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Abstract Prior studies show that elementary school children generally “lack” formal
understanding of inverse relations. This study goes beyond lack to explore what
children might “have” in their existing conception. A total of 281 students, kindergarten
to third grade, were recruited to respond to a questionnaire that involved both contex-
tual and non-contextual tasks on inverse relations, requiring both computational and
explanatory skills. Results showed that children demonstrated better performance in
computation than explanation. However, many students’ explanations indicated that
they did not necessarily utilize inverse relations for computation. Rather, they appeared
to possess partial understanding, as evidenced by their use of part-whole structure,
which is a key to understanding inverse relations. A close inspection of children’s
solution strategies further revealed that the sophistication of children’s conception of
part-whole structure varied in representation use and unknown quantity recognition,
which suggests rich opportunities to develop students’ understanding of inverse rela-
tions in lower elementary classrooms.

Keywords Inverserelations - Part-whole - Addition and subtraction - Children’s strategy

The inverse relation between addition and subtraction (additive inverses) is one of the
most important fundamental mathematical ideas for lower elementary grades (Baroody
1987, 1999; Carpenter et al. 2003). This relation, along with others, forms the basis for
learning both arithmetic and algebra. For instance, children may use inverse relations
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for computation and checking (e.g., 81-79 =2 because 79 +2 =81, Torbeyns et al.
2009) and use this relationship to solve algebraic equations (e.g., ifa+b=c,thenb=c
—a, Carpenter et al. 2003). Longitudinal studies also have shown that students’
performance on inverse tasks in second grade significantly predicted their algebraic
achievement in 11th grade (Stern 2005). Indeed, inverse relations are involved in many
other advanced topics such as functions and calculus, making these relationships an
important building block of mathematics.

Despite the importance of inverse relations and the fact that many children possess
informal understanding of inverse relations before entering elementary school (e.g.,
Gilmore and Spelke 2008; Sophian and Vong 1995), overwhelming evidence shows
that elementary school children generally lack formal understanding of inverse relations
(Baroody 1987, 1999; Bisanz and LeFevre 1990; De Smedt et al. 2010; Riley et al.
1983). What is missing behind children’s “lack” of understanding is what they might
already “have” in their existing conception. Knowing children’s existing conception is
critical because such information may serve as a basis for developing their understand-
ing. The current study aims to fill this gap in the existing literature by identifying
children’s existing conception through an examination of their strategies when solving
additive inverse problems.

Literature review

To situate our study in the existing literature, we first review prior research on
children’s understanding of inverse relations. Next, we review the part-whole structure,
which is suggested as the key path to understanding inverse relations. Finally, we
introduce research assertions on how to measure children’s understanding of inverse
relations. Together, these provide a theoretical foundation for the current study.

Children’s understanding of inverse relations

Children’s understanding of inverse relations is revealed by tasks involving two types
of'additive inverse principles: (a) the three-term inversion principle, a + b — b = a and (b)
the two-term complement principle, if a + b =c, then ¢ — b =a (Baroody et al. 2009).
Although the inversion and complement principles are different and the sequence of
learning them has not yet reached consensus, it is generally agreed that these principles
are closely related and an understanding of one would contribute to the other (Baroody
et al. 2009; Gilmore and Bryant 2008). Past studies have reported preschoolers’
informal understanding of inverse relations based mainly on the three-term inversion
principle. With approximate numbers involved (i.e., no actual number manipulation
needed), children were able to provide correct directional responses (i.e., an increasing
action will result in a larger quantity and a decreasing action will result in a smaller
quantity, Gilmore and Spelke 2008; Sophian and Vong 1995; Sophian and Vong 1995).
These directional responses may reflect children’s primitive models (Fischbein et al.
1985) of part-whole structure and informal understanding of inverse relations. On the
other hand, prior studies reported elementary school children’s lack of formal under-
standing based mainly on the two-term complement principle (Baroody 1987, 1999;
Baroody et al. 1983; Bisanz and LeFevre 1990, 1992; De Smedt et al. 2010; Resnick
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1983; Riley et al. 1983). For example, Baroody et al. (1983) found that approximately
61% of first and second graders in their study could not use addition to solve
subtraction problems (e.g., using 3 + 4 =7 to solve 7 — 4). Other studies highlighted
children’ difficulties with the initial unknown change problems such as the following,
“Ali had some Chinese stamps in his collection and his grandfather gave him 2; now he
has 8; how many stamps did he have before his grandfather gave him the 2 stamps?”
(Nunes et al. 2009, p. 5). According to Nunes et al., this initial unknown change
problem is an inverse problem because the quantity in this situation increases while this
problem is solved by subtraction. Nunes et al. pointed out that there is a consensus in the
literature that inverse problems are more difficult for elementary children than are direct
problems when the unknown is the result. These findings, however, indicate non-
continuity of children’s understanding of inverse relations from a younger age. For
instance, in Sophian and McGorgray’s (1994) study, the 4—6-year-olds demonstrated
increased ability to provide correct directional responses to initial unknown change
problems. Using the above stamps problem as an example, a child with correct
directional responses would know that the initial quantity is less than “8” even if they
may not necessarily know the exact answer. Preschoolers’ directional responses indicate
correct informal understanding of inverse relations, which contrasts with elementary
children’s lack of formal understanding.

The gap between children’s informal and formal understanding of inverse relations
suggests that there are potentially missed opportunities to teach inverse relations in
elementary school. As reported, some teachers only stressed procedures such as
drawing a small arrow from the subtrahend to the minuend (Torbeyns et al. 2009).
Such procedural teaching styles are disconnected from children’s prior knowledge that
is often contextualized and concretely based. Indeed, prior research suggests a general
growth of mathematical understanding moving from concrete image making to abstract
structural knowing, although the abstract representations may be folded back to its
primitive knowing that is relatively more concrete (Pirie and Kieren 1994). In other
words, although the eventual goal is to grasp inverse relations at structural level, the
connections back and forth between concrete and abstract representations seem to be a
critical part of this knowledge. As Gilmore and Spelke (2008) suggested, children’s
existing conception of inverse relations brought to elementary school should be taken
into consideration during formal classroom instruction.

