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Navigation is an essential part of adaptation for any mobile species, humans included. We 

need to search for food and water, return to shelter for sleep, and avoid dangers that 

include both stationary and moving threats.  Because these functions are vital for survival 

and reproduction, it would be natural to expect that we would have a cognitive and neural 

system that can accurately encode the spatial environment and that might even operate 

automatically. Instead, human spatial judgments show odd biases, and even outright 

incoherencies. Such phenomena are surprising. But we need to face facts: there is now a 

large literature documenting spatial biases and oddities, usefully gathered together in this 

volume.  

Note, however, that not all of these biases are necessarily the target of evolutionary 

pressure, and some do not constitute likely threats to survival. Simplifying heuristics for 

spatial relations at geographic scale (e.g. lining up geographic areas along north-south or 

east-west axes, Tversky, 1981; judging the relative locations of cities in terms of the 

relative locations of their states, Stevens & Coupe, 1978) may reflect how we deal with 

knowledge derived from maps rather than actual travel, a task probably not subject to 

evolutionary pressure. Errors in judgments of local environments seem a bit more serious, 

as when Stanford undergraduates draw El Camino Real running north to south rather than 

from northwest to southeast (Tversky, 1981), when students at the University of Michigan 

or Northwestern represent their campus as locations clustered into regions with inter- 

region distances exaggerated with respect to intra-region ones (Hirtle & Jonides, 1985; 

Uttal, Friedman,  Hand & Warren, 2010) or when people prefer to start journeys by going 

as directly as possible towards their goal, leading to differences between  return journeys 

and initial routes, and longer routes than necessary (Bailenson, Shum & Uttal, 2000). But 

these errors may reflect rational reductions in cognitive load, given their relatively low 

cost, probably at worst, arriving at a goal a few minutes later than necessary (Bailenson et 

al., 2000).  

Spatial judgments that seem downright illogical pose a more troubling challenge to the idea 

that evolution should have ensured adequate spatial functioning. One well-studied 

phenomenon of this kind is asymmetries, i.e., when people judge a distance from point A to 

point B as different from the distance from point B to point A (Baird, Wagner & Noma, 
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1982; Holyoak & Mah, 1982; McNamara & Diwadkar, 1997; Sadalla, Burroughs & Staplin, 

1981). Another example occurs when participants in virtual reality experiments do not 

realize that they are in impossible environments (Kluss, Marsh, Zetzsche & Schill, 2015; 

Warren, Rothman, Schnapp & Ericson, under review; Zetzsche, Wolter, Galbraith & Schill, 

2009). Impressed by these incoherencies, but also arguing from the overall literature on 

spatial bias, some investigators have suggested that our spatial representations are non-

metric or even associative (Foo, Warren, Duchon, & Tarr, 2005; McNamara, 1991; Tversky, 

1981). As Tversky (1981, p. 432) put it: Cognitive maps may be impossible figures.  

So, how has our species survived? One answer might be that associative spatial 

representations are “good enough” to get around the environment. However, there is an 

alternative. Huttenlocher, Hedges and Duncan (1991) proposed 25 years ago that spatial 

representations are fundamentally accurate and coherent, even while exhibiting oddities 

and biases. In their Category Adjustment Model (CAM), fine-grained representations of 

location are nested within categories. When the fine-grained information is relatively 

uncertain, categorical information is more heavily weighted, and the result is bias towards 

the location of the category prototype.  The distinction between categorical and fine-

grained information maps well onto analogous distinctions between categorical and 

coordinate information (Kosslyn, 1987) and between qualitative and quantitative 

information (Forbus, 2011; Klippel, 2012). CAM adds the idea of an adaptive combinatorial 

process.  

This combinatorial process has been 

mathematically modeled in Huttenlocher et al. 

(1991) and in subsequent papers. It can be 

intuitively understood using the diagram in 

Figure 1. The arrows show the idealized results 

of multiple experiments in which participants 

saw dots located in circles, and then located 

those dots after brief delays. Point estimates 

move towards the centroid of the four quarters 

of the circle, as divided by horizontal and 

vertical lines. Points move farther when they 

are farther from the centroid, resulting in 

increased bias for those points. Boundaries also 

exert effects, by truncating the distributions of 

locational uncertainty. For example, a point towards the circumference of the circle cannot 

move outward without crossing the boundary of the circle, an unlikely violation 

(Huttenlocher, Hedges, Lourenco, Crawford & Corrigan, 2007). Overall, the effect of 
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combining fine-grained and category information is to increase accuracy by constraining 

location given uncertainty, even at the price of introducing bias.  

