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Abstract Through examining a representative Chinese textbook series’ presentation of the
distributive property, this study explores how mathematics curriculum may structure representa-
tions in ways that facilitate the transition from concrete to abstract so as to support students’
learning of mathematical principles. A total of 319 instances of the distributive property were
identified. The representational transition among these instances was analyzed at three tiers:
within one worked example, from the worked example to practice problems within one topic, and
across multiple topics over grades. Findings revealed four features that facilitate the transition
process in the Chinese textbook series. First, it situates initial learning in a word problem context,
which serves as a starting point of the transition process. Second, it sets up abstract representations
as an ultimate goal of the multi-tier transition process. Third, it incorporates problem variations
with connections in carefully designed tasks that embody the same targeted principles. Fourth, it
engages students in constant sense making of the transition process through various pedagogical
supports. Implementations and future research directions are also discussed.

Keywords Concrete representation . Abstract representation . Representational transition .

Chinese textbooks . The distributive property

Mathematical principles like the distributive property are extremely powerful, but notoriously
difficult to learn, because these principles, by nature, are abstract and lack close relevance to
learners’ lives. To tackle this difficulty, one of the pedagogical traditions is to ground the
learning of abstract knowledge in concrete contexts (Bruner, 1966; Piaget, 1952). However,
how students might be supported to make transitions from concrete to abstract representations
remains largely unknown. As the National Mathematics Advisor Panel (2008) pointed out:
“Students must eventually transition from concrete (hands-on) or visual representations to
internalized abstract representations. The crucial steps in making such transitions are not clearly
understood at present and need to be a focus of learning and curriculum research” (p. 29).

The purpose of this study is to explore, from curriculum perspectives, how concrete and
abstract representations might be structured in ways that facilitate the process of transition so
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as to support students’ learning of mathematical principles. Specifically, we focus on the case
of the distributive property presented in a representative Chinese elementary textbook series to
explore this question. Below, we review the literature to provide a theoretical basis of this
study.

1 Review of literature

1.1 Abstract and concrete representations

Abstract representations in this study referred to using symbols to represent mathematical
concepts and ideas. Such representations eliminate detailed perceptual properties and are often
arbitrarily linked to referents (McNeil & Fyfe, 2012). The notion of abstractness is relative in
the sense that specific abstract representations [e.g., (65+35)×5=65×5+35×5] may be further
manipulated to get a sense of a more general representation [e.g., (a+b)c=ac+bc] that is more
abstract for students (Mason, 2008). Abstract representations, in comparison to concrete ones,
are powerful because they can transcend over contexts for reasoning and problem solving
(Kaminski, Sloutsky, & Heckler, 2008). Recent studies (e.g., Cai, 2004; Koedinger, Alibali &
Nathan, 2008) found that abstract representations have advantages over concrete representa-
tions in solving complex problems. However, simply having students learn mathematical
principles in abstract contexts may be ineffective because students may only obtain inert
knowledge from abstract representations (Goldstone & Son, 2005). Therefore, it is critical to
ground the learning of mathematical principles in concrete representations to enable sense
making.

Concrete representations in this study refer to the use of physical objects (e.g., manipula-
tives) or visual images (e.g., diagrams) to represent mathematical concepts and ideas, and/or
the conceptualization of abstract ideas in real-world situations (e.g., word problems). We
consider word problem contexts as concrete representations because word problems “have
the potential to offer memorable imagery that can act as a touchstone for teachers and learners
in building and discussing abstract concepts” (Gerofsky, 2009, p. 36). Like the notion of
abstractness in this study, we view concreteness as relative as well (McNeil & Fyfe, 2012). For
example, actual physical objects compared to their images, pictures of real objects compared to
schematic representations, and word problem with illustrations compared to pure word
problems may offer richer real-life references. Prior studies have demonstrated that when
students’ real-world knowledge is activated, students would have a better chance to solve
problems and make sense of the abstract mathematical ideas (Baranes, Perry, & Stiegler, 1989;
Palm, 2008). However, over-relying on concrete representations may also hinder learning.
This is because the perceptually rich but irrelevant information may distract learners’ attention
or may be interpreted as an essential part of the intended concepts (Uttal, Scudder, &
DeLoache 1997). Therefore, it is necessary to transit from concrete to abstract representations.

