uses a three-aspect framework
drawn from the Institute of Education Sciences (IES) recommendations for organizing instruction
and study to improve student learning (Pashler et al., 2007). The first aspect is interweaving worked
examples and practice problems. Worked examples (solutions provided) play a critical role in
student initial learning, which determines the likelihood of later transfer (Chi & VanLehn, 2012).
This is because examples help students acquire schemas for solving new problems (Sweller &
Cooper, 1985). Examples with greater variability can better support the encoding and extracting of
the abstract principles underlying these problems (Renkl, Atkinson, Maier, & Staley, 2002). In
addition, worked examples were found to be more effective when interweaved with practice
problems (no solutions provided; Renkl et al., 2002).

The second aspect is making connections between concrete and abstract representations. Abstract
representations in this study refer to the use of symbols to represent mathematical ideas, which
eliminates detailed perceptual properties and is often arbitrarily linked to referents (McNeil & Fyfe,
2012). Concrete representations refer to using physical objects (e.g., manipulatives) or visual images
(e.g., diagrams) to represent mathematical ideas, or the contextualization of mathematical ideas in
real-world situations (e.g., word problem contexts, Ding & Li, 2014). We consider word problems as
concrete because the real-world contexts provided by such problems “have the potential to offer
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memorable imagery that can act as a touchstone for teachers and learners in building and discussing
abstract concepts” (Gerofsky, 2009, p. 36). Empirical studies also demonstrated that students were
more capable of solving simple algebra word problems than the mathematically equivalent equations
(Koedinger & Nathan, 2004). During initial learning, concrete representations may activate students’
familiar experiences for sense-making (Resnick & Omanson, 1987); however, concrete representa-
tions often contain irrelevant information that may blind students from seeing the underlying
principles. This may hinder later transfer (Kaminski, Sloutsky, & Heckler, 2008). As such, it was
suggested to fade the concreteness into abstract representations to promote learning and transfer
(also called “concreteness fading”; Goldstone & Son, 2005).

The final aspect is spacing learning over time. The course of developing fundamental ideas may
span several years (Vergnaud, 1988). In order for students to retain information, key concepts should
be reviewed after the initial teaching, but not in the form of a simple repetition (National Academy
of Education, 2009). Based on the above conceptual framework, this study examines opportunities to
learn inverse relations presented in representative U.S. and Chinese textbooks centering on the
following questions: (1) What is the degree of coverage of inverse relations in each textbook series?
(2) How are worked examples and practice problems interweaved to support the learning of inverse
relations? (3) How are concrete and abstract representations connected to present inverse relations
in each textbook series? And (4) How is the learning of inverse relations spaced over time in each
textbook series?

Method

Textbook selection

One of the three main Chinese mathematics curricula (Grades 1–6), Jiang Su Educational Press
textbook (JSEP, Su & Wang, 2005), was chosen for this study. Given that the Chinese educational
system is centralized and all textbooks were developed based on the new Chinese curriculum
standards (Ministry of Education, 2001), there was little qualitative difference among the three
main textbook series (Ding & Li, 2010; Li et al., 2008). For comparisons, we chose two widely
used U.S. textbook series (Grades K–6): Houghton Mifflin (HM; Greenes et al., 2005) and Everyday
Mathematics (EM; University of Chicago School Mathematics Project, 2007). While HM is a
commercially published curriculum, EM is a curriculum supported by the National Science
Foundation. Recent survey data on the frequency-of-usage of textbooks show that EM was one of
the three most frequently used textbooks in Grades K–5 while HM was one of the three most
frequently used textbooks in Grades 3–5 during the 2011–2012 school year (Dossey, Halvorsen, &
McCrone, 2012; Malzahn, 2013).

For all three textbook series, curriculum materials specifically designed for teaching were coded
because these materials suggested the minimum opportunities a teacher may use in classrooms. For
the U.S. textbook series, the teacher editions of mathematics textbooks were examined. According to
Dossey and colleagues (2012), the teacher editions were the central materials on which U.S. teachers
heavily relied. These materials contained student textbook pages along with the detailed teaching
steps (e.g., introduction, develop, practice, and assess and close). The difference between HM and
EM was that a volume of HM teacher edition contained all textbook pages of a student edition (e.g.,
p. 89), together with the corresponding explanation pages (e.g., p. 89A, p. 89B, p. 89C). However, an
EM teacher edition contained the selected pages of various student resources (e.g., Math Journal,
Assessment Handbook, Math Matters, etc.), with none named as “student edition.” It should be
noted that during the suggested teaching processes, both U.S. teacher editions offered additional
tasks beyond the student edition/resources.

The Chinese textbook series did not differentiate between the teacher and student editions.
Rather, teachers and students would use the same textbooks. For each textbook, there was a
corresponding teacher manual explaining tasks design but not the detailed teaching steps. The
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Chinese teacher manuals also did not suggest extra tasks beyond the textbooks. For equivalency, we
coded Chinese textbooks plus teacher manuals, which were equivalent to the U.S. teacher editions.
For all of the textbook series, there were two volumes for each grade except EM kindergarten. As
such, a total of 12 volumes of Chinese textbooks and 27 volumes of U.S. textbooks were examined
for this study.

Instance coding

All of the problems in each textbook series, including the worked examples and practice problems,
were coded. Based on the literature, a worked example was coded as an instance of inverse relations
if it involved any of the following:

● A group of related facts [e.g., 4 + 6 = 10, 10–6 = 4, HM, Grade 1, p. 465] or a fact family (e.g.,
4 + 6 = 10, 6 + 4 = 10, 10–4 = 6, 10–6 = 4, EM, Grade 1, p. 554)

● Computing using inverse relations (e.g., to solve 28 ÷ 7 = 4, one may think of 4 × 7 = 28, China,
Grade 2, p. 65) or checking using inverse relations (e.g., to check if 439–275 = 164 is correct,
one may think of 164 + 275 = 439, HM, Grade 2, p. 631)

● A group of inverse word problems [e.g., (1) There are 7 groups of children playing. Each
group has 5 children. How many children are there? (2) There are 35 children playing. If 5
children form one group, how many groups can be formed? (3) There are 35 children
playing. If they are divided evenly into 7 groups, how many children will be in each
group?, China, Grade 2, p. 69]

● One problem solved with inverse operations [e.g., to solve “Lucy had 7 pennies. She lost 3
pennies. How many pennies does Lucy have left?” one may use 7–3 = 4 and 3 + □ = 7, EM,
Grade 1, p. 213]

● Solving an algebraic equation (9 + x = 15) or filling in the missing numbers using inverse
relations [e.g., Solving 9 + () = 15 by think of 15–9, HM, Grade 2, p. 65]

In particular, if a worked example in the textbooks contained a pair/group of inverse operations,
it was considered as one instance. If a worked example contained several different pairs/groups of
inverse operations (e.g., n = 4), it would be coded as several instances (e.g., n = 4).

