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This study examines presentations of the distributive property (DP) in two widely used U.S. elemen-
tary text series and one main Chinese text series along three dimensions: problem contexts, typical
problem types within each problem context, and variability in using the DP. In general, the two U.S.
texts were found to resemble each other but to differ considerably from the Chinese text series. Both
U.S. texts are computation-dominated, presenting various strategies centering on “breaking apart a
factor to perform multiplication.” These strategies limit the use of the DP mainly with whole numbers
and in a regular direction. The underlying principle of these strategies is seldom made explicit. In
contrast, the Chinese text approaches focus on the underlying principle and are well aligned with
cognitive research suggestions. Multiple-step word problems with particular structures are used in
a systematic and hierarchic manner across grades to help students learn and transfer the DP. The
Chinese texts also tend to ask students to “compute in convenient ways” involving various numbers
(e.g., whole numbers, decimals, fractions, and percents) and using the DP in both regular and opposite
directions. The introduction of repeated variables is a timely application of the DP, which provides an
entry to algebra (e.g., expressions and equations with repeated variables). The Chinese approaches
(e.g., contextual interferences, spaced practice, and encoding variability) suggest alternative insights
into developing U.S. students’ understanding of the DP and readying them for algebra.

The distributive property (DP), along with the commutative and associative properties, has been
recognized as a critical foundation for school mathematics (National Mathematics Advisory
Panel, 2008). The combination of these properties allows powerful flexibility for students doing
arithmetic (National Research Council [NRC], 2001). These properties are also viewed as three
of the fundamentals necessary for working with equations (Bruner, 1960/1977). Recently, other
researchers (e.g., Carpenter, Franke, & Levi, 2003; Schifter, Monk, Russell, & Bastable, 2008)
have emphasized that these properties are at the heart of early algebra because they provide a solid
foundation for exploration of generalizations about number and operation, and for justification
of such generalizations. With regard to the DP, the Curriculum Focal Points (National Council of
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THE DISTRIBUTIVE PROPERTY 147

Teachers of Mathematics [NCTM], 2006) points out that it needs to be taught in the third grade
and particularly emphasized in fourth grade. It also needs to be used by students, along with other
properties, to support the learning of division in fifth grade and solving equations in sixth grade.

Although the significance of these fundamental ideas has been recognized for a long time,
researchers have just begun to discuss ways to teach these ideas in the elementary grades. It re-
mains largely unknown how these properties can be systematically and effectively introduced and
developed across the elementary grades, and how knowledge of the principles can be developed
from arithmetic contexts thus preparing students for later algebraic learning. In this study, for
the purpose of in-depth research, we will only focus on the DP. Our study aims to contribute to
the current literature, through a cross-national curriculum examination, by presenting alternative
approaches and contexts for developing the concept of the DP at the elementary level.

CURRENT RESEARCH PROGRESS REGARDING THE USE OF THE DP
IN ELEMENTARY GRADES

The NCTM (2000) Standards suggest students in grades 3–5 should be able to “identify such
properties as commutativity, associativity, and distributivity, and use them to compute with whole
numbers” (p. 158). Schifter et al. (2008) provided detailed classroom episodes illustrating how
elementary students could be engaged with these basic properties. With regard to the DP, Schifter
et al. presented two episodes from third grade classrooms. When calculating 12 × 6, students
broke either 6 or 12 in different ways, resulting in various calculation approaches such as 12 ×
6 = 12 × (3 + 3) = (12 × 3) + (12 × 3) and 12 × 6 = (10 + 2) × 6 = (10 × 6) + (2 × 6).
Based on these classroom examples, Schifter et al. concluded, “We might define ‘understanding
distributivity’ for a third grader to mean breaking apart one factor to perform multiplication and
successfully explaining why it works” (p. 439).

The aforementioned cases of “breaking apart one factor to perform multiplication” are applying
the distributive property, a(b + c) = ab + ac. Two steps are involved: (1) breaking apart a factor
into b + c, and (2) expanding a(b + c) into ab + ac. In fact, this approach has been consistently
advocated by existing research (e.g., Carpenter et al., 2003; Mason, 2008; NCTM, 2000; Schifter,
1999) and has become a dominant way to teach and use the DP. Carpenter et al. (2003) pointed
out that students could learn multiplication facts by relating the difficult or complicated ones to
the facts they already know by using the DP (e.g., 3 × 8 = 2 × 8 + 8, and 9 × 7 = 10 × 7 −
10). In the cases of multiplication with larger numbers, it was suggested that the DP embedded
in the algorithms be brought to the forefront. Examples given by researchers were 8 × 14 = 8 ×
10 + 8 × 4 (NCTM, 2000), 18 × 12 = 18 × 10 + 18 × 2 (Schifter, 1999), and 645 × 123 =
(600 × 123) + (40 × 123) + (5 × 123) (Ball, 1988). The area model (breaking up an array) was
suggested for modeling the distributive property (NCTM, 2000) (see Figure 1).

When breaking apart both factors to perform multiplication, the DP could be used multiple
times to produce the partial products. For example, the DP could be used three times for 48 ×
37 to generate four partial products (40 × 30) + (40 × 7) + (8 × 30) + (8 × 7) (Carpenter
et al., 2003, p. 115). Without understanding the DP embedded in the above multiplication, students
may produce (40 + 8) × (30 + 7) = (40 × 30) + (8 × 7), which may cause further mistakes in
binomials such as (a + 7) × (a + 4) = a2 + 28 (Carpenter et al., 2003, NCTM, 2000, Schifter,
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148 DING AND LI

FIGURE 1 An array model showing the distributive property of multiplication in NCTM (2000).

1999). Instead, if students understand the above process, “they will be able to use that knowledge
to solve algebra problems like (a + b) ×(c + d) = ac + ad + bc + bd” (Baek, 2008, p. 152).

Existing research supports the NCTM (2000) recommendation and has contributed to our
understanding of how to lay the foundations for students’ future algebraic learning. However,
this research is limited to a single context: multiplication with whole numbers. In this context,
the most common use of the DP, regardless of how many digits the numbers contain and how
many times this property is used, is “breaking apart one factor to perform multiplication,” thus
limiting the use of the DP only to the regular direction a(b + c) = ab + ac. Using the DP in the
opposite direction, ab + ac = a(b + c) is, however, rarely explored.

A few researchers (e.g., Carpenter et al., 2003) are cognizant of the importance of students’
ability to use the DP in an opposite direction, ab + ac = a(b + c) [e.g., 5 × 10 + 3 × 10 = (5 +
3) × 10]. According to Carpenter et al., this use of the DP is essential to later algebraic learning
with repeated variables such as 9a + 3a = (9 + 3)a = 12a. Lacking a good sense of the DP, many
students tend to make mistakes such as 7d + 5e = 12de (Carpenter et al., 2003). The significance
of the use of the DP in an opposite direction, however, seems not fully acknowledged by existing
research.

An opportunity for students to explore the DP more deeply is briefly encouraged by the NRC
(2001) in the perimeter problem:

It would be helpful, for example, if the curriculum included perimeter problems in which students were
asked to calculate the perimeter of a 7-by-4 rectangle in three ways that yield equivalent expressions:
2(7 + 4), (2 × 7) + (2 × 4), and 7 + 7 + 4 + 4. Such situations are ideal for initiating discussions of
the equivalence of arithmetic expressions and of the properties underlying that equivalence. (p. 271)

Solving the perimeter problem in multiple ways to initiate a discussion of the DP is different from
the common approach of “breaking apart a factor to multiply” because the perimeter problem
does not limit students’ thinking to one direction [e.g., 2(7 + 4) = (2 × 7) + (2 × 4) or (2 × 7) +
(2 × 4) = 2(7 + 4)]. In addition, the perimeter problem provides concrete contextual support
for students to make sense of the DP because the expressions on both sides of the equal sign are
computing the perimeters for the same rectangle. However, as the NRC (2001) points out, such
opportunities are quite rare in current elementary school curricula.

Understanding fundamental principles like the DP is critical for any domain (Goldstone & Son,
2005). However, it is notoriously difficult for students to learn these principles, in part because
students’ interpretation of the principles is usually context-dependent (Colhoun, Gentner, &
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THE DISTRIBUTIVE PROPERTY 149

Loewenstein, 2005), and, as has been indicated, the widely acknowledged context for using the
DP is limited to whole number multiplication with a regular direction. Significant alternatives are
rarely discussed. In order to explore more effective contexts and tasks for learning the DP, we
first seek general guidance from cognitive findings that could inform the teaching and learning
of abstract principles in classroom settings.

COGNITIVE FINDINGS REGARDING THE LEARNING OF PRINCIPLES

Our study draws on the research of Pashler et al. (2007), which provides evidence-based in-
structional recommendations to help children learn about principles and transfer that learning.
The relevant guidance for our study includes recommendations to space learning over time, use
worked examples (solutions provided), connect concrete and abstract representations, and ask
deep questions to build self-explanations.

Space Learning Over Time

Numerous laboratory experiments have demonstrated that students can markedly retain informa-
tion when they are re-exposed to concepts over time (Cepeda, Pashler, Vul, Wixted, & Rohrer,
2006). Based on this finding, important curriculum content should be reviewed at least several
weeks or months after it was initially taught. Such delayed reviews could provide spacing for
learning. According to Pashler et al. (2007), one of the limitations of current research on this
issue is that the majority of studies are assessments of students’ acquisition of isolated bits of
information such as facts and definitions because these are easily measured. Building structural
understanding of principles like the DP is rarely studied.

Worked Examples

Worked examples, as cases of principles, can facilitate students’ understanding because the
comparison between principles and cases can effectively constrain the ways that students interpret
those abstract principles (Colhoun et al., 2005). Additionally, comparisons between examples may
lead to better encoding of principles by making the implicit structures underlying these examples
explicit (Gentner, Lowenstain, & Thompson, 2003, 2004). Some researchers (e.g., Rittle-Johnson
& Star, 2007) have claimed that comparing different solutions within one worked example could
facilitate student learning. However, as Colhoun et al. (2005, p. 1663) warn, not all examples
are equally effective. “A clear example can enable an abstract principle to be better understood
(but a poor example can degrade learning from a clear principle)”. Worked examples were found
to be more effective when they were interleaved with practice problems (Renkl, 2002; Renkl,
Atkinson, & Große, 2004; Zhu & Simon, 1987). Fading examples into problems by providing
early steps in a problem but requiring more and more later steps from students was found beneficial
(e.g., Renkl et al., 2004). It has also been suggested that examples and problems with greater
variability could better enable students to encode the key principles (Renkl, Atkinson, Maier, &
Staley, 2002).
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150 DING AND LI

Concrete and Abstract Representations

Both concrete and abstract representations should be used and connected to help stu-
dents understand principles (Pashler et al., 2007). For example, graphics can be added
to text presentations to enhance student learning (Mayer, 2001; Moreno & Mayer, 1999;
Sweller, 1999). Word problems, as concrete events, can provide sources of meanings for
understanding abstract formalisms (e.g., Resnick, Cauzinille-Marmeche, & Mathieu, 1987;
Uttal, Liu, & Deloache, 1999). However, concrete representations might support initial learn-
ing but not the transfer of that knowledge to novel contexts (Resnick & Omanson, 1987).
This is because perceptually rich information or concrete word problem situations may fo-
cus students’ attention to non-relevant or surface information thus distracting students from
the underlying ideas (Goldstone & Sakamoto, 2003; Kaminiski, Sloutsky, & Heckler, 2006).
Therefore, “concreteness fading” is suggested for promoting both learning and transfer
(Goldstone & Sakamoto, 2003; Goldstone & Son, 2005). Sometimes, a more abstract or schematic
picture (e.g., the number line diagram widely used in many high-achieving countries, see Cai &
Moyer, 2008; Murata, 2008) may be more effective to illustrate deep structures (Pashier et al.,
2007). Regarding word problem solving, a recent study (Koedinger, Alibali, & Nathan, 2008) fur-
thered our understanding of the effects of concrete and abstract representations by introducing a
new factor: level of problem complexity. This study found that abstract representations were more
powerful for solving complex problems such as double-reference algebraic problems while con-
crete representations were more helpful for solving simple problems with less computational load.

