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Abstract 
 

This study, focusing on inverse relations, examines how representative U.S. and Chinese 

elementary textbooks may provide opportunities to learn fundamental mathematical 

ideas. Findings from this study indicate that both of the U.S. textbook series (grades K-6) in 

comparison to the Chinese textbook samples (grades 1-6), presented more instances of inverse 

relations, while also containing more unique types of problems; yet, the Chinese textbooks 

provided more opportunities supporting meaningful and explicit learning of inverse relations. In 

particular, before presenting corresponding practice problems, Chinese textbooks contextualized 

worked examples of inverse relations in real-world situations to aid in sense making of 

computational or checking procedures. The Chinese worked examples also differed in 

representation uses and made connections between concrete and abstract through concreteness 

fading. Finally, the Chinese textbooks spaced learning over time through a systematic emphasis 

on structural relations, especially inverse quantities relationships. Findings based on textbook 

presentations of both countries suggest that textbook designers and classroom instructors 

consider these approaches so as to support meaningful and explicit learning of fundamental 

mathematical ideas in elementary school. 
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It is widely agreed that students should learn and understand fundamental mathematical 

ideas such as the basic concepts, relations, properties, and structures that may transcend over 

contexts (Bruner, 1960; Common Core State Standards Initiative [CCSSI], 2010). International 

tests, such as the Trends in International Mathematics and Science Study (TIMSS) or the 

Programme for International Student Assessment (PISA), have consistently revealed that many 

students have difficulties with understanding and utilizing fundamental mathematical ideas. 

Students’ difficulties may be largely attributed to the quality of their learning environments 

including textbooks that provide opportunities to learn (Thompson, Kaur, Koyama, & Bleiler, 

2013). This study, focusing on the fundamental mathematical idea of inverse relations, examines 

learning opportunities presented in representative U.S. and Chinese elementary textbooks. Given 

that inverse relations are a critical concept in which students often find hard to grasp (CCSSI, 

2010; Nunes, Bryant, & Watson, 2009), it is expected that this study will contribute to the 

development of students’ understanding of this concept and beyond. 

Review of Literature 

Mathematical Significance of Inverse Relations 

Inverse relations are important relationships throughout mathematics. For instance, there 

exist functions and inverse functions in algebra and differentiation and integration in calculus. 

Historically, mathematicians developed logarithms by finding the inverse of exponentials 

(Hobson, 2012). As such, it is important in all aspects of mathematics to understand and be able 

to reason with inverse relations (Baroody, Torbeyns, & Verschaffel, 2009; Carpenter, Franke, & 

Levi, 2003; Piaget, 1952; Resnick, 1983, 1992; Nunes et al., 2009). Because of this mathematical 
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significance, the Common Core State Standards for Mathematics in the U.S. have emphasized 

that inverse relations should be learned in each grade of elementary school (CCSSI, 2010). 

In elementary school, inverse relations refer to the relationships between addition and 

subtraction (additive inverses) and between multiplication and division (multiplicative inverses; 

Baroody et al., 2009; Carpenter, et al., 2003; Nunes et al., 2009). Resent research on inverse 

relations (Baroody et al., 2009; Gilmore & Bryant, 2008) pointed out that arithmetic inverse 

relations mainly included two closely related but different principles: the two-term complement 

principle (e.g., if a + b = c, then c – b = a; if a × b = c, then c ÷ b = a) and the three-term 

inversion principle (e.g., a + b – b = a; a × b ÷ b = a). Due to the desire for in-depth research 

within a limited scope, the current study focuses only on the two-term complement principle 

(simply called “inverse relations” hereafter). 

An understanding of inverse relations is necessary to fully comprehend the four basic 

arithmetic operations and to develop essential algebraic reasoning skills (Baroody, 1987; Nunes 

et al., 2009; Vergnaud, 1988). Carpenter et al. (2003) suggested two ways to demonstrate inverse 

relations: fact family (e.g., 3 + 4 = 7, 4 + 3 = 7, 7 – 3 = 4, and 7 – 4 = 3) or a group of related 

word problems, the solution of which can form a fact family (termed as “inverse word problems” 

in this study). Students also need to use inverse relations to flexibly compute [e.g., 81 - 79 = ( ) 

can be thought of 79 + ( ) = 81, Torbeyns, De Smedt, Stassens, Ghesquière, & Verschaffel, 2009], 

check computations (e.g., verifying that 35 – 17 = 18 by computing 18 + 17 = 35, Baroody, 

1987), and solve hard word problems such as initial unknown change problems in which a 

quantity may increase but the solution may involve subtraction (e.g., Ali had some Chinese 

stamps in his collection and his grandfather gave him 2; now he has 8; how many stamps did he 



!!

6!

!

!

have before his grandfather gave him the 2 stamps? Nunes et al., 2009). Moreover, an 

understanding of inverse relations at a structural level could contribute to students’ algebraic 

thinking such as equation solving (e.g., if a + b = c, then a = c – b; if a × b = c, then a = c ÷ b, 

Carpenter et al., 2003). Longitudinal studies also have shown that second graders’ performance 

on inverse tasks significantly predicted their algebraic achievement when they were in eleventh 

grade (Stern, 2005). 

Difficulties of Student Learning with Inverse Relations 

Although it is important in all aspects of mathematics to understand and be able to reason 

with inverse relations, prior research has demonstrated that elementary school children generally 

lack a formal understanding of this relation (Baroody, Ginsburg & Waxman, 1983; De Smedt, 

Torbeyns, Stassens, Ghesquière, &Verschaffel, 2010; Resnick, 1983). For example, Baroody et 

al. (1983) found that about 61% of the sampled first- and second-graders could not use addition 

to solve subtraction problems (e.g., using 3 + 4 = 7 to solve 7 – 4). In a later study (Baroody, 

1999), it was found that the K–1 graders who were trained to solve subtraction using addition did 

not acknowledge this relation. In addition, Baroody (1987) observed that a child practiced a 

whole page of problems using addition to check subtraction but could not spontaneously apply 

this procedure in new tasks. Recently, Torbeyns et al. (2009) in their study with Belgium 

children, found that when solving multi-digit subtraction problems with small differences (e.g., 

81 – 79), most second-to-fourth graders could not call upon an effective strategy based on 

inverse relations (e.g., 79 + ? = 81), even though it had been explicitly taught. Similar findings 

were obtained from third graders who had experienced six weeks of instruction that aimed to 

develop inverse understanding (De Smedt et al., 2010).  
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With regard to the inverse relation between multiplication and division, children exhibit a 

parallel lack of understanding. Grossi (1985) reported that students who used P ÷ M = N to 

check whether P is a multiple of M failed to recognize that obtaining M · N = P should produce 

the same conclusion (as cited in Vergnaud, 1988). Likewise, Thompson (1994) reported 

elementary students possessed difficulties in multiplicative reasoning, especially in the 

development of the concept of speed (including the relations between speed, time, and distance) 

and its relation to the concept of rate. Such conceptual difficulties extend beyond integers to 

include more complex numbers such as fractions, decimals, and proportions (Greer, 1994).   

The above findings about elementary students’ lack of formal understanding of inverse 

relations sharply contradict the reports on preschoolers’ (from 3 to 6 years old) surprising level 

of informal understanding of this relation (Gilmore & Bryant, 2008; Klein & Bisanz, 2000; 

Sherman & Bisanz, 2007; Sophian & McGorgray, 1994). For instance, children could provide 

correct directional responses to addition and subtraction story problems (e.g., for an addition 

story problem, children provided a “bigger” number than the given quantities; Sophian & 

McGorgray, 1994) and demonstrate inverse understanding when “approximate numbers” were 

involved (Gilmore & Bryant, 2008). These findings may be explained by Resnick’s (1992) 

assertion that children possessed protoquantitative schemas of “increasing-decreasing” and “part-

whole,” which are the keys to understanding inverse relations. Why then, is there a gap between 

students’ informal and formal understanding? Why is inverse relation, a ubiquitous mathematical 

concept, so hard to learn? These questions call for reconsideration of the existing learning 

environments that students are exposed to with inverse relations. 

Limitations of Existing Learning Environments with Inverse Relations 
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The term “learning environment” in this study refers to situational characteristics and 

cultural factors (e.g., instructional methods, textbooks) that influence students’ learning (Lizzio, 

Wilson & Simons, 2002). An analysis of literature reveals two limitations in the existing learning 

environments that hinder students’ opportunities to learn inverse relations. First, instruction on 

inverse relations tends to focus on number manipulations without using concrete contexts to 

activate students’ informal knowledge (e.g., Baroody, 1999; De Smedt et al., 2010; Torbeyns et 

al., 2009). Under this situation, students may obtain only inert knowledge and generate mistakes 

such as 7 ÷ 35 = 5, and 5 ÷ 35 = 7 (Ding & Carlson, 2013). As such, some researchers argued for 

“relational” (as opposed to “numeral”) calculation during which, concrete contexts were used for 

quantitative reasoning (Nunes, Bryant, Evans, Bell, & Barros, 2012; Thompson, 1994). Nunes et 

al. found that when students made sense of inverse relations, they outperformed their peers in 

difficult story problems that demanded inverse understanding (e.g., initial unknown change 

problem), which was also shown to be transferrable to numeral contexts. 