With regard to practice problems, if there were clear suggestions for using inverse relations to
solve a set of problems, all of them would be coded as instances. If there was no such request in the
textbooks, the coders would then refer back to the corresponding worked examples. If the worked
example contained various solutions that went beyond the inverse-based strategy and the practice
problem did not specifically require using inverse relations, such a practice problem would not be
coded due to uncertainty. With these operational definitions, the Chinese and U.S. textbook pages
were coded; however, some difficulties did occur especially for cases that were different from the
literature.

Coding challenges
The first coding challenge was related to number composing and decomposing in the Chinese first-
grade textbooks (e.g., 4 is decomposed into 3 and 1; 3 and 1 are composed into 4; see Figure 1a). This
was a specific chapter presented before formal introduction of addition and subtraction. Such a task
indicated an inverse relation; yet, no operations were involved. After referring to the Chinese teacher
manual, these tasks were coded as instances because the teacher manual pointed out that these tasks
were intended to develop students’ understanding of inverse relations. In Figure 1a, the worked
example was coded as three instances because the composing and decomposing of “4” involved three
pairs of numbers (3 and 1, 2 and 2, and 1 and 3).

The second coding challenge, related to “separate problems linked with similarity,” appeared in all
three textbook series (see Figure 1b). These separate word problems were either linked by the similar
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a. Number 

composing 

and 

decomposing  

Chinse, G1, v1, p.30 

Worked example

Chinese, G1, v1, p.30 

Guided practice 

Chinese, G1, v1, p.31 

Independent practice  

b. Separate 

problems 

linked with 

similarity 

Chinese, G2, v2, p.49 & p.55 EM, G3, p.404 HM, G2, p.359 

c. One problem 

involving 

inverse 

situations 

Chinese examples: 

G1: 

 Refrigerator Washer TV 

Original 56 (      ) 46 

Sold 30 20 (   ) 

Leftover (      ) 18 5 

G4  

Speed time Distance 

EM examples: 

G2: In and out activity   

Rule: 1 qt = 2 pt 

qt Pt 

2 

3 

10 

8 

G4 

HM examples: 

G5 

M cm 

45  

 0.005 

 862.3 

A  

G6  

80 t  

 V  S 

 t S 

G6: 

Material Peanut Bean Rapeseed 

Original 160 200  

Oil output 40  48 

Output rate  16% 40% 

Buses   36 180 … 

Jets 1 2 3   

Frames and Arrows: 

s = s = 300mi/h s=20mi/h 

d=225mi d= d=mi 

t = 5h t=6h t=

Figure 1. Examples of coding difficulties across textbook series. The Chinese textbook series introduces the formula of “distance =
speed × time” as s = vt while the U.S. textbook series introduces d = st.
© McGraw-Hill Education © Houghton Mifflin Company © Jiangsu Education Press. Reproduced by permission of McGraw-Hill
Education, Houghton Mifflin Company, and Jiangsu Education Press. Permission to reuse must be obtained from the rightsholders.
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real-world situations (e.g., the monkey-peach situation in the Chinese textbook) or diagrams (e.g.,
the multiplication and division diagram in EM text, and the part-whole model in HM text), which
can be solved with inverse operations. The dilemma was, in such a group of problems, the quantities
were not matched. A similar coding difficulty was related to “one problem involving inverse
situations” (see Figure 1c). In this case, a problem involved subproblems, the solutions to which
indicated inverse operations. Yet, these subproblems, again, involved nonmatched quantities. As
indicated in Figure 1c, the Chinese table contained three subproblems (e.g., refrigerator, washer,
TV), with one of the three key quantities (e.g., original, sold, leftover) missing in each subproblem.
The HM and especially EM, contained many rate tables (also called “in-out activity”) situated in real-
world contexts (e.g., weight, length). To complete these tables, students need to understand “x ×
rate = y” and “y ÷ rate = x.” Similar to the rate table, EM frequently contained a type of problem
named “frames and arrows” (see Figure 1c). In order to fill in missing numbers in a frame, a student
may think both forward and backward based on the given rule (e.g.,—6). To resolve the difficulties
and uncertainties, the coders referred to the teacher manuals/teacher editions for explanations. As a
result, these related problems with nonmatched quantities were coded as instances because “inverse
relations” were explicitly mentioned as task design purposes. For example, EM in “Unit Organizer”
section clearly stated that the multiplication and division diagram “helps reinforce the inverse
relationship between the two operations” (Grade 3, p. 402). In particular, a group of related
problems (e.g., the Chinese word problems in Figure 1b) was considered as one instance.

Coding procedures and reliability checking
The author coded all of the textbook pages with additive and multiplicative instances in a separate
manner. The coding process started with the Chinese textbook series, followed by the U.S. curricula.
Instances on each textbook page were recorded using an Excel spreadsheet, including the title of a
lesson where an instance was identified from, the textbook page, the typical example, and the
frequency of a type of instance on a particular textbook page.

For reliability checking, the author re-coded all instances four months later and the reliability
reached 95.3%. In addition, two coders were invited and trained for independent coding of 25% of
the textbook pages, using the same procedure. The coder who was fluent with both Chinese and
English coded the Chinese textbooks, while the other coder who only knew English coded the two
U.S. textbook series. For additive inverses, all of Volume 1 of the textbooks in the first, third, and
fifth grades were coded page by page; for multiplicative inverses, all of Volume 1 of the textbooks in
second, fourth, and sixth grades were coded page by page. Both coders compared their codes with
the author. The percentage of the consistency was computed. The reliability for the Chinese and the
U.S. textbooks both exceeded 91%. Coding disagreements were mainly related to the previous coding
difficulties. In addition, there were a few other inconsistencies in coding. For example the EM
Kindergarten texts suggested activities such as adding or taking away objects from a pocket to help
students learn the meaning of addition and subtraction. One coder included these activities due to its
potential in developing students’ intuitive sense of inverse relations; the other excluded it because the
numbers involved in these situations were uncertain. After discussion, we agreed with the latter. In
addition, the HM teacher edition offered plenty of extra practices (named “leveled practices”),
including enrichment, re-teach, and intervention. Given that these were extra resources that went
beyond the lesson development and overlapped with the existing worked examples and practice
problems in the teacher edition, we agreed not to code them. All disagreements were resolved and
the raw data were re-examined before data analysis.

Data analysis

After all instances were coded, the author counted the frequency of instances for additive and
multiplicative inverses in each grade for each textbook. Given that each textbook series contains a
different amount of pages, the average number of instances per page was computed based on the
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method of Li and colleagues (2008), which provided a general sense of the proportion of inverse
relations that occurred in each textbook series. The author then classified an instance as either a
worked example or a practice problem. For both the Chinese and the HM textbooks, it was
straightforward. In contrast, the EM textbooks were not obvious at first glance. With a close
inspection, the author found that in the section of “teaching this lesson,” the teacher edition did
list example problems. Consequently, the rest of the tasks were considered as practice problems.
Next, the author classified the representation use of each instance as either concrete (physical, visual,
contextual) or abstract (symbol). For instance, the aforementioned inverse word problems on
children playing (see Method—Instance Coding Section) grounded the learning of inverse relations
(7 × 5 = 35, 35 ÷ 5 = 7, and 35 ÷ 7 = 5) in a real-world context; therefore, the overall nature of this
instance was considered as concrete. If the contextual support was removed, this fact family would
be coded as abstract.