1.2 Transition from concrete to abstract representations

The idea of making transition from concrete to abstract representations can be traced back to
Piaget (1952), which is only one of the views about connecting the concrete and the abstract.
In fact, Davydov (1988) has suggested a reverse direction, the ascent from the abstract to the
concrete. The present study takes the Piagetian view. Piaget (1952) suggested four cognitive
development stages: sensory motor, preoperational, concrete operational, and formal opera-
tional, which indicated a transition from concrete to abstract. Bruner (1966) held a similar
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position that children’s learning included three modes: physical, iconic, and symbolic. For both
Piaget and Bruner, young children should construct their understanding of mathematical con-
cepts starting from physical manipulations. In fact, concrete representations in this study are also
referred to word problems that may activate students’ informal real-world experience. In this
sense, the process of transition from concrete to abstract is also alignedwith the theory of Realistic
Mathematics Education (Freudenthal, 1991; Gravemeijer, 1994) that emphasized mathematizing
and reinventing students’ informal situation-specific knowledge into formal and general under-
standing. As such, one may see the close connection between the notion of transition from
concrete to abstract representations and the notions of transition from informal to formal
(Carpenter, Franke, & Levi, 2003) and from specific to general understandings (Mason, 2008).

Empirical studies have shown that making the transition from concrete to abstract represen-
tations is not easy. Resnick and Omanson (1987) found that a child who was able to use Dienes
blocks to solve three-digit additions could not solve simpler two-digit additions with written
symbols. Moreover, children who performed best with the Dienes blocks did the worst in written
subtraction problems. Furthermore, research on word problems reported students’ difficulties in
activating real-life knowledge based on word problem situations, leaving the word problems
functioning as confusing mathematical puzzles (e.g., Baranes, et al., 1989; Palm, 2008). The
difficulties in making the transition from concrete to abstract representations may be understood
from the perspective of analogy (Holyoak & Koh, 1987). During the process of transition, the
concrete and abstract representations may be considered as the base and the target, respectively.
Given the key to analogy is structural mapping from the base to the target, a successful transition
from concrete to abstract representations demands the same process, which in turn requires that
students see the structural similarities between both. Unfortunately, structural connections are
always hidden from direct observation, which makes it hard for novice students to detect them.

Recently, cognitive psychologists (e.g., Goldstone & Son, 2005) proposed a method named
concreteness fading to tackle this issue. Goldstone and Son defined concreteness fading as “the
process of successively decreasing the concreteness of a simulation with the intent of even-
tually attaining a relatively idealized and decontextualized representation that is still clearly
connected to the physical situation that it models” (p. 70). Although this method was
originated from Bruner (1966), there were two distinguishing features as compared to the
prior learning theories. First, representations used in concreteness fading target the “same”
concept. Second, the process of representational changes is “successive” with viable connec-
tions. These features seem to be critical because they contribute to maintaining the structural
similarities (Holyoak & Koh, 1987) between concrete and abstract representations. In fact, the
idea of “progressiveness” was advocated by Realistic Mathematics Education (Freudenthal,
1991; Gravemeijer, 1994), which viewed mathematics learning as a process of guided
reinvention. Returning to concreteness fading, recent laboratory experiments have confirmed
its effect on learning scientific principles (Goldstone & Son, 2005) and mathematical rules
(McNeil & Fyfe, 2012).

Although the above studies have enhanced our understanding of representational transition,
little is known about how textbooks may embody these ideas to facilitate the learning of
mathematical principles. Given the important role of textbooks in improving teaching and
learning (Ball & Cohen, 1996), this study explores representational transition in textbooks
through an examination of the distributive property in a representative Chinese textbook series.

1.3 The distributive property and Chinese textbook presentation

The distributive property, symbolically represented as (a+b)c=ac+bc, is one of the most
important mathematical principles because it allows great flexibility for computations, serves
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as one of the fundamentals for solving algebraic equations, and provides a foundation for
generalizations and proofs (Bruner, 1960; Carpenter et al., 2003). Knowing the distributive
property as an underlying idea of the partial products [e.g., 48×37=(40+8)×(30+7)=
40×(30+7)+8×(30+7)=40×30+40×7+8×30+8×7] may contribute to students’ under-
standing of arithmetic algorithms and algebraic learning such as binomials [e.g.,
(a+b)×(c+d)=ac+ad+bc+bd, Carpenter et al., 2003]. In fact, to solve algebraic equations
such as x−0.15x=38.24, instead of memorizing the procedure of simplifying “x−0.15x” as “(1−
0.15) x,” students should also understand the distributive property (Ding&Li, 2010). Finally, the
distributive property plays an important role in learning linear functions. For example, to
transform functions of point–slope forms to slope–intercept forms involves the use of the
distributive property: y−y1=m (x−x1)→y−y1=mx−mx1→y=mx+(y1−mx1) or y=mx+b.