Self-Explanations and Deep Questions

Students can effectively learn new concepts through self-explanations (Chi, 2000; Chi, de Leeuw,
Chiu, & LaVancher, 1994) that may help them clarify the conditions of a conclusion (VanLehn,
Jones, & Chi, 1992), map the new knowledge onto existing knowledge, and integrate procedural
and declarative knowledge (Chi et al., 1994). NCTM (2000) strongly advocated students to
explain and justify their mathematical thinking. However, students themselves usually have little
motivation or ability to generate high-quality explanations without external help. Deep questions,
as recommended by Pashler et al. (2007), may prompt students to look for underlying principles
and causal relationships (Craig, Sullins, Witherspoon, & Gholson, 2006).

With these cognitive findings in mind, we are interested in knowing the types of effective
experiences that students should be offered to better understand the DP. For example, what are
effective ways for spacing the learning of the DP with delayed reviews over time? What types of
concrete and abstract representations and contexts should be provided? How can word problems
be well designed for learning and transferring this property? What variations in problem contexts
are useful? And what kinds of deep questions can be asked to support students’ understanding of
the DP?

EXPLORATIONS OF ALTERNATIVES THROUGH CROSS-NATIONAL
CURRICULUM COMPARISON

One of the important ways to explore alternative learning contexts is through a cross-national
curriculum comparison, examining how the curriculum resources in high-achieving countries
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THE DISTRIBUTIVE PROPERTY 151

provide students opportunities to learn these fundamental concepts. There are two reasons for
doing so. First, there is little disagreement that curricula have a large impact on learning (Ball &
Cohen 1996; Porter, 1989) principally through textbook presentation, including problem contexts,
types of problems, and sequences of presenting the concepts (Hamann, & Ashcraft, 1986; Li,
Ding, Capraro & Capraro, 2008; McNeil et al., 2006; Stigler, Fuson, Ham, & Kim 1986).

Second, existing international comparative studies have already identified important differ-
ences in textbook presentation between the United States and high-achieving countries, potentially
promoting more sophisticated mathematical understanding in the elementary grades. For exam-
ple, with regard to the notorious fear of algebra by U.S. students, Cai, Lew, Morris, Moyer,
Ng & Schmittau (2005) compared curriculum resources from five countries and found that U.S.
textbooks focus more on students’ intuitive algebraic sense, and postpone formal opportunities
to learn. These researchers also gleaned ideas from Chinese and Singaporean curricula (e.g.,
using pictorial equations, using both arithmetic and algebraic approaches to solve problems),
which encourage algebraic thinking in early grades (Cai et al., 2005; Cai & Moyer, 2008).
Murata (2008) investigated the presentation practices and curriculum approaches regarding ad-
dition and subtraction between U.S. and Japanese elementary texts. This researcher found that
U.S. texts are more likely to use non-contextual (numerical) problems while the Japanese se-
ries mainly uses contextual (story) problems with a particular emphasis on using tape diagrams
(similar to Cai & Moyer’s “pictorial equations”). Similarly, Stigler et al. (1986) analyzed addi-
tion and subtraction word problems in U.S. and Soviet elementary texts (grades 1–3). Striking
differences in problem distribution, frequency of occurrence, and level of difficulty were re-
vealed. It is impressive that the Soviet texts presented many more two-step word problems,
which are considered difficult in America, while the U.S. textbooks mainly provided one-step
problems that are more easily solved. Moreover, the Soviet texts presented two-step (and one-
step) equations much earlier in the curriculum. These variations in textbook presentation are
viewed by Stigler et al. as important factors affecting children’s capability in solving word
problems.

These cross-national textbook comparisons provide alternatives for teaching and learning key
mathematical ideas. Given the importance of the DP and a lack of research on this property, it is
our expectation that the cross-cultural curriculum comparison will bring insights into developing
students’ understanding of the DP, thus better preparing students for algebraic learning.

PURPOSE

In this study, we explore the differences in textbook presentation of the distributive property
between U.S. and Chinese elementary textbook series. We selected Chinese textbooks because
China is one of the high-achieving countries in mathematics (Stevenson & Stigler, 1992) demon-
strated by international assessments where Chinese students have consistently outperformed their
U.S. counterparts (Trends in International Mathematics and Science Study [TIMSS], 1999, 2003,
2007). Empirical studies that directly compare early algebraic learning also demonstrate that
Chinese elementary students have a better understanding of the concept of equivalence (Li et
al., 2008) and tend to solve word problems in abstract and algebraic ways (Cai, 2004). Chinese
elementary textbooks have many features that may aid student learning of early algebra (e.g., Cai
& Moyer, 2008; Li et al., 2008). In fact, for decades Chinese text presentation has been drawing
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152 DING AND LI

on successful classroom learning and teaching experiences (personal communications with the
Chinese textbook editors). In addition, Chinese elementary teachers who demonstrated profound
understanding of fundamental mathematics including the use of the DP in Ma’s (1999) study
also admitted that one of the important sources of their professional knowledge was the Chinese
textbooks.

For this study, we particularly examine the text presentation regarding the DP along three
dimensions: (a) problem contexts, (b) typical types of problems within each problem context,
and (c) variability in using the DP. With regard to problem contexts, we want to know whether a
textbook mainly uses computation or word problems, or some other problem contexts. The second
dimension, “typical types of problems,” is a closer examination into each problem context. For
example, concerning the word problem context, does it mainly include one-step or two-step
problems? How are these word problem structures different from each other? It is worthwhile to
explore this aspect because we may expect that not all problems are equally effective in supporting
students’ understanding of key principles and concepts (Colhoun et al., 2005; McNeil & Alibali,
2005). The third dimension, “variability in using the DP,” includes two sub-questions: What are
the directions (e.g., regular, opposite) and what are the types of numbers (e.g., whole numbers,
fractions) that are used in the problems involving the DP? As previously noted, examples/problems
with greater variability can enable students to better encode knowledge of principles (Renkl
et al., 2002).

Since “it may take time for students to develop this understanding [of the distributive property],
but it can pay big dividends in the long run by making learning meaningful” (Carpenter et al.,
2003, p. 39), we investigate the aforementioned three aspects across grade levels with regard
to how the related curriculum tasks are presented before, during, and after the DP is formally
introduced. This cross-grade level examination of text presentation allows us to explore possible
effective ways to space the learning of the DP over time (Carpenter, Pashler, & Cepeda, &
Alvarez, 2007). In addition, the cross-grade level examination provides information regarding
how the understanding of the DP from arithmetic may possibly contribute to later algebraic
learning, thus paying its “big dividends” in the upper elementary grades and beyond.

METHOD

Selection of Textbooks

The Chinese textbook series from Jiang Su Educational Press (JSEP) (Su & Wang, 2005) and
the U.S. textbook series from Houghton Mifflin (HM) (Greenes et al., 2005) and from Scott
Foresman–Addison Wesley (SF-AW) (Charles et al., 2004) were analyzed for comparison of the
manner in which the distributive property is developed. The Chinese textbook JSEP is one of the
three main Chinese curricula, with little qualitative difference from the other two textbook series
(Li et al., 2008). Both U.S. textbook series (HM and SF-AW) are also widely sold and widely
used (Horizon Research, 2002; Murata, 2008; Stigler et al., 1986). Each textbook page in grades
1–6 for the Chinese curricula and grades K–6 for the U.S. curricula were first examined for the
coding of instances of the DP.

The teachers’ instructional manuals that accompanied the textbooks were also examined. For
the U.S. textbook series, we examined the teacher guides; for the Chinese textbook series, we
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THE DISTRIBUTIVE PROPERTY 153

examined the Curriculum Analysis written by the original textbook authors (e.g., Sheng, 2008).
While the U.S. teacher guides present brief information on the learning objectives and teaching
steps, the Chinese manuals provide detailed information on the design/purposes/rationales of
each unit/lesson and suggest teaching approaches to the content, including the related practice
problems. As will be exemplified below, these manuals were valuable resources to resolve possible
discrepancies in the process of coding of instances and data analysis.

Coding of the Instances

In general, a content analysis method was used to code and analyze the curriculum materials
(NRC, 2004). We coded all of the problems in the student textbooks, including the worked
examples (solutions provided) and practice problems (no solutions provided). A worked example
would be considered as an instance if its solution either (a) explicitly uses the DP, or (b) implicitly
involves the DP with a clear possibility to develop student intuitive sense of the DP. For example,
regarding the worked example, “If 17 farms each had 25 goats, how many goats would all the
farms have together?” (US SF-AW, grade 4, p. 332), the textbook presents an array model along
with three steps to clearly show the partial products for 17 × 25 (step 1: 7 × 25 = 175; step
2: 10 × 25 = 250; and step 3: 175 + 250 = 425). This process is relatively consistent with the
NCTM (2000) recommendation about the teaching of the DP. As a result, this worked example
was coded as an instance. A practice problem would be coded as an instance if the text explicitly
asks students to use the DP to solve problems. When no clear requirement for using the DP was
visible, our decisions on coding practice problems were then referred back to the text presentation
of corresponding worked examples. In addition, there were two special cases regarding coding
instances worthy of attention (mainly with Chinese textbooks): (a) A problem may include two
or more sub-questions, solving each of which involves the DP. For such a case, we considered
each sub-question as an instance; and (b) Two problems (e.g., “2 × 5 + 5” and “3 × 5”) are
listed as a pair vertically, and taking them together could illustrate the DP. For such a case, we
considered the pair as one instance.