After each instance was classified into a certain category, the author analyzed the problem types
(e.g., fact family, inverse word problem, computing, checking) involved in both the concrete and
abstract contexts. This was complicated because the author tried to maintain the appropriate level of
detail, but at the same time still limit the number of problem types. As a result, some problem types
in the U.S. textbooks were combined. For example, EM frequently presented a type of flashcard
named “fact triangle,” expecting students to generate a fact family based on the numbers arranged at
each corner of a triangle (e.g., 2, 4, and 8). This task was an opportunity to learn fact family/related
facts and thus was combined into this problem type. Similarly, fact tables and part-whole mats were
also combined into fact family/related facts due to the same reason. After a separate analysis of
additive and multiplicative instances, the author compared the patterns across additive and multi-
plicative inverses and matched the similar problem types within and across textbook series.

Next, the author conducted a close inspection based on the conceptual framework of this study,
leading to an identification of the cultural differences under each aspect. First, for interweaving
worked example and practice problems, the author computed the percentages of worked examples
and practice problems in each textbook series for additive and multiplicative inverses. This provided
a sense of the space each textbook series devoted to worked examples that explain mathematical
ideas and to unexplained practice problems for students to solve on their own. In addition, the
author examined the purposes of worked examples and how they were connected to the correspond-
ing practice problems. For making connections between concrete and abstract representations, the
author examined the percentages of worked examples and practice problems under concrete and
abstract contexts for additive and multiplicative inverses. The rationale was to find the pattern of
representation uses during initial learning opportunities and later practice opportunities. In parti-
cular, the author analyzed how worked examples differed in making connections between concrete
and abstract in U.S. and Chinese textbook series. Finally, for spacing learning over time, the author
counted the instances of additive and multiplicative inverses in each volume of each textbook. The
author particularly analyzed how the knowledge structure was built into curriculum units to foster a
longitudinal coherence over grades. Overall, the analysis aimed to identify how well each textbook
series intended to develop students’ meaningful and explicit understanding of inverse relations.

Results

Degree of coverage of inverse relations in each textbook series

All three textbook series provided opportunities to learn inverse relations. Indeed, the U.S. textbooks
contained about 3–5 times as many instances of inverse relations as that of the Chinese textbooks
(EM: n ± = 421, n x/÷ = 400; HM: n +/- = 686, n x/÷ = 1144; China: n +/- = 141, n x/÷ = 201). Given that
both EM and HM textbooks were greater in length than the Chinese textbooks, the average number
of instances per textbook page showed that when the inverse relations were initially presented, the
Chinese textbooks indeed contained a larger proportion of instances (Grade 1 for additive; Grade 2
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for multiplicative) than the U.S. textbooks (see Table 1). In addition, the percentages of additive and
multiplicative inverses in each textbook series indicated a common shift of focus from additive to
multiplicative inverses over time.

All instances were classified into certain problem types involving concrete or abstract representa-
tions (see Table 2). Instances of “fact family/related facts” and “computing or checking using inverse
relations” were classified as either concrete (with contextual support) or abstract (without contextual
support). In addition, concrete representations contained four types of word problem contexts. These
included the ones mentioned in the literature (“inverse word problems,” and “one problem solved with
inverse operations”) and the ones with coding difficulties (“separate problems linked with similarity,”
and “one problem involving inverse situations”). The Chinese textbook also presented number
composing and decomposing. For abstract representations, there were types of instances similar to
“one problem involving inverse situations” with concrete situations removed (e.g., in-out activity/
frames and arrows, filling in structural tables). Other types of problems included finding the missing
numbers and solving algebraic equations. Finally, HM textbook uniquely presented definition pro-
blems asking students to recall or explain the terms of “related facts” and “fact families.”

When highlighting the most frequent problem types involving concrete and abstract representa-
tions, it appears that there was a consistency of frequently used problem types between additive and
multiplicative inverses for each textbook series, especially under the abstract contexts (see Table 2).
Interestingly, although the three textbook series involved common problem types (e.g., fact family,
checking/computing using inverse relations), each textbook series also contained unique ones. For
example, both U.S. textbooks (especially EM) suggested that students should solve the same word
problem in two ways using inverse operations, which rarely occurred in the Chinese textbook series.
Both U.S. textbook series presented in-out activities (“what is my rule”), which were known as “rate
tables” or “function tables” in the literature. Both U.S. textbooks also presented “find the missing
numbers,” which was related to solving algebraic equations. In contrast, the Chinese textbooks asked
students to fill in structural tables that highlighted the key relationships (e.g., minuend, subtrahend,

Table 1. Average number of instances per page on each textbook series.

Textbook series Grades Pages coded1
# of instances # of instances per page % of instances

Additive Multiplicative Additive Multiplicative Additive Multiplicative

EM K 429 0 0 0.00 0.00 na Na
1 918 134 0 0.15 0.00 100.0 0.0
2 990 138 127 0.14 0.13 52.1 47.9
3 982 86 110 0.09 0.11 43.9 56.1
4 1018 36 77 0.04 0.08 31.9 68.1
5 1044 24 49 0.02 0.05 32.9 67.1
6 1004 3 37 0.00 0.04 7.5 92.5

HM K 536 0 0 0.00 0.00 na na
1 932 318 0 0.34 0.00 100.0 0.0
2 932 149 0 0.16 0.00 100.0 0.0
3 936 77 307 0.08 0.33 20.1 79.9
4 936 85 431 0.09 0.46 16.5 83.5
5 920 47 208 0.05 0.23 18.4 81.6
6 920 1 198 0.00 0.22 0.5 99.5

China 1 209 106 0 0.51 0.00 100.0 0.0
2 214 23 85 0.11 0.40 21.3 78.7
3 228 5 46 0.02 0.20 9.8 90.2
4 229 0 44 0.00 0.19 0.0 100.0
5 254 7 14 0.03 0.06 33.3 66.7
6 250 0 12 0.00 0.05 0.0 100.0

1The HM teacher edition does not provide the exact number of total pages. Rather, a teacher edition uses student textbook page
(p. 89) as a base for the corresponding explanation pages (p. 89A, p. 89B, p. 89C). There are approximately an average of 200
explanation pages added to a student edition in each grade. The listing page numbers for HM in Table 1 were obtained by using
the number of student textbook pages plus 200.
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and difference) and presented number composing and decomposing as mentioned. In addition to
the overall patterns, an inspection of textbook presentations revealed interesting cross-cultural
differences in interweaving worked example and practice problems, making connections between
concrete and abstract representations, and spacing learning over time.

Interweaving worked examples and practice problems of inverse relations

Overall differences in using worked examples and practice problems
Figure 2 shows the percentages of worked examples and practice problems for additive and multi-
plicative inverses, respectively, in each textbook series.