The distributive property, (a+b) c=ac+bc, like many other mathematics principles, appears
to be very simple. However, many students tend to simply manipulate the symbols without
being able to use it flexibly in different contexts. Indeed, some elementary teachers also had
considerable difficulty in activating and applying this property to relevant topics (Ma, 1999).
To help elementary students learn this principle in meaningful ways, concrete contexts, such as
word problems and pictures, may be used to model this property. Because there were several
types of multiplication (e.g., equal groups, multiplicative comparison, area, and
combination, Carpenter et al., 2003), there were different ways to model the distrib-
utive property. The National Council of Teacher of Mathematics (2000) suggested that
teachers draw an area model (a rectangle with the length of “a+b” and width of “c”)
to illustrate the distributive property. Ding and Li (2010) reported that Chinese
textbooks mainly used word problems involving equal groups and multiplicative
comparison models to illustrate this property. Prior research on the distributive
property provides a foundation for this study to explore representational transition in
elementary textbooks, which has not been studied in prior research.

We chose to examine a Chinese textbook series because Chinese students consistently
outperform their counterparts in international mathematical assessments (e.g., Cai, 2004; Li,
Ding, Capraro, & Capraro, 2008), which is directly related to the textbooks they used (Li et al.,
2008; Li & Huang 2013; Wang, Han, & Lee, 2004). Since a sophisticated understanding of
mathematical principles entails spacing learning over years (Pashler et al., 2007) and
Chinese textbook series have displayed long term learning processes (Li, Chen, &
Kulm, 2009), it is meaningful to examine a full textbook series. In fact, textbook
studies that involve Chinese curriculum have brought many insights to the field (e.g.,
Ding & Li, 2010; Li et al., 2008; Sun, 2011), which might otherwise be impossible if one
limited one’s gaze to only one’s own nation.

2 Methods

2.1 Textbook selection

We selected the Chinese JSEP textbook series (Su & Wang, 2005) because this was one of the
main Chinese textbook series. This textbook series was found to possess overall merits in
supporting students’ learning of key concepts and principles (e.g., Li et al., 2008) including the
distributive property (Ding & Li, 2010). The JSEP was a reform textbook series, with its
development based on the new National Mathematics Curriculum Standards (Ministry of
Education, 2001). All of the grade 1–6 student textbooks (12 volumes) and corresponding
teacher guides (or Curriculum Analysis) were selected.
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2.2 Data coding

Coding instances The JSEP text series blocked the teaching of each mathematical topic in one
chapter containing several interrelated lessons. In general, each lesson included one worked
example (a problem with solutions given), followed by corresponding practice problems. All
of the worked examples and practice problems in the textbook series were examined. A
worked example would be coded as an instance if its solution either (a) explicitly used the
distributive property or (b) implicitly involved the distributive property with a clear possibility
to develop students’ intuition of this property. A practice problem would be coded as an
instance if students were explicitly asked to use the distributive property. If clear requirements
did not exist, our decisions on coding practice problems were then referred back to the
corresponding worked example. The first author coded all of the textbook pages and then
recoded the entire textbook series 3 months later. A few missed instances were added. After
this, the second author examined each page of Chinese second, fourth and sixth grade curricula
using the same coding framework. Cohen’s kappa was computed to check the interrater
reliability (usually kappa should be 0.7; Leech, Barrett, & Morgan, 2008). The average kappa
of 0.83 indicated high agreement between the two coders.

Coding types of representations For each identified instance, we classified its overall nature as
either a concrete or an abstract representation. An example of a concrete representation is a
fourth grade worked example that asked students to find the total cost for five jackets priced at
¥65 each and five pants priced at ¥45 each. The textbook provided two solutions (65+45)×51

and 65×5+45×5 to this word problem, which together illustrated the distributive property
(65+45)×5=65×5+45×5 (elaborated upon later). Given this worked example grounded the
learning of the distributive property in a real-world context, its overall nature was coded as
concrete representation. Examples of abstract representations were “Using convenient way to
solve 16×401,” “1.9x+0.4x=9.2,” “3x+2x=(□+□)×□,” and “Can you provide an algebraic
expression for the distributive property?” These problems only involved symbolic manipula-
tions and thus were classified as abstract. Both authors independently classified the instances
and the agreements reached 100 %.

Coding levels of concreteness/abstractness Because concreteness and abstractness are viewed
as relative in this study, for each instance, we further coded the levels of concreteness/
abstractness, when possible. For concrete contexts such as word problems, we differentiated
several types of problem formats including (a) picture plus keywords, (b) a complete word
problem with pictures, and (c) a complete word problem only. From (a) to (c), there was a
decreasing level of concreteness because the visual information became less involved. In
addition, when solutions to a word problem were given, we differentiated the arithmetic from
algebraic solutions. For abstract contexts such as computation problems, we differentiated the
types of numbers/contexts. We viewed whole numbers and arithmetic contexts as relatively
less abstract than rational numbers and algebraic contexts because the former might be
more familiar to students. In fact, based on Son and Goldstone’s (2009) extended
notion of “concreteness”—“degree of specificity of contextualization” or “how much
learning is embedded in a specific domain or situation” (p. 52)—a transition from a specific
arithmetic operation [e.g., 6×(35+65)=6×35+6×65] to a general algebraic equation [e.g., a
(b+c)=ab+ac] indicates decreased concreteness and thus increased abstractness (Goldstone,
personal communication, September 26, 2010). This is also supported by the connection

1 “65×5” represents “5 groups of 65” in this Chinese text.
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between the notions of “from concrete to abstract” and “from specific to general” (Mason,
2008).