The Process of Developing and Refining Instance Coding. The first author coded all
of the instances from the three text series using a coding framework agreed on by both of
the researchers. The recorded information included page numbers, chapter titles, lesson titles,
example problems, the frequencies of the same type of problem occurring on the same page,
and the coders’ comments. Most instances could be easily identified and categorized. However,
difficulties did occur when determining whether some worked examples and practice problems
should be coded as instances or not. These challenges were resolved through discussions with the
second author. For example, the HM third-grade textbook introduces two strategies to calculate
5 × 6. The first strategy is called “uses doubles,” that is, 5 × 6 = 5 × 3 + 5 × 3. The second
strategy is termed “uses the distributive property,” that is, 5 × 6 = 5 × (4 + 2) = 5 × 4 +
5 × 2. The textbook clearly states that the doubles strategy is different from the use of the
DP. The teacher guide displays a similar view. This raises a challenge for determining whether
the doubles strategy problems should be coded or not. After discussion, the doubles strategy
problems were coded because both authors agreed that since the doubles strategy is indeed a
special case of the DP, it could at least provide students with an intuitive sense of this property.
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154 DING AND LI

The above difficulty with the doubles strategy occurred in coding the HM text, but not the other two
text series.

When coding the SF-AW series, the challenges were associated with those multiplication
problems where the standard computation algorithm was a focus. For example, a lesson entitled
“Multiplying two-digit and one-digit numbers” presents the standard algorithm with an example
of 3 × 26 (Charles et al., 2004, p. 270). Two steps are demonstrated: (a) 3 × 6 = 18 ones. Regroup
18 ones as 1 ten and 8 ones, write down 8; and (b) 3 × 2 tens = 6 tens, 6 tens + 1 ten = 7
tens, write down 7. This standard algorithm does involve the DP. However, in comparison with
previous lesson where “partial products” is a focus (e.g., 5 × 15 is solved through three steps:
5 × 10 = 50, 5 × 5 = 25, 50 + 25 = 75, p. 264), the DP in this standard algorithm is much
more hidden and much less useful to develop students’ intuitive sense of the DP. After discussion,
we decided to count as instances only those multiplication problems that show partial products
and not the ones that teach standard algorithms. Since the SF-AW text series heavily emphasizes
the partial products, we obtained a high frequency of instances. When such a “rule” of coding
instances was made, the first author went back to re-code the HM textbook. As a result, fourteen
missing instances were added.

The difficulty in determining instances in the Chinese textbooks was mainly related to the
word problems in the sixth grade. Since the DP had been formally introduced in previous grades,
it is no longer a focus at this time. However, the application of this property appears throughout
the sixth-grade texts. Two types of problems can be clearly coded as instances: (a) the problem
requires two different solutions the connection between which illustrates the DP, and (b) the
problem is expected to be solved by using equations where repeated variables are involved (e.g.,
x + 1.4x = 48). Challenges for coding occurred when the word problems do not explicitly require
two solutions or solutions with equations. After discussion, we agreed to code a problem as an
instance if either of the following conditions exists: (a) the problem is presented in a context that
asks for an equation response involving repeated variables; or (b) the teacher manual encourages
the teacher to provide a second solution, or similar problems in previous contexts request two
solutions. The three worked examples presented in Table 1 provide a sense of how we resolved
our difficulty in coding the Chinese text.

There was no difficulty in coding both Examples 1 and 2 (see Table 1). In Example 1, the
textbook first proposes two ways of thinking: 2/5 × 18 + 3/5 × 18 and (2/5 + 3/5) × 18.1 It
then reveals the DP through a comparison of the two expressions, which both contain fractions.
In Example 2, the textbook first provides one way of thinking and then asks: “What is another
way to solve it?” As a result, both solutions [45 − 45 × 4/9 and 45 × (1 − 4/9)] can be expected.
However, with regard to Example 3, the textbook only presents one way of thinking, 24 + 24 ×
1/4. The second solution 24 × (1 + 1/4) is not suggested. At first, we were uncertain whether
Example 3 should be coded as an instance. We solved this difficulty by consulting two sources:
the previous contexts and the teacher manual. Since both worked examples (Examples 1 and
2) in previous lessons in this chapter consistently present two solutions involving the DP, it is
reasonable to expect such a way of thinking can be transferred to Example 3. In addition, the
Curriculum Analysis points out that the second method had been introduced in Example 3 in the

1The meaning of multiplication is represented differently in Chinese texts. Thus, the total length of 18 knots with
each 3/5 meter long is represented as 3/5 × 18 rather than 18 × 3/5 (as is common in the United States). This type of
thinking is consistent across word problems in Chinese texts.
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TABLE 1
An Example of Solving the Difficulty in Coding Instances With the Chinese Texts

Mixed Operations of Fractions (Chinese sixth grade text, vol. 11)

Example 1 (p. 80) Example 2 (p. 83) Example 3 (p. 84)

It takes 2/5 meters of colorful rope to
make one type of Chinese knot,
while 3/5 meters for the other
type. How many meters of colorful
rope do we need if we make 18
Chinese knots of each type?

45 six graders in Lingnan Elementary
School participated in the school
sports meeting. Among these
students, 5/9 are boys, how many
of the students are girls?

Linyang Elementary School had 24
classes last year. There are 1/4
more classes this year than last
year. How many classes does this
school have this year?

traditional texts but not the current one because of the consideration of students’ cognitive load.
However, it suggests teachers should encourage students to solve this problem with the second
method. With the above evidence, Example 3 was coded as an instance.

Reliability Checking for Instance Coding. All of the textbook pages were re-coded by the
first author three months later. A few missed instances were added. After this, the second author,
who had a shared understanding of the coding categories, examined each page of Chinese and U.S.
second-, fourth-, and sixth-grade curricula using the same coding framework. We compared our
coding results grade by grade, and marked and counted the problems that were coded by one coder
but not the other. We then added the frequencies of common and non-common instances as our
total. The reliability was calculated using “common instances/total instances.” The reliabilities
for coding the Chinese texts for each grade were 92.3%, 95.2%, and 93.4%, respectively; for
coding the three U.S. HM texts the reliabilities were 100%, 95.1%, and 94.6%; and for coding
the U.S. SF-AW texts, they were 100%, 90.7%, and 91.2%. The discrepancies between the two
authors (non-common instances) were discussed and resolved before doing data analysis.

Data Analysis

After all of the instances were identified, we first classified them into one of three contexts:
word problem, computation, or definition. The word problem and computation contexts are two
categories frequently suggested and used by previous studies (e.g., Murata, 2008; Schifter, 1999).
The definition problems in this study are those that focus on “what the DP is.” It is not appropriate
to classify these problems into either word problem or computation context. For example, some
problems ask students to recall the vocabulary “Distributive Property” [e.g., “An example of the

is 4 × (5 + 6) = (4 × 5) + (4 × 6)”] and others demand an application of the DP without
actual computation [e.g., (49 + 25) × 8 = � O � O �O� ]. After the instances were classified,
we indentified the period of their appearance as before, during, or after the formal introduction
of the DP.

Next, we analyzed typical problem types within each of the aforementioned three problem
contexts. After a comparison and combination of the problem types across countries, we came up
with 3 types of word problems (5 sub-types), 6 types of computation problems (13 sub-types), and
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3 types of definition problems. Since the word problem context distinguishes U.S. and Chinese
texts, we particularly reexamined all of these problems, type by type, with a focus on how a
problem structure is systematically used and evolved across grades to develop/apply the idea of
the distributive property.

Finally, we examined the “variability” in terms of the direction of using the DP and the types
of numbers used (simply called “numbers used”) for each recorded instance. The analysis of
“numbers used” enables us to see clearly how the DP is developed over varied mathematical
topics and the ways it integrates arithmetic and algebra. We examined the numbers used in all
three contexts and classified types of numbers used into arithmetic categories (whole number,
decimal, fraction, percent) and algebraic ones (expression, equation involving whole numbers,
decimals, fractions, and percents, respectively). In addition, we examined the directions of using
the DP in the computation and definition contexts. We did not include the word problem contexts
because of the uncertainty of the solutions that might be used. We classified the directions into
three categories: the regular direction (⇒), the opposite direction (⇐), and the dual direction (⇔).

Reliability Checking for Data Analysis. Each of the aforementioned classifications was
first completed by the first author. After the initial analysis was done, the second author, who had
shared in producing the categories along with the typical examples, randomly selected 20% of the
instances from each text to do reliability checking. The procedure of calculating reliability for data
analysis was similar to the one used in checking reliability for coding instances. The agreement
for each classification was over 90%. A few disagreements (mainly about the directions) were
resolved through discussion. For example, with regard to “using known facts to find unknown
facts” in the SF-AW series (e.g., How can you use 2 × 9 = 18 to find 3 × 9?), the student
text often teaches “breaking apart a fact” (e.g., breaking 3 into 2+1) which is the regular
direction. The teacher guide suggests “(2 × 9) + (1 × 9) is 3 × 9,” which indicates an opposite
direction. The first author coded it as a dual direction while the second author coded it as a
regular direction. Through discussion, both agreed to classify the direction in such problems as
“dual direction.” After all the disagreements were resolved, we calculated the frequencies and
percentages for the final results.

RESULTS

We identified the instances from the Chinese texts for grades 2–6 and both U.S. texts for grades
3–6. Each Chinese grade has two volumes of texts, each of which includes about 110 pages
(dimensions 4 × 6 in.). In contrast, each U.S. grade has one textbook with about 750 pages
(dimensions 8 × 11 in.). The total instances in each of the three text series vary considerably. The
SF-AW has the highest frequency while HM has the lowest one (nChina = 319, nUS HM = 115,
nUS SF-AW = 552). Despite the frequency differences, both U.S. text series resemble each other
while the Chinese text series is qualitatively different from the U.S. texts in all areas including
problem contexts, types of problems used in each context, and the variability of using the DP.

Problem Contexts Involving the DP Across Grades

All three text series include the three problem contexts: word problem, computation, and defi-
nition. A detailed tabulation of the frequency of instances for problem context, broken down by
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TABLE 2
Problem Contexts Regarding the Distributive Property in the U.S. and Chinese Texts

Word Problem Computation Definition

Textbook Period Grade Freq Percent Freq Percent Freq Percent

China JSEP (n = 319) Before 2nd 0 0 12 3.8 0 0
3rd 21 6.6 8 2.5 0 0
4th 2 0.6 5 1.6 0 0

During 4th 12 3.8 43 13.5 12 3.8
After 4th 18 5.6 12 3.8 1 0.3

5th 0 0 9 2.8 0 0
6th 123 38.6 40 12.5 1 0.3

Total 176 55.2 129 40.4 14 4.4
US HM (n = 115) Before 3rd 2 1.7 6 5.2 0 0

During 3rd 0 0 8 7.0 0 0
After 4th 6 5.2 23 20 11 9.6

5th 3 2.6 33 28.7 2 1.7
6th 1 0.9 7 6.1 13 11.3

Total 12 10.4 77 67.0 26 22.6
US SF-AW (n = 552) Before 3rd 9 1.6 150 27.2 0 0

During 4th 1 0.2 36 6.5 0 0
After 4th 22 4 211 38.2 0 0

5th 2 0.4 54 9.8 4 0.7
6th 6 1 40 7.2 17 3.1

Total 40 7.2 491 88.9 21 3.8

grade level and text series, is presented in Table 2. We calculated the corresponding percentage
within each text (e.g., we used n = 319, or n = 115, or n = 552 as a total to calculate the
percentage for the Chinese, the HM, or the SF-AW text, respectively). An examination of the
table reveals several interesting findings.