As indicated in Figure 2, for additive inverses, both U.S. textbooks had much smaller percentages
of worked examples than the Chinese textbooks (EM: 9.0%, HM, 5.7%, Chinese: 24.1%). When the
focus was shifted from additive to multiplicative inverses, both U.S. textbooks slightly increased the
proportion of worked examples, while the opposite occurred in the Chinese textbooks (EM: 12.0%,
HM, 6.8%, Chinese: 9.5%).

Cross-cultural features in interweaving worked examples into practice problems
Within a lesson, instructions/explanations in the Chinese textbooks were generally faded out from
worked examples to practice problems with variations. This feature was not apparent in either U.S.
textbooks. Figure 1a illustrates the first lesson of number composing and decomposing in Chinese
textbooks. From worked example to practice problems, the real-world situation was faded out from
vivid peaches to manipulatives (blocks). The number was also changed from “4” in the worked
example to “5” in the guided practice and then to “2” and “3” in the independent practices. In
addition, instructions were gradually faded out to elicit more students’ self-explanations. For

Table 2. Types of problems involving concrete and abstract representations across textbook series.

Representation Problem Type

US-EM_+/-
(n = 421)

US-EM_×/÷
(n = 400)

US-HM_+/-
(n = 686)

US-HM_×/÷
(n = 1144)

China_+/-
(n = 141)

China_×/÷
(n = 201)

freq % freq % freq % freq % freq % freq %

Concrete Number composing and
decomposing

27 19.1

Fact family in context 32 7.6 71 10.3 50 4.4 20 14.2 6 3.0
Computing/checking in
context

1 0.2 10 2.5 14 2 32 2.8 15 10.6 28 13.9

Inverse word problems 2 0.5 1 0.3 7 1 2 0.2 1 0.7 10 5.0
One problem solved with
inverse operations

34 8.1 30 7.5 1 0.15 1 0.1

Separate problems linked
with similarity

1 0.2 14 3.5 5 0.7 8 0.7 8 5.7 2 1.0

One problem involving
inverse situations

3 0.7 48 12 2 0.3 22 1.9 1 0.7 12 6.0

Total 73 17.3 103 25.8 100 14.6 115 10.1 72 51.1 58 28.9

Abstract Fact family/related facts 238 56.5 216 54 276 40.2 146 12.8 37 26.2 59 29.4
Checking using inverse
relations

5 1.2 1 0.3 217 31.6 745 65 18 12.8 68 33.8

Computing using inverse
relations

6 1.4 9 2.3 55 8.0 80 7.0 6 4.3 10 5.0

In-out activity/frames and
arrows

92 21.9 64 16.1 9 1.3 33 2.9

Filling in structural tables 4 2.8 4 2.0
Finding the missing
numbers

4 1 2 0.5 5 0.7 2 0.2

Solving algebraic equations 3 0.7 5 1.3 2 0.3 12 1.0 4 2.8 2 1.0
Definition: explain the
term/relation

22 3.2 11 1.0

Total 348 82.7 297 74.3 586 85.4 1029 89.9 69 48.9 143 71.1
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example, the worked example taught decomposing and asked a question on composing, “Do you
know what and what can be composed into 4?” The guided practice then expected students to
consider both decomposing and composing, “5 can be decomposed into what and what? What and
what can be composed into 5?” Finally, the independent practice expected students themselves to

complete math mountains in both ways ( ).

Across lessons, Chinese textbooks used worked examples to stress sense-making. This laid a
foundation for relevant practice problems. The second-grade textbook situated the following worked
example about checking subtraction in a real-world context (see Figure 3a), “There are 335 books on

a. Checking subtraction using addition b. Checking division using multiplication 

)3.p ,5v ,3G()25.p ,4v ,2G(

Figure 3. Chinese textbooks’ worked examples of checking using inverse relations. G = Grade; V = Volume.
© Jiangsu Education Press. Reproduced by permission of Jiangsu Education Press. Permission to reuse must be obtained from the
rightsholder.
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Figure 2. The percentages of worked examples and practice problems in each textbook series. “+/-” = additive inverses;
“×/÷” = multiplicative inverses.
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a bookshelf (picture). 123 of them have been lent out. How many are left?” After this problem was
solved using “335–123 = ,” the textbook suggested students think in the following way, “If we
combine the number of lent-out books and the leftover, it should equal the original amount of
books” (see the thinking bubble of the little creature in Figure 3a). The teacher manual explained
that the purpose of using real-life experiences (The lent-out + the leftover = the original) was to help
students make sense of the general way of checking. Consequently, the teacher manual suggested
that teachers should help students realize the correspondence between “the lent-out” and “subtra-
hend” and between “the leftover” and “difference.” This led to a general checking method presented
at the bottom of this textbook page, “We can add the difference and subtrahend to check subtrac-
tion.” A similar approach to worked examples was found with checking division (see Figure 3b). In
Figure 3b, question 2 was about checking division with a remainder. After students solved a problem
about “using ¥65 to buy chocolates with the unit price of ¥3” (65 ÷ 3 = 21 R3), students were
reminded to think about “Each chocolate is ¥3, I bought 21 of them, which costs ¥63. Plus the
leftover ¥2, it is exactly ¥65,” which corresponded to the checking procedure of 21 × 3 + 2 = 65 (see
the thinking bubble of little creature at the bottom of Figure 3b). The Chinese teacher manual
further explained, “When people do shopping, they always asked themselves, ‘Did I pay the correct
money? Did I get the correct changes?’ In mathematics, this is checking.” After meaningful initial
learning opportunities through worked examples, the Chinese textbooks presented 18 additive
instances of checking (12.8%) and 68 multiplicative instances of checking (33.8%) across grades.

In contrast, both HM and EM textbooks did not stress sense-making through worked examples.
Rather, worked examples mainly taught procedures that were reinforced in practice problems. HM
presented a worked example for checking division through the concrete context of marbles (54
marbles stored in 4 bags, solved by 54 ÷ 4 = 13 R2). Without using this contextual support, it directly
taught the following procedures: (1) Multiply the quotient by the divisor, 4 × 13 = 52, (2) Add the
remainder. 52 + 2 = 54, and (3) The sum equals the dividend, so the answer is correct. For checking
subtraction, HM taught students to use an arrow to link between “subtrahend” and “sum” in two
related vertical number sentences. The second grade HM teacher edition stated, “Rewrite the
numbers from the bottom. Then add. Draw a line from the sum to the top number in the subtraction
problem. Tell children that addition and subtraction are opposite operations. Since they are opposite,
one undoes the other” (p. 357). Based on these procedural explanations/instructions through worked
examples, across all grades HM provided 217 additive (31.6%) and 745 multiplicative (65%) practice
problems that involved checking. EM presented three instances of checking (out of 10) that
contained components of sense making. However, for the rest of instances, it only taught procedures
similar to the ones in HM.