2.3 Data analysis

After the above three-level coding, we analyzed the transition from concrete to abstract represen-
tations based on a framework involving worked examples and practice problems. For all of the
instances, we first counted the frequency of concrete and abstract representations under worked
examples and practice problems, respectively. We then conducted fine-grained analyses at three
tiers: (1) within one worked example, (2) from worked examples to practice problems within one
topic, and (3) acrossmultiple topics over grades. At tier 1, we examined the representational changes
and connections between the problem statement and its solutions. At tier 2, we only examined the
chapter that formally instructs the distributive property. At tier 3, we examined, across worked
examples, the changes of problem formats and solution representations. We also examined, across
practice problems, the changes of types of numbers in abstract contexts. At each tier, we analyzed
whether there were noticeable pedagogical techniques used to facilitate the transition, and how well
those changes and connections might support student learning of the distributive property.
Throughout the data analyses, both authors were engaged in constant conversations. Thus, the
results reported in this study were agreed upon by both authors.

3 Results

The general quantitative results are presented in Table 1.
Table 1 indicates that JSEP textbooks presented 319 instances of the distributive property

across various mathematical topics (e.g., whole number multiplication, using letters to repre-
sent numbers, solving algebraic equations) from grades 2 to 6. The formal introduction of this
property occurred in grade 4 (n=67). Among 319 instances, there were a total of 16 worked
examples and 303 practice problems. Several patterns of representation uses were revealed.
First, the majority of the worked examples (15 out of 16) were presented in concrete contexts,
which were word problems. Second, practice problems involved both concrete (n=161) and
abstract (n=142) representations. Third, the proportion of concrete to abstract representations
in practice problems varied across informal learning (20–25), formal learning (10–43) and later
revisits (131–60). The above pattern indicates that the transition from concrete to abstract
representations in JSEP textbook series was not a simple linear progression in the manner from
word problems to computation problems. The complexity of representation uses suggests the
need for fine-grained analyses as reported below.

3.1 Transition within one worked example

Among 15 worked examples that were situated in word problem contexts, there were common
patterns in presenting each example: (1) presenting a word problem involving “key words and
pictures” or “pure word problems with/without accompanying pictures”; (2) analyzing the
quantitative relationships either using schematic diagrams (e.g., number lines) or “thinking
bubbles” (highlights of structural relationships in the format of a child’s thinking); and (3)
presenting arithmetic or algebraic solutions that embodied the distributive property. The above
steps indicated that the concreteness or specificity of the contextualization has been gradually
decreased, which aligns with the process of concreteness fading (Goldstone & Son, 2005). A
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closer examination of the worked examples revealed two noticeable pedagogical techniques
that seemed to facilitate the representational transition. Elaboration follows.

Constructing and analyzing a schematic diagram Among the 15 worked examples, eight of
them (53.3 %) used number line diagrams to represent the word problem situations. Number
line diagrams are schematic representations that illustrate the problem structures and bridge the
concrete to abstract representations, which, however, are often nontransparent for students
(Pashler et al., 2007). The JSEP textbooks employed three approaches to engage students in
the process of constructing and analyzing the diagrams. Table 2 presents examples.

As indicated in Table 2, the first approach was to have students draw part of a diagram
(n=2). The third grade example involved multiplicative comparison. The given number line
indicated the price for a single pair of pants. Students were then instructed to draw the second
line for the price of a coat. This drawing process may prompt students to map the relevant
information (the price of a coat is three times that of a pair of pants), onto the second line,
which may bring embedded comparative relationships to students’ attention. The second
approach was to have students label key quantities on a line (n=3). The sixth grade example
also involved multiplicative comparison. The textbook presented two lines with the first line
labeled as x (boys). Students were asked to label the quantity for the second line (girls). This

Table 1 Number of instances of the distributive property across different dimensions