Existing literature leaves a relatively incomplete picture of children’s existing
conceptions, such as the ones indicated by their existing strategies when solving
inverse-based tasks. Arguably, the lack of information about children’s existing con-
ception of inverse relations might contribute to ineffective teaching of this important
mathematical idea. As such, to provide children with better opportunities to learn, there
is a need to identify possible degrees of construction between children’s informal and
formal understanding.

Part-whole: a path to inverse relations

Prior research has pointed out that children’s protoquantitative notion of “part-whole” is
a key to learning inverse relations (Canobi 2005; Gilmore and Spelke 2008; Piaget
1952; Resnick 1989, 1992; Sophian and McGorgray 1994). The part-whole structure is

part of children’s number development stages that starts from counting (Bobis et al.
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2005; Young-Loveridge 2002). A series of early number development projects in the
Australian region (Bobis et al. 2005; Clarke et al. 2006; Young-Loveridge 2002; Wright
1991, 1994), through task-based, one-to-one children interviews, have reported chil-
dren’s profiles and progression of number development including part-whole thinking.
According to these researchers (e.g., Ellemor-Collins and Wright 2009), through
counting activities, children may structure numbers into combination or partition
relationships, which may further contribute to children’s development of the part-
whole structure. These views are aligned with Sfard (1991)’s dual nature of mathemat-
ical concepts. The counting process (e.g., counting from 1 to 6) is operational, but can
eventually develop to a structural view (e.g., seeing 6 as an object or as a whole). The
object of “6” can then be further operationalized on (e.g., combining 2 and 4 into 6, or
decomposing 6 into 2 and 4), which, in turn, can also then develop into a structural
view (e.g., seeing 2 and 4 as two parts of 6). According to Ellemor-Collins and Wright
(2009), an automation of part-whole thinking will likely shift students from counting to
non-counting strategies, enabling them to learn additive structures such as the inverse
relations between addition and subtraction.

Likely due to the part-whole structure, children who lack the knowledge to manip-
ulate numbers can still informally understand inverse relations (Gilmore and Spelke
2008). Canobi (2005) also viewed the sophistication of children’s understanding of the
part-whole relation as an indicator of students’ conceptual understanding of addition
and subtraction. According to this researcher, children who can compute addition and
subtraction in a precise manner, when lacking an understanding of the part-whole
relation, only possessed a procedural knowledge. International studies also reported
that high-rated textbooks arranged the part-whole topic before formally teaching
inverse relations (e.g., Ding 2012, 2016; Zhou and Peverly 2005). For instance, the
Chinese textbooks expected students to first learn number composing and decomposing
(e.g., 3 and 5 are composed to 8; 8 can be decomposed into 3 and 5), which demanded
an understanding of part-whole relation. With this part-whole understanding, students
were then expected to learn addition and subtraction as well as the relationship between
them 3+5=8; 5+3=8; 8—3=5, 8—5=3). As such, attention to bridging factors
like the part-whole scheme may lead to the identification of paths to developing
children’s informal understanding of inverse relationships into formal understanding.
While prior studies have highlighted the importance of part-whole structure, when it
comes to learning inverse relations in existing classrooms, we do not yet know how this
structure is adapted to deal with situations where using inverse operations is useful.

Measures of children’s understanding of inverse relations

Students’ inverse understanding is not an all-or-nothing phenomenon. Theoretical-
ly, students should gain more understanding as grade levels increase; however,
empirical studies do not necessarily support this prediction. For example, Canobi
(2005) found that as grade level increased, students’ computation accuracy im-
proved; yet, their conceptual understanding of the part-whole relationship did not
necessarily increase. The research explained that the improved computation accu-
racy was likely due to the repeated practice overtime. However, if the conceptual
underpinning is not addressed at the beginning, students’ understanding may not
improve automatically.
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Students’ understanding of inverse relations also depends on the contexts to
which they are exposed. Facing a task that is situated in a contextual or non-
contextual setting, students’ understanding may or may not be demonstrated. By
contextual tasks, we refer to those tasks that involve concrete objects or situations
(e.g., pictures, blocks, or story problems). By non-contextual tasks, we refer to
those tasks that are purely symbolic. It should be noted that even though contextual
tasks are relatively more concrete while the non-contextual tasks are abstract, we
do not view students’ understanding demonstrated in non-contextual tasks as a
higher level of understanding. This is aligned with Pirie and Kieren’s (1994) theory
that the growth of mathematical understanding is dynamic: leveled but non-linear.
Students may fold back from abstract symbols to concrete images for sense
making. Indeed, prior studies suggest measuring students’ understanding of in-
verse relations using both contextual and non-contextual tasks (Bisanz et al. 2009).
Through both types of tasks, students may be asked to evaluate, apply, and explain
inverse relations, thus assessing their procedural and conceptual understanding
(Bisanz and LeFevre 1992; Bisanz et al. 2009). Many times, children who provide
correct answers cannot explain the underlying reasons, indicating a lack of explicit
understanding. Of course, there may be occasions that children who understand the
concept cannot explain it due to a lack of communication skills. Moreover,
children who do explain still differ in quality of explanation, indicating different
levels of inverse understanding.