Making connections between concrete and abstract representations of inverse relations

Overall differences in using concrete and abstract representations
With regard to representation uses, the Chinese textbook series possessed an overall larger percen-
tage of concrete representations (Figure 4, dark filled) than the U.S. textbooks (Figure 4, light filled).
For additive inverses, Chinese textbooks contained 51.1% of concrete instances (n = 72) while both
U.S. textbooks contained less than 20% concrete ones [EM: 17.3% (n = 73), HM: 14.6% (n = 100)].
For multiplicative inverses, concrete representations in Chinese textbooks decreased to 28.9%
(n = 58), which was still a higher percentage than both U.S. textbooks (EM: 25.8% (n = 103), HM:
10.1% (n = 115); also see Table 2).

In particular, with worked examples (Figure 4, solid filled) the U.S. textbooks involved both
concrete and abstract representations, whereas the Chinese textbooks used solely concrete repre-
sentations due to the fact that the Chinese textbook series situated the initial learning opportunities
completely in real-world contexts. In fact, the percentages of concrete worked examples (Figure 4,
solid dark) in Chinese textbooks were higher than both U.S. textbooks. While the Chinese textbook
contained 24.1% (n = 34) additive and 9.5% (n = 19) multiplicative concrete examples, EM contained
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4.5% (n = 19) additive and 6.0% (n = 24) multiplicative ones, and HM contained 3.8% (n = 26)
additive and 4.5% (n = 52) multiplicative concrete examples. With regard to practice problems
(Figure 4, pattern filled), all textbooks included both concrete and abstract instances with the U.S.
textbooks containing higher percentages of abstract ones. Analyzing the additive inverses presented
in earlier grades, EM and HM respectively contained 78.1% (n = 329) and 83.5% (n = 573) abstract
practice problems. In contrast, the Chinese textbooks only contained 48.9% (n = 69) such instances.
Overall, both U.S. textbooks favored using abstract representations more than the Chinese textbooks.

Cross-cultural features in connecting concrete and abstract within a worked example
In addition to the overall differences in the percentages of concrete and abstract representations, the
U.S. and Chinese worked examples differed in making connections between concrete and abstract.
More specifically, the sequence and completeness of representation uses within a worked example
were quite different. Figure 5 presents the first formal presentation of worked examples in each
textbook series, which illustrates differences in representational sequence.

MH-SUME-SUesenihC

Real-world situations 

(G1, v1, p.54)

Fact family with dominos 

(G2, p.124)

Part-whole mode 

(G1, p.154)

Figure 5. Fact family in context in each textbook series. G = Grade; V = Volume.
© McGraw-Hill Education © Houghton Mifflin Company © Jiangsu Education Press. Reproduced by permission of McGraw-Hill
Education, Houghton Mifflin Company, and Jiangsu Education Press. Permission to reuse must be obtained from the rightsholders.
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Figure 4. Representation uses in worked examples and practice problems. “+/-” = additive inverses; “×/÷” = multiplicative
inverses. Concrete-Example = Worked examples that involve concrete representations. Abstract-Practice = Practice problems that
involve abstract representations.
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In Figure 5, the Chinese worked example started with a real-world situation of a swimming pool.
The teacher manual pointed out that this story situation could be viewed two ways “5 boys and 3
girls” or “5 children inside and 3 outside of the pool.” This story situation then led to four number
sentences that formed a fact family. More important, the teacher manual suggested that teachers,
based on this worked example, teach the general part-whole relationship—adding two parts to get a
whole, and taking one part from the whole to get the other part, which is the key to inverse relations.
Overall, the sequence of representation used in this worked example indicated concreteness fading
(Goldstone & Son, 2005). This was a typical representational sequence of Chinese worked examples
(see another example in Figure 1a about number composing and decomposing).

In contrast, the EM example in Figure 5 started with the domino diagram. The teacher edition
explained, “The inverse relationship of addition and subtraction forms the basis of the study of the
subtraction facts. This relationship is first established by observing patterns on dominoes (Lesson
2.6) . . . (p.92).” In comparison to the Chinese swimming pool situation, the domino diagram had
little contextual support to activate students’ familiar experience for learning. The EM teacher
edition also did not expect students to move beyond the surface component of an example, in
order to understand the underlying part-whole relationships. With regard to the HM example (see
Figure 5), it immediately introduced an abstract term, “related fact,” which was illustrated by a part-
whole mat with cubes. One may notice that there was a vivid kitten picture arranged at the bottom of
this worked example. However, likely due to its location, this picture tended to be missed by teachers
(Ding & Carlson, 2013). The HM teacher edition also did not suggest using the kitten situation to
illustrate 6 + 3 = 9 and 9–3 = 6. As such, representations in HM were not well sequenced.

In addition to representational sequence, Chinese worked examples demonstrated a complete use
of representations. In Figure 1b (Separate problems linked with similarity), the Chinese examples
were drawn from two lessons. The first story situation described the problem in words along with
pictures of two monkeys picking peaches: “The monkeys have picked 23 peaches off the tree. There
are 5 left on the tree. How many peaches were originally on the tree?” On the left, a little creature
said, “How could we figure out how many peaches were originally on the tree?” The little creature on
the right offered the solution in words (“add the 23 peaches you have picked with the 5 that are left
on the tree”), which was subsequently translated into the symbolic form: 23 + 5 = 28. This problem-
solving process contained rich representations (e.g., contextual, visual, and symbolic). Indeed, the
little creatures that occurred throughout the Chinese worked examples might have potential to add
memorable imagery for class discussion (Gerofsky, 2009), and thus might have positive impact on
student learning. In fact, the Chinese worked examples not only contained rich representations but
also guided students to think inversely based on the quantitative relationship, “taken away +
leftover = original,” which transformed a difficult “change” problem to an easy “part-whole”
model (Nunes et al., 2009; Resnick, 1992). The paired subtraction story situation indicated that
there were originally 28 peaches. After the monkeys ate some, there were 6 peaches left. Students
were asked to figure out how many peaches were eaten by the monkeys. This worked example used
the same method to demonstrate the connections among contextual, visual, and symbolic represen-
tations in solving the problem (28–6 = 22). Similarly, the Chinese textbook drew students’ attention
to the quantitative relationship, “original—leftover = taken away (eaten).” Taking together, this pair
of problems presented “complete” explanations of the inverse relation even though the numbers did
not match (23 + 5 = 28 and 28–6 = 22). This is the most salient feature of the Chinese instructional
method: contextualization of the learning of a mathematical idea in a familiar real-world situation so
that concrete and abstract representations are interconnected.

In comparison, the sample HM lessons demonstrated an incomplete use of representations (see
Figure 1b). The lessons used words to state the problems, but there were no pictures or formal
symbolic forms to represent step-by-step problem solving processes. The presentations did not
emphasize the meaningful explanation of problem solving strategies. There were no descriptions
of the procedures other than the general statement in the end: “I add the parts to form the whole (1st
problem)”; “I know the whole and one of the parts. I can subtract to find the other part (2nd
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problem).” Likewise, EM textbooks used a model named multiplication and division diagram (see
Figure 1b). The teacher edition explained, “The number in the right column is the product of the
other two. The number in the left column (or middle column) can be found by dividing the number
in the right column by the number in the middle column (or left column)” (Grade 4, p. 393). Even
though a diagram could have potentially connected the concrete story situation and abstract number
sentences, the EM multiplication and division diagram only served as a means to organize informa-
tion in the story situation and was treated with a focus on numerical but not relational reasoning.
EM presented additive and subtraction diagrams in the same nature. In brief, both U.S. textbooks
presented incomplete representations with a focus on numerical calculation, which was in contrast to
Chinese textbooks’ emphasis on rich-connected representations of quantitative relationships and
problem-solving strategies.