Grade (volume) Mathematical topic Worked example Practice problem

Concrete Abstract Concrete Abstract

2 (v.3) Ch2. Multiplication facts (Kou Jue) 12

3 (v.5) Ch4. Addition and subtraction (<100) 1 7

3 (v.5) Ch6. Rectangle and square 1 7 5

3 (v.5) Ch7. Multiplication (3-digit×1-digit) 3 1

3 (v.6) Ch4. Multiplication (2-digit×2-digit) 1 1 2

4 (v.7) Ch3. Mixed four operations 2

4 (v.8) Ch1. Multiplication (3-digit×2-digit) 1 1

4 (v.8) Ch4. Mixed operations 1 2

ntotal informal learning=48 3 20 25

4 (v.8) Ch7. The basic laws of arithmetic (DP) 2 10 55

ntotal formal learning=67 2 10 55

4 (v.8) Ch11. Problem solving (Distance) 1 6

4 (v.8) Ch13. Using letters to represent numbers 1 8 9

4 (v.8) Ch14. Organize and review 2 4

5 (v.9) Ch9. Decimal multiplication and division 1 8

6 (v.11) Ch1. Equation (algebraic) 1 18 12

6 (v.11) Ch2. Rectangular prism and cubes 1 1 4

6 (v.11) Ch7. Mixed four operations of fractions 3 30 7

6 (v.11) Ch10. Organize and review 3 2

6 (v.12) Ch1. The application of percent 3 49 8

6 (v.12) Ch8. Organize and reflection 14 8

ntotal revisit=204 10 1 131 62

ntotal=319 15 1 161 144
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might prompt students to process and map the information, “the number of girls is 80 % of that
of boys,” onto an algebraic expression “80 % x,” a key step to generate a double-reference
equation, x+80 % x=36. The third approach was to pose specific questions to guide
discussions of a diagram (n=3). The fourth grade distance problem in Table 2
involved the equal-groups meaning of multiplication. The textbook suggested using
both number line and table to represent this problem, leading to two different
solutions. After the number line diagram was presented, students were asked,
“According to this diagram, what can we compute first?” This question was to orient students’
attention to the number line, thus generating the expected first solutions, 70×4+60×4, as
illustrated by the diagram.

Comparing two solutions This is the second technique used to facilitate representational
transition within one worked example. Among the 15 worked examples, 12 of them (80 %)
employed this approach to reveal the distributive property. Figure 1 presents three examples,
all of which involved the equal-groups meaning of multiplication.

Figure 1a illustrates the aforementioned fourth grade “jackets and pants” word problem that
formally introduced the distributive property. The representational transition included four
steps: (a) analyzing and solving this problem in two ways: 65×5+45×5 and (65+45)×5; (b)
comparing the two solutions that lead to an instance of the distributive property: (65+45)×5=
65×5+45×5; (c) asking students to generate more arithmetic examples of this sort; and (d)

Table 2 Three approaches of
using number line diagrams

Approach Example Number Line Diagram

1. Have 
students 
draw part of 
a diagram  
(n = 2) 

A pair of pants is ¥28 (in
picture). The price of a
coat is 3 times the price of
the pants. How much does
one suit cost? (3rd grade).

Pant   

Coat  

2. Have 
students 
label key 
quantities on 
a line 
(n = 3) 

Zhaoyang’s elementary 
school art team has a total 
of 36 students. The 
number of girls is 80% of 
that of boys. How many 
girls and boys are there 
respectively? (6th grade) 

Boy    

Girl    

Number of (    ) + Number of (    ) = total people of art team 

3.Pose 
specific 
questions to 
guide 
discussions 
of  a 
diagram 
(n = 3) 

Xiaoming and Xiaofang 
walked toward school. 
Xiaoming walked at 70 
meters per minute. 
Xiaofang walked at 60 
meters per minute. They 
met each other after 4 
minutes. What is the 
distance between two 
homes? (4th grade)

Can you use number line diagram or list a table to sort out the 
conditions and the question?  

     70m      70m         70m         70m     60m    60m   60m  60m 

According to this diagram, what can we compute first?  

Xiaoming’s 
home

Can you draw the 
line that represents 
the price of a coat?

x persons

(      ) persons 

The number of girls is 80% of the boys  

Xiaofang’s 
home

?m

36 persons 
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formally introducing the distributive property through generalization: (a+b) c=ac+bc. Among
the above four steps, the second step, comparing two solutions, was critical. Without this step,
even though this word problem was solved, the opportunity to mathematize students’ situation-
specific experience to learn the underlying property might be missed. Indeed, the Curriculum

(a) Formal introduction of DP – Grade 4 

Fig. 1 Translated Chinese textbook pages of typical worked examples that involve DP
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Analysis clearly suggested comparing and contrasting the two expressions at both sides of the
equation, first referring back to and then generalizing beyond the problem situation, thus
“promote students’ understanding of the distributive property toward an abstract level.”