A somewhat more formal explanation of CAM can be derived from Figure 2, taken from 

Duffy, Huttenlocher, Hedges and Crawford (2010). The larger normal distribution shows 

the likelihood of any particular point’s location, given that we know only that it is within 

the category, centered at the category prototype and truncated at the boundaries. The 

smaller normal distribution shows the likelihood of a point’s location as determined by 

fine-grained memory. This distribution is much more constrained, but also has inexactness. 

It could be centered at any point within the overall category distribution.   

 

CAM applies to various kinds of judgments, not just spatial ones. In fact, the earliest 

publications concerning the model involved time estimation (Huttenlocher, Hedges & 

Prohaska, 1988, 1992; Huttenlocher, Hedges & Bradburn, 1990). Subsequent applications 

of the model concentrated on category judgments (Huttenlocher, Hedges & Vevea, 2000), 

and much subsequent work on the model has focused on forming categories for stimuli 

such as fat and thin fish or long and short lines.  
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CAM is a Bayesian model in that it weights categorical information more heavily as the 

variability and hence uncertainty of fine-grained information increases. In this sense, it is 

quite similar to Bayesian models of sensory combination and its development (e.g., Ernst & 

Banks, 2002; Nardini, Begus & Mareschal, 2013) and also quite similar to Bayesian models 

of combination of spatial information from path integration and from landmarks and its 

development (e.g., Nardini, Jones, Bedford & Braddick, 2008; Zhao & Warren, 2015a, 

2015b). An overview of CAM and its relation to other Bayesian approaches to spatial 

behavior explains this family of approaches in more detail (Cheng, Shettleworth, 

Huttenlocher & Rieser, 2007). CAM is similar, but less similar, to Bayesian models of 

reasoning and its development, which utilize probabilities of one event given another, with 

the probabilities based on priors either gathered by prior experience or built in or both, 

e.g., Oaksford & Chater, 2001; Perfors, Tenenbaum, Griffiths & Xu, 2011).  

Crucially, CAM can explain asymmetries in spatial judgment. Newcombe, Huttenlocher, 

Sandberg, Lie and Johnson (1999) demonstrated this aspect of the model. Experiment 1 

again used the paradigm of estimating the location of dots in circles. People saw two dots 

sequentially. One of them was closer to the category prototype (i.e., the centroid of one of 

the quadrants of the circle shown in Figure 1) and the other point was farther away. They 

were then shown the location of one of the dots (either the first- or the second-presented 

one), and asked to locate the other dot. When the to-be-estimated dot was between the 

fixed dot and the centroid, over-estimation of the distance was predicted, and found. When 

the centroid is between the to-be-estimated dot and the fixed dot, under-estimation was 

predicted, and found. An additional prediction was also confirmed, namely that this pattern 

would be stronger when the to-be-estimated dot had been presented first, because fine-

grained information about its location would have decayed and hence the category 

information would be more heavily weighted.  The bottom line is that asymmetries of 

various kinds and magnitudes are expected, and their nature and size can be predicted, 

from a model in which people generate spatial estimates from underlying information 

without bias, 

Two subsequent experiments used a different paradigm, examining asymmetries more 

directly. Participants were asked to learn a simple map showing locations such as a church 

and son in a hypothetical town. They learned the map either as a whole (in Experiment 2), 

or one quadrant at a time (in Experiment 3). In both cases, locations were grouped into 

quadrants by clustering around a centrally-located spatial prototype, such as the HOSPITAL 

in the upper left, further highlighted by an asterisk rather than a point, designated with a 

star and labeled in capital letters. After reaching a learning criterion, participants’ spatial 

memory was tested in a series of pair-wise reproduction tests. One building (e.g., hospital) 

was shown and a second point (e.g., church) had to be placed relative to it. CAM accurately 

predicted when asymmetries would and would not be found. 
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We see then, overall, that the delineation of CAM and the fact that it explains asymmetries 

offer some hope of reconciling reflections on the evolutionary value of accurate spatial 

representations with the facts of spatial bias. In the context of this promise, the main 

purpose of this chapter is to review the various directions work on CAM has taken since its 

initial formulation, covering six topics: (1) creating and testing a process model of CAM, (2) 

examining how CAM might be used in the real world, (3) addressing the basis of natural 

spatial categories, (4) evaluating whether the categories used in spatial estimation align 

with linguistically-marked spatial categories, (5) exploring development and individual 

differences, (6) criticisms of CAM. 

Testing CAM through Formulating a Process Model 

Although CAM has much in common with research on a Bayesian approach to sensory 

combination, there is a crucial difference, namely the difficulty of separately measuring the 

reliability of categorical and fine-grained information, and then determining if the 

combination process uses that information to increase reliability. Separate measurement is 

challenging, given that one kind of information is hierarchically nested within the other.  