First, both U.S. texts are computation-dominated with a rare use of word problems (HM: 67.0%
vs. 10.4%; SF-AW: 88.9% vs. 7.2%). In contrast, the Chinese text utilizes both computation and
word problem contexts (40.4% vs. 55.2%). In fact, the heavy utilization of word problems is a
distinguishable factor that separates the Chinese text from the U.S. texts (nChina = 176, nHM =
12, nSF-AW = 40).

Second, the Chinese text begins to develop students’ intuitive sense of the DP much earlier than
U.S. texts, and with more varied contexts. Because the Chinese texts introduce multiplication at
the beginning of second grade, the second-grade text starts to offer relevant problems involving the
DP, while both of the U.S. texts start to do so at the third grade. In addition, Chinese texts provide
a certain number of problems, including both word problems (n = 23) and computation problems
(n = 25) to develop students’ intuitive sense of the DP. In contrast, HM only provides 8 informal
instances before the DP is introduced. Although SF-AW provides many more opportunities, most
of these problems are computation only (nword problems = 9, ncomputation = 150).

Third, the Chinese text demonstrates a clear focus on the DP when it is first formally introduced,
while neither U.S. text has such a focus. The Chinese fourth-grade text (vol. 8) has a specific
chapter titled Operational Properties (only about the DP) including three lessons incorporating
67 problems (nword problems = 12, ncomputation = 43, ndefinition = 12, accounting for 21.1% of the
total instances). In contrast, HM first formally introduces the DP in the third grade, with only
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158 DING AND LI

9 computation problems (7% of the total). The SF-AW first introduces the DP in the fourth
grade. Although there are about 37 problems (mainly computation) involving this property, these
problems only account for 6.7% of the total instances in this text.

Finally, after the DP is formally introduced, the fourth-grade Chinese texts immediately
ask students to apply the DP with repeated variables and problem solving (nword problems = 18,
ncomputation = 12). A heavy use of the DP appears in the sixth grade, including solving equations
and using equations to solve word problems (nword problems = 123, ncomputation = 40). In contrast,
both U.S. texts mainly applied the DP to computations. Both U.S. texts also tend to use the
definition context (or revisit the definition) more frequently than the Chinese texts during this
period.

Problem Types Involving the DP Within the Word Problem Context

Within the word problem context, we identified three types of word problems based on the
cross-national analysis: “one-step multiplication,” “equal-groups involved,” and “multiplicative-
comparison involved.” The latter two types of problems involve multiple steps (mainly two
steps). One of the steps involves a common multiplication structure, either “equal-groups” or
“multiplicative comparison” (Carpenter, Fennema, Franke, Levi, & Emspon, 1999; Greer, 1992).
The multiplication steps in such a problem share either the same number of groups, or the same
group size, or the same reference number, allowing these problems to be solved in two ways
[either “ab ± ac” or “a(b ± c)”], which illustrates the use of the DP. With regard to the “equal-
groups involved” problems, the Chinese textbook has two distinguishable types of problems
across grades, “perimeter/area” and “distance.” Therefore, we specified these two subtypes and
referred to the rest as “common factor” problems. Table 3 provides examples of each of the above
problem types. Table 4 summarizes the frequency of each type of word problem involving the DP
in each text, broken down by period (before, during, or after the formal introduction of the DP).

The Chinese texts mainly use multiple steps problems including 120 “multiplicative-
comparison involved” and 54 “equal-groups involved” problems. The one-step problems are
rarely used for teaching the DP (n = 2). The same problem structures are used across peri-
ods. In contrast, both U.S. texts use one-step problems more often (n = 10 for each text) than
the Chinese texts. While the one-step problem is the main problem type for the HM text, the
SF-AW has more multiple-step problems (mainly “common factor”) than the HM (nSF-AW = 30;
nHM = 2).

Textbook Approaches and Goals of Using the Word Problems. Even within the same
type of word problems, the textbook approaches and the goals appear to be different across
countries. In general, both U.S. texts ignore the contextual support of word problems in teaching
the DP, while the Chinese texts utilize the word problem situation to help students make sense
of the DP. For example, with regard to “one-step multiplication,” both U.S. texts use the word
problems essentially as computation problems but under the pretext of word problems. With
regard to the given examples of “one-step multiplication” in Table 3 [(a weekly salary of $986
with 52 weeks in a year (HM); 17 farms each had 25 goats (SF-AW)], the HM text directly
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TABLE 3
Examples of Problems Types Within Word Problem Context

Word Problem Type Example

One-step multiplication (US HM, grade 5, p. 76) One train engineer makes a weekly salary of $986. How much
does that train engineer earn in a year? There are 52 weeks in a year.

(US SF-AW, grade 4, p. 332) If 17 farms each had 25 goats, how many goats would all
the farms have together?

(China, grade 4, vol. 8, p. 56) If we buy 102 shirts and every shirt is 32�, how much
should we pay?

Equal-groups involved
Common factor

(US HM, grade 4, p. 180) At a science store, a leaf fossil costs $5.95, a geode costs
$8.50, and a space pen costs $6.75. How much less would it cost Tim to buy 6 fossils
than 6 pens as gifts?

(US SF-AW, grade 4, p. 156) Trisha and her brother, Kyle, collect and sell baseball
cards. Kyle has 6 cards to sell. Trisha has 3 cards to sell. If they sell the cards for 8¢
each, how much money will they get all together?

(China, grade 4, vol. 8, p. 54) A T-shirt is 32�, a pant is 45�, and a jacket is 65�
(shown by pictures). Someone buys 5 jackets and 5 pants. How much do they pay
altogether?

Perimeter/Area (China, grade 4, vol. 8, p. 55). (A picture of a rectangular vegetable garden plot shows
the length and width). The length is 64 m and the width is 26 m. What is the
perimeter?

(China, grade 6, vol. 11, p. 15) (A picture shows a rectangular prism) A box is in the
shape of a rectangular prism with a length of 6 cm, a width of 5 cm, and a height of 4
cm. How many cm2 of paper are needed to make the box?

Distance (China, grade 4, vol. 8, p. 91) Xiaoming and Xiaofang walked toward school. Xiaoming
walked at 70 meters/minute. Xiaofang walked at 60 meters/minute. They met each
other after 4 minutes. What is the distance between their two homes?

(China, grade 6, vol. 11, p. 6) Xiaoli and Xiaoming walked toward each other from a
distance of 960 meters apart. Xiaoli’s speed is 52 meters/minute while Xiaoming’s is
62 meters/minute. How many minutes does it take for them to meet each other?

Multiplicative-comparison
Involved

(China, grade 3, vol. 5, p. 43) A Pant is 28�. The price of a coat is 3 times that of a
pant. How much does one suit cost?

(China, grade 4, vol. 8, p. 111) Students went to collect plant samples. The number of
fourth graders’ collections is a. The number of sixth graders’ collections is 3 times
the number of fourth graders’ collections. Students in both grades together collected
( ). Fourth graders collected ( ) fewer than the sixth graders.

(China, grade 6, vol. 11, p. 115) Students collected 60 plant and insect samples. The
number of plant samples is 1.5 times the number of insect samples. How many
samples does each collection have?

provides “52 × 986” and then suggests “Different ways to use the DP to find 52 × 986.” Sim-
ilarly, the SF-AW offers the solution “17 × 25” and then provides an array model to illustrate
the partial products. In this process, the word problem contexts are actually discarded, and what
students experience is almost the same as in computation problems. In contrast, although the
Chinese text series only have two “one-step multiplication” problems, they may help students
to understand the DP by making explicit the connection between the abstract and the concrete
(Pashler et al., 2007). The given Chinese example (buy 102 shirts with every shirt costing 32�)
is a worked example. The Chinese text suggests three approaches concurrently. The first way
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TABLE 4
The Frequency of Types of Problems Involving the DP Within Word Problem Context

Equal-Groups Involved
Multiplicative-

Numbers Comparison Common Area or One-Step
Country Period Used Involved factor Perimeter2 Distance Multiplication Total

China Before Whole numbers 12 1 9 0 1 23
During Whole numbers 0 10 1 0 1 12
After Fractions, decimals,

percents, expressions,
and equations

108 17 2 14 0 141

Total 120 28 12 14 2 176
US-HM Before Whole numbers 0 0 0 0 2 2

During Whole numbers 0 0 0 0 0 0
After Whole numbers,

decimals
0 2 0 0 8 10

Total 0 2 0 0 10 12
US SF-AW Before Whole numbers 0 4 0 0 5 9

During Whole numbers 0 0 0 0 1 1
After Whole numbers 0 23 3 0 4 30
Total 0 27 3 0 10 40

is to estimate: Since the cost of 100 shirts is 3200�, the cost for 102 shirts will be more than
3200�. The second way is the standard algorithm. The third way is mental math: since the cost
for 100 shirts is 3200� while the cost for 2 shirts is 64�, the total cost will be 3264�. Based
on the earlier discussion, students are asked to finish 32 × 102 = 32 × (100 + 2) = 32× () +
32 × () = . . . . The Curriculum Analysis suggests teachers assist students in understanding why
102 could be viewed as (100 + 2) by referring to the word problem situation (e.g., 102 shirts
are viewed as 100 shirts and 2 shirts). Such guidance likely allows students to see the meanings
and reasonableness of breaking 102 up into 100 + 2. After the computation, the text raises a
question, “Why can we compute in this way?” This deep question is expected to elicit students’
deep explanation (Chi et al., 1994) about the abstract principle (the DP) underlying the compu-
tation. Such a use of well-designed examples might help students learn the abstract principles
(Calhoun et al., 2005).