To measure children’s understanding of inverse relation, one may need to be
cognizant of the complexity associated with children’s satisficing for a solution. For
example, even though Nunes et al. (2009) called a contextual task of the form
?—2=6 as inverse problem, one may argue that children may solve this problem
through imagination. Instead of thinking 6 +2 =7, a student may imagine giving
away 2 from a set of 8§ leaving with 6. In addition, students who have mastered the
facts may directly recall 8 —2 = 6 and obtain the answer of 2. In both cases, children
may solve this problem using direct or forward thinking. Children’s lack of dem-
onstration of inverse thinking does not necessarily indicate a lack of understanding.
Rather, it may be the case that this task does not necessarily demand a use of inverse
relations. Probably, a task involving large numbers such as ( )—79 =2 can better
provoke students’ understanding of inverse relations (Torbeyns et al. 2009) because
images of 79 and 81 are unlikely to be available for children, and few children
likely recall the fact of 81 —79 =2. The complexity of children’s performance on
inverse tasks calls for careful interpretation of children’s solutions and strategies on
given measures.

Taken together, existing studies have suggested that there is a gap between students’
understanding and non-understanding of inverse relations, which may be associated
with both grade levels and the types of tasks. However, it is unclear what students
actually know when they only possess partial understanding. What is the proportion of
students’ correct and partial understanding in terms of the correctness and explanation
of solutions? In what ways does students’ partial understanding differ from no and full
understanding? How may this partial understanding be related to different grade levels
and different types of tasks? This study aims to explore these questions. It is expected
that our findings will inform teachers and researchers to better develop opportunities for
students to learn inverse relations.
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Method

To investigate the research questions, this study employs both quantitative and quali-
tative methods for analyzing data collected from a natural classroom. By “natural,” we
mean that students and teachers have not received any purposeful training related to
inverse relations by our data collection. As such, student responses reflect their status
quo of inverse understanding.

Participants

A total of 281 kindergarten through third grade students were recruited through a large
project in the mid-west of the USA in which their teachers participated. Through this
large project, the elementary teachers took graduate level courses with the goal to seek
master’s degrees concentrating on the teaching of elementary school mathematics. All
teachers have sought parent consent for sharing their children’s work if needed by the
project. In the current study, there were 50 kindergarten students with mean ages of
5 years and 3 months (SD =6 months); 74 first grade students with mean ages of
6 years and 1 month (SD =4 months); 79 second grade students with mean ages of
7 years and 1 month (SD =3 months); and 78 third grade students with mean ages of
8 years and 2 months (SD=5 months). There were originally 194 third graders;
however, for comparison, 78 were randomly selected as a representative sample.
Overall, these students came from the classes of 35 different teachers—9 kindergarten,
6 first grade, 7 second grade, and 13 third grade. These teachers were invited to
distribute a questionnaire to their students. As previously mentioned, by the time of
data collection, no teacher had received any project training with regard to inverse
relations. As such, students’ responses to this questionnaire indicate a natural status of
children’s inverse understanding in existing classrooms.

Materials

To measure student’s existing understanding of inverse relations, this study used four
modified items from the literature. These items may be solved with inverse-based
strategies involving complement and/or inversion principles, which together served as
indicators of children’s understanding of additive inverses. To help children ease into
these items, contextual tasks were presented before non-contextual tasks. Figure 1
illustrates the questionnaire, followed by elaborations.

Question 1 (Q1) and Q2 are contextual tasks that were modified from Nunes et al.
(2009). Both tasks are initial-unknown change problems. According to Nunes et al., Q1
describes an increase in quantity (? + 2 = 8) but the problem is solved by subtraction (8
—2=27). In contrast, Q2 describes a decrease in quantity (? —2 = 6) but the problem is
solved by addition (6 +2=7?). Therefore, Nunes et al. (2009) refer to both tasks as
“inverse problems.” When solving both problems, students may reverse a sequence of
actions (e.g., putting the given-away stamps back, Briars and Larkin 1984). During this
reversing process, students may use their part-whole structure to transform a change
problem to a combination (part-whole) model, which indicates an understanding that a
—b=c implies c+b=a (Resnick 1989). Arguably, this reverse process may also
indicate children’s understanding of the inversion principle (a —b + b = a) because they
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(1) Ali had some Chinese stamps in his collection and his grandfather gave him 2, now he
has 8. How many stamps did he have before his grandfather gave him the 2 stamps?
Please show your work.

(2) Ali had some Chinese stamps in his collection and gave 2 to his grandfather, leaving
his collection with 6. How many stamps did he have before he gave his grandfather the
2 stamps? Please show your work.

(3) 5+3-3=( ).How did you get this answer?

@Ho+3=()

9—-6=( ). How did you get the answer for 9 — 6? Did the addition problem help you

solve this subtraction problem?

Fig. 1 The questionnaire used in this study

know that putting back the given-away stamps (a—b+b) could lead to the original
number (a). The above reversing process indicates an understanding of inverse rela-
tions. However, due to children’s primitive models (Fischbein et al. 1985) of directional
responses, some children may be confused by the “reversing process.” In fact, as
acknowledged earlier, some children may not necessarily use inverse but direct think-
ing to model and solve these tasks [e.g., using “( ) —2 =6 to solve Q2]. Even in these
cases, the semiotic demands for writing equations may still cause difficulties for
children. This is because the lack of closure of ( ) in this equation may be confusing
because the unknown occurs first in the equation but last in the story context. Such
semiotic demands due to the inconsistent position of the unknown quantity in the
context and in the equation may contribute child’s difficulties in identifying the
unknown (e.g., viewing a given quantity as the unknown, Riley and Greeno 1988).

Q3 and Q4 are non-contextual tasks. Tasks like Q3 (5 + 3 —3) have been used in
many previous studies (e.g., Baroody and Lai 2007; Bisanz, and LeFevre 1990;
Gilmore and Bryant 2008; Stern 1992) to assess children’s understanding of the inver-
sion principle (a+b—b=a) involving children from preschoolers to fourth graders
(ages 4-10). When presented with a problem like this, some children may
use laborious, left-to-right procedure to find the answer (e.g., 5+3 =8, and then
8 —3=5), whereas others may answer it quickly without adding or subtracting
(Bisanz, and LeFevre 1990). According to Bisanz and LeFevre (1992), the latter appear
to use a shortcut based on the principle of inversion. Our follow-up question, “How did
you get this answer?” was expected to elicit students’ articulation of the procedures
they used to solve this problem.

Q4 asked students to first solve a pair of problems (6 + 3 and 9 — 6) and then explain
their reasoning process. Such a task also has been used in many prior studies (e.g.,
Baroody 1999; Baroody et al. 1983; Canobi 2004) to assess children’s understanding of
the complement principle (if a+b=c, then c—a=b), involving children from
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kindergarteners to third graders (ages 5-9). On Q4, in addition to finding answers for
each problem, students were expected to explain their reasoning process. According to
Baroody (1999), although students may provide correct answers to these problems,
they may not see and appreciate the inverse relations between them (Baroody 1999).

It should be noted that this questionnaire only contained four items. Although these
tasks were selected from the existing research involving children with similar ages as in
the current study, it could have been more reliable if this instrument contained more
subtasks for each item. We also acknowledge that we did not pilot these items through a
small student sample before asking K-3 teachers to work with their children. However,
given the relatively large sample in each grade, our preliminary findings from this study
may be expected to shed light on classroom instruction and follow-up research.

Procedures

An electronic copy of this instrument was sent to the participating teachers in summer
as part of the instruction for the fall course preparation. Teachers were asked to
administer this questionnaire with their students at the beginning of the fall semester.
The purpose was to collect information about children’s existing understanding of
inverse relations that they brought to the classroom. Teachers were asked to provide
30 min and let children work through these four questions. For kindergarten teachers,
we asked them to read the word problems and rephrase some words as needed to help
their children understand the problem statement. However, we emphasized that, be-
cause this is an assessment rather than instruction, no hints for solution should be given
to children. We asked the kindergarten teachers to tell their children not to worry about
spelling because the researchers could figure out their writing. We also allowed
kindergarten teachers to record children’s explanations if they needed help. Children’s
responses were collected and brought back to the project by the participating teachers.

Data coding and analysis

Our data included both quantitative (e.g., student answers) and qualitative (e.g., student
explanations) components. As such, both quantitative and qualitative analyses were
involved in this study (Creswell 2014). Students’ answers to each question were coded
first for correctness. This process was straightforward. For reliability checking, we
randomly selected 10% of student responses in each grade and the reliability reached
100%. The percentages of student correctness were summarized by tasks and by
grades. To identify the differences across grades and among tasks, the one-way
ANOVA along with the Bonferroni post hoc tests were calculated.

Next, we analyzed students’ explanations for each question. These qualitative data
were coded using the constant comparison method (Dye et al. 2000; Glaser 1965),
which involves categorizing the responses through inductive analysis and constantly
comparing incidents applicable to each category. As new responses were analyzed, the
existing categories may be refined and new categories may emerge as necessary. To
develop codes, we selected 10% of responses from each grade and both authors coded
them independently. Next, the two authors came together to compare their codes and
discuss the coding difficulties and disagreements. After a shared understanding had
been reached, we combined our codes into broader categories. Once the initial
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categorization was completed, one author proceeded with coding the rest of data
following the comparison method, which enabled ongoing enrichment and refinement
of the categories.

Overall, students’ explanations were classified into three macro levels (levels 0, 1,
and 2) indicating (0) no evidence that shows understanding of inverse relations (simply,
no understanding), (1) evidence that shows partial understanding of inverse relations
(simply, partial understanding), and (2) evidence that shows full understanding of
inverse relations (simply, full understanding), respectively. In particular, level 0 (no
understanding) included two subcategories: (0a) no explanation and (Ob) wrong/
uninformative explanation. Since students who did not provide an explanation does
not necessarily mean that they lack understanding (e.g., may be due to reading ability),
it is worthwhile to separate them from students who did explain, but did so with a
wrong or uninformative explanation. Level 2 (full understanding) also included two
subcategories: (2a) full explanations involving concrete aids and (2b) full explanations
at an abstract level.

Between levels 0 and 2, there were explanations that did not involve inverse
relations but showed part-whole relations (e.g., a part-whole picture, a number sentence
that shows part-whole relation). We coded these explanations as evidence of partial
understanding (level 1) because prior research suggests that part-whole structure is a
key to learning inverse relations. Under this category, there were three different
situations in terms of representation uses: (a) part-whole picture only, (b) part-whole
picture and number sentence, and (c) number sentence only. Within each situation, we
found that students may or may not be able to identify the unknown quantity because
some students may suggest the given quantity as the answer to the question (thus, a
wrong answer). Prior studies (e.g., Riley and Greeno 1988) pointed out that some
students had a harder time identifying the unknown quantity when its position was at
“start,” which indicated weak part-whole understanding. In this study, to track students’
identification of the unknown quantity, we categorized student responses with “incor-
rect answer,” “no answer indicated,” and “correct answer,” using the “— sign,” “no
sign,” and “+ sign,” respectively. As a result, we obtained a 3 x 3 subcategory matrix
for partial understanding (see Table 1), resulting in nine sublevels of partial under-
standing. Detailed examples are provided in Results.

Results

In this section, we report findings on the correctness of student responses, followed by
their explanations to each question. Further, we conducted a close inspection on

Table 1 Subcategories of partial understanding of inverse relations

Incorrect answer No answer indicated Correct answer
Part-whole picture la— la lat+
Part-whole picture and number sentence 1b— 1b 1b+
Number sentence only le— lc le+

@ Springer



M. Ding, A.E. Auxter

students’ partial explanations, which suggests opportunities for instruction in leverag-
ing their understanding toward a higher level.

Correctness of student responses

Students’ overall correctness of responses is presented in Fig. 2, summarized by tasks
(left) and by grades (right), respectively.

As indicated by Fig. 2 (left), while the computation accuracy did not exceed 85% for
all tasks, there is a growing pattern over time. The one-way ANOVA test shows that the
overall change across grades for each task is significant, Fo; (3, 277)=12.379,
Po1<.001; Fn (3, 277)=5.141, pqr=.002; Fos (3, 277)=20.373, pos3 <.001; and
Foa (3,277)=41.378, poa <.001. The Bonferroni post hoc test shows that for contextual
tasks (Q1 and Q2), significant changes include those differences between non-
neighboring grades (e.g., G2-K, pq; <.001; G3-K, pq; <.001; G3-Gl1, pg; <.001; G3-
K, pg2 <.01; G3-G1, pg, <.05) but not neighboring grades (e.g., G1-K, G2-G1). For
non-contextual tasks (Q3 and Q4), significant changes include those from kindergarten
to the other grades (e.g., G1-K, po3 <.001; G2-K, pos <.001; G3-K, po3 <.001; G1-K,
Paa<.001; G2-K, pqs<.001; G3-K, pos <.001) and from G1 to later grades (G3-Gl,
P <.05; G2-G1, pos <.001; G3-G1, pasa <.001) except for the change from G1 to G2
for Q3; however, the changes between G2 and G3 for both Q3 and Q4 are non-
significant. Overall, our data indicates that for simple addition and subtraction problems,
students quickly develop their computation skills from kindergarten to later grades.

The second pattern is specifically related to the kindergarteners (see Fig. 2, right).
These beginning learners performed much better on contextual tasks (Q1 and Q2, solid
shaded) than non-contextual tasks (Q3 and Q4, pattern shaded). This is consistent with
prior findings that children may reason upon contextual information even before they
have mastered number manipulations (Gilmore and Spelke 2008; Sophian et al. 1995;
Sophian and Vong 1995).

The third pattern relates to the two types of inverse relations (see Fig. 2, right). It
seems that students at the beginning of schooling (K and G1) performed equally well or
slightly better on the three-term inversion principle (Q3) than on the two-term com-
plement principle (Q4). When the grade level increases (G2 and G3), however, children
seemed to demonstrate more fluency in the two-term complement principle that was
frequently reported to be difficult in the literature. In brief, even though there is room
for students to improve computation skills on inverse-based tasks, there is an overall
pattern of linear growth across grades.

% of student correctness_by tasks % of student correctness_by grades
100 77 76 77 8185 100
80 63 <s 5562 80
60 45 a4 49 60
40 30 40
20 HH H 14 12H 20
0 M r 0
Qi Q2 Q3 Q4
OK OGl OG2 mG3 0Ql @mQ2 NQ3 mQ4

Fig. 2 Percentage of student correctness across tasks and grades

@ Springer



Inverse relations

Student explanations to each question

In comparison with their correctness in computation, students’ explanations appeared to
be much poorer and fell into three levels: no, partial, and full understanding. Table 2
presents typical examples using contextual-task (Q2) and non-contextual task (Q4). As
explained in Methods, Q2 described a decreasing situation but may be solved with
addition (Nunes et al. 2009); Q4 expected students to solve a subtraction fact using the
related known addition fact. Both tasks called for students’ understanding of inverse
relations. In Table 2, when students possessed no understanding of inverse relations
(level 0 examples), they either provided no explanations (0a) or wrong/uninformative
explanations (0Ob, e.g., “I used fingers”; “I minused again —2 +2”). In contrast, when
students possessed full understanding (level 2 examples), for Q2, they were able to add
back what was taken-away to find the original number of stamps, 6 +2 =8; for Q4,
they highlighted the relationship between 9 —6 =3 and 6 + 3 =9. The above responses
either involved concrete aids (2a, e.g., drawing arrows or a part-whole mat) or reached
an abstract level (2b, e.g., stating that “it was a fact family”).

However, some students’ understanding fell between these two levels (see level 1
examples). On one hand, their responses did not demonstrate explicit understanding of

Table 2 Examples of student explanations that show no and full understanding

Level Category Q2 Q4
0-No 0(a) no explanations
understanding

4) 63= (7)
96= (|'y)  How did you get the answer for 9-67
Did the aldition problem help you solve this subtraction |

0(b) » )
wrong/uninformative °MF I j e
explanations J
1 — Partial 1(a) Partial explanations p ) 843=(Q)
. ny stamps dd e hav before h gave s grandtather th 2 stamps? 96= ( 25)  Howdid you get the answer for 9-67
understanding | at concrete level Did the adition problem help you raction problem?

1(b) Partial explanations | 3 & o) leaving s N/A
involving both concrete - o
and abstract aids

1(c) Partial explanations N/A

at abstract level

2 - Full 2(a) full explanations ) i lenving his
understanding | involving concrete aids foes o won i
(e.g., pictures or verbal 8} “b

descriptions) 51— % "\\/\ \ N

2(b) full explanations at | 2 ai stampsin gave2 leav
an abstract level (e.g., ol ehon Wi
lease show your work

using number sentences ~
only). S £+ —~r

m 1T wag o Qoct

E‘@W\Hﬁ chd 1 Sub T,
Tal hat  problon,
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inverse relations. For Q2, these students might have listed a subtraction sentence
(8 — 6 =2) that was directly aligned with the action of “decreasing”; for Q4, they might
have computed 9—6 by crossing out 6 circles from 9. On the other hand, these
responses showed understanding of the part-whole relations (e.g., drawing a
part-whole picture), and thus classified as partial understanding. These responses also
differed in the types of representations including using pictures only (1a), symbols only
(1c), or a combination of both (1b).

A summary of the percentages of students’ explanations that fell into each category
under each level is presented in Table 3.

As indicated by Table 3, most students in this study did not provide an explana-
tion (0a) or provided wrong/uninformative explanations (Ob), indicating no evi-
dence of understanding. The highest percentage of full understanding occurred with
third graders, which only reached 38%. Overall, students’ explained contextual-
tasks (Q1 and Q2) better than non-contextual tasks (Q3 and Q4). While there were
about 32-38% of third graders whose explanations of contextual tasks achieved full
understanding, only 4% of them fully explained the computation tasks. This is
possibly due to the fact that the third graders have mastered the basic facts like
5+3-3=()and 9 —6=() and simply did a fact recall. Thus, they may be confused
about how to explain these simple computation tasks. Alternatively, it may be that
these computation tasks are too simple and the third graders lose interest in
explaining the process of obtaining the answers.

Even though the overall situation of student explanation was poor, across grades,
there was evidence of growth in student explanations. First, at level 0 (no

Table 3 Percent of student explanations to each question across grades

Grade Level 0 Level 1 Level 2 Missing
0a Ob Total la 1b Ic Total 2a 2b Total 922

Contextual Ql K 64 20 8% 4 0 2 6% 8 2 10% -
tasks 1 12 49 61% 26 0 6 32% 3 0 3% 4%
2 15 19 34% 31 9 19 59% 4 4 8% -

3 15 18 33% 1 5 20 26% 10 28 38% 3%

Q2 K 74 20 94% 0 0 2% 2 0 2% 2%

1 11 36 47% 33 0 35% 7 8 15% 3%

2 15 23 38% 37 1 47% 4 3 1% 8%

3 15 24 39% 9 16 27% 6 26 32% 2%

Non-contextual Q3 K 58 38 96% 0o 2 2% 2 0 2% -
tasks 1 26 35 61% 35 0 3 38% 0 0 0% 1%
2 23 44 67% 10 0 15 25% 1 0 1% 6%

3 15 47 62% 0 27 32% 3 1 4% 2%
Q4 K 66 20 8% 0 0O 0O 0% 0 0 0% 14%

1 30 41 71% 30 0 0 30% 0 0 0% -

2 20 54 74% 0 0 9% 9 5 14% 3%

3 38 54 92% 0 0 4% 0 4 4% -

The percentages were rounded to whole numbers, which may not total up to 100%
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understanding), the kindergarteners held the highest percentage for the first three tasks
(84, 94, and 96%, respectively). Consistent with this observation, at level 2 (full
understanding), the third graders held the highest percentage for the first three tasks
(38%, 32%, 4% for the first three tasks, respectively). It is unexpected that for Q4, the
third graders explained more poorly than the second graders (4 vs. 14%, respectively).
As mentioned above, this might be due to the fact that basic facts like 9 — 6 = () are too
simple for the third graders and 38% of them did not provide an explanation to this
task. Overall, student responses show growth even though the pattern did not show
linearity.

Within level 0, a comparison of students’ responses between levels 0a and 0b within
a grade shows that students in G1-3 attempted to explain more frequently than did
kindergarteners. In kindergarten, there were more students who provided no explana-
tions (0a) than those who provided wrong/uninformative explanations (0Ob). This
observation holds true for all four items (e.g., 64 vs 20% for Q1; 74 vs 20% for Q2;
58 vs 38% for Q3; and 66 vs. 20% for Q4). This trend, however, was reversed for later
grades (G1-3) across all items. Possibly, students in kindergarten lacked the ability to
read the items and some of them hesitated to ask for teacher’s help, which caused their
lack of responses. Alternatively, students in kindergarten demonstrated the lowest
ability to explain their thinking.

Finally, the trend of student growth appeared with students’ level 1 explanations.
From kindergarten to the later grades, there was an increasing number of students who
demonstrated an understanding of part-whole relation (see Table 3). The one-way
ANOVA test indicates that there were significant differences between levels of expla-
nations across grades except for the level 2 in Q3 (see Table 4).

The Bonferroni post hoc test indicated detailed differences between grade levels.
The most interesting observation is that, even though there was no difference between
kindergarten and many other grades at level 0 and level 2 explanations, when it comes
to level 1 (partial understanding), those grades show significant differences from
kindergarten. This suggests a closer inspection of students’ partial explanations (level
1) that may bridge students’ no and full understanding.

Table 4 One-way ANOVA test

for differences in partial explana- Df F Sig

tions at each level Ql_level 0 3 16.753 000
Q1 _level 1 3 15.431 .000
Q1 _level 2 3 18.096 000
Q2 _level 0 3 18.410 .000
Q2 level 1 3 11.146 .000
Q2 level 2 3 10.691 .000
Q3 level 0 3 7.464 .000
Q3 level 1 3 7.714 .000
Q3 _level 2 3 1.124 340
Q4 _level 0 3 5.018 .002
Q4 _level 1 3 13.564 .000
Q4 level 2 3 7.097 .000
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A closer inspection of students’ partial explanations

Investigating students’ partial explanations at level 1, we identified differences in
students’ representation use and unknown quantity recognition in their part-whole
structure, which suggested possible paths to develop students’ understanding of inverse
relations. For representation use, it was found that students in grade 1 preferred using
part-whole pictures to show the answers, students in grade 3 tended to use number
sentences to show their thinking, and students in grade 2 were split between the two
(see Table 3). In addition, students’ explanations differed in recognizing the unknown
quantity in the part-whole structure. Table 5 illustrates typical examples using Q1 and
Q3. With regard to Q1, students’ responses across la—, 1b—, and 1¢— marked the wrong
number “8” as the answer regardless of these responses containing part-whole pictures

Table 5 Examples of student explanations that show partial understanding

Category Q1I: (Unknown quantity/correct answer is 6) Q3: (Unknown quantity/correct answer is 5)
la- | Part-whole e e e e |9 3935 ) Howatyougtthinswe?
picture with Yo
H > \ e
incorrect N Vo /l
answer |4
la Part-whole 1) Alihad some Chinese stamps in his collection and his grandfather gave him 2, now he has 8. IN/A
picture with How many stamps did he have before his grandfather gave him the 2 stamps? Please show your
work
no answer
la+ Pan-WhOle 3) 5433=( ) How did you get this answer?
picture with § o b o
correct answer % y 5
s 9 8
1b- | Part-whole uv:hlmZ nowhehass.  [N/A
picture and e Nt
number w- @ '
. IY ‘
sentence with /‘(’/g@ @ - @‘
incorrect
answer
1b Part-whole /A
picture and / 3,@ y /j O 7 o+
picture ¢ 7u O o 2= 8
sentence with |77 0
no answer
2 ) All had some Chinese stamps in his collection and his grandfather gave him 2, now he has 8. How
Ib+ | Part-whole 1 Ao oG il s e ot e 3 e N
picture and Coers
number otk
sentence with . > g
correct answer (j{* =
o mimris e rs Conection ana his grandfather gave him 2, n
Lo | NUMbET SCNENCE  pramps dia he have betore his sranaratnersave e e comms /A
only with
incorrect s ‘_?_}’ ,&,
answer & (i,
\; et AT AT
All had some Chinese stamps in his coflection and his grandfather gave him 2, now
lc | Number sentence | Ao e e e r e VA
only with no work.
answer . P )
! 4
=
lc+ | Number sentence 1) Ali had some Chinese stamps in his collection and his grandfather gave him 2, now he has 8.
only with How many stamps did he have before his grandfather gave him the 2 stamps? Please show your 3) 5+433=( 5) How did you get this answer?
work
correct answer -+ 3 zzéf\
‘\Z N 8\ ”L-'S
) T —C \_/
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or number sentences. In their responses at la, 1b, and lc, student did not mark an
answer, which were likely due to their non-clarity or implicit awareness of the unknown
quantity in the part-whole structure.

The percentage of students’ overall situation in unknown quantity recognition under
the part-whole structure is summarized in Table 6.

As indicated by Table 6, students’ difficulties with unknown quantity recognition were
more apparent with the contextual tasks (Q1 and Q2) than non-contextual tasks (Q3 and
Q4). This made sense given the unknown quantity in non-contextual tasks was often
already marked. With regard to contextual tasks (Q1 and Q2), students across all grades
appeared to have difficulties. For instance, when students drew the part-whole pictures to
solve Q1, 23% of second graders did not mark the unknown quantity (la). It was
uncertain whether these students could identify the unknown quantity because there were
cases that students could not (e.g., 7% first graders; 3% second graders). When students
employed a number sentence to solve this problem, their chance of marking a wrong
number as the unknown was lessened (1% first graders). Yet, there were still 5% of first
graders, 8% of second graders, and 14% of third graders that did not identify it (1a),
leaving uncertainty whether these students had a clear understanding of the unknown
quantity. The above situation was similar to Q2. With regard to non-contextual tasks (Q3
and Q4), some students performed all steps. For instance, in Q3, they either drew out each
step (see Table 4, example la+) or actually computed each step (e.g., S+3 =8, and
8 —3 =5, see Table 4, 1c+). These responses do not show inverse understanding, but their
work does indicate part-whole structure and is therefore considered as level 1 under-
standing. However, at this level, a few students still identified the wrong unknown
quantity in both Q3 (see Table 4, example 1a—) and Q4 (see Table 2).

Table 6 Percentage of students’ recognition of unknown quantity

Partial Grade la Subtotal 1b Subtotal 1c Subtotal
under- la- la  la+ Ib- 1b  Ib+ le-= I lo+
standing (%) (%) (%) (%) (%) (%) (%) (%) (%)
Q1 K 0 2 2 4 0 0 0 0 0 0 2 2
1 7 1 18 26 0 0 0 0 1 5 0 6
2 3 23 5 31 1 3 5 9 0 8 119
3 0 1 0 1 0 5 0 5 0 14 6 20
Q2 K 0 0 0 0 0 0 0 0 0 0 2 2
1 4 28 33 0 0 0 0 1 1 0 2
2 8 24 5 37 0 0 1 1 0 3 6 9
3 1 1 0 9 0 9 1 10 5 16
Q3 K 0 0 0 0 0 0 0 0 2 2
1 3 0 32 35 0 0 0 0 0 1 1 3
2 0 0 10 10 0 0 0 0 0 0 15 15
3 0 0 5 0 0 0 0 0 0 27 27
Q4 K 0 0 0 0 0 0 0 0 0 0 0 0
1 3 0 27 30 0 0 0 0 0 0 0 0
2 0 0 9 9 0 0 0 0 0 0 0 0
3 0 0 4 0 0 0 0 0 0 0 0
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Discussion

Previous studies indicate that students who come to elementary school with informal
understanding of inverse relations generally lack formal understanding of this mathe-
matical relation (Baroody 1987, 1999; Baroody et al. 1983; Bisanz and LeFevre 1990,
1992; De Smedt et al. 2010; Resnick 1983; Riley et al. 1983). This study takes a further
step beyond lack to explore what students may have in their existing conception
especially related to the part-whole structure, which may afford opportunities for
classroom instruction. To access students’ understanding in a relatively complete
fashion, our assessments involve both contextual and non-contextual tasks of inversion
and complement principles, requiring both computation and explanation skills (Bisanz
and LeFevre 1992; Bisanz et al. 2009). Our quantitative and qualitative analyses show
that students generally perform better in computation than explanation even though
some students still could not compute in third grade. Most students who obtained
correct computational answers did not utilize inverse relations to solve these tasks.
Given that inverse relations is one of the fundamental mathematical ideas in early
grades (Baroody 1987; Carpenter et al. 2003) and has been systematically emphasized
by the Common Core State Standards (National Governors Association Center for Best
Practices and Council of Chief State School Officers 2010), the status quo of students’
understanding should draw immediate attention.

Our findings suggest that students’ computation skills may grow naturally across
grades, likely due to the opportunities of repeated practices (Canobi 2005). However,
their explanations of inverse relations, as revealed by our qualitative analysis, may not
grow in a linear fashion. This finding is consistent with many others that reported
students’ difficulties in inverse relations, especially with the complement principle
(e.g., Baroody et al. 1983; Baroody 1999; De Smedt et al. 2010; Riley et al. 1983).
These findings call for meaningful and explicit support for elementary children’s
development of inverse understanding.

The strength of qualitative analysis in this study has enabled the identification of
children’ existing conception of inverse relations based on their explanations. As
indicated by their solution strategies, many students do possess understanding of
part-whole structure, which is a key to understanding inverse relations (Piaget 1952;
Resnick 1992). However, these students’ understanding of part-whole structure appears
to be non-sophisticated as it is mainly limited to direct thinking, which only show
partial understanding. For instance, with regard to an increasing situation (e.g., getting
more stamps), students tend to use direct thinking that aligned with the direction of
quantity changes, “part+ part=whole.” This is only a portion of the part-whole
structure, which also contains the reversed aspect, “whole — part=part.” A more
complete understanding of the part-whole structure may provide flexibility when
dealing with what is given and what is unknown, thus better problem solving with
inverse problems. In fact, our findings regarding students’ detailed levels of part-whole
understanding in terms of representation uses and unknown quantity recognition
portrays a rich picture of opportunities to teach.

With regard to representations, we found that students’ understanding of part-whole
relation generally moves from concrete to abstract across grades. This observation is
more apparent with contextual tasks. As reported, younger students preferred drawing
part-whole pictures while students in later grades listed number sentences more
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frequently. The difference between using concrete pictures and abstract number
sentences indicates that students’ understanding of part-whole relation is not an all-
or-nothing phenomenon (Bisanz et al. 2009) and the have/have-not dichotomy is not
helpful for supporting student learning. In order to develop meaningful understanding
of part-whole relation, teachers may first employ concrete aids (e.g., part-whole
pictures) that come more naturally for students. Indeed, students’ improved perfor-
mance in contextual tasks versus non-contextual tasks, especially in kindergarten,
supports this assumption. These findings challenge existing instruction that focused
more on number manipulation when teaching additive inverses (Ding 2016). Given that
students have the ability to reason abstractly and abstract thinking is indeed an ultimate
goal of mathematics education, teachers should help students abstract from context to
promote shared, explicit understanding (Hershkowitz et al. 2007; Hershkowitz et al.
2001. For instance, if students in appropriate grades demonstrated part-whole under-
standing using the part-whole picture, a teacher may guide them to generate a corre-
sponding number sentence. It should be noted again the growth of children’s mathe-
matical understanding is leveled but not necessarily linear (Pirie and Kieren 1994), and
teachers should help students fold back from abstract to concrete representations for
sense-making. As such, when a teacher prompts students’ inverse understanding by
linking one part of the part-whole structure (e.g., part + part = whole) to the other part
(e.g., whole — part = part), it might be critical to help students see this connection based
on both concrete and abstract representations.

In addition to the connection between concrete and abstract representations, students
in this study differed in their ability to recognize the unknown quantity in a part-whole
structure. In this study, students used either direct thinking (6 +2=28) or reversed
thinking (8 —2=6) to solve Q1. While multiple solutions should be encouraged,
students with the direct thinking should recognize that “6” indeed refers to the
unknown in Q1. As such, the number sentence should be listed as o + 2 =8 for clarity.
This is why 8 —2 =0 can be used solve the same problem, which shows an under-
standing of inverse relation. However, this seemingly trivial point is often neglected in
existing instructional environments. For instance, some existing textbooks simply
suggest two number sentences to solve the same problem without highlighting the
unknown quantity (e.g., 6+2 =28 and 8§ —2 =6 are suggested to solve the same story
problem, Ding 2016). Even though it is obvious for an educated adult that an unknown
quantity refers to a number that was not given in the original question, it might be
unclear for some children who always treated the last number in an equation as the
answer to the unknown due to semiotic demands for writing such equations. Such an
expert blind spot (Nathan and Koedinger 2000) should draw teachers’ attention. As
Riley and Greeno (1988) pointed out, when the position of the unknown quantity is at
the “start” instead of “result,” some students have difficulty identifying it and suggest a
given quantity as the answer, which indicates their weak part-whole understanding. As
such, it seems beneficial to stress clear understanding of the known and unknown
quantities so as to develop students’ sophisticated part-whole structure. Overall, our
findings about students’ varied level of part-whole understanding illustrate what
students may have in their existing conception when they appear to lack understanding
of inverse relations. These findings highlight opportunities for teachers and teacher
educators to prompt students one-step further so as to develop their understanding of
inverse relations.
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Conclusion

Disparities among children’s mathematical understanding at school entry tend to
remain or even increase over time when children advance through the school system
(Bobis et al. 2005). As such, it is critical to address children’s understanding gaps of
key concepts from the very beginning of schooling. This study focuses on K-3
children’s understanding of the inverse relations, potentially contributing to narrowing
the understanding gap. We are aware of several limitations of this study, which suggests
future research directions. First, the number of assessment tasks is limited. Therefore,
our analysis is basically preliminary and findings should not be overgeneralized. For
instance, even though we noticed some patterns related to students’ learning of both
types of inverse relations (three-term inversion principle, and two-term complement
principle), the sequence for learning both principles cannot be concluded. Second, our
findings are based on paper and pencil assessments. Even though students shared their
thinking through explanation, their explanations may not necessarily represent their
understanding. This may be particularly true for kindergarteners who may lack suffi-
cient reading ability and third graders who may have mastered the basic facts and need
more challenges. Future research may conduct child interviews using approaches
similar to prior research (Bobis et al. 2005; Clarke et al. 2006; Young-Loveridge
2002; Wright 1991, 1994) so as to obtain clearer pictures. Regardless of the above
limitations, our findings about the status quo of students’ understanding based on a
relatively large sample add to the existing literature (Nunes et al. 2009; Gilmore and
Spelke 2008) and shed light on classroom opportunities for teaching and learning
inverse relations. With a greater emphasis on students’ complete and flexible part-
whole structure at both concrete and abstract levels, students can be expected to achieve
more sophisticated understanding of inverse relations.
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