Spacing the learning of inverse relations over time

Overall differences in spacing learning over time
Across grades, instances in each textbook demonstrate different trends of spacing learning over time.
Figure 6 shows the percentages of instances across grades for each textbook series, which indicates
three cross-cultural differences. First, given that U.S. elementary school begins at the Kindergarten
level while Chinese school starts at Grade 1, the Chinese textbook series addressed inverse relations
much earlier (first half of Grade 1 for additive; first half of Grade 2 for multiplicative) than the U.S.
textbooks (first/second half of Grade 1 for additive; second half of Grade 2/first half of Grade 3 for
multiplicative). Second, over time, the Chinese textbooks series indicated a greater shift of focus
from additive to multiplicative inverses than the U.S. curricula. In the later grades, the EM and HM
textbook series presented both additive and multiplicative inverses, whereas the Chinese textbook
series focused mainly on multiplicative inverses. Third, as grade level increased, the Chinese text-
books decreased presentation of inverse relations to a greater extent than either U.S. textbook series.

Cross-cultural features in spacing learning over time
A close inspection of how each textbook spaced learning over time revealed different formats. The
Chinese textbooks often revisited inverse relations with hierarchical connections, which was
achieved either through purposeful topic arrangement or underlying structural relations. An exam-
ple of purposeful topic arrangement was additive inverse relations. From the initial presentation of
number composing and decomposing in first grade (Chapter 7, see Figure 1a), the worked example
modeled how to think sequentially (e.g., decomposing 4 peaches into 3 and 1, 2 and 2, and 1 and 3)
and inversely (e.g., 4 is decomposed into 3 and 1; 3 and 1 are composed into 4). This was different
from both U.S. textbooks where EM decomposed 10 beans into 8 and 2, 5 and 5, 6 and 2 and 2, and
HM decomposed 9 cube trains into 4 and 5, 3 and 6, 7 and 2. Both U.S. textbooks did not stress
sequential thinking and both only taught decomposing, not composing. As such, the Chinese
textbooks attended to inverses relations from the very beginning. According to the teacher manual,
the purpose of arranging number composing and decomposing as a specific chapter was to lay a
foundation for students’ understanding of the inverse relationship between addition and subtraction
using numbers 1–10. As seen in the follow-up chapter (Chapter 8), additive inverse relations were
formally presented through fact families involving one picture with four number sentences (see
Figure 5, the swimming pool example). Interestingly, this chapter did not immediately jump to one
picture with four number sentences. Rather, there were several prior lessons including one picture
with one number sentence (addition or subtraction, using numbers from 1–5, see Figure 1b) and one
picture with two number sentences (two addition or two subtraction number sentences, using
numbers of 6 and 7). These naturally led to one picture with four number sentences (using numbers
of 8, 9, and 10). This task design (chapters 7 and 8) illustrates how additive inverse relations were
gradually laid out from informal to formal learning in the Chinese first grade textbook. After this
initial presentation, additive inverses were revisited through addition and subtraction up to 100
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(Grade 1), then up to 1000 (Grade 2), further up to 10,000 (Grade 3), and eventually extended to
decimal addition and subtraction (Grade 5).

Another feature of Chinese textbooks’ spacing learning was to stress the underlying structural
relations over time. As introduced in the section of Method—Instance Coding, the Chinese second-
grade textbook presented a group of inverse word problems involving quantities of 7 groups, 5
children each group, and 35 children. According to the teacher manual, the purpose of this group of
inverse tasks was to further students’ understanding of the inverse quantitative relationships among
“number of groups × group size = total,” “total ÷ number of groups = group size,” and “total ÷ group
size = number of groups,” which was expected to strengthen students’ understanding of the inverse
relations between multiplication and division. This emphasis was continued through introducing
other special relationships such as “price, amount, and total cost” (Grade 3) and “speed, time, and
distance” (Grade 4). Indeed, the Chinese textbooks stressed inverse quantitative relationships
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Figure 6. Percentages of additive and multiplicative inverses across grades. “+/-” = additive inverses; “×/÷” = multiplicative
inverses.
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through various types of problems across grades. As illustrated in Figure 1c, the Chinese textbook
examples of “one problem involving inverse situations” demanded students to understand inverse
quantitative relationships among “original, sold, and leftover” (Grade 1 table), “speed, time, and
distance” (Grade 4 table), and “original, output, and rate” (Grade 6 table). In fact, built on these
inverse quantitative relationships, the Chinese sixth grade textbook formally presented advanced
topics such as percentages (e.g., involving “original price,” “reduced price,” and “discount”) and
direct and inverse proportions (e.g., for direct proportion, “price” or “speed” is fixed; for inverse
proportion, “total cost” or “distance” is fixed).

The Chinese textbook features in spacing learning over time—purposeful topic arrangement and
stressing structural relations—were not evident in both U.S. textbooks. Even though the U.S. teacher
editions suggested a few instances of inverse word problems (none in the student editions), the HM
teacher edition only suggested students act out the story problems and the EM teacher edition
suggested students compare the relevant problems so as to see that “They use the same 3 numbers.”
Such instruction focused only on numerical calculation but not inverse qualitative relationships. In
fact, HM’s definition tasks (n+/- = 22, n×/÷ = 11) further demonstrated such a focus. For example,
“related facts” were referred to through the metaphor, “people in a family are related and sometimes
we call them relatives” (Grade 1, p. 153); A fact family was defined as “a set or related facts” (Grade
2, p. 63) or “a group of number sentences that use the same numbers” (Grade 3, p. 132). All these
explanations targeted surface similarities (e.g., the same three numbers) rather than the structural
relations (e.g., part + part = whole, whole—part = part) that are the key to inverse relations.

Both U.S. textbooks demonstrated different ways to space learning. For EM textbooks, one way
was to re-teach. For example, “fact family” frequently served as the lesson title across several grades.
While the range of numbers changed, the main idea of the lesson remained the same as in previous
years. The other way that the EM textbooks spaced learning was to frequently arrange an inverse task
as practice problems, even in lessons with nonrelevant topics. For instance, among the 238 additive
and 216 multiplicative instances of fact family/related facts (see Table 2), 83% and 75% of them,
respectively, were fact triangles. This idea of fact triangles was revisited in later lessons such as
“Pattern-block and template shapes” (Grade 1, Lesson 7.3), “Exploring area, polygons, and geoboard
fractions” (Grade 2, Lesson 10.7), “Exploring estimates and polygons” (Grade 3, Lesson 5.4), and
“Rectangular arrays (Grade 5, Lesson 1.2). The HM textbook series shared the above strategy of re-
teaching. This textbook series also stressed high frequency of practice to reinforce students’ learning.
As shown in Table 2, “checking using inverse relations” was the first or second most frequent
instance in HM (n+/- = 217; n×/÷ = 745). In many occasions, one practice problem (e.g., Divide and
Check) included 20–40 subproblems on the same page (e.g., Grade 3: p. 624, p. 626; Grade 4: p. 215,
p. 229, 231; 239; Grade 5: p. 113, p. 119; Grade 6: p. 37, p. 163). Overall, both U.S. textbook series
spaced learning over time through repetition across grades.