With regard to the “equal-groups involved – common factor” problems (see Table 3 for
examples), neither of the U.S. texts appears to use this type of problem as a means to develop
students’ understanding of the DP. Regarding the given example problem of the SF-AW text (the
total money for selling 6 cards and 3 cards at 8¢ each), the SF-AW text presents two ways of
thinking to find the “hidden questions,” resulting in two solutions (a) 3 + 6 = 9, 9 × 8 = 72, and
(b) 3 × 8 = 24, 6 × 8 = 48, 24 + 48 = 72. The underlying connection between the two solutions
[e.g., (3 + 6) × 8 = 3 × 8 +6 × 8] is not at all mentioned, even though the DP has already been
formally introduced. In fact, among all of the 30 “common factor” problems in the SF-AW text,
the embedded DP is never made explicit. The HM only has two “common factor” problems. One
problem (see Table 3) is treated in a similar manner as the SF-AW text, while the other problem
(not listed in Table 3) focuses on computation [find (5 × 6) + (5 × 4) using the DP] without an
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analysis of the problem situation. In contrast, the Chinese texts provide numerous word problems
where students are able to experience the use of the DP through problem solving. The given
example problem in Table 3 [the total cost for 5 jackets (�65 each) and 5 pants (�45 each)] is
also a worked example during the formal introduction of the DP. The textbook reveals the DP
through four steps. Similar to SF-AW, the Chinese text first guides students to solve this problem
in two ways: (a) by first figuring out how much one suit costs resulting in the solution (65 + 45)
× 5, and (b) by first figuring out how much 5 pants cost and how much 5 shirts cost resulting in
the solution 65 × 5 + 45 × 5. However, getting a solution for this problem is not the final goal.
Instead, as explained in the Curriculum Analysis, the context is used to help students discover
the DP, sense its reasonableness, and understand its meanings. Therefore, after the problem is
solved, the text asks students to write the above two expressions as one equation and to explain
the relationship between both sides of the “ = .” The Curriculum Analysis alerts teachers to refer
this equation tightly back to the problem situation and then appropriately abstract the nature of
the operations in this equation. Next, the textbook suggests that students post more examples
of this sort and communicate their findings in small groups. Such opportunities for students’
self-explanation of the DP are likely to increase student learning and their ability to transfer this
knowledge to other contexts (Chi, 2000; Chi et al., 1994). Based on the above three steps, the
textbook reveals, “If we use a, b, and c to represent these three numbers, we can write it as
a(b + c) = ab + ac. This is the distributive property” (p. 54). As explained by the Curriculum
Analysis, the purpose of using the above four steps with increasing levels of abstraction is to help
students “construct” their understanding of the DP rather than “input” the property to students.
The above worked example is a well-designed one because it allows students to map the structures
of familiar situations onto the DP to better understand this principle. Such a mapping process is
considered critical to human cognition (Gentner, 1983).

Using two different ways to solve a word problem, thus implicitly or explicitly illustrating/
applying the DP, is a common approach in Chinese texts. In addition to the “common factor”
problems, the other distinguishable problem types (e.g., perimeter/area, distance, multiplicative-
comparison involved) also employ this approach. With regard to the perimeter problems, the
Chinese text recommends both methods, p = 2l + 2w and p = 2(l + w), and raises a question,
“What is the connection between the two solutions?” to highlight the DP. Such an approach is
recommended by NRC (2001); however, it is missing from both U.S. textbooks. Throughout the
elementary grades, both texts teach only p = 2l + 2w to compute the perimeter of a rectangle,
without asking for or showing students p = 2(l + w). Thus, students may miss an important
opportunity to make sense of the DP through such a concrete experience. The distance problem
is first introduced in the Chinese fourth grade as an application of the DP (e.g., two speeds
70 meters/minute and 60 meters/minute with a common time of 4 minutes; see Table 3). After the
problem situation is analyzed using both the number line and table representations, the textbook
expects students to see two solutions, 70 × 4 + 60 × 4 and (70 + 60) × 4, which also illustrates
the DP.

In summary, it seems that Chinese textbooks align well with the cognitive research that finds
abstract principles may be learned through clear worked examples (Gentner et al., 2003) with
comparison solutions (Rittle-Johnson & Star, 2007). The concrete and abstract representations
were connected even within one problem context with apparent “concreteness fading” (Goldstone
& Sakamoto, 2003; Goldstone & Son, 2005). In addition, students were prompted by deep
questions to self-explain the key ideas. Given the effect of worked examples (Renkl, 2002; Zhu &
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Simon, 1987), it is plausible that interleaving such well-designed examples with related practice
problems could contribute to Chinese students’ deep understanding of the DP.

Typical Problem Structures Across Grades in Chinese Texts. Both the “equal-groups
involved” and “multiplicative-comparison involved” problems appear before, during, and after the
DP is formally introduced. The same word problem structures, often illustrated and accompanied
by number line diagrams, are used with increasing levels of abstraction across grades, offering
enough spacing for learning the DP over time (Pashler et al., 2007). Since students have been
experiencing both types of problems from the third grade, the Chinese fourth-grade texts formally
introduce the DP using these problem structures. After the DP is formally introduced, the Chinese
fourth-grade text introduces repeated variables. All types of word problems are utilized for
practicing this topic, during which the DP may be strengthened. A worked example of a “common
factor” problem is, “Xiaohua made n triangles with sticks and Xiaofang made n squares with
sticks. How many sticks did they use?”2 Students are again taught two ways of thinking, resulting
in two solutions “3n + 4n” and “(3 + 4)n,” the connection of which shows the computation
process 3n + 4n = (3 + 4)n = 7n. The textbook encircles the second step, asking “What property
is actually used?” Such a deep question prompts student self-explanation of the DP, which in
turn may deepen students’ understanding of operations with repeated variables. Another example
is a distance problem often presented along with number line diagrams. Given two different
speeds (65 meters/minutes and 75 meters/minute) and the common walking time of “a” minutes,
students are expected to figure out the total distance using “(75a + 65a)” or “(75 + 65)a.” The
introduction of repeated variables in the Chinese fourth grade may not only reinforce students’
understanding of the DP, but may also extend the known problem structures to an algebraic
context, thus opening a door for algebraic problem solving in the sixth grade. The distance
problem examples in Table 3 (the speeds are 52 meters/minute and 62 meters/minute, the time is
an unknown, and the total distance is 960 meters) clearly show how the same problem structure
is systematically used across grades. The expected two algebraic solutions, 52x + 62x = 960 and
(52 + 62)x = 960, demonstrate the DP. Solving equations like the first one also demands an
understanding of DP.

The “multiplicative-comparison involved” problems that are unique to Chinese texts (n =
120) also demonstrate how this problem structure is used in a hierarchical way. Before the DP
is introduced, this type of problem is used in whole number arithmetic contexts (n = 12). The
example in Table 3 (A Pant is 28�. The price of a coat is 3 times that of a Pant) is from the
chapter Addition and Subtraction within 100 in the third-grade textbook. The text provides the first
number line representing the price of a pant (28�); it then asks students to draw a second line to
show the price of a coat (the length should be 3 times that of the first line). Engaging students in
the construction process of the number line diagram may help them see the deep problem structure
(Pashier et al., 2007). After constructing the representation, the Chinese textbook guides students
to consider two approaches—to first find out the price of a coat (28 × 3), or to first find out how
many “28�” one suit will cost (3 + 1)—which encourages an intuitive sense of the DP, 28 × 3 +
28 = 28 × (3 + 1). The same problem structure is also used for learning repeated variables in the

2The Chinese text uses “a” triangles, which is clear among Chinese characters. For clarity, we changed “a” to “n” in
this article.
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fourth grade (see Table 3, “multiplicative-comparison involved,” fourth-grade example). In the
sixth grade, the comparison multipliers are changed from whole numbers to fractions (e.g., the
number of boys is 3/5 that of girls), decimals (e.g., the number of plant samples is 1.5 times the
number of insect samples), and percents (e.g., the number of girls is 80% that of boys). Therefore,
the same problem structure, represented by number line diagrams, is used across different topics;
and the same problem structure is used for teaching students to solve problems with equations.
With regard to the sixth-grade example in Table 3 (The number of plant samples is 1.5 times the
number of insect samples while the total collection is 60 samples), the textbook suggests it be
solved with an equation (x + 1.5x = 60). In fact, recent research has found that students tended
to solve such a double-reference problem using formal algebraic strategies, which seemed more
effective than the informal ones (Koedinger et al., 2008). These algebraic strategies apply the DP,
although it may not necessarily be made explicit.

Problem Types Involving the DP Within the Computation Context

Computation is the main problem context used by both the U.S. textbooks to teach the DP
(HM: 67%; SF-AW: 88.9%) (see Table 2). Regardless of the difference in frequency (nHM = 77,
nSF-AW = 491 nChina = 129), both U.S. texts tend to use similar problem types, while the Chinese
text appears to use more diverse types. Table 5 provides typical examples of each problem
type. A summary of the frequency for each problem type by country and period is shown in
Table 6. Inspection of Table 5 and Table 6 reveals considerable cross-country differences in the
text approaches and goals within the computation problem context. Since the approach to the last
problem type “computing the perimeter/surface area” for given figures (instead of word problems)
is similar to what we previously discussed, we will not discuss it further.

Multiple “Breaking Apart a Factor” Strategies. Both U.S. texts present various strategies
such as “the doubles strategy,”“using known facts to find unknown facts,” and “breaking numbers
apart to multiply.” These strategies, in fact, share the same feature, that is, to break apart a factor
for computing whole number multiplication facts or multiplication with larger numbers. Both
texts appear to emphasize the strategies themselves rather than the basic property underlying the
strategies. One example concerns “the doubles strategy” as previously mentioned in the Methods
section. The HM third grade text first formally introduces the DP with an example of “multiplying
in different ways” to find 5 × 6. It says, “Sean uses doubles. 5 × 6 is double 5 × 3. 5 × 6 = (5 ×
3) + (5 × 3) . . . ; Theresa uses the Distributive Property. She thinks of 6 as 4 + 2. 5 × 6 = 5 ×
(4 + 2) . . . ; Bob also uses the Distributive Property. But he thinks of 6 as 5 + 1. 5 × 6 = 5× (5 +
1) . . . ” (p. 239). The above text presentation reflects that the HM text views the doubles strategy
as different from the DP, which is unlikely to lead students to a deep appreciation of the DP. In
addition, asking students to learn various strategies without pointing out the underlying principle
seems less efficient. This is because strategies learned in this way may be hard to retrieve when
new problems share few surface features with the previous ones, even though they are governed by
the same principle (Chi, Feltovitch, & Glaser, 1981). In contrast, the Chinese text has one instance
of the doubles strategy introduced as a knowledge expansion during the formal introduction of
the DP. After a brief introduction of the origination of the doubles strategy, it asks students, “Can
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TABLE 5
Examples of Problem Types Involving the DP Within Computation Contexts

Problem Types Examples

Breaking apart a factor
– The doubles strategy 7 × 6 = 7 × 3 + 7 × 3 (HM)
– Using known facts to find How can you use 2 × 7 to find 3 × 7?

unknown facts Breaking 3 into 2 and 1, thus 2 × 7 + 7 = 3 × 7 (SF-AW)
– Breaking numbers apart 29 × 4 = (20 + 9) × 4 (HM)

to multiply 327 × 5 = (300 × 5) + (20 × 5) + (7 × 5). (SF-AW)
– Breaking numbers apart To find 68 ÷ 2, break 68 into 60 and 8,

to divide 60 ÷ 2 = 30, 8 ÷ 2 = 4, 30 + 4 = 34 (SF-AW)
– Breaking arrays to show

partial products
Similar to NCTM (2000) example (see Figure 1)

– Using the DP to find Use the DP to rewrite an expression for 25 × 365. (HM)
a product Use the DP to do mental math for 25(12). (SF-AW)

– Using an array to model
the DP

Similar to NCTM (2000) example (see Figure 1)

Does the DP work with
subtraction (division)

Does the DP work with subtraction? Try it with 9(50–1) and (20–4) × 5. (SF-AW)

Comparing two number
sentences

– Computing in groups 2 × 5 + 5 25 × 30 + 25×20 34 × 21
3 × 5 25 × (30 + 20) 34 × 20 + 34 (China)

– Writing >, <, or = 1) 99 × 99 + 199 O 100 × 100
999 × 999 + 1999 O 1000 × 1000
9999 × 9999 + 19999 O � × �

2) 32 × (30–2) O 32 × 30 – 32 × 2
3) (3.2 + 0.8) × 0.6 O 3.2 × 0.6 + 0.8 × 0.6 (China)

Using convenient ways 16 × 401 7.5 × 0.45 – 0.45 × 6.5
to compute 125 × (8 + 16) 30 × (1/5 + 1/3)

38 ×7 + 62 × 7 2/3 × 5/7 + 2/3 × 2/7
23 × 134 − 34 × 23 3/4 × 1/9 + 1/4 ÷ 9 (China)

Simplifying expressions 4x + 5x, 4a − 2a, 27x + 31x = 145; x − 0.8x = 10; 1.9x + 0.4x = 9.2;
and solving equations x + 60% x = 48; x − 4/9x = 10/21 (China)
involving repeated Evaluate the expressions given a = 2/3:
variables (10 × a) + (2 × a); a × 3 1

6 − a × 7
6 (HM)

Computing the perimeter/
surface area

Compute perimeters and surface areas for given figures using two ways. (China)

you explain the doubles strategy using the distributive property?” It seems Chinese texts focus
more attention to the underlying principles by eliciting students’ self-explanations (Chi, 2000)
with deep questions (Craig et al., 2006) even in the context of computation.