Huttenlocher, Hedges and their collaborators have instead relied on mathematical models 

showing that the use of categorical models improves the reliability of fine-grained 

information considered alone and is hence a Bayesian process (e.g., Huttenlocher et al., 

2007).   

Empirical research to deal with the issue of separate measurement of component processes 

and combined judgments is also potentially possible. One promising approach was charted 

by Friedman, Ludvig, Legge and Vuong (2013) who presented a model of combining two 

dimensions. They worked with x and y coordinates given their use of geographic stimuli. 

Using spatial judgment data gathered either in a perceptual or in a semantic context, they 

performed analyses separately for each single dimension (i.e., x-axis or y-axis), and then 

evaluated the two-dimensional (or combined) situation. More work of this kind is needed. 

Another route forward is to test an implementation or process model of how CAM operates, 

rather than staying at the computational or algorithmic levels (Marr, 1982), and hence to 

test whether CAM makes predictions that are empirically confirmed. Work using this 

strategy began with examining the effect of delay, which should increase category bias by 

decreasing the accuracy of fine-grained information. Along similar lines, increased 

cognitive load might be expected to increase bias by making fine-grained information 

harder to encode and maintain.  A second process question is whether category adjustment 

in fact occurs during retrieval, reflecting weighting of two underlying sources of 

information, neither of which contains bias but which vary in certainty. A contrasting 

possibility is that the two kinds of information blend with each other as an ongoing process 

during retention (e.g., Spencer & Hund, 2002).  
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Does Decreasing Reliability of Fine-Grained Information Increase Bias? 

The passage of time, and the addition of interference, should degrade the accuracy and 

reliability of fine-grained information quite quickly in short-term dot-location experiments, 

hence increasing the weighting of category information and leading to increases in bias. 

One set of findings has already been discussed; Newcombe et al. (1999) found the over- 

and under-estimations that would lead to asymmetries only with first-presented dots, 

which had been subject to longer delays than second-presented dots. The effects of delay 

have also been confirmed in other studies, including in natural environments (Holden, 

Newcombe & Shipley, 2013), with children (Hund & Plumert, 2002, 2005) and in angle 

estimation (Crawford, Huttenlocher & Engebretson, 2000), although there were no effects 

of a 15-second delay in another study (Haun, Allen & Wedell, 2005).  

Cognitive load might also sap the ability to encode and/or maintain fine-grained 

estimations, and increased cognitive load has recently been found to increase categorical 

bias in the estimation of line lengths (Allred, Crawford, Duffy & Smith, 2016). However, the 

number of locations to be remembered and the presence or absence of a concurrent task 

did not increase categorical bias in the same spatial estimation study that failed to find an 

effect of delay (Haun et al., 2005). One explanation for these null effects may be that 

participants in Haun et al. (2005) showed categorical effects that were very pronounced 

even though they only had to encode one location and had no concurrent interference task. 

This pattern suggests poor fine-grained coding even in the baseline condition, making it 

difficult to observe any increases in the effects of categories.  

Fine-grained information does not always decay over time. It is acquired and retained in 

natural environments that are repeatedly experienced, as when university students get to 

know their campus (Uttal, Friedman, Hand & Warren, 2010).  In fact, we would hope that 

such information would be robustly encoded, because without it, the kind of adaptive 

navigation that we imagine evolution should ensure would be challenging. However, there 

is evidence that cognitive load may be a factor in acquiring fine-grained information for 

natural spaces; working memory is significantly correlated with more accurate spatial 

estimates in learning a virtual environment (Weisberg & Newcombe, 2016).  

Does Combination Occur at Retrieval? 

Using the dots-in-a-circle task, Sampaio and Wang (2009) found that people prefer the 

correct location when it is pitted against their own (biased) estimate in a recognition task, 

suggesting maintenance of unbiased information and supporting a combination-at-

retrieval model. Using natural scenes, Holden, Newcombe and Shipley (2015) replicated 

this key result, and also performed a further manipulation, in which participants were 

allowed to skip trials if unsure. However, in 25% of the cases, people were not allowed to 

skip the trial, and instead compelled to respond. Recognition trials could thus be sorted 
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into the cases where people were sure enough about location to want to respond versus 

trials on which they had considerable uncertainty.  The key prediction was that categorical 

information would be most heavily weighted when participants were unsure and were 

forced to respond anyway. Indeed, such a pattern was observed to a truly striking extent. 

When people were relatively sure, they preferred the correct location in a recognition test, 

as shown in the panel at the top right. When they were unsure, they preferred the category 

prototype, even in recognition, as shown in the panel at the lower right. 