The comparison approaches were also observed in worked examples during the later
revisits of the distributive property. In a fourth grade lesson (see Fig. 1b), the comparison of
two solutions to a problem exposed students to the procedure of simplifying an algebraic
expression, 3n+4n=(3+4) n=7n. Along with this procedure, the deep question – “What
property is actually used?” – drew students’ attention to the underlying distributive property.
Similarly, in the sixth grade example (see Fig. 1c), comparison was made between two
solutions (a) 2/5×18+3/5×18, or (b) (2/5+3/5)×18, through a set of deep questions: “What
are the connections between the two solutions? Which solution is easier? Can the basic laws of
arithmetic with whole numbers also be used with fractions?” These prompts potentially
enable students to recognize the distributive property and its power in the new context
of rational numbers.

(b) Revisiting DP– Grade 4  

Fig. 1 (continued)
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3.2 Transition from worked examples to practice problems within one topic

We elaborate on the representational transition within one topic using the chapter of formal
introduction of the distributive property in fourth grade. This chapter was comprised of three
consecutive lessons. According to the Curriculum Analysis, Lessons 1 and 2 targeted the
meaning and applications of the distributive property, respectively. Lesson 3 was a review
lesson. Table 3 shows the representation uses in each lesson.

As indicated by Table 3, each of the first two lessons included only one worked example
situated in concrete contexts. The worked example in lesson 1 was the aforementioned “jackets
and pants” word problem. The worked example in lesson 2 was about computing the total cost
for 102 shirts priced at ¥32. Using this context, the textbook helped students make sense of the
application of the distributive property, 32×102=32×(100+2)=32×100+32×2, that is, the
costs for 102 shirts can be thought of as the costs for 100 shirts and 2 shirts. Since lesson 3 was
a review lesson, it did not contain worked examples. With regard to practice problems in all

(c) Revisiting DP–Grade 6 

Fig. 1 (continued)
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three lessons, both concrete (n=10) and abstract (n=55) representations were included.
Among the 10 concrete representations, nine were word problems involving equal-groups
meaning and one was an area model. Among the 55 abstract representations, most of them
asked students to do computation or fill in numbers/signs, thus applying the distributive
property. Overall, there was a trend of fading concreteness into abstract within one lesson or
one topic. In addition, we observed a technique of using contrasting cases in practice problems
to effectively deepen or extend what was taught in the worked example. Below are examples.

Compare to deepen understanding In lesson 1, the worked example about jacket and pants
was solved by (65+45)×5=65×5+45×5 (see Fig. 1a). The corresponding practice problem
contained a group of contrasting cases:

42þ 35ð Þ � 2 ¼ 42� □ þ 35� □
27 � 12 þ 43 � 12 ¼ 27þ □ð Þ � □
15 � 26 þ 15 � 24 ¼ □ O □ O □ð Þ
72 � 30þ 6ð Þ ¼ □ O □ O □ O □

The surface features of these problems were different from the worked example in two
aspects: (a) the direction of using the distributive property and (b) the position of the common
factor (simply “direction” and “position”), as indicated below:

Example : aþ bð Þc ¼ acþ bc
Practice 1 : aþ bð Þc ¼ ac þ bc
Practice 2 : ac þ bc ¼ aþ bð Þc
Practice 3 : abþ ac ¼ a bþ cð Þ
Practice 4 : a bþ cð Þ ¼ abþ ac

The first practice problem was a literal application of the distributive property embodied by
the worked example. The second and third problems changed the direction in using the
distributive property, while the third problem additionally changed the position of the common
factor. Finally, the fourth problem possessed both similarities (in position) and differences (in
direction) to the third problem. As such, from worked example to practice problems, the use of
contrasting cases with progressive variations may deepen students’ understanding of the
distributive property.

Compare to extend understanding In lessons 1 and 2, both worked examples presented the
distributive property as “multiplication over addition” [e.g., (65+45)×5=65×5+45×5]. The
corresponding practice problems reinforced this structure. However, lesson 3 introduced a new

Table 3 Frequency of representa-
tions during formal introduction of
the distributive property

Lessons Worked examples Practice problems

Concrete Abstract Concrete Abstract

1 (new) 1 0 4 10

2 (new) 1 0 2 18

3 (review) 0 0 4 27

Total 2 0 10 55
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case of the distributive property, “multiplication over subtraction,” through a group of
computation problems followed by a deep question, “What have you discovered?”

32� 30–2ð Þ ○ 32� 30–32� 2
40–4ð Þ � 25 ○ 40 � 25–4 � 25

For each problem, students were expected to first compute the number sentences at both
sides of “O” and then compare the results in order to fill in “=.” The Curriculum Analyses
alerted teachers that students may simply fill in with an “=” without computing and comparing,
which should be discouraged because it may conflict with the spirit of discovery.

3.3 Transition across multiple topics over grades

Across worked examples: changes in concrete contexts With regard to representational tran-
sition across topics, we examined worked examples and practice problems over grades,
respectively. Figure 2 presents changes of problem formats and solution representations across
worked examples that were situated in word problems.