Although the SF-AW text has about 7 times the number of computation problems as that of
the HM, it has a similar focus on learning multiplication strategies rather than using the basic
property to understand these strategies. The SF-AW fourth-grade text formally introduces the DP
in the lesson “using known facts to find unknown facts.” The textbook begins with a sentence,
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TABLE 6
The Frequency of Problem Types Involving the DP Within Computation Contexts

China US HM US SF-AW
(n = 129) (n = 77) (n = 491)

Problem Types Bf1 Du1 Af1 Tot1 Bf Du Af Tot Bf Du Af Tot

Breaking apart a factor
The doubles strategy 0 1 0 1 5 1 0 6 18 0 0 18
Using known facts to find unknown facts 0 0 1 1 40 0 0 40
Breaking numbers apart to multiply 1 8 3 12 18 36 112 166
Breaking numbers apart to divide 41 0 0 41
Breaking arrays to show partial products 0 0 14 14 33 0 100 133
Using the DP to find a product 0 0 22 22 0 0 90 90
Using an array to model the DP 0 1 0 1 0 0 16 16

Does the DP work with subtraction (division)? 0 0 3 3
Comparing two number sentences

Computing in pairs 18 5 4 27
Writing >, <, or = 2 5 1 8

Using convenient ways to compute 0 31 22 53
Solving/evaluating expressions and equations 0 0 30 30 0 0 6 6
Computing the perimeter/surface area 5 0 4 9

1“Bf” denotes before; “Du” denotes during; “Af” denotes after; “Tot” denotes “total.”

“How can I break apart facts? The Distributive Property shows that you can break apart facts to
find the product” (p. 132). The follow-up practice problems only ask students to “use breaking
apart to find each product” without mentioning the DP. In addition, after the DP is formally
introduced, the SF-AW text continues to teach various multiplication strategies about “breaking
numbers apart to multiply” (n = 112) and “breaking arrays to show partial products” (n = 100) but
rarely bringing the DP to the forefront. The corresponding teacher guides do not at all encourage
teachers to reveal the underlying property. Only one place revisits the DP as “enrichment” with
5 practice problems.

Comparing Number Sentences. A distinguishable computation problem type in the Chi-
nese texts is comparing number sentences (see Table 5), revealing the Chinese texts’ emphasis on
understanding underlying principles through a constructive approach. As the Curriculum Analy-
sis states, the teaching of the DP should focus on sense making, and students should be guided
to discover this principle through comparison. This first type of comparison, “computing in a
pair” is used across grades. For example, the Chinese second-grade text asks students to compute
multiplication facts in a pair (e.g., 2 × 5 + 5 and 3 × 5), which is likely to prompt students to
think of the relationship between two sentences. When this type of problem [e.g., 25 × 30 +
25 × 20 and 25 × (30 + 20)] is used immediately before the formal introduction of the DP, the
purpose of sensing and identifying the DP appears more obvious. In addition, during the formal
introduction of this property, comparing two computations in a pair (e.g., 34 × 21 and 34 × 20
+ 34) may not only encourage students to identify the DP (which is less apparent than 34 × 20
+ 34 × 1), but also recognize the powerfulness of using the DP.
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Another type of comparison problem is “writing >, <, or = .” Although there are only 8
instances, these problems are carefully designed to encourage discovery. The first example of
this type in Table 5 (a group of three problems) is challenging and interesting because students
are supposed to identify a pattern and explore the underlying reasons for the pattern, which is
embedded as a double use of the DP. For example, 99 × 99 + 199 = 99 × 99 + 99 + 100 = 99
× (99 + 1) + 100 = 99 × 100 + 100 = (99 + 1) × 100 = 100 × 100. Such a problem deepens
students’ understanding of the DP. Other problems are used for investigating the applicability
of the DP with subtraction [e.g., 32 × (30 − 2) O 32 × 30 − 32 × 2] or with decimals [(3.2
+ 0.8) × 0.6 O 3.2 × 0.6 + 0.8 × 0.6]. The Curriculum Analysis points out, “Teachers should
suggest students first calculate both sides before filling the box. Otherwise, the process is not to
explore the applicability of the DP but to simply use the DP to rewrite a sentence, which is not
consistent with the learning theories and not beneficial for a serious learning attitude.” Similarly,
there are three problems in the SF-AW sixth-grade text discussing the applicability of the DP
with subtraction or division (e.g., “Does the DP work with subtraction?”) However, the textbook
simply suggests students try two examples without any guidance [e.g., “Try it with 9(50 − 1) and
(20 − 4) × 5”], and the teacher guide does not provide any direction either. In addition, the HM
sixth-grade text has two instances regarding “writing >, <, or = ” [“1.4 (a + b) O 1.4a + 1.4b”
and “(a × 6) − (a × b) O a(6 − b)”]. However, these problems clearly ask for an application
of the DP rather than a discovery through computation. As a result, these problems are classified
into the definition context.

Using Convenient Ways to Compute. The most frequently used problem type in the
Chinese text is “using convenient ways to compute” (nduring = 32, nafter = 22). Although some
problems can be found in the U.S. texts (e.g., 16 × 401), the Chinese texts purposefully bring the
power of the DP to the students’ attention. In addition, some unique problems in the Chinese text
(e.g., 7.5 × 0.45 − 0.45 × 6.5; 3/4 × 1/9 + 1/4 ÷ 9) allow students explicitly to experience the
benefit of using the DP beyond whole numbers (see Table 5 for more examples). The numbers
used in these problems are often “non-friendly.” Without the use of the DP, the computation
would be complex. However, when the DP is used, the computation becomes extremely simple.
For example, one does not need to really conduct fractional multiplication and division when the
DP is applied in the following example:

3

4
× 1

9
+ 1

4
÷ 9

= 3

4
× 1

9
+ 1

4
× 1

9

=
(

3

4
+ 1

4

)
× 1

9

= 1 × 1

9

= 1

9
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This example demands a combination of two fractions into “1,” thus using the DP in an oppo-
site direction. This contributes to students’ complete understanding of the DP, allowing them
to use this property flexibly. As the Curriculum Analysis states, “The main purpose of learn-
ing operational properties is to use them to make computations easier. Therefore, the curricu-
lum design principle is to guide students to experience the power of the properties, thus ac-
tivating their inside needs for an automatic use of these properties to compute in convenient
ways.”

The above intention of showing the power of the DP to students is not obvious in the U.S. texts.
Although both U.S. texts have instances explicitly asking for the use of the DP (e.g., “using the
DP to find the product,” nHM = 22, nSF-AW = 90), these problems are mainly limited to breaking
apart a factor to find multiplication facts (e.g., 3 × 6) or multiplying with larger numbers (e.g.,
25 × 365). However, a student who knows the fact 3 × 6 = 18 may have neither the motivation nor
the need to break up “3” to perform 2 × 6 + 1 × 6. Only a few variations are found in the SF-AW
sixth-grade texts where students need to combine two factors first and do mental math using the
DP in an opposite way [e.g., (9 × 17) + (9 × 3), (18 × 4) + (2 × 4)]. However, such problems
are rare and the numbers involved are exclusively whole numbers that are so accommodating
that students may not appreciate the contrast between the difficulty of direct computation and the
simplicity that would result from applying the DP.

Expressions (Equations) Involving Repeated Variables. As we mentioned previously
regarding the word problem context, the fourth-grade Chinese text introduces expressions with
repeated variables (ax ± bx) after the DP is formally introduced, which seems to contribute to the
ability to solve equations involving various numbers in the sixth grade (ax ± bx = c) (see Table
5 for examples). The underlying idea of simplifying such expressions or solving such equations
involves the use of the DP. These problems are basically unique to the Chinese texts (n = 30). It
is noticeable that the coefficients of variables across these problems have a great variability (e.g.,
whole numbers, decimals, fractions, and percents), which adds cognitive demands for students
but may pay off in better understanding (Renkl, Stark, Gruber, & Mandl, 1998). The Curriculum
Analysis alerts teachers that although students have already learned to use the DP to simplify
ax ± bx = (a ± b)x in the fourth grade, teachers in the sixth grade should still ask questions to
prompt students to explain what enables them to simplify an equation in a similar way and what
is the purpose for doing so.

The SF-AW only introduces expressions and equations with a single variable (e.g., x + 8; 5 +
x = 10). Although the HM has a few instances (n = 6) involving repeated variables, these
problems mainly ask students to “evaluate” rather than “simplify” the expressions. For example,
the sixth-grade textbook (p. 143) asks students to evaluate (10 × a) + (2 × a) given a = 2/3.
This is a nice instance offering an opportunity to use the DP in an opposite direction. However,
according to the previous text presentation of the worked example, students should first replace
the letter with the number to get (10 × 2/3) + (2 × 2/3), then calculate each multiplication, and
finally add them together. In this way, the DP is not necessarily used to make the computation
easier. A follow-up question on the same page confirms the above interpretation, “How could
you have used the DP to make it easier to evaluate the expression [(10 × a) + (2 × a)]?” This
is the only place that the text explicitly reminds students to use the DP to simplify algebraic
expressions.
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TABLE 7
Examples and Frequencies for Each Problem Type Involving the DP Within the Definition Context

China JSEP US HM US SF-AW

Problem Type Example Bf 1 Du1 Af 1 Bf Du Af Bf Du Af

Completing the
number sentence

40 × ( ) = (40 × 5000) + (40 × 20) +
(40 × 5)

(HM) 8 1 15 10

5(17 + �) = (5 × 17) + (5 × 3) (SF-AW)
3x + 2x = (� + �) × � (China)

Comparing the 1.4 (a + b) O 1.4a + 1.4b (HM) 4 6 3
equivalency Which is equivalent to 8 × 52? (with 4

choices)
(SF-AW)

Check the box if the answers are the same:
40 × 50 + 50 × 90; 40 × (50 + 90) � (China)

Vocabulary An example of the is 4 × (5 + 6)
= (4 × 5) + (4 × 6).