Categories and Combination in the Real World 

Remembering the locations of dots in circles for very brief periods of time is clearly not the 

same kind of task as navigating in an environment. Learning the highly schematic maps 

used by Newcombe et al. (1999) doesn’t take us much closer to spatial reality. Thus, a 

crucial challenge for CAM is whether it applies to the real world. Posing this question also 

involves us in asking another vital question, namely what determines spatial categories in 

the real world. To move towards real-world contexts and to begin to explore the nature of 

natural spatial categories, Holden, Curby, Newcombe and Shipley (2010) studied memory 

for dot locations on photographs of natural scenes, such as sand dunes, mountain scenes or 

lakes.  To define the categories in order to investigate the predictions of CAM, there were 

both conceptual and perceptual categories to be considered. For example, people have a 

concept of “lake”, but they also see the shadows and reflections on the lake’s surface as 

different in color and other visual characteristics from the clear blue color of the lake 

elsewhere. To evaluate CAM, we began by defining categories in the scenes in two ways: 

using a perceptual clustering machine algorithm and also by obtaining judgments by 

human observers. Interestingly, these two methods converged quite well. This agreement 

may suggest that people use perceptual variations to sub-categorize concepts such as lake, 

or may suggest that people also have concepts such as “shadow” and “reflection”. In any 

case, bias was found towards the center of scene categories, just as bias is exhibited 

towards the prototype of a quadrant of a circle.  Holden et al. (2010) collected further data 

using inverted versions of the photos, which we thought would primarily weaken access to 

the conceptual content, and color-negative versions of the photos, which might interfere 

more with perceptual than with conceptual processing. People showed categorical bias 

effects in both cases, although the categories were somewhat different, both from each 

other and from the natural scenes.  

Natural scenes move us toward the real world, but not all the way into it. If we would like 

to use CAM in thinking about spatial navigation in the actual three-dimensional world, we 

need to conduct experiments in that world. There have started to be efforts to do so. 

Holden, Newcombe and Shipley (2013) asked participants to remember the location of dots 

flashed with a laser pointer on the three-dimensional world, e.g., a bench. We again found 

bias towards the center of spatial regions. Pyoun, Sargent, Dopkins and Philbeck (2013) 
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also found category effects, in an analogue of the work on the circle in which participants 

were placed in a real circular arena.  People seemed to divide a surrounding circle into 

halves not quarters, considering there to be a front half (ahead of them) and a rear half 

(behind them). Furthermore, the category prototypes were not at the center of those two 

halves, but rather “pulled forward” so that they were within the field of vision, on the left 

and right sides of the front half. Even after people rotated, they preserved this organization 

when offered cues as to where the front and rear had been (either doors or objects such as 

a lamp).  

Spatial Categories in the Real World 

In the asymmetry experiments involving maps conducted by Newcombe et al. (1999), the 

quadrant organization was suggested by the stimuli (clustering locations and adding stars 

and capitalized labels). In the circle experiments, the gravitational vertical and the 

corresponding vertical are very powerful categorization cues, which can also organize 

other geometric shapes (Wedell, Fitting & Allen, 2007). But the natural environment is 

rarely structured completely by convenient external organization or by a gravitation-

imposed axis structure. Further, the power of the gravitation-defined axes for the circle 

actually poses a challenge to the Bayesianism of CAM.  People are resistant to organizing 

their spatial memory in other ways even when evidence accumulates that the frequencies 

of dot locations are not uniform (Huttenlocher, Hedges, Corrigan & Crawford, 2004). They 

can be pushed into using stable external cues when the circle rotates (Fitting, Wedell & 

Allen, 2007), as they should when horizontal and vertical bisection become unreliable 

categorical cues. But the resistance to using frequency data remains troubling. From a 

Bayesian point of view, it is important to be flexible in using categories and to rely on 

categories that are stable, e.g., shadowed areas are poor categories for anything but short-

term spatial tasks because shadows shift with time of the day, and whether the sun is 

shining. Interestingly, after repeated trials, people utilize information about the density of 

locational distributions even in the circle (Lipinski, Simmering, Johnson & Spencer, 2010), 

acting in a Bayesian way by taking into account the probability that a point falls into a 

particular local area. 

Most of the research on the formation of category prototypes in CAM has focused on 

attributes of objects, i.e., fatness of fish, length of lines. In such cases, prototypes might be 

running averages, but they might also weight recent examples more heavily or early 

examples more heavily. Sailor and Antoine (2005) found evidence for greater influence 

from recent examples, but Duffy, Huttenlocher, Hedges and Crawford (2010) found instead 

that people use running averages as their central tendencies or categories. Prototypic line 

lengths increased if stimuli were getting progressively larger, and decreased if they were 

getting progressively smaller. There was no greater influence from recent items. Duffy et al. 