The second limitation of current learning environments is procedural focus on strategies 

rather than the underlying principles (e.g., De Smedt et al., 2010; Torbeyns et al., 2009). In 

Baroody’s (1987) study, the teacher stressed using addition to check subtraction but did not help 

the student understand why this strategy worked. Similarly, the graduate assistant in Baroody’s 

(1999) study only trained students to think in the following way: “5 take away 3 makes what?” 

can be understood as “3 added to what makes 5?” It was not made clear to the students why they 

could think in this way. In addition, the Belgium textbook in Torbeyns et al. (2009) presented 

procedures such as drawing a little arrow from the subtrahend to the minuend without further 

explanation. Focusing on procedures rather than the underlying principles fails to facilitate 
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students’ automatic use of the strategies (Torybens et al., 2009), possibly because the part-whole 

schema is loosely connected in children’s minds (Baroody, 1999). 

Students’ difficulties resulting from the existing learning environments call for a better 

support for students’ learning of inverse relations. How to create a supportive learning 

environment, however, has not been established by the current body of research (National 

Mathematics Advisory Panel, 2008). This study aims to narrow the research gap by exploring 

alternative opportunities from the perspective of textbook comparisons between the U.S. and 

China. 

Exploring Opportunities to Learn: Why International Textbook Comparisons? 

Most teachers in the U.S. and China use textbooks as a main resource for mathematics 

teaching. It was reported that Chinese mathematics teachers study textbooks frequently and 

implement them with fidelity (Ding, Li, Li, & Gu, 2013). Likewise, Malzahn (2013) reported 

that 85% of grade K-5 mathematics classes in the U.S. used commercially published textbooks, 

particularly for guidance of overall structure and content emphasis. Even though teachers 

implement textbooks in classrooms to different extents, textbooks as intended curricula provide 

opportunities to learn, thus serving as a critical component of students’ learning environments 

(National Research Council, 1999; Thompson et al., 2013).  

Prior studies based on the TIMSS’s curriculum data (e.g., National Research Council, 

1999; Schmidt, Wang, & McKnight, 2005) revealed that U.S. textbooks generally lacked 

coherence and focus, in comparison to those mathematically high-achieving countries. 

International textbook comparisons (e.g., Cai, Lew, Morris, Moyer, Ng & Schmittau, 2005; 

Murata, 2008; Stigler, Fuson, Ham, & Kim, 1986) have brought many alternatives and insights 
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to the field for improving the teaching and learning of fundamental mathematical ideas. For 

instance, Ding and colleagues compared U.S. and Chinese textbook presentations on the 

distributive property (Ding & Li, 2010), the associative property (Ding, Li, Capraro, & Capraro, 

2012), and the concept of equivalence denoted by the “=” (Li, Ding, Capraro & Capraro, 2008). 

It was found that Chinese textbooks uniquely situated the initial learning opportunities of a 

fundamental idea in concrete situations for sense-making, which were gradually faded into 

increasingly abstract and challenging contexts in practice problems. The above approach was 

well aligned with the cognitive and educational research recommendations on teaching 

fundamental concepts and principles (Pashler et al., 2007); however, it remains unknown 

whether this approach exists when presenting inverse relations. In addition, Zhou and Peverly 

(2005) studied Chinese first grade textbook’s presentation and briefly reported that additive 

inverse was set up as one of the learning goals, which was achieved through teaching 

composing-decomposing and the part-whole relationships. Since the mastery of fundamental 

ideas takes time (Baroody, 1999), it remains unknown how inverse relations may be presented 

beyond first grade. Moreover, prior studies on inverse relations overall focused more on additive 

inverses as opposed to the equally important multiplicative inverses (Nunes et al, 2009). To 

address the above research gaps, this study compares typical U.S. and Chinese textbooks on both 

additive and multiplicative inverses across elementary grades. 

Conceptual Framework for Textbook Examination 

To examine textbook presentations of inverse relations, this study uses a three-aspect 

framework drawn from the Institute of Education Sciences (IES) recommendations for 

organizing instruction and study to improve student learning (Pashler et al., 2007). The first 
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aspect is interweaving worked examples and practice problems. Worked examples (solutions 

provided) play a critical role in student initial learning, which determines the likelihood of later 

transfer (Chi & VanLehn, 2012). This is because examples help students acquire schemas for 

solving new problems (Sweller & Cooper, 1985). Examples with greater variability can better 

support the encoding and extracting of the abstract principles underlying these problems (Renkl, 

Atkinson, Maier, & Staley, 2002). In addition, worked examples were found to be more effective 

when interweaved with practice problems (no solutions provided, Renkl et al., 2002).  

The second aspect is making connections between concrete and abstract representations. 

Abstract representations in this study refer to the use of symbols to represent mathematical ideas, 

which eliminates detailed perceptual properties and is often arbitrarily linked to referents 

(McNeil & Fyfe, 2012). Concrete representations refer to using physical objects (e.g., 

manipulatives) or visual images (e.g., diagrams) to represent mathematical ideas, or the 

contextualization of mathematical ideas in real-world situations (e.g., word problem contexts, 

Ding & Li, 2014). We consider word problems as concrete because the real-world contexts 

provided by such problems “have the potential to offer memorable imagery that can act as a 

touchstone for teachers and learners in building and discussing abstract concepts” (Gerofsky, 

2009, p. 36). Empirical studies also demonstrated that students were more capable of solving 

simple algebra word problems than the mathematically equivalent equations (Koedinger & 

Nathan, 2004). During initial learning, concrete representations may activate students’ familiar 

experiences for sense-making (Resnick & Omanson, 1987); however, concrete representations 

often contain irrelevant information that may blind students from seeing the underlying 

principles. This may hinder later transfer (Kaminski, Sloutsky, & Heckler, 2008). As such, it was 
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suggested to fade the concreteness into abstract representations to promote learning and transfer 

(also called “concreteness fading,” Goldstone & Son, 2005).  

The final aspect is spacing learning over time. The course of developing fundamental 

ideas may span several years (Vergnaud, 1988). In order for students to retain information, key 

concepts should be reviewed after the initial teaching, but not in the form of a simple repetition 

(National Academy of Education, 2009). Based on the above conceptual framework, this study 

examines opportunities to learn inverse relations presented in representative U.S. and Chinese 

textbooks centering on the following questions: (1) What is the degree of coverage of inverse 

relations in each textbook series? (2)!How are worked examples and practice problems 

interweaved to support the learning of inverse relations? (3) How are concrete and abstract 

representations connected to present inverse relations in each textbook series? And (4) How is 

the learning of inverse relations spaced over time in each textbook series?  

Method 

Textbook Selection 

One of the three main Chinese mathematics curricula (Grades 1-6), Jiang Su Educational 

Press textbook (JSEP, Su & Wang, 2005), was chosen for this study. Given that the Chinese 

educational system is centralized and all textbooks were developed based on the new Chinese 

curriculum standards (Ministry of Education, 2001), there was little qualitative difference among 

the three main textbook series (Ding & Li, 2010; Li et al., 2008). For comparisons, we chose two 

widely used U.S. textbook series (Grades K-6): Houghton Mifflin (HM, Greenes et al., 2005) and 

Everyday Mathematics (EM, University of Chicago School Mathematics Project, 2007).  While 

HM is a commercially published curriculum, EM is a curriculum supported by the National 
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Science Foundation (NSF). Recent survey data on the frequency-of-usage of textbooks show that, 

EM was one of the three most frequently used textbooks in Grades K-5 while HM was one of the 

three most frequently used textbooks in Grades 3-5 during the 2011-12 school year (Dossey, 

Halvorsen, & McCrone, 2012; Malzahn, 2013).   

For all three textbook series, curriculum materials specifically designed for teaching were 

coded because these materials suggested the minimum opportunities a teacher may use in 

classrooms. For the U.S. textbook series, the teacher editions of mathematics textbooks were 

examined. According to Dossey et al. (2012), the teacher editions were the central materials that 

U.S. teachers heavily relied on. These materials contained student textbook pages along with the 

detailed teaching steps (e.g., introduction, develop, practice, and assess and close). The 

difference between HM and EM was that, a volume of HM teacher edition contained all textbook 

pages of a student edition (e.g., p.89), together with the corresponding explanation pages (e.g., 

p.89A, p.89B, p.89C). However, an EM teacher edition contained the selected pages of various 

student resources (e.g., Math Journal, Assessment Handbook, Math Matters etc.), with none 

named as “student edition.” It should be noted that during the suggested teaching processes, both 

U.S. teacher editions offered additional tasks beyond the student edition/resources.  

The Chinese textbook series did not differentiate between the teacher and student editions. 

Rather, teachers and students would use the same textbooks. For each textbook, there was a 

corresponding teacher manual explaining tasks design but not the detailed teaching steps. The 

Chinese teacher manuals also did not suggest extra tasks beyond the textbooks. For equivalency, 

we coded Chinese textbooks plus teacher manuals, which were equivalent to the U.S. teacher 

editions. For all of the textbook series, there were two volumes for each grade except EM 
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kindergarten. As such, a total of 12 volumes of Chinese textbooks and 27 volumes of U.S. 

textbooks were examined for this study.  