(HM) 1 5 8

(A table asking for examples and
algebraic expressions for given
properties)

(China)

Total 12 2 26 21

1“Bf” denotes before; “Du” denotes during; “Af” denotes after.

Problem Types Within the Definition Context

Within the definition context, we classified the problems into three types: completing the number
sentences, comparing the equivalency, and vocabulary. Table 7 provides examples for each
problem type and summarizes the corresponding frequencies by countries and periods.

Similarities of text approaches to definition problems are observed. All of the three texts
use “completing the number sentences” most frequently (nHM = 15, nSF-AW = 10, nChina = 9).
“Comparing the equivalency” is also a commonly used problem type across texts with somewhat
different formats (nHM = 6, nSF-AW = 3, nChina = 4).

Differences regarding definition problems across countries are also identified. As previously
mentioned, the Chinese texts mainly use the definition problems during the formal introduction of
the DP, while both U.S. texts use them after the DP is formally introduced. It seems both U.S. texts
emphasize knowing the definition of the DP throughout the elementary grades, while Chinese
texts place more attention on the application rather than the definition once the property is formally
introduced. Such a difference is more clearly reflected by the Chinese texts’ low frequency of
“vocabulary” problems, a type of problem directly targeting at defining what the DP is (nHM =
5; nSF-AW = 8; nChina = 1). In fact, the text approaches to “vocabulary” problems also vary
considerably. Both U.S. texts tend to ask students to recall the term “distributive property” based
on given examples, while the Chinese text requests examples as well as algebraic expressions
for given properties. For example, the only instance of “vocabulary” in the Chinese text appears
in sixth grade. At the end of the sixth-grade text, there is a chapter named Organize and Reflect
that reviews all of the key knowledge pieces that students learned throughout the elementary
grades (1–6). The first problem is to revisit three basic properties (the Commutative Property,
Associative Property, and Distributive Property) with a table asking students to offer examples of

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
i
n
g
,
 
M
e
i
x
i
a
]
 
A
t
:
 
1
8
:
1
9
 
1
4
 
A
p
r
i
l
 
2
0
1
0



THE DISTRIBUTIVE PROPERTY 169

arithmetic and then write corresponding algebraic expressions (which the Chinese texts express
as “using letters to represent these properties”). This delayed review connects the concrete
and abstract representations and demonstrates a higher expectation of student understanding of
the DP.

Variability in the Use of the DP as Reflected by the Involved
Directions and Numbers

In order to better understand the variability in using the DP across texts, we closely examined
the “directions” of using the DP within computation and definition contexts. In addition, we
examined the “numbers used” across all problem contexts. We first present the findings regarding
directions followed by numbers used.

Directions. The directions in using the DP are classified three ways: regular, opposite, and
dual. The regular direction is to expand an expression by using the DP in the ways of “a(b + c) =
ab + ac” or “(a + b)c = ac + bc.” The opposite direction is to combine the common factors as
one, thus using the DP as “ab + ac = a(b + c)” or “ac + bc = (a + b)c.” There are a few instances
involving the use of the DP in both ways, thus referred to as “dual direction.” An example is
the previously mentioned “using known facts to find unknown facts” in the SF-AW text. Other
examples are “computing in pairs” or “computing the perimeter/surface area” in the Chinese
texts. Figure 2 sketches the striking differences in using the DP involving various directions
across countries.

Detailed information about frequencies and percentages broken down by periods and problem
contexts for each country is presented in Table 8. In general, regardless of the large difference
in frequencies for each problem context, the majority of computation and definition problems in
both U.S. texts use the DP in a regular direction (90.3% in HM and 93.2% in SF-AW). In contrast,
the Chinese texts have more problems in the opposite direction than the regular one (56.6% are
opposite while 30.8% are regular). The differences regarding the “regular versus opposite” are
extremely clear in the computation problems after the DP is introduced: 8.4% versus 30.8% in
the Chinese texts, as opposed to 57.3% versus 1.2% in the HM, and 58.4% versus 3.9% in the
SF-AW.

It is not surprising to find this pattern considering the problem types used in the computation
context. Both the U.S. texts mainly emphasize the approach of “breaking apart factors to multiply.”
Thus, the majority of problems both texts provide are whole number multiplication, which
demands breaking up the factor into “b + c” (e.g., tens and ones) and performing the multiplication
in the regular direction, a(b + c) = ab + ac. In contrast, the Chinese texts emphasize “computing in
convenient ways” which possibly includes various problems, some of which require a combination
of two factors into whole tens or hundreds or even one whole (e.g., 33 + 67 = 100; 1/5 + 4/5
= 1, 0.72 + 0.23 = 1). These problems need to use the DP in the opposite direction, ab + ac =
a(b + c). In addition, problems such as “simplifying expressions or solving equations involving
repeated variables” also demand an opposite use of the DP [e.g., ax + bx = c ⇒(a + b) x = c ⇒
x = c/(a + b)].

The definition context directly relates to “what the DP is.” It is reasonable to expect problems
involving both regular and opposite directions in this context. While the Chinese text series has
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FIGURE 2 Percentage of different directions involving the use of the DP in each text series.

almost the same amount of problems involving either direction (8 regular and 6 opposite), both the
U.S. texts mainly use problems involving the regular direction (HM: 20 regular and 2 opposite;
SF-AW: 19 regular and 2 opposite). Evidence from the cognitive literature (e.g., Anderson, 1993)
suggests that people tend to acquire just a single direction of a possibly dual directional operation
if they experience a single direction much more often than the other. One might expect, therefore,
that the U.S. elementary texts’ overemphasis on the regular direction contributes to students’
incomplete and superficial understanding of the DP.

Numbers Used. Figure 3 shows an overview regarding the types of numbers used in the
instances across countries. Regardless of the difference in frequency, both U.S. texts again appear
to have a similar style: that is, an arithmetic context dominated by whole numbers.

Table 9 provides detailed information regarding the frequency, percentage, and grade level
of types of number presentations in each text. In the Chinese texts, instances, both arithmetic
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TABLE 8
The Directions of Using the DP in the Computation and Definition Contexts

Regular ⇒ Opposite ⇐ Both ⇔
Country Period Context Frequency Percent Frequency Percent Frequency Percent

China JSEP Before Computation 2 1.4 13 9.1 10 7.0
(n = 143) Definition 0 0 0 0 0 0

During Computation 22 15.4 18 12.6 3 2.1
Definition 7 4.9 5 3.5 0 0

After Computation 12 8.4 44 30.8 5 3.5
Definition 1 0.7 1 0.7 0 0

Total 44 30.8 81 56.6 18 12.6
US HM Before Computation 6 5.8 0 0 0 0
(n = 103) Definition 0 0 0 0 0 0

During Computation 9 8.7 0 0 0 0
Definition 0 0 0 0 0 0

After Computation 58 56.3 4 3.9 0 0
Definition 20 19.4 2 1.9 4 3.9

Total 93 90.3 6 5.8 4 3.9
US SF-AW Before Computation 127 24.8 5 1 18 3.5
(n = 512) Definition 0 0 0 0 0 0

During Computation 32 6.3 4 0.8 0 0
Definition 0 0 0 0 0 0

After Computation 299 58.4 6 1.2 0 0
Definition 19 3.7 2 0.4 0 0

Total 477 93.2 17 3.3 18 3.5

and algebraic, involve all kinds of numbers. Whole number arithmetic problems only account
for 43.3% of the total instances. The textbooks start to extend the DP to expressions (repeated
variables) in the fourth grade; decimals in the fifth grade; and fractions, percents, and various
algebraic equations in the sixth grade. In contrast, both the U.S. texts are dominated by whole
number arithmetic operations (HM: 86.1%; SF-AW: 99.5%). Note in particular that, although the
SF-AW text series has the highest frequency of instances involving the DP among the three texts
(n = 552), it only has 3 instances that go beyond whole number arithmetic operations.

The above pattern regarding numbers used is consistent with the previously reported problem
types. Both the U.S. texts emphasize whole number multiplication and only introduce algebraic
expressions (equations) with a single variable. In addition, the U.S. upper elementary textbooks
mainly teach one-step decimal or fraction computations, but not mixed operations, resulting in a
rare application of the DP for rational number operations.

DISCUSSION

Although the U.S. texts integrate current research suggestions regarding various multiplication
strategies involving the DP (e.g., Ball, 1988; Carpenter et al., 2003; NCTM, 2000; Schifter et al.,
2008), the cross-national curriculum comparison indicates that the U.S. texts have a much more
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FIGURE 3 Percentage of the numbers used while involving the DP in each text.

narrow view of the DP. For example, the U.S. texts limit students’ understanding of the DP to
whole number contexts with a regular direction. They also focus more on surface strategies rather
than the principle underlying these strategies. The word problems (often one-step) are not used
to provide contextual support to learn the DP.

In contrast, Chinese text aligns well with the Curriculum Focal Points (NCTM, 2006), de-
veloping students’ intuitive sense from the second grade, formally introducing the DP with a
strong focus at the fourth grade, and then heavily applying it in various later learning. Four dis-
tinguishable features have been identified in Chinese texts. First, Chinese texts aim at students’
conceptual understanding of the DP by using diverse word problem contexts and constructive
approaches such as asking deep questions to prompt students to understand the DP. Second,
Chinese texts strengthen students’ understanding of the DP through a coherent text presentation,
as indicated by systematic and hierarchical problem structures and problem sequences (e.g., the
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TABLE 9
The Numbers Used in the Problems Involving the DP in All Problem Contexts

China (n = 319) US HM (n = 115) US SF-AW (n = 552)

Numbers used Freq % Grade Freq % Grade Freq % Grade

Arithmetic
Whole numbers 138 43.3 2, 3, 4, 5, 6 99 86.1 3, 4, 5, 6 549 99.5 3, 4, 5, 6
Decimals 12 3.8 5, 6 1 0.2 6
Fractions 45 14.1 6 6 5.2 6
Percents 15 4.7 6

Algebra
Expressions 18 5.6 4 3 2.6 6 1 0.2 6
Equations involving whole numbers 24 7.5 6 6 5.2 4, 6 1 0.2 5
Equations involving decimals 8 2.5 6 1 0.9 6
Equations involving fractions 7 2.2 6
Equations involving percents 52 16.3 6

same word problem structures are used in both arithmetic and algebraic contexts with increased
complexity and concreteness fading). Third, Chinese texts aim at an automatic use of the DP by
making the power of the DP explicit by using various kinds of numbers and directions across
grades. Fourth, the Chinese texts introduce repeated variables as an application of the DP, which
subtly connects arithmetic and algebra, and opens a door to more challenging mathematics topics
in later grades. These Chinese text approaches are consistent with suggestions from cognitive
research that robust student learning is supported by contextual interferences, spaced practice,
and encoding variability (see Pashler et al., 2007). Given that Chinese teachers are required to
study textbooks and teacher guides intensively (Li et al., 2008; Ma, 1999), it is reasonable to
hypothesize that the Chinese approaches to the DP contribute considerably to teachers’ sound
understanding of this property (Howe, 1999; Ma, 1999), which may in turn contribute to stu-
dents’ later algebraic thinking (Cai, 2004). In the following sections, we elaborate the above
Chinese-like text approaches.