(2010) did not evaluate possible primacy effects, but Duffy and Crawford (2008) had done 
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so, and found them. Is this adaptive? Duffy and Crawford argue that it may be, because 

forming a category prototype quickly provides support for subsequent memory, and the 

likelihood that it is erroneous may not usually be high.  

There has been less attention to how spatial prototypes are formed, for various reasons. 

However, Crawford and Duffy (2010) report a primacy effect: participants form a category 

prototype that is too far to the left when they have seen a sequence of dots in a rectangle 

presented from left to right, and too far to the right when they have seen a dot sequence 

progressing from right to left. Similarly, for children as old as 9 and 11 years, though not for 

adults, category effects are seen only when locations are learned in a temporally grouped 

way and/or placed in an order that emphasizes the categorical grouping (Hund, Plumert & 

Benney, 2002). People group categorically by the identities of the objects in experiments 

using objects with varying identities instead of plain dots (Crawford & Jones, 2011; Hund & 

Plumert, 2003; Sampaio & Wang, 2010), possibly forming categories of the “fruit section” 

and so forth.  

From a Bayesian point of view, it is important to use the smallest available categories, 

because location is then more effectively constrained. Holden, Newcombe, Resnick and 

Shipley (2015) were able to evaluate the interacting use of perceptual and conceptual 

information and the ideas of flexibility and constraint by contrasting categorical bias in 

experts and novices.  Expert geologists and participants with little geological knowledge 

viewed pictures in which categories were available to the experts that novices would be 

likely to miss. In some cases, the expert categories were smaller than the perceptual 

categories which were the only spatial categories available to novices. In other cases the 

expert categories were larger. We found that novices showed categorical bias towards the 

perceptual categories. The expert geologists also showed such bias when the perceptual 

category was smaller and hence constrained location more than their expert category 

would have done. They used their expert categories when they offered further constraint. 

These data strikingly confirm that spatial categories have both perceptual and conceptual 

bases, that they are flexible, and that they are adaptive in that they utilize the smallest 

available category to provide more accurate spatial estimation.  

Becoming a geologist is a lengthy process, so it may be that the formation of conceptual 

spatial categories takes some time. Indeed, the Uttal et al. (2010) study of Northwestern 

undergraduates’ knowledge of their campus did not find categorical clustering of campus 

locations in first-year students, but such grouping was present in the sophomores, juniors 

and seniors. Furthermore, Newcombe and Chiang (2007) did not find that participants 

easily formed strong categories of countries on hypothetical maps, even though a series of 

studies by Friedman and colleagues have found pronounced categorical effects for 

geographic knowledge in the real world (Friedman, 2009; Friedman & Brown, 2000a, b; 

Friedman, Brown & McGaffey, 2002; Friedman, Kerkman, Brown, Stea & Cappello, 2005; 



10 
 

Friedman & Montello, 2006). Such categorical effects begin to appear between 9 and 11 

years of age, perhaps reflecting the growth of awareness of countries and their distinctive 

characteristics (Kerkman, Friedman, Brown, Stea & Carmichael, 2003).  

Spatial Categories and Linguistic Categories 

Contrasting views concerning the relations between language and thought are one of the 

longest-running controversies in cognitive science. Recently, in the spatial domain, a great 

deal of attention has been focused on relative and absolute frames of reference. Languages 

vary in which they prefer, and strong positions have been taken on whether such variation 

transforms spatial thought (Gleitman & Papafragou, 2012; Levinson, 2003). A second 

language-thought issue in the spatial domain, however, has been whether the categories 

that language encodes with single words correspond to the nonlinguistic categories used in 

thought. Research on this topic has typically involved small closed sets of spatial terms 

such as front/back/left/right or above/below/left/right. Hayward and Tarr (1995) claimed 

to find close correspondence between linguistic terms and non-linguistic thought for the 

latter foursome, with categories centered on the vertical and horizontal dimensions. This 

finding is surprising in the light of the dot-in-circle experiments, in which the category 

prototypes were in the top right, bottom left and so forth, with the horizontal and vertical 

axes constituting the quadrant boundaries. Using a common paradigm to examine the 

contrasting findings, Crawford, Regier and Huttenlocher (2000) showed that there was 

indeed a contrast between non-linguistic category prototypes and spatial language, and 

suggested that language refers to the boundaries of non-linguistic categories rather than to 

the prototypes used in estimating spatial location. Thus, they suggest that there