Weak connections between inverse relations and algebraic equation solving
According to Carpenter and colleagues (2003), students’ understanding of inverse relations in
arithmetic will contribute to their later solving of algebraic equations. However, this vertical
connection was not evident in all textbook series, except for a few instances of filling in the missing
numbers in U.S. textbooks (EM: n+/- = 4, n×/÷ = 2; HM: n+/- = 5, n×/÷ = 2) and a few algebraic
equation solving problems in all textbooks (EM: n+/- = 3, n×/÷ = 5; HM: n+/- = 2, n×/÷ = 12; China: n
+/- = 4, n×/÷ = 2). Most of the relevant tasks that were not coded were due to the textbooks’ emphasis
on direct thinking, rather than using inverse relations. One example was the third grade HM task, 2
× () = 6. The textbook reminded students to think about 2 × 3 = 6, thus the () = 3. Similarly, the EM
second grade teacher edition suggested a “count-up” strategy to solve 32 + () = 50: “A child might
reason as follows: Which number, added to 2, will give me 10? It’s 8, so 32 + 8 = 40. Which number,
added to 40, will give me 50? 40 + 10 = 50. Finally, 8 + 10 = 18” (p. 50). For algebraic equation
solving, both U.S. textbooks presented them in a format of ax ± b = c and continuously stressed
direct thinking. For example, the EM grade 4 textbook taught students to solve 12 + x = 55 by

62 M. DING

D
ow

nl
oa

de
d 

by
 [

M
ei

xi
a 

D
in

g]
 a

t 0
4:

13
 2

3 
Ja

nu
ar

y 
20

16
 



thinking of 12 + (43) = 55 (Lesson 3.11). It also presented a “broken calculator activity,” where
students were suggested to solve 452 + x = 735 without using the broken minus key. Indeed, the EM
grade 6 textbook presented three ways to solve an equation without involving inverse relations. The
first method was “trial-and-error,” which was a count up strategy. The second method was the
“cover-up” method that also involved direct thinking (e.g., 2 m + 5 = 17, covering 2 m and think
about ? + 5 = 17. As 12 + 5 = 17, 2 m = 12). The third method was named “equivalent equation
method.” In this method, to solve 2 m + 5 = 17, one may add “–5” to both sides of the equation
based on the property of equality. Cancelling out “+5” on the left side involved the three-term
inversion principle (a + b—a = b) rather than the two-term complement principle (if a + b = c, a = c
—b), the focus of this study. HM shared the same pattern as EM.

Likewise, the Chinese textbook series formally presented equation solving in fifth grade in both
formats of ax ± b = c and ax ± bx = c. According to the teacher manual, students were traditionally
taught to solve equations using the two-term inverse relations. For example, to solve 3x—4 = 16,
students can view 3x as one quantity, which equals 16 + 4. However, the new curriculum standards
(Ministry of Education of China, 2001) suggested reforming this part using the property of equality
(e.g., adding 4 to both sides of 3x—4 = 16) in order to better align with the middle school curricula,
which was similar to both U.S. textbooks. The Chinese fifth grade textbook, however, presented one
type of problem, “Filling a sign in the O and filling a number in the □,” which suggested that after
students understood the method of using the property of equations, they might take a shortcut by
not writing down the transformation steps. This may strengthen students’ understanding of the two-
term inverse relations.

Discussion

This study explores the differences and similarities between U.S. and Chinese textbook presentation
of the inverse relations. It should be noted that while these textbooks are representative of U.S. and
Chinese curricula, they are not used exclusively, nor are textbooks even mandated in other nations,
such as in Australia, Belgium, and Singapore. In addition, this study has a narrowed focus on the
two-term complement principle, which is arbitrary due to the close relationship between the two-
and three-term inverse relations. Nevertheless, given that the goals of teaching and learning of
fundamental mathematical ideas such as inverse relations is global, findings from this study may
shed light on improving existing learning environments by offering students more meaningful and
explicit learning opportunities.

Meaningful initial learning of fundamental mathematical ideas: Contextual support

Initial learning affects later transfer (Chi & VanLehn, 2012). The key to meaningful initial learning is
tying a new concept to students’ existing knowledge (Ausubel, 1968; Bransford, Brown, & Cocking,
1999; Piaget, 1952). With regard to inverse relations, given that children already possess relevant
preliminary schemas (Resnick, 1992) and informal knowledge (Gilmore & Bryant, 2008; Klein &
Bisanz, 2000; Sherman & Bisanz, 2007), it is important to activate their informal understanding to
influence new learning. In this study, the initial learning opportunities (worked examples) of inverse
relations in both U.S. and Chinese textbooks involved concrete representations; however, the nature
and purpose of using concrete representations appear to be different. In particular, the nature of
concrete representations in Chinese worked examples was found to be contextual (e.g., word
problems with illustrations). In fact, all worked examples in Chinese textbooks were situated in
real-world contexts, which was in direct contrasts to U.S. textbooks’ small portion of such contexts.

3.6 + x = 5.7 x—20 = 30 0.6x = 4.2 x ÷ 20 = 5
x = 5.7 O □ x = 30 O □. x = 4.2 O □. x = 5 O □
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The main type of concrete representations in U.S. worked examples was found to be physical or
visual without contextual support (e.g., dominos, cubes, and diagrams). Therefore, the Chinese
textbooks may have a greater likelihood to activate students’ personal experiences and informal
understanding to aid in learning (Ding & Li, 2014; Goldstone & Son, 2005; Resnick & Omanson,
1987). Moreover, the purpose of using concrete contexts in Chinese textbooks (e.g., shopping) is
clearly for sense-making of computation or checking procedures; yet, the U.S. textbooks mainly used
them as a pretext for computation with a focus on procedures. HM’s strategy of using arrows to
stress checking procedures is similar to the presentation of Belgium textbooks reported in Torbeyns
and colleagues (2009). As indicated by the literature (Baroody, 1987, 1999; De Smedt et al., 2010;
Torbeyns et al., 2009), when students do not possess meaningful understanding of procedures and
strategies, mechanical practices may only result in inert learning. As such, Chinese textbooks’ more
robust contextual supports may have a greater potential to contribute to students’ meaningful initial
learning, laying a conceptual foundation for students’ later numerical practices (Ding & Li, 2014). It
is interesting to note that Chinese textbooks decreased the proportion of concrete worked examples
from additive to multiplicative inverses. In this study, we lack evidence to explain this observation.
Future studies may explore possible reasons through interviews of textbook designers. For instance,
is it possible that Chinese textbook designers might have expected students to transfer their learning
from additive to multiplicative inverses, and thus provide more student self-practice problems?