Making Sense of the DP Through Word Problems With Particular Structures

Chinese textbooks heavily utilize word problems, especially two-step problems, to help students
make sense of the DP. The situational contexts of word problems and problem-solving approaches
have been emphasized in previous research on learning algebra (e.g., Bell, 1996; Hall, Kibler,
Wenger, & Trnxaw, 1989; Koedinger et al., 2008; Koedinger & Nathan, 2004; Lannin, Barker,
& Townsend, 2007; Nathan, Kintsch, & Young, 1992; Resnick et al., 1987). The word problem
contexts provide concrete and meaningful situations for students to bootstrap their real world
knowledge to understand abstract principles as well as their formalizations (Resnick et al.,
1987; Schifter, 1999). Impressively, the Chinese texts’ approach to the perimeter problems [both
p = 2l + 2w and p = 2(l + w)] exploits this feature of word problems and is consistent with what
was suggested by the NRC (2001). However, the U.S. texts in this study have not adopted the NRC
suggestion, even though both texts are recent editions. The other distinguishable problem types in
Chinese texts such as “distance” and “multiplicative-comparison involved” problems also enrich
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students’ understanding of the DP. The SF-AW texts do include a certain number of two-step
word problems. However, the SF-AW texts could go further by posing deep questions (Craig
et al., 2006), similar to what the Chinese texts do, to guide students to self-explain the underlying
principles (Chi, 2000; Chi et al., 1994). In fact, even with one-step problems, the Chinese text
refers the abstract computation process back to the concrete problem situation to help students
understand why a number can be broken up. However, both U.S. texts only focus on computation,
without using the one-step problems in such a meaningful way.

The Chinese texts systematically and hierarchically use two-step word problems with typical
problem structures. The problem structures, unchanged across increasingly challenging topics,
offer enough spacing for learning the underlying principle (Cepeda et al., 2006) and provide
“concreteness fading” that promotes the transfer of learning (Goldstone & Son, 2005; Goldstone
& Sakamoto, 2003). By providing or asking for two solutions to these problems, or by using
equations, students’ understanding of the DP is reinforced and deepened. This more sophisticated
understanding of the DP is then likely to assist students to come up with multiple solutions,
thus developing students’ problem-solving skills. For example, after the Chinese sixth- grade
textbook presents the first solution for a word problem, 45 − 45 × 5/9, it asks students, “What is
another way to solve this?” Students who have a sophisticated understanding of the DP are likely
to figure out the second solution [45 × (1 − 5/9)] with ease. As previous studies (Cai, 1995;
Cai, 2004) have pointed out, Chinese students are skillful at algebraic problem solving and tend
to solve problems multiple ways. Our findings suggest that the Chinese text approach to the DP
may play an important role in this and demonstrate how an understanding of the DP could pay a
big dividend in the upper elementary grades (Carpenter et al., 2003).

It is worth pointing out that Chinese approaches, similar to other high achieving countries
(Cai & Moyer, 2008; Murtura, 2008), systematically utilize the number line diagram in co-
ordination with word problems. Although this type of representation may be non-transparent
to students initially (Koedinger & Terao, 2002; Rittle-Johnson & Koedinger, 2001), the
Chinese texts consistently use this tool across grades, thus increasing students’ familiarity with
this type of representation. The Chinese texts also involve students in the process of constructing
such representations (e.g., asking students to complete the diagram by drawing a second line).
These constructions, along with consistent and frequent exposure, may reinforce the strengths
of schematic representations (to illustrate problem structures) while attenuating the limitations
(non-transparency).

Focusing on the Basic Property and Making its Power Explicit for Computation

The dominant context for the DP in both U.S. texts is computation. This finding is consistent
with Murata’s (2008) conclusion about the SF-AW text based on a cross-national curriculum
comparison on other topics. With regard to the computation problems, both U.S. texts focus more
on presenting various computing strategies than on making the underlying principles explicit.
This phenomenon is possibly due to the U.S. texts’ overemphasis on the preparation stage thus
delaying the opportunity to reveal the key principles and their formal algebraic treatments (Cai
et al., 2005). In contrast to the U.S. texts’ focus on computation, the Chinese texts guide students
to discover and abstract the principle of the DP through many comparison problems (e.g., compute
two problems in a pair). This practical use of comparison problems is supported by experimental
findings (Gentner et al., 2003, 2004) that show that comparison can lead to better learning,
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transfer, and retrieval of principles from long-term memory to improve problem solving (Piroli
& Anderson, 1985). The comparison problems in Chinese texts may also facilitate students’
procedural knowledge so they may be more likely to use powerful methods and be more able to
justify the use of a particular method (Rittle-Johnson & Star, 2007).

For Chinese curriculum designers, the final goal of teaching the DP is to enable students to use
this property automatically to make computation easier. Findings from cognitive and education
psychology (e.g., Anderson, 1995; Brown & Bennett, 2002; Rittle-Johnson et al., 2001; Sweller,
1988, 1989), as well as mathematics education (e.g., Hiebert & Wearne, 1996; NRC, 2001),
support the notion that “automaticity” and “procedural fluency” are associated with conceptual
understanding. The Chinese texts consistently ask students to “compute in convenient ways”
involving complicated numbers such as fractions and decimals. These contexts dramatically
show the power of the DP, and accumulated experiences can reasonably be expected to motivate
students spontaneously to use this property and perhaps even enable them to see the beauty
of mathematics. The automaticity resulting from procedural fluency can also reduce cognitive
load thus saving working memory for higher-order activity such as problem solving (Brown &
Bennett, 2002). In contrast, the U.S. texts mainly teach students to break apart a factor to perform
whole number multiplication. Although these strategies are useful, important, and do involve the
DP, they do not show the power of the DP. As a result, they hardly cultivate students’ appreciation
or automatic use of the DP, and do not hint at the flexible transition of this knowledge to other
contexts.

Varying the Use of DP With Particular Attention to the Opposite Direction

There is little disagreement that a deep understanding of a concept entails a flexible use of it in
multiple ways and various contexts (Hiebert et al., 1997; Stigler et al., 1986). In this study, our
findings reveal a striking difference of variability in using the DP across countries. While Chinese
texts use the DP in both regular and opposite directions (more opposite directions) with different
kinds of numbers (whole numbers, fractions, decimals, percents, expressions, and equations),
both U.S. texts limit the use of the DP to the regular direction and whole numbers. As previously
noted, limiting the use of the DP to a pure whole number context is representative of U.S. texts’
avoidance of presenting repeated variables and mixed operations with decimals (fractions). The
U.S. texts’ lower expectation for student learning is not a new finding of our study (Cai et al.,
2005; Murata, 2008; Schmidt, Wang, & McKnight, 2005; Stigler et al., 1986). Even within the
whole number contexts, however, we suggest that U.S. textbooks pay increased attention to an
opposite use of the DP. As Carpenter et al. (2003) illustrated, using the DP in an opposite direction
[e.g., 50 + 30 = (5 + 3) × 10] was beneficial for algebraic thinking. In fact, a dominant use of
the DP in a regular direction may result in students’ superficial understanding and be detrimental
to their mathematical thinking. Anecdotally, when the first author selected several problems from
the Chinese sixth-grade text (e.g., 2/3 × 5/7 + 2/3 × 2/7) as a review of the DP in her math
methods class, all of the preservice teachers were frustrated and confused by the transformation
“2/3 × 5/7 + 2/3 × 2/7 = 2/3 (5/7 + 2/7).” As one preservice teacher commented, “We never
thought of using the DP in an opposite direction.” Such a comment was truly consistent with our
curriculum examination findings.
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Introducing Repeated Variables as a Natural Bridge between
Arithmetic and Algebra

The DP is a basic idea underlying both arithmetic and algebraic learning. A key to naturally
bridging arithmetic and algebra through the DP in Chinese texts is the introduction of repeated
variables. The Chinese fourth-grade text introduces this type of expression right after the DP
is formally introduced, thus quickly setting the stage for later work with equations. In contrast,
neither of the U.S. elementary texts introduced repeated variables, but only expressions and
equations with a single variable (ax ± b; ax ± b = c). One possible reason for postponing
the learning of repeated variables is curriculum designers’ concerns about students’ inadequate
preparation (Cai et al., 2005). However, current research suggests that this topic is beneficial
for students’ early algebraic thinking and can be learned by elementary students (e.g., Carpenter
et al., 2003). Indeed, without a deep understanding of the DP, even if the topic of repeated
variables is postponed to later grades, students will still struggle with it. The difficulty many
American college students have working with repeated variables was confirmed by a recent study
reported by Koedinger et al. (2008): Although 80% of 153 college students (in Experiment 1)
could perform correctly on an equation with a single variable (6x + 46 = 65.50), only 29% of
them correctly solved an equation with repeated variables (x − 0.15x = 38.24). If these students
were able to use the DP to simplify “x − 0.15x” as “(1 − 0.15)x,” thus transforming the original
equation to 0.85x = 38.24, the correctness rate might have been greatly improved. In fact, another
group of college students in this study (in Experiment 2) who had stronger prior knowledge solved
this same problem (x − 0.15x = 38.24) with a much higher correctness (75%). Koedinger et al.’s
study seems to support the positive effects of a deep and flexible understanding of the DP on later
algebraic understanding. As mentioned earlier, Koedinger et al.’s study also revealed the benefits
of using algebraic equations (involving repeated variables) to solve complex word problems. We
believe it is safe to conclude that the move from arithmetic to algebra may be facilitated through
an introduction of repeated variables, along with targeted practice, after a formal and focused
presentation of the DP.

FUTURE STUDY

Our study focusing on the DP serves as a window showing the cross-cultural differences in
textbook approaches to mathematical principles. The marked differences observed in textbook
presentation may be one of the sources of the gap between U.S. and Chinese elementary students’
understanding of the key concepts and principles of mathematics (e.g., Li et al., 2008), both
in terms of initial learning and lateral transfer. Our cross-cultural findings suggest alternatives
for improving the U.S. elementary text approaches and potentially inspiring U.S. teachers to
develop better classroom activities. In addition, our findings suggest that it is worthwhile for
cognitive psychology and mathematics education researchers to conduct future experimental and
analytical studies, to further ascertain how the approaches to learning, as exemplified by the
Chinese texts in the current study, may contribute to students’ arithmetic and algebraic thinking
and problem-solving skills.
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