As indicated by Fig. 2a, the problem formats over grades demonstrated a decreasing level
of concreteness. In grade 3 (n=3), all worked examples were formed by “pictures plus key
words.” In grade 4 (n=4), all of the worked examples still involved pictures. However, half of
them were presented in complete word problem formats along with pictures. In grade 6 (n=5),
only 37.5 % of the worked examples involved pictures, while 62.5 % of them were stated
purely in words. With regard to solution representations, while the arithmetic solutions were
found across grades, it was the sole solution format in grade 3 and it decreased across grades
(see Fig. 2b). In contrast, algebraic solutions occurred in grade 4 and increased from grade 4 to
6. In particular, the algebraic story problems in grade 6 were double-reference problems, which
were difficult for many students (Koedinger et al., 2008).

Across practice problems: changes in abstract contexts Figure 2c indicates changes of number
uses across practice problems. Across grades 2–6, there was a shift from the whole numbers
(e.g., 64×8+36×8), to algebraic expressions involving whole numbers (e.g., 4a–2a), to
rational numbers (2/5×18+3/5×18), and algebraic equations involving all kinds of numbers
(x−0.8x=10). While whole numbers have been consistently involved, it was the only type of
number used before the formal introduction of the distributive property. After this, various
contexts and numbers were incorporated. The increasing abstractness indicated by the number
uses may result in less transparency in using the distributive property. For instance, it will be
relatively easier for students to activate the distributive property when they face 64×8+36×8
than 6

5 � 6
7 −

1
5�

7
6 . However, when the distributive property is used with the latter one (first

transforming “÷7/6” into “×6/7”), this seemingly complex problem becomes extremely easy,
which may promote students’ appreciation of and spontaneous uses of this property.

4 Discussion

As illustrated in this study, the representative Chinese textbook series has made systematic
transitions from concrete to abstract representations when presenting the distributive property,
which aligns with the existing theory of cognitive development (Bruner, 1966; Piaget, 1952)
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Fig. 2 Changes of representation uses across multiple topics over grades
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and the concreteness fading method (Goldstone & Son, 2005). This is not surprising because
this reform Chinese textbook series is developed based on the new Chinese standards (Ministry
of Education, 2001) that has incorporated some ideas of western learning theories and standards
(Wang et al., 2004). The Chinese textbook presentation shows that there is no single “magical”
and quick way to make representational transitions. To support students’ learning of abstract
mathematical principles like the distributive property, the Chinese textbook series coordinates
the use of multiple strategies to be discussed below, which is much more complex than the
treatment in a laboratory setting of the concreteness fading method (Goldstone & Son, 2005;
McNeil & Fyfe, 2012). As such, our study has complemented laboratory findings from
perspectives of curriculum. Figure 3 summarizes the multi-faceted representational transitions
in the Chinese textbook series, followed by elaborations of four critical features.

4.1 Situating new learning in word problem contexts

The Chinese textbooks consistently situate new learning (the worked examples) in word
problem contexts, which serves as a starting point of the transition process (see Fig. 3). This
finding enriches existing theories, including the concreteness fading method, that mainly
suggest starting with physical manipulations but not word problems (Bruner, 1966;
Goldstone & Son, 2005; McNeil & Fyfe, 2012; Piaget, 1952). In fact, word problems can
serve as real-world contexts in which mathematics is both developed and applied (Gerofsky,
2009). While the latter function (to apply knowledge) is commonly used in the field, the
former function (to develop knowledge) is largely ignored. This is likely due to a common
belief of teachers and curriculum designers who are informed by students’ frequent failures
with problem solving, that is, word problems are more difficult than computations (Nathan,
Long, & Alibali, 2002). Such a belief, however, is inconsistent with the actual learning process
where students tend to activate their familiar real-world knowledge to solve problems

Fig. 3 Representational transition in Chinese textbooks
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(Koedinger et al., 2008). In fact, some researchers call for using word problem contexts to help
students make sense of abstract ideas (Gerofsky, 2009; Palm, 2008) or situate new learning in
situation-specific contexts that is real for students (Freudenthal, 1991; Gravemeijer, 1994). As
such, the Chinese textbooks’ systematic use of word problems as worked examples is
insightful, which suggests rethinking the role of word problems in support of learning. It
should be noted that all word problems selected in the Chinese textbooks as worked examples
clearly embody the targeted mathematical principle without adding unnecessary cognitive
difficulties.

The types of word problems used as Chinese worked examples, however, reveal a
drawback. All of the problems are limited to equal-groups and multiplicative comparison
meanings of multiplication. The area model suggested by NCTM (2000) and widely used in
Europe and US elementary textbooks (Ding & Li, 2010) only occurred once in practice
problems (but not in worked example). Chinese textbooks could have presented more in-
stances of the area model when illustrating the distributive property.

4.2 Setting up a clear ultimate goal as abstract representations

Although word problems are used as concrete contexts for new learning, the concreteness has
been intentionally and gradually faded out both within a worked example or with a lesson/
topic, which is consistent with the concreteness fading style (Goldstone & Son, 2005, see
Fig. 3). During the process of concreteness fading, Chinese textbooks have focused on the
essential problem structure or the underlying mathematical principle embodied by the concrete
situations. According to Chi and VanLehn (2012), focusing on the essential structure of the
source problem will result in deep initial learning, which is a key to transfer. In addition, we
observed decreasing concreteness/increasing abstractness across worked examples and across
practice problems over grades (see Fig. 3). The above multi-faceted transitional processes
suggest that abstraction seems to always serve as an ultimate goal for Chinese textbooks,
whereas the concrete representations and the process of fading only serve as a necessary means
toward the goal of abstraction. Chinese textbooks’ constant transition from concrete to abstract
representations may partially explain findings about Chinese teachers’ and students’ represen-
tational beliefs and competence in abstract thinking (Cai, 2004).

4.3 Incorporating problem variations with connection to prompt transition process

The representational transition in the Chinese textbook series is facilitated by careful task
design, which appears to be consistent with prior findings about Chinese indigenous variation
practice (Gu, Huang, &Marton, 2004; Sun, 2011). We observed both “problem variations with
solution connection” and “problem variations with concept connection” (Sun, 2011, p. 73). As
reported, there were carefully designed word problems solved with two solutions, which were
further compared to introduce or revisit the distributive property (see Fig. 1). There were also
simultaneously presented contrasting cases that were compared to deepen or extend students’
understanding. Across grades, there were word problems with the same structures (e.g., equal-
groups meaning, multiple comparisons) but involving different numbers and contexts (see
Table 2). The number and context changes over grades were more obvious with computation
problems (e.g., 226×13−26×13→4a−2a→x−0.8x=10). The Chinese textbooks’ problem
variations indicate a progressive change in representation, which is consistent with the critical
feature of concreteness fading that potentially keeps the “structural similarity” visible so as to
promote representational transition (Goldstone & Son, 2005; McNeil & Fyfe, 2012). In fact,
the progressiveness is also critical for mathematizing students’ specific experiences into
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increasingly abstract and formal understanding of the distributive property (Freudenthal,
1991).

4.4 Engaging students in making sense of the transition process

Presenting carefully designed tasks alone may not ensure a successful representational transi-
tion, just as a good vehicle cannot guarantee arriving at the destination. This is because
pedagogical tools, such as number lines, used for transition are nontransparent (Pashler et al.,
2007) and students tend to make arbitrary connections between representations (Resnick &
Omanson, 1987). Chinese textbooks provided scaffolding support by engaging students in the
process of sense making. For example, when a number line diagram is used, students may be
engaged in constructing lines, labeling the key quantities, or analyzing the diagrams. The
textbooks also frequently pose deep questions and suggest comparisons for making effective
connections. Indeed, deep questions are powerful tools that prompt students’ self-explanations,
which could lead to deep learning and effective transfer of the underlying principles (Craig,
Sullins,Witherspoon, &Gholson, 2006). Recently, comparisons also drew renewed attention of
the field as this method facilitates analogical reasoning and computation flexibility (Richland,
Stigler, & Holyoak, 2012; Rittle-Johson & Star, 2007). Interestingly, while Richland et al.
(2012) found that East Asian classrooms use visual representations as cognitive supports for
effective comparison, we found that Chinese textbooks constantly use comparison as a critical
aid to facilitate representational transition. Taking together, the above pedagogical supports may
help students activate their relevant knowledge, enabling them to reason about upon the
essential structure and structural similarities, which may lead to successful mapping between
concrete and abstract representations (Chi & VanLehn, 2012; Holyoak & Koh, 1987).

Implementation, limitations, and future directions It should be mentioned again that transition
from concrete to abstract is only one of the views in making connections between both
representations (e.g., Piaget, 1952; Davydov, 1988) and the present study works with the
Piagetian views. Our findings about Chinese textbooks’ insights and alternatives provide rich
resources for textbook designers and classroom teachers to refer back to. However, we caution
against simple generalization of the findings due to the limitations of this study. First, our study
has only focused on examination of textbooks rather than the effects of the identified Chinese
approaches. Future classroom interventions may test these findings (e.g., concreteness fading
within a worked example, different ways to use number line diagrams, comparisons, and
representational transition) using the topic of the distributive property and beyond. Second, our
findings have not yet been tested empirically in other cultural contexts. While the suggested
approaches appear to be beneficial in the Chinese setting, there may be cultural factors that
hinder the effective application of these approaches. Further studies may explore possible
obstacles in implementing these approaches, thus informing modifications to enable a better fit
with the actual settings.
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