Explicit learning of fundamental mathematical ideas: Structural relations

Prior studies have also revealed that the current learning environments of inverse relations lacks
support for students’ explicit understanding, resulting in students’ inability to spontaneously use this
relation in new contexts (Baroody, 1999; De Smedt et al., 2010; Torbeyns et al., 2009). In this study,
the U.S. textbooks demonstrated a procedural focus. The addition and subtraction diagrams and
multiplication and division diagrams presented in EM textbooks literally listed quantities, but not
the interaction among quantities, which may hinder students’ understanding of the problem
structures and underlying quantitative relationships (see elaboration in Murata, 2008). In addition,
both EM and HM posed questions on inverse relations; yet, their expected student responses were
mainly limited to surface similarities of numbers/quantities but not the interactions between them.
This has been found to be a roadblock of deep initial learning (Chi & VanLehn, 2012).

In contrast, the Chinese textbooks demonstrated explicit attention to structural relations, which
was first indicated by its deep use of worked examples. From the very beginning, worked examples of
number composition and fact families aimed to teach students the part-whole relationships (part +
part = whole; whole—part = part), which is consistent with prior findings (Zhou & Peverly, 2005).
Chinese textbooks also systematically faded the concreteness into the abstract ideas (Goldstone &
Son, 2005). For instance, when it came to checking, the Chinese textbooks suggested going beyond
the concrete situation to enable students’ inverse understanding at a general level (e.g., difference +
subtrahend = minuend). Such an approach will likely enable generalization from worked examples
(Lewis, 1988). The second indicator of Chinese textbooks’ explicit attention to structural relations
lies in its consistent emphasis on inverse quantitative relationships. Through carefully matched
quantities and situations of inverse word problems, students’ attention may be drawn to the under-
lying structures (e.g., speed × time = distance; distance ÷ speed = time; distance ÷ time = speed).
These results may partially explain findings from prior cross-cultural studies that have demonstrated
Chinese students’ superiority in understanding distance, time, and speed interrelations (e.g., Zhou,
Peverly, Boehm, & Lin, 2000), a hard topic related to multiplicative reasoning (Thompson, 1994).
Even with the problems that did not contain the matched quantities, the Chinese textbooks still
attended to inverse quantitative relationships (e.g., sold + leftover = original, original—sold = left-
over). Focusing on relational but not numerical calculation (Nunes et al., 2012; Thompson, 1994)
likely facilitates inverse understanding at a structural level, which will transcend over contexts (e.g.,
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whole numbers, decimals). Indeed, the more elaborated the underlying structures and principles are,
the more effective subsequent learning will be (Ausubel, 1968).

Spaced learning of fundamental mathematical ideas: Task design and a dilemma

The learning of any fundamental ideas takes time (Pashler et al., 2007). Thus, it is important to
provide spaced learning with frequent exposure of students to relevant practices.

Consequently, textbooks, as part of the learning environments, should be carefully designed with
coherence, especially vertical coherence (National Academy of Education, 2009). In this study,
Chinese textbooks demonstrated purposeful task arrangement and connected structural relations
over grades. In contrast, both U.S. textbook series, although presenting inverse tasks with high
frequency, were mainly computational and repetitive. This is different from the Chinese textbooks’
task choices and focus shifts. The cross-cultural differences in task design call for rethinking of
learning opportunities when spacing learning over time. For example, what tasks should be chosen
as worked examples to support deep, meaningful initial learning, and how much practice is enough?
When grade level increases, how may students’ attention be shifted to new learning in order to
strengthen rather than to simply repeat the learned concepts? Only with a clear task design goal, can
one expect to overcome the common limitation—lack of depth—introduced by U.S. textbooks
(Schmidt et al., 2005), thus offering more quality opportunities to learn fundamental mathematical
ideas (CCSSI, 2010).

Related to spacing learning over time, an emerging dilemma occurs due to the observed weak
connections between inverse relations and algebraic equation solving in all textbook series.
According to the literature (e.g., Carpenter et al., 2003; Nunes et al., 2009), understanding the
two-term inverse relations (e.g., if a + b = c then c—b = a; if a × b = c then c ÷ b = a) would
contribute to students’ later solving of algebraic equations. However, findings in this study indicate
that all textbooks approached algebraic equation solving using the property of equality (along with
the three-term inversion principle). The Chinese teacher manual explained that the shift from using
the two-term inverse relations to the property of equality is to bridge students’ learning in middle
school, where more complex algebraic solving will be taught. As such, it remains unclear in what
ways the use of two-term inverse relations is inadequate for solving algebraic equations. Indeed,
could students’ mastery of the two-term inverse relations actually support students’ algebraic
equation solving? As instructed by the Chinese textbooks, students who have mastered the detailed
steps of equation solving may write a “shortcut” that involves the two-term inverse relations, which
enhances the efficiency in equation solving. In fact, recent research asserts that there is a close
relation between students’ understanding of the two-term and three-term inverse relations (Baroody
et al., 2009; Gilmore & Bryant, 2008). Future studies may explore how these two types of inverse
relations may work together, along with property of equality, to support students’ algebraic equation
solving. Textbook designers may also consider how the advantage of two-term inverse relations
obtained in previous years may be better taken to support the learning of algebraic equation solving.
Such explorations will further understanding of the detailed paths to space learning of fundamental
mathematical ideas in elementary grades.

Implementation and conclusion

As Shimizu and Kaur (2013) emphasized, the purpose of cross-cultural comparison is to reflect on
one’s practices and to learn from others. In this study, findings based on both U.S. and Chinese
textbooks contribute insights to improve the learning environments of fundamental mathematical
ideas. Chinese textbooks’ skillful use of representations and stressing the underlying structural
relations are consistent with prior findings on Chinese textbook presentations of the distributive
property (Ding & Li, 2010, 2014), the associative property (Ding et al., 2012), and the equal sign (Li
et al., 2008). These approaches in developing students’ meaningful and explicit understanding may
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be learned by textbook designers in the United States and other countries. Likewise, U.S. textbooks’
unique problem tasks (e.g., fact triangle, frames and rows, part-whole mat, one problem solved with
inverse operations, in-out activity or rate tables) may be learned by Chinese textbook designers and
others. Given that examples with greater variability can better facilitate the encoding of principles
(Renkl et al., 2002), the new problem types may promote students’ interests and effective learning.
Indeed, findings about U.S. textbooks’ preference in using rate tables are consistent with Cai and
colleagues’ (2005) conclusion that U.S. textbooks seemed to stress more functional thinking.

The findings together raise important questions of not only how to design effective textbooks but
also how to use them successfully in classrooms to support learning. Findings about Chinese
textbooks in this study appear to be parallel with prior findings on Chinese teachers’ knowledge
structures and classroom teaching (e.g., Ding et al., 2013; Zhou, Peverly, & Xin, 2006). As such,
future studies may include both types of inverse relations, across more countries and explore detailed
connections between textbooks, classroom instruction, and student learning.
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