Instance Coding  

All of the problems in each textbook series, including the worked examples and practice 

problems, were coded. Based on the literature, a worked example was coded as an instance of 

inverse relations if it involved any of the following:  

•! A group of related facts [e.g., 4 + 6 = 10, 10 – 6 = 4, HM, Grade 1, p.465] or a fact 

family (e.g., 4 + 6 = 10, 6 + 4 = 10, 10 – 4 = 6, 10 – 6 = 4, EM, Grade 1, p.554), 

•! Computing using inverse relations (e.g., to solve 28 ÷ 7 = 4, one may think of 4 × 7 = 

28, China, Grade 2, p.65) or checking using inverse relations (e.g., to check if 439 – 

275 = 164 is correct, one may think of 164 + 275 = 439, HM, Grade 2, p.631) ,  

•! A group of inverse word problems [e.g., (1) There are 7 groups of children playing. 

Each group has 5 children. How many children are there? (2) There are 35 children 

playing. If 5 children form one group, how many groups can be formed? (3) There are 

35 children playing. If they are divided evenly into 7 groups, how many children will 

be in each group?, China, Grade 2, p. 69],  

•! One problem solved with inverse operations [e.g., to solve “Lucy had 7 pennies. She 

lost 3 pennies. How many pennies does Lucy have left?” one may use 7 – 3 = 4 and 3 

+ □ = 7, EM, Grade 1, p.213], and  

•! Solving an algebraic equation (9 + x = 15) or filling in the missing numbers using 

inverse relations [e.g., Solving 9 + (!!) = 15 by think of 15 – 9, HM, Grade 2, p. 65].  
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In particular, if a worked example in the textbooks contained a pair/group of inverse operations, 

it was considered as one instance. If a worked example contained several different pairs/groups 

of inverse operations (e.g., n = 4), it would be coded as several instances (e.g., n = 4).  

With regard to practice problems, if there were clear suggestions for using inverse 

relations to solve a set of problems, all of them would be coded as instances. If there was no 

such request in the textbooks, the coders would then refer back to the corresponding worked 

examples. If the worked example contained various solutions that went beyond the inverse-

based strategy and the practice problem did not specifically require using inverse relations, such 

a practice problem would not be coded due to uncertainty. With the above operational 

definitions, the Chinese and U.S. textbook pages were coded; however, some difficulties did 

occur especially for cases that were different from the literature. 

Coding Challenges. The first coding challenge was related to number composing and 

decomposing in the Chinese first grade textbooks (e.g., 4 is decomposed into 3 and 1; 3 and 1 are 

composed into 4, see Figure 1a). This was a specific chapter presented before formal 

introduction of addition and subtraction. Such a task indicated an inverse relation; yet, no 

operations were involved. After referring to the Chinese teacher manual, these tasks were coded 

as instances because the teacher manual pointed out that these tasks were intended to develop 

students’ understanding of inverse relations. In Figure 1a, the worked example was coded as 3 

instances because the composing and decomposing of “4” involved three pairs of numbers (3 and 

1, 2 and 2, 1 and 3). 

The second coding challenge, related to “separate problems linked with similarity,” 

appeared in all three textbook series (see Figure 1b). These separate word problems were either 
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linked by the similar real-world situations (e.g., the monkey-peach situation in the Chinese 

textbook) or diagrams (e.g., the multiplication and division diagram in EM text, and the part-

whole model in HM text), which can be solved with inverse operations. The dilemma was, in 

such a group of problems, the quantities were not matched. A similar coding difficulty was 

related to “one problem involving inverse situations” (see Figure 1c). In this case, a problem 

involved sub-problems, the solutions to which indicated inverse operations. Yet, these sub-

problems, again, involved non-matched quantities. As indicated in Figure 1c, the Chinese table 

contained three sub-problems (e.g., refrigerator, washer, TV), with one of the three key 

quantities (e.g., original, sold, leftover) missing in each sub-problem. The HM and especially 

EM, contained many rate tables (also called “in-out activity”) situated in real-world contexts 

(e.g., weight, length).  To complete these tables, students need to understand “x × rate = y” and 

“y ÷ rate = x.” Similar to the rate table, EM frequently contained a type of problem named 

“frames and arrows” (see Figure 1c). In order to fill in missing numbers in a frame, a student 

may think both forward and backward based on the given rule (e.g., - 6). To resolve the above 

difficulties and uncertainties, the coders referred to the teacher manuals/teacher editions for 

explanations. As a result, these related problems with non-matched quantities were coded as 

instances because “inverse relations” were explicitly mentioned as task design purposes. For 

example, EM in “Unit Organizer” section clearly stated that the multiplication and division 

diagram “helps reinforce the inverse relationship between the two operations” (Grade 3, p.402). 

In particular, a group of related problems (e.g., the Chinese word problems in Figure 1b) was 

considered as one instance.  

 (INVERST FIGURE 1 ABOUT HERE) 
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Coding Procedures and Reliability Checking. The author coded all of the textbook pages 

with additive and multiplicative instances in a separate manner. The coding process started with 

the Chinese textbook series, followed by the U.S. curricula. Instances on each textbook page 

were recorded using an Excel spreadsheet, including the title of a lesson where an instance was 

identified from, the textbook page, the typical example, and the frequency of a type of instance 

on a particular textbook page.  

For reliability checking, the author re-coded all instances four months later and the 

reliability reached 95.3%. In addition, two coders were invited and trained for independent 

coding of 25% of the textbook pages, using the same procedure. The coder who was fluent with 

both Chinese and English coded the Chinese textbooks, while the other coder who only knew 

English coded the two U.S. textbook series. For additive inverses, all of volume 1 of the 

textbooks in the first, third, and fifth grades were coded page by page; for multiplicative inverses, 

all of volume 1 of the textbooks in second, fourth, and sixth grades were coded page by page. 

Both coders compared their codes with the author. The percentage of the consistency was 

computed. The reliability for the Chinese and the U.S. textbooks both exceeded 91%. Coding 

disagreements were mainly related to the above coding difficulties. In addition, there were a few 

other inconsistencies in coding. For instance, the EM Kindergarten texts suggested activities 

such as adding or taking away objects from a pocket to help students learn the meaning of 

addition and subtraction. One coder included these activities due to its potential in developing 

students’ intuitive sense of inverse relations; the other excluded it because the numbers involved 

in these situations were uncertain. After discussion, we agreed with the latter. In addition, the 

HM teacher edition offered plenty of extra practices (named “leveled practices”), including 
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enrichment, re-teach, and intervention. Given that these were extra resources that went beyond 

the lesson development and overlapped with the existing worked examples and practice 

problems in the teacher edition, we agreed not to code them. All disagreements were resolved 

and the raw data were re-examined before data analysis.  

Data Analysis 

After all instances were coded, the author counted the frequency of instances for additive 

and multiplicative inverses in each grade for each textbook. Given that each textbook series 

contains different amount of pages, the average number of instances per page was computed 

based on the method of Li et al. (2008), which provided a general sense of the proportion of 

inverse relations that occurred in each textbook series. The author then classified an instance as 

either a worked example or a practice problem. For both the Chinese and the HM textbooks, it 

was straightforward. In contrast, the EM textbooks were not obvious at first glance. With a close 

inspection, the author found that in the section of “teaching this lesson,” the teacher edition did 

list example problems. Consequently, the rest of the tasks were considered as practice problems. 

Next, the author classified the representation use of each instance as either concrete (physical, 

visual, contextual) or abstract (symbol). For instance, the aforementioned inverse word problems 

on children playing (see Method - Instance Coding Section) grounded the learning of inverse 

relations (7 × 5 = 35, 35 ÷ 5 = 7, and 35 ÷ 7 = 5) in a real-world context; therefore, the overall 

nature of this instance was considered as concrete. If the contextual support was removed, this 

fact family would be coded as abstract.  

After each instance was classified into a certain category, the author analyzed the 

problem types (e.g., fact family, inverse word problem, computing, checking) involved in both 
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the concrete and abstract contexts. This was complicated because the author tried to maintain the 

appropriate level of detail, but at the same time still limit the number of problem types. As a 

result, some problem types in the U.S. textbooks were combined. For example, EM frequently 

presented a type of flashcard named “fact triangle,” expecting students to generate a fact family 

based on the numbers arranged at each corner of a triangle (e.g., 2, 4, and 8). This task was an 

opportunity to learn fact family/related facts and thus was combined into this problem type. 

Similarly, fact tables and part-whole mats were also combined into fact family/related facts due 

to the same reason. After a separate analysis of additive and multiplicative instances, the author 

compared the patterns across additive and multiplicative inverses and matched the similar 

problem types within and across textbook series.  

Next, the author conducted a close inspection based on the conceptual framework of this 

study, leading to an identification of the cultural differences under each aspect. First, for 

interweaving worked example and practice problems, the author computed the percentages of 

worked examples and practice problems in each textbook series for additive and multiplicative 

inverses. This provided a sense of the space each textbook series devoted to worked examples 

that explain mathematical ideas and to unexplained practice problems for students to solve on 

their own. In addition, the author examined the purposes of worked examples and how they were 

connected to the corresponding practice problems.  For making connections between concrete 

and abstract representations, the author examined the percentages of worked examples and 

practice problems under concrete and abstract contexts for additive and multiplicative inverses. 

The rationale was to find the pattern of representation uses during initial learning opportunities 

and later practice opportunities. In particular, the author analyzed how worked examples differed 
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in making connections between concrete and abstract in U.S. and Chinese textbook series. 

Finally, for spacing learning over time, the author counted the instances of additive and 

multiplicative inverses in each volume of each textbook. The author particularly analyzed how 

the knowledge structure was built into curriculum units to foster a longitudinal coherence over 

grades.  Overall, the above analysis aimed to identify how well each textbook series intended to 

develop students’ meaningful and explicit understanding of inverse relations.  

Results 

Degree of Coverage of Inverse Relations in Each Textbook Series 

All three textbook series provided opportunities to learn inverse relations. Indeed, the U.S. 

textbooks contained about 3-5 times as many instances of inverse relations as that of the Chinese 

textbooks (EM: n +/- = 421, n x/÷ = 400; HM: n +/- = 686, n x/÷ = 1144; China: n +/- = 141, n x/÷ = 

201). Given that both EM and HM textbooks were greater in length than the Chinese textbooks, 

the average number of instances per textbook page showed that when the inverse relations were 

initially presented, the Chinese textbooks indeed contained a larger proportion of instances 

(Grade 1 for additive) or about the same (Grade 2 for multiplicative) as the U.S. textbooks (see 

Table 1). In addition, the percentages of additive and multiplicative inverses in each textbook 

series indicated a common shift of focus from additive to multiplicative inverses over time.  

(INSERT TABLE 1 ABOUT HERE) 

All instances were classified into certain problem types involving concrete or abstract 

representations (see Table 2). Instances of “fact family/related facts” and “computing or 

checking using inverse relations” were classified as either concrete (with contextual support) or 

abstract (without contextual support). In addition, concrete representations contained four types 



!!

21!

!

!

of word problem contexts. These included the ones mentioned in the literature (“inverse word 

problems,” and “one problem solved with inverse operations”) and the ones with coding 

difficulties (“separate problems linked with similarity,” and “one problem involving inverse 

situations”). The Chinese textbook also presented number composing and decomposing.  For 

abstract representations, there were types of instances similar to “one problem involving inverse 

situations” with concrete situations removed (e.g., in-out activity/frames and arrows, filling in 

structural tables). Other types of problems included finding the missing numbers and solving 

algebraic equations. Finally, HM textbook uniquely presented definition problems asking 

students’ to recall or explain the terms of “related facts” and “fact families.”  

(INSERT TABLE 2 ABOUT HERE) 

When highlighting the most frequent problem types involving concrete and abstract 

representations, it appears that there was a consistency of frequently used problem types between 

additive and multiplicative inverses for each textbook series, especially under the abstract 

contexts (see Table 2). Interestingly, although the three textbook series involved common 

problem types (e.g., fact family, checking/computing using inverse relations), each textbook 

series also contained unique ones. For example, both U.S. textbooks (especially EM) suggested 

that students should solve the same word problem in two ways using inverse operations, which 

rarely occurred in the Chinese textbook series. Both U.S. textbook series presented in-out 

activities (“what is my rule”), which were known as “rate tables” or “function tables” in the 

literature. Both U.S. textbooks also presented “find the missing numbers,” which was related to 

solving algebraic equations. In contrast, the Chinese textbooks asked students to fill in structural 

tables that highlighted the key relationships (e.g., minuend, subtrahend, and difference) and 
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presented number composing and decomposing as mentioned above. In addition to the overall 

patterns, an inspection of textbook presentations revealed interesting cross-cultural differences in 

interweaving worked example and practice problems, making connections between concrete and 

abstract representations, and spacing learning over time. 

Interweaving Worked Examples and Practice Problems of Inverse Relations 

Overall differences in using worked examples and practice problems. Figure 2 shows 

the percentages of worked examples and practice problems for additive and multiplicative 

inverses, respectively, in each textbook series. 

(INSERT FIGURE 2 ABOUT HERE) 

As indicated in Figure 2, for additive inverses, both U.S. textbooks had much smaller 

percentages of worked examples than the Chinese textbooks (EM: 9.0%, HM, 5.7%, Chinese: 

24.1%). When the focus was shifted from additive to multiplicative inverses, both U.S. textbooks 

slightly increased the proportion of worked examples, while the opposite occurred in the Chinese 

textbooks (EM: 12.0%, HM, 6.8%, Chinese: 9.5%).  

Cross-cultural features in interweaving worked examples into practice problems. 

Within a lesson, instructions/explanations in the Chinese textbooks were generally faded out 

from worked examples to practice problems with variations. This feature was not apparent in 

either US textbooks. Figure 1a illustrates the first lesson of number composing and decomposing 

in Chinese textbooks. From worked example to practice problems, the real-world situation was 

faded out from vivid peaches to manipulatives (blocks). The number was also changed from “4” 

in the worked example to “5” in the guided practice and then to “2” and “3” in the independent 

practices. In addition, instructions were gradually faded out to elicit more students’ self-



!!

23!

!

!

explanations. For instance, the worked example taught decomposing and asked a question on 

composing, “Do you know what and what can be composed into 4?” The guided practice then 

expected students to consider both decomposing and composing, “5 can be decomposed into 

what and what? What and what can be composed into 5?” Finally, the independent practice 

expected students themselves to complete math mountains in both ways (  ).  

Across lessons, Chinese textbooks used worked examples to stress sense-making. This 

laid a foundation for relevant practice problems. The second grade textbook situated the 

following worked example about checking subtraction in a real-world context (see Figure 3a), 

“There are 335 books on a bookshelf (picture). 123 of them have been lent out. How many are 

left?” After this problem was solved using “335 – 123 =,” the textbook suggested students think 

in the following way, “If we combine the number of lent-out books and the leftover, it should 

equal the original amount of books” (see the thinking bubble of the little creature in Figure 3a). 

The teacher manual explained that the purpose of using real-life experiences (The lent-out + the 

leftover = the original) was to help students make sense of the general way of checking. 

Consequently, the teacher manual suggested that teachers should help students realize the 

correspondence between “the lent-out” and “subtrahend” and between “the leftover” and 

“difference.” This led to a general checking method presented at the bottom of this textbook page, 

“We can add the difference and subtrahend to check subtraction.” A similar approach to worked 

examples was found with checking division (see Figure 3b). In Figure 3b, question 2 was about 

checking division with a remainder. After students solved a problem about “using ¥65 to buy 

chocolates with the unit price of ¥3” (65 ÷ 3 = 21 R3), students were reminded to think about 

“Each chocolate is ¥3, I bought 21 of them, which costs ¥63. Plus the leftover ¥2, it is exactly 
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¥65,” which corresponded to the checking procedure of 21 × 3 + 2 = 65 (see the thinking bubble 

of little creature at the bottom of Figure 3b). The Chinese teacher manual further explained, 

“When people do shopping, they always asked themselves, ‘Did I pay the correct money? Did I 

get the correct changes?’ In mathematics, this is checking.” After meaningful initial learning 

opportunities through worked examples, the Chinese textbooks presented 18 additive instances 

of checking (12.8%) and 68 multiplicative instances of checking (33.8%) across grades.  

 (INSERT FITURE 3 ABOUT THERE) 

In contrast, both HM and EM textbooks did not stress sense-making through worked 

examples. Rather, worked examples mainly taught procedures that were reinforced in practice 

problems. HM presented a worked example for checking division through the concrete context of 

marbles (54 marbles stored in 4 bags, solved by 54 ÷ 4 = 13 R2). Without using this contextual 

support, it directly taught the following procedures: (1) Multiply the quotient by the divisor, 4 × 

13 = 52, (2) Add the remainder. 52 + 2 = 54, and (3) The sum equals the dividend, so the answer 

is correct. For checking subtraction, HM taught students to use an arrow to link between 

“subtrahend” and “sum” in two related vertical number sentences. The second grade HM teacher 

edition stated, “Rewrite the numbers from the bottom. Then add. Draw a line from the sum to the 

top number in the subtraction problem. Tell children that addition and subtraction are opposite 

operations. Since they are opposite, one undoes the other” (p.357). Based on these procedural 

explanations/instructions through worked examples, across all grades HM provided 217 additive 

(31.6%) and 745 multiplicative (65%) practice problems that involved checking. EM presented 

three instances of checking (out of 10) that contained components of sense making. However, for 

the rest of instances, it only taught procedures similar to the ones in HM.  
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Making Connections between Concrete and Abstract Representations of Inverse Relations 

Overall differences in using concrete and abstract representations. With regard to 

representation uses, the Chinese textbook series possessed an overall larger percentage of 

concrete representations (Figure 4, dark filled) than the U.S. textbooks (Figure 4, light filled). 

For additive inverses, Chinese textbooks contained 51.1% of concrete instances (n = 72) while 

both U.S. textbooks contained less than 20% concrete ones [EM: 17.3% (n = 73), HM: 14.6% (n 

= 100)]. For multiplicative inverses, concrete representations in Chinese textbooks decreased to 

28.9% (n = 58), which was still a higher percentage than both U.S. textbooks (EM: 25.8% (n = 

103), HM: 10.1% (n = 115), also see Table 2). 

 In particular, with worked examples (Figure 4, solid filled) the U.S. textbooks involved 

both concrete and abstract representations, whereas the Chinese textbooks used solely concrete 

representations due to the fact that the Chinese textbook series situated the initial learning 

opportunities completely in real-world contexts. In fact, the percentages of concrete worked 

examples (Figure 4, solid dark) in Chinese textbooks were higher than both U.S. textbooks. 

While the Chinese textbook contained 24.1% (n = 34) additive and 9.5% (n = 19) multiplicative 

concrete examples, EM contained 4.5% (n = 19) additive and 6.0% (n = 24) multiplicative ones, 

and HM contained 3.8% (n = 26) additive and 4.5% (n = 52) multiplicative concrete examples. 

With regard to practice problems (Figure 4, pattern filled), all textbooks included both concrete 

and abstract instances with the U.S. textbooks containing higher percentages of abstract ones. 

Analyzing the additive inverses presented in earlier grades, EM and HM respectively contained 

78.1% (n = 329) and 83.5% (n = 573) abstract practice problems. In contrast, the Chinese 
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textbooks only contained 48.9% (n=69) such instances. Overall, both U.S. textbooks favored 

using abstract representations more than the Chinese textbooks. 

(INSERT FIGURE 4 ABOUT HERE) 

Cross-cultural features in connecting concrete and abstract within a worked example. 

In addition to the overall differences in the percentages of concrete and abstract representations, 

the U.S. and Chinese worked examples differed in making connections between concrete and 

abstract. More specifically, the sequence and completeness of representation uses within a 

worked example were quite different. Figure 5 presents the first formal presentation of worked 

examples in each textbook series, which illustrates differences in representational sequence.  

(INSERT FIGURE 5 ABOUT HERE) 

In Figure 5, the Chinese worked example started with a real-world situation of a 

swimming pool. The teacher manual pointed out that this story situation could be viewed two 

ways “5 boys and 3 girls” or “5 children inside and 3 outside of the pool.” This story situation 

then led to four number sentences that formed a fact family. More importantly, the teacher 

manual suggested that teachers, based on this worked example, teach the general part-whole 

relationship – adding two parts to get a whole, and taking one part from the whole to get the 

other part, which is the key to inverse relations. Overall, the sequence of representation used in 

this worked example indicated concreteness fading (Goldstone & Son, 2005). This was a typical 

representational sequence of Chinese worked examples (see another example in Figure 1a about 

number composing and decomposing).  

In contrast, the EM example in Figure 5 started with the domino diagram. The teacher 

edition explained, “The inverse relationship of addition and subtraction forms the basis of the 
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study of the subtraction facts. This relationship is first established by observing patterns on 

dominoes (Lesson 2.6) … (p.92).” In comparison to the Chinese swimming pool situation, the 

domino diagram had little contextual support to activate students’ familiar experience for 

learning. The EM teacher edition also did not expect students to move beyond the surface 

component of an example, in order to understand the underlying part-whole relationships. With 

regard to the HM example (see Figure 5), it immediately introduced an abstract term, “related 

fact,” which was illustrated by a part-whole mat with cubes. One may notice that there was a 

vivid kitten picture arranged at the bottom of this worked example. However, likely due to its 

location, this picture tended to be missed by teachers (Ding & Carlson, 2013). The HM teacher 

edition also did not suggest using the kitten situation to illustrate 6 + 3 = 9 and 9 – 3 = 6.  As 

such, representations in HM were not well sequenced.  

In addition to representational sequence, Chinese worked examples demonstrated a 

complete use of representations. In Figure 1b (Separate problems linked with similarity), the 

Chinese examples were drawn from two lessons. The first story situation described the problem 

in words along with pictures of two monkeys picking peaches. "The monkeys have picked 23 

peaches off the tree. There are 5 left on the tree. How many peaches were originally on the tree?" 

On the left, a little creature said, "How could we figure out how many peaches were originally on 

the tree?" The little creature on the right offered the solution in words ("add the 23 peaches you 

have picked with the 5 that are left on the tree"), which was subsequently translated into the 

symbolic form: 23 + 5 = 28. The above problem solving process contained rich representations 

(e.g., contextual, visual, and symbolic). Indeed, the little creatures that occurred throughout the 

Chinese worked examples might have potential to add memorable imagery for class discussion 
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(Gerofsky, 2009), and thus might have positive impact on student learning. In fact, the Chinese 

worked examples not only contained rich representations but also guided students to think 

inversely based on the quantitative relationship, “taken away + leftover = original,” which 

transformed a difficult “change” problem to an easy “part-whole” model (Nunes et al., 2009; 

Resnick, 1989, 1992). The paired subtraction story situation indicated that there were originally 

28 peaches. After the monkeys ate some, there were 6 peaches left. Students were asked to figure 

out how many peaches were eaten by the monkeys. This worked example used the same method 

to demonstrate the connections among contextual, visual, and symbolic representations in 

solving the problem (28 – 6 = 22). Similarly, the Chinese textbook drew students’ attention to 

the quantitative relationship, “original – leftover = taken away (eaten).” Taking together, this pair 

of problems presented "complete" explanations of the inverse relation even though the numbers 

did not match (23 + 5 = 28 and 28 – 6 = 22). This is the most salient feature of the Chinese 

instructional method: contextualization of the learning of a mathematical idea in a familiar real-

world situation so that concrete and abstract representations are interconnected. 

In comparison, the sample HM lessons demonstrated an incomplete use of 

representations (see Figure 1b). The lessons used words to state the problems, but there were no 

pictures or formal symbolic forms to represent step-by-step problem solving processes. The 

presentations did not emphasize the meaningful explanation of problem solving strategies. There 

were no descriptions of the procedures other than the general statement in the end: "I add the 

parts to form the whole (1st problem);" "I know the whole and one of the parts. I can subtract to 

find the other part (2nd problem)."  Likewise, EM textbooks used a model named multiplication 

and division diagram (see Figure 1b). The teacher edition explained, “The number in the right 
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column is the product of the other two. The number in the left column (or middle column) can be 

found by dividing the number in the right column by the number in the middle column (or left 

column)” (Grade 4, p.393). Even though a diagram could have potentially connected the concrete 

story situation and abstract number sentences, the EM multiplication and division diagram only 

served as a means to organize information in the story situation and was treated with a focus on 

numerical but not relational reasoning. EM presented additive and subtraction diagrams in the 

same nature. In brief, both U.S. textbooks presented incomplete representations with a focus on 

numerical calculation, which was in contrast to Chinese textbooks’ emphasis on rich-connected 

representations of quantitative relationships and problem solving strategies.  

Spacing the Learning of Inverse Relations over Time 

Overall differences in spacing learning over time. Across grades, instances in each 

textbook demonstrates different trends of spacing learning over time. Figure 6 shows the 

percentages of instances across grades for each textbook series, which indicates three cross-

cultural differences. First, given that U.S. elementary school begins at the Kindergarten level 

while Chinese school starts at Grade 1, the Chinese textbook series addressed inverse relations 

much earlier (first half of Grade 1 for additive; first half of Grade 2 for multiplicative) than the 

U.S. textbooks (first/second half of Grade 1 for additive; second half of Grade 2/first half of 

Grade 3 for multiplicative). Second, over time, the Chinese textbooks series indicated a greater 

shift of focus from additive to multiplicative inverses than the U.S. curricula. In the later grades, 

the EM and HM textbook series presented both additive and multiplicative inverses, whereas the 

Chinese textbook series focused mainly on multiplicative inverses. Third, as grade level 
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increased, the Chinese textbooks decreased presentation of inverse relations to a greater extent 

than either U.S. textbook series.  

(INSERT FIGURE 6 ABOUT HERE) 

Cross-cultural features in spacing learning over time. A close inspection of how each 

textbook spaced learning over time revealed different formats. The Chinese textbooks often 

revisited inverse relations with hierarchical connections, which was achieved either through 

purposeful topic arrangement or underlying structural relations. An example of purposeful topic 

arrangement was additive inverse relations. From the initial presentation of number composing 

and decomposing in first grade (Chapter 7, see Figure 1a), the worked example modeled how to 

think sequentially (e.g., decomposing 4 peaches into 3 and 1, 2 and 2, and 1 and 3) and inversely 

(e.g., 4 is decomposed into 3 and 1; 3 and 1 are composed into 4). This was different from both 

U.S. textbooks where EM decomposed 10 beans into 8 and 2, 5 and 5, 6 and 2 and 2, and HM 

decomposed 9 cube trains into 4 and 5, 3 and 6, 7 and 2. Both U.S. textbooks did not stress 

sequential thinking and both only taught decomposing, not composing. As such, the Chinese 

textbooks attended to inverses relations from the very beginning. According to the teacher 

manual, the purpose of arranging number composing and decomposing as a specific chapter was 

to lay a foundation for students’ understanding of the inverse relationship between addition and 

subtraction using numbers 1-10. As seen in the follow-up chapter (Chapter 8), additive inverse 

relations were formally presented through fact families involving one picture with four number 

sentences (see Figure 5, the swimming pool example). Interestingly, this chapter did not 

immediately jump to one picture with four number sentences.  Rather, there were several prior 

lessons including one picture with one number sentence (addition or subtraction, using numbers 



!!

31!

!

!

from 1-5, see Figure 1b) and one picture with two number sentences (two addition or two 

subtraction number sentences, using numbers of 6 and 7). These naturally led to one picture with 

four number sentences (using numbers of 8, 9, and 10). The above task design (chapters 7 and 8) 

illustrates how additive inverse relations were gradually laid out from informal to formal 

learning in the Chinese first grade textbook. After this initial presentation, additive inverses were 

revisited through addition and subtraction up to 100 (Grade 1), then up to 1,000 (Grade 2), 

further up to 10,000 (Grade 3), and eventually extended to decimal addition and subtraction 

(Grade 5).  

Another feature of Chinese textbooks’ spacing learning was to stress the underlying 

structural relations over time. As introduced in the section of Method – Instance Coding, the 

Chinese second grade textbook presented a group of inverse word problems involving quantities 

of 7 groups, 5 children each group, and 35 children. According to the teacher manual, the 

purpose of this group of inverse tasks was to further students’ understanding of the inverse 

quantitative relationships among “number of groups × group size = total,” “total ÷ number of 

groups = group size,” and “total ÷ group size = number of groups,” which was expected to 

strengthen students’ understanding of the inverse relations between multiplication and division. 

This emphasis was continued through introducing other special relationships such as “price, 

amount, and total cost” (Grade 3) and “speed, time, and distance” (Grade 4). Indeed, the Chinese 

textbooks stressed inverse quantitative relationships through various types of problems across 

grades. As illustrated in Figure 1c, the Chinese textbook examples of “one problem involving 

inverse situations” demanded students to understand inverse quantitative relationships among 

“original, sold, and leftover” (Grade 1 table), “speed, time, and distance” (Grade 4 table), and 
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“original, output, and rate” (Grade 6 table). In fact, built on these inverse quantitative 

relationships, the Chinese sixth grade textbook formally presented advanced topics such as 

percentages (e.g., involving “original price,” “reduced price,” and “discount”) and direct and 

inverse proportions (e.g., for direct proportion, “price” or “speed” is fixed; for inverse proportion, 

“total cost” or “distance” is fixed). 

The above Chinese textbook features in spacing learning over time – purposeful topic 

arrangement and stressing structural relations – were not evident in both U.S. textbooks. Even 

though the U.S. teacher editions suggested a few instances of inverse word problems (none in the 

student editions), the HM teacher edition only suggested students act out the story problems and 

the EM teacher edition suggested students compare the relevant problems so as to see that “They 

use the same 3 numbers.” Such instruction focused only on numerical calculation but not inverse 

qualitative relationships. In fact, HM’s definition tasks (n+/- = 22, n×/÷ = 11) further demonstrated 

such a focus. For instance, “related facts” were referred to through the metaphor, “people in a 

family are related and sometimes we call them relatives” (Grade 1, p.153); A fact family was 

defined as “a set or related facts” (Grade 2, p.63) or “a group of number sentences that use the 

same numbers” (Grade 3, p.132). All these explanations targeted surface similarities (e.g., the 

same three numbers) rather than the structural relations (e.g., part + part = whole, whole – part = 

part) that are the key to inverse relations.  

Both U.S. textbooks demonstrated different ways to space learning. For EM textbooks, 

one way was to re-teach. For instance, “fact family” frequently served as the lesson title across 

several grades. While the range of numbers changed, the main idea of the lesson remained the 

same as in previous years. The other way that the EM textbooks spaced learning was to 



!!

33!

!

!

frequently arrange an inverse task as practice problems, even in lessons with non-relevant topics. 

For instance, among the 238 additive and 216 multiplicative instances of fact family/related facts 

(see Table 2), 83% and 75% of them, respectively, were fact triangles. This idea of fact triangles 

was revisited in later lessons such as “Pattern-block and template shapes” (Grade 1, Lesson 7.3), 

“Exploring area, polygons, and geoboard fractions” (Grade 2, Lesson 10.7), “Exploring estimates 

and polygons” (Grade 3, Lesson 5.4), and “Rectangular arrays (Grade 5, Lesson 1.2). The HM 

textbook series shared the above strategy of re-teaching. This textbook series also stressed high 

frequency of practice to reinforce students’ learning. As shown in Table 2, “checking using 

inverse relations” was the first or second most frequent instance in HM (n+/- = 217; n×/÷ = 745). 

In many occasions, one practice problem (e.g., Divide and Check) included 20-40 sub-problems 

on the same page (e.g., Grade 3: p.624, p.626; Grade 4: p.215, p229, 231; 239; Grade 5: p.113, 

p.119; Grade 6: p.37, p.163). Overall, both U.S. textbook series spaced learning over time 

through repetition across grades. 

Weak connections between inverse relations and algebraic equation solving. According 

to Carpenter et al. (2003), students’ understanding of inverse relations in arithmetic will 

contribute to their later solving of algebraic equations. However, this vertical connection was not 

evident in all textbook series, except for a few instances of filling in the missing numbers in U.S. 

textbooks (EM: n+/- = 4, n×/÷ = 2; HM: n+/- = 5, n×/÷ = 2) and a few algebraic equation solving 

problems in all textbooks (EM: n+/- = 3, n×/÷ = 5; HM: n+/- = 2, n×/÷ = 12; China: n+/- = 4, n×/÷ = 2). 

Most of the relevant tasks that were not coded were due to the textbooks’ emphasis on direct 

thinking, rather than using inverse relations. One example was the third grade HM task, 2 × (   ) 

= 6. The textbook reminded students to think about 2 × 3 = 6, thus the (   ) = 3. Similarly, the EM 
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second grade teacher edition suggested a “count-up” strategy to solve 32 + ( ) =50: “A child 

might reason as follows: Which number, added to 2, will give me 10? It’s 8, so 32 + 8 = 40. 

Which number, added to 40, will give me 50? 40 + 10 = 50. Finally, 8 + 10=18” (p.50). For 

algebraic equation solving, both U.S. textbooks presented them in a format of ax ± b = c and 

continuously stressed direct thinking. For example, the EM grade 4 textbook taught students to 

solve 12 + x = 55 by thinking of 12 + (43) = 55 (Lesson 3.11). It also presented a “broken 

calculator activity,” where students were suggested to solve 452 + x = 735 without using the 

broken minus key. Indeed, the EM grade 6 textbook presented three ways to solve an equation 

without involving inverse relations. The first method was “trial-and-error,” which was a count up 

strategy. The second method was the “cover-up” method that also involved direct thinking (e.g., 

2m + 5 = 17, covering 2m and think about ? + 5 = 17. As 12 + 5 = 17, 2m = 12). The third 

method was named “equivalent equation method.” In this method, to solve 2m + 5 = 17, one may 

add “- 5” to both sides of the equation based on the property of equality. Cancelling out “+5” on 

the left side involved the three-term inversion principle (a + b – a = b) rather than the two-term 

complement principle (if a + b = c, a = c – b), the focus of this study. HM shared the same 

pattern as EM.  

Likewise, the Chinese textbook series formally presented equation solving in fifth grade 

in both formats of ax ± b = c and ax ± bx = c. According to the teacher manual, students were 

traditionally taught to solve equations using the two-term inverse relations. For example, to solve 

3x – 4 = 16, students can view 3x as one quantity, which equals 16 + 4. However, the new 

curriculum standards (Ministry of Education of China, 2001) suggested reforming this part using 

the property of equality (e.g., adding 4 to both sides of 3x – 4 = 16) in order to better align with 
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the middle school curricula, which was similar to both U.S. textbooks. The Chinese fifth grade 

textbook, however, presented one type of problem, “Filling a sign in the O and filling a number 

in the □,” which suggested that after students understood the method of using the property of 

equations, they might take a shortcut by not writing down the transformation steps. This may 

strengthen students’ understanding of the two-term inverse relations. 

3.6 + x = 5.7 
                x = 5.7 O □  

        x - 20 = 30 
             x = 30 O □� 

      0.6x = 4.2 
        x = 4.2 O □ � 

    x ÷ 20 = 5 
      x = 5 O □ 

 

Discussion 

This study explores the differences and similarities between U.S. and Chinese textbook 

presentation of the inverse relations. It should be noted that while these textbooks are 

representative of U.S. and Chinese curricula, they are not used exclusively, nor are textbooks 

even mandated in other nations, such as in Australia, Belgium, and Singapore. In addition, this 

study has a narrowed focus on the two-term complement principle, which is arbitrary due to the 

close relationship between the two- and three-term inverse relations. Nevertheless, given that the 

goals of teaching and learning of fundamental mathematical ideas such as inverse relations is 

global, findings from this study may shed light on improving existing learning environments by 

offering students more meaningful and explicit learning opportunities. 

Meaningful Initial Learning of Fundamental Mathematical Ideas: Contextual Support 

Initial learning affects later transfer (Chi & VanLehn, 2012). The key to meaningful 

initial learning is tying a new concept to students’ existing knowledge (Ausubel, 1968; Bransford, 

Brown, & Cocking, 1999; Piaget, 1952). With regard to inverse relations, given that children 

already possess relevant preliminary schemas (Resnick, 1992) and informal knowledge (Gilmore 
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& Bryant, 2008; Klein & Bisanz, 2000; Sherman & Bisanz, 2007), it is important to activate their 

informal understanding to influence new learning. In this study, the initial learning opportunities 

(worked examples) of inverse relations in both U.S. and Chinese textbooks involved concrete 

representations; however, the nature and purpose of using concrete representations appear to be 

different. In particular, the nature of concrete representations in Chinese worked examples was 

found to be contextual (e.g., word problems with illustrations). In fact, all worked examples in 

Chinese textbooks were situated in real-world contexts, which was in direct contrasts to U.S. 

textbooks’ small portion of such contexts. The main type of concrete representations in U.S. 

worked examples was found to be physical or visual without contextual support (e.g., dominos, 

cubes, and diagrams). Therefore, the Chinese textbooks may have a greater likelihood to activate 

students’ personal experiences and informal understanding to aid in learning (Ding & Li, 2014; 

Goldstone & Son, 2005; Resnick & Omanson, 1987). Moreover, the purpose of using concrete 

contexts in Chinese textbooks (e.g., shopping) is clearly for sense- making of computation or 

checking procedures; yet, the U.S. textbooks mainly used them as a pretext for computation with 

a focus on procedures. HM’s strategy of using arrows to stress checking procedures is similar to 

the presentation of Belgium textbooks reported in Torbeyns et al. (2009). As indicated by the 

literature (Baroody, 1987, 1999; De Smedt et al., 2010; Torbeyns et al., 2009), when students do 

not possess meaningful understanding of procedures and strategies, mechanical practices may 

only result in inert learning. As such, Chinese textbooks’ more robust contextual supports may 

have a greater potential to contribute to students’ meaningful initial learning, laying a conceptual 

foundation for students’ later numerical practices (Ding & Li, 2014). It is interesting to note that 

Chinese textbooks decreased the proportion of concrete worked examples from additive to 
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multiplicative inverses. In this study, we lack evidence to explain this observation. Future studies 

may explore possible reasons through interviews of textbook designers. For instance, is it 

possible that Chinese textbook designers might have expected students to transfer their learning 

from additive to multiplicative inverses, and thus provide more student self-practice problems?  

Explicit Learning of Fundamental Mathematical Ideas: Structural Relations 

Prior studies have also revealed that the current learning environments of inverse 

relations lacks support for students’ explicit understanding, resulting in students’ inability to 

spontaneously use this relation in new contexts (Baroody, 1999; De Smedt et al., 2010; Torbeyns 

et al., 2009). In this study, the U.S. textbooks demonstrated a procedural focus. The addition and 

subtraction diagrams and multiplication and division diagrams presented in EM textbooks 

literally listed quantities, but not the interaction among quantities, which may hinder students’ 

understanding of the problem structures and underlying quantitative relationships (see 

elaboration in Murata, 2008). In addition, both EM and HM posed questions on inverse relations; 

yet, their expected student responses were mainly limited to surface similarities of 

numbers/quantities but not the interactions between them. This has been found to be a roadblock 

of deep initial learning (Chi & VanLehn, 2012).  

In contrast, the Chinese textbooks demonstrated explicit attention to structural relations, 

which was first indicated by its deep use of worked examples. From the very beginning, worked 

examples of number composition and fact families aimed to teach students the part-whole 

relationships (part + part = whole; whole – part = part), which is consistent with prior findings 

(Zhou & Peverly, 2005). Chinese textbooks also systematically faded the concreteness into the 

abstract ideas (Goldstone & Son, 2005). For instance, when it came to checking, the Chinese 
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textbooks suggested going beyond the concrete situation to enable students’ inverse 

understanding at a general level (e.g., difference + subtrahend = minuend). Such an approach 

will likely enable generalization from worked examples (Lewis, 1988). The second indicator of 

Chinese textbooks’ explicit attention to structural relations lies in its consistent emphasis on 

inverse quantitative relationships. Through carefully matched quantities and situations of inverse 

word problems, students’ attention may be drawn to the underlying structures (e.g., speed × time 

= distance; distance ÷ speed = time; distance ÷ time = speed). These results may partially explain 

findings from prior cross-cultural studies that have demonstrated Chinese students’ superiority in 

understanding distance, time, and speed interrelations (e.g., Zhou, Peverly, Boehm, & Lin, 2000), 

a hard topic related to multiplicative reasoning (Thompson, 1994). Even with the problems that 

did not contain the matched quantities, the Chinese textbooks still attended to inverse 

quantitative relationships (e.g., sold + leftover = original, original - sold - leftover). Focusing on 

relational but not numerical calculation (Nunes et al., 2012; Thompson, 1994) likely facilitates 

inverse understanding at a structural level, which will transcend over contexts (e.g., whole 

numbers, decimals). Indeed, the more elaborated the underlying structures and principles are, the 

more effective subsequent learning will be (Ausubel, 1968). 

Spaced Learning of Fundamental Mathematical Ideas: Task Design and a Dilemma 

The learning of any fundamental ideas takes time (Pashler et al., 2007). Thus, it is 

important to provide spaced learning with frequent exposure of students to relevant practices. 

Consequently, textbooks, as part of the learning environments, should be carefully designed with 

coherence, especially vertical coherence (National Academy of Education, 2009). In this study, 

Chinese textbooks demonstrated purposeful task arrangement and connected structural relations 
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over grades. In contrast, both U.S. textbook series, although presenting inverse tasks with high 

frequency, were mainly computational and repetitive. This is different from the Chinese 

textbooks’ task choices and focus shifts. The above cross-cultural differences in task design call 

for rethinking of learning opportunities when spacing learning over time. For example, what 

tasks should be chosen as worked examples to support deep, meaningful initial learning and how 

much practice is enough? When grade level increases, how may students’ attention be shifted to 

new learning in order to strengthen rather than to simply repeat the learned concepts? Only with 

a clear task design goal, can one expect to overcome the common limitation – lack of depth – 

introduced by U.S. textbooks (Schmidt, Wang, & McKnight, 2005), thus offering more quality 

opportunities to learn fundamental mathematical ideas (CCSSI, 2010). 

Related to spacing learning over time, an emerging dilemma occurs due to the observed 

weak connections between inverse relations and algebraic equation solving in all textbook series. 

According to the literature (e.g., Carpenter et al., 2003; Nunes et al., 2009), understanding the 

two-term inverse relations (e.g., if a + b = c then c – b = a; if a × b = c then c ÷ b = a) would 

contribute to students’ later solving of algebraic equations. However, findings in this study 

indicate that all textbooks approached algebraic equation solving using the property of equality 

(along with the three-term inversion principle). The Chinese teacher manual explained that the 

shift from using the two-term inverse relations to the property of equality is to bridge students’ 

learning in middle school, where more complex algebraic solving will be taught. As such, it 

remains unclear in what ways the use of two-term inverse relations is inadequate for solving 

algebraic equations. Indeed, could students’ mastery of the two-term inverse relations actually 

support students’ algebraic equation solving? As instructed by the Chinese textbooks, students 
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who have mastered the detailed steps of equation solving may write a “shortcut” that involves 

the two-term inverse relations, which enhances the efficiency in equation solving. In fact, recent 

research asserts that there is a close relation between students’ understanding of the two-term and 

three-term inverse relations (Baroody et al., 2009; Gilmore & Bryant, 2008). Future studies may 

explore how these two types of inverse relations may work together, along with property of 

equality, to support students’ algebraic equation solving. Textbook designers may also consider 

how the advantage of two-term inverse relations obtained in previous years may be better taken 

to support the learning of algebraic equation solving. Such explorations will further 

understanding of the detailed paths to space learning of fundamental mathematical ideas in 

elementary grades. 

Implementation and Conclusion 

As Shimizu and Kaur (2013) emphasized, the purpose of cross-cultural comparison is to 

reflect upon one’s practices and to learn from others. In this study, findings based on both U.S. 

and Chinese textbooks contribute insights to improve the learning environments of fundamental 

mathematical ideas. Chinese textbooks’ skillful use of representations and stressing the 

underlying structural relations are consistent with prior findings on Chinese textbook 

presentations of the distributive property (Ding & Li, 2010, 2014), the associative property (Ding 

et al., 2012), and the equal sign (Li et al., 2008). These approaches in developing students’ 

meaningful and explicit understanding may be learned by textbook designers in U.S. and others 

countries. Likewise, U.S. textbooks’ unique problem tasks (e.g., fact triangle, frames and rows, 

part-whole mat, one problem solved with inverse operations, in-out activity or rate tables) may 

be learned by Chinese textbook designers and others. Given that examples with greater 
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variability can better facilitate the encoding of principles (Renkl et al., 2002), the new problem 

types may promote students’ interests and effective learning. Indeed, findings about U.S. 

textbooks’ preference in using rate tables are consistent with Cai et al.’s (2005) conclusion that 

U.S. textbooks seemed to stress more functional thinking.  

The above findings together raise important questions of not only how to design effective 

textbooks, but also how to use them successfully in classrooms to support learning. Findings 

about Chinese textbooks in this study appear to be parallel with prior findings on Chinese 

teachers' knowledge structures and classroom teaching (e.g., Ding et al., 2013; Zhou, Peverly, & 

Xin, 2006). As such, future studies may include both types of inverse relations, across more 

countries and explore detailed connections between textbooks, classroom instruction, and student 

learning.  
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Figure 1. Examples of coding difficulties across textbook series. G = Grade, V = Volume.  

!

c.!One problem 
involving 
inverse 
situations 

Chinese examples: 
 
G1: 

 Refrigerator Washer TV 
Original 56 (      ) 46 
Sold 30 20 (   ) 
Leftover (      ) 18 5 

 
G4  

Speed time Distance 
80 t  
 V  S 
 t S 

 
G6: 

Material Peanut Bean Rapeseed 
Original 160 200  
Oil output 40  48 
Output rate  16% 40% 

 

EM examples: 
 
G2: In and out activity   
Rule: 1 qt = 2 pt 

qt Pt 
2  
3  
 10 
8  

 
G4 

Buses   36 180 … 
Jets 1 2 3   

 

 

Frames and Arrows: 

 

   

HM examples: 
 
G5 

M cm 
45  

 0.005 
 862.3 

A  
 
G6  

s = € s = 300mi/h s=20mi/h 
d=225mi d=€ d=mi 
t = 5h t=6h t=€ 

 

 
 
 

 

 
Figure 1. Examples of coding difficulties across textbook series (continued). The Chinese textbook series introduces the formula of 
“distance = speed × time” as s = vt while the U.S. textbook series introduces d = st. All Figures from the Chinese textbooks are 
reproduced with permission from the textbook author, Lin Wang. The above EM material is authored by: University of Chicago 
School Mathematics Project (2007). Everyday mathematics (Teacher edition, Grade 3). Chicago: Wright Group/McGraw-Hill. This 
material is reproduced with permission of McGraw-Hill Education. The above HM material is from Houghton Mifflin Mathematics, 
Teachers’ Edition (Grade 2). Copyright © by Houghton Mifflin Company. All rights reserved. Used by duplication is strictly 
prohibited unless written permission is obtained from Houghton Mifflin Harcourt Publishing Company.  
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Figure 2. The percentages of worked examples and practice problems in each textbook series.  
“+/-” = additive inverses; “×/÷” = multiplicative inverses.
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a.! Checking subtraction using addition 

 
(G2, v4, p.52) 

b.! Checking division using multiplication 

 
(G3, v5, p.3) 

Figure 3. Chinese textbooks’ worked examples of checking using inverse relations. G = Grade; V = Volume. All Figures from the 
Chinese textbooks are reproduced with permission from the textbook author, Lin Wang. 
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Figure 4. Representation uses in worked examples and practice problems.   “+/-” = additive 

inverses; “×/÷” = multiplicative inverses. Concrete-Example = Worked examples that involve 

concrete representations. Abstract-Practice = Practice problems that involve abstract 

representations. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

+/-
(n=421)

x/÷
(n=400)

+/-
(n=686)

x/÷
(n=1144)

+/-
(n=141)

x/÷
(n=201)

US-EM US-HM China

Concrete-Example Concrete-Practice

Abstract-Example Abstract-Practice



!!

55!

!

!

 

Chinese US-EM US-HM 

Real-world situations 
 

 
 

(G1, v1, p.54) 

Fact family with dominos 
 
 

 
 

(G2, p.124) 

Part-whole mode 
 

 
 

(G1, p.153) 

 

Figure 5. Fact family in context in each textbook series. G = Grade; V = Volume.  The Chinese textbook figure is reproduced with 
permission from the textbook author, Lin Wang. The above EM material is authored by: University of Chicago School Mathematics 
Project (2007). Everyday mathematics (Teacher edition, Grade 2). Chicago: Wright Group/McGraw-Hill. The text is reproduced with 
permission of McGraw-Hill Education. The above HM material is from Houghton Mifflin Mathematics, Teachers’ Edition (Grade 1). 
Copyright © by Houghton Mifflin Company. All rights reserved. Used by duplication is strictly prohibited unless written permission 
is obtained from Houghton Mifflin Harcourt Publishing Company.
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Figure 6. Percentages of additive and multiplicative inverses across grades. “+/-” = additive inverses; 
“×/÷” = multiplicative inverses.
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Table 1. Average Number of Instances Per Page on Each Textbook Series 

Textbook 
series  Grades Pages coded1 

 
# of instances 

 
# of instances per page 

 
% of instances 

 
Additive  Multiplicative    Additive  Multiplicative    Additive   Multiplicative  

EM K 429  0 0  0.00 0.00  Na Na 
 1 918  134 0  0.15 0.00  100.0 0.0 

 
2 990 

 
138 127 

 
0.14 0.13   52.1 47.9 

 
3 982 

 
86 110 

 
0.09 0.11   43.9 56.1 

 
4 1018 

 
36 77 

 
0.04 0.08 

 
31.9 68.1 

 
5 1044 

 
24 49 

 
0.02 0.05 

 
32.9 67.1 

 
6 1004 

 
3 37 

 
0.00 0.04 

 
7.5 92.5 

            HM K 536  0 0  0.00 0.00  Na na 
 1 932  318 0  0.34 0.00  100.0 0.0 

 
2 932 

 
149 0 

 
0.16 0.00 

 
100.0 0.0 

 
3 936 

 
77 307 

 
0.08 0.33   20.1 79.9 

 
4 936 

 
85 431 

 
0.09 0.46   16.5 83.5 

 
5 920 

 
47 208 

 
0.05 0.23 

 
18.4 81.6 

 
6 920 

 
1 198 

 
0.00 0.22 

 
0.5 99.5 

            China 1 209 
 

106 0 
 

0.51 0.00 
 

100.0 0.0 

 
2 214 

 
23 85 

 
0.11 0.40   21.3 78.7 

 
3 228 

 
5 46 

 
0.02 0.20 

 
9.8 90.2 

 
4 229 

 
0 44 

 
0.00 0.19 

 
0.0 100.0 

 
5 254 

 
7 14 

 
0.03 0.06 

 
33.3 66.7 

 
6 250 

 
0 12 

 
0.00 0.05 

 
0.0 100.0 

1The HM teacher edition does not provide the exact number of total pages. Rather, a teacher edition uses student textbook page (p.89) as a base for the 
corresponding explanation pages (p.89A, p.89B, p.89C). There are approximately an average of 200 explanation pages added to a student edition in each grade. 
The listing page numbers for HM in Table 1 were obtained by using the number of student textbook pages plus 200.  
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Table 2. Types of Problems involving Concrete and Abstract Representations across Textbook Series 
 

Representation Problem Type 
US-EM_+/- 

(n = 421) 
US-EM_×/÷ 

(n = 400) 
 US-HM_+/- 

(n = 686) 
US-HM_×/÷ 
(n = 1144) 

 China_+/- 
(n = 141) 

China_×/÷ 
(n = 201) 

freq % freq %  freq % freq %  freq % freq % 

Concrete Number composing and decomposing           27 19.1%   
 Fact family in context 32 7.6%    71 10.3% 50 4.4%  20 14.2% 6 3.0% 
 Computing/checking in context 1 0.2% 10 2.5%  14 2% 32 2.8%  15 10.6% 28 13.9% 

 Inverse word problems 2 0.5% 1 0.3%  7 1% 2 0.2%  1 0.7% 10 5.0% 

 One problem solved with inverse operations 34 8.1% 30 7.5%  1 0.15% 1 0.1%      

 Separate problems linked with similarity 1 0.2% 14 3.5%  5 0.7% 8 0.7%  8 5.7% 2 1.0% 

 One problem involving inverse situations 3 0.7% 48 12%  2 0.3% 22 1.9%  1 0.7% 12 6.0% 

 Total 73 17.3% 103 25.8%  100 14.6% 115 10.1%  72 51.1% 58 28.9% 
                

Abstract Fact family/related facts 238 56.5% 216 54%  276 40.2% 146 12.8%  37 26.2% 59 29.4% 

 Checking using inverse relations 5 1.2% 1 0.3%  217 31.6% 745 65%  18 12.8% 68 33.8% 

 Computing using inverse relations 6 1.4% 9 2.3%  55 8.0% 80 7.0%  6 4.3% 10 5.0% 

 In-out activity/frames and arrows 92 21.9% 64 16.1%  9 1.3% 33 2.9%      

 Filling in structural tables           4 2.8% 4 2.0% 

 Finding the missing numbers 4 1% 2 0.5%  5 0.7% 2 0.2%      

 Solving algebraic equations 3 0.7% 5 1.3%  2 0.3% 12 1.0%  4 2.8% 2 1.0% 

 Definition: explain the term/relation      22 3.2% 11 1.0%      

 Total 348 82.7% 297 74.3%  586 85.4% 1029 89.9%  69 48.9% 143 71.1% 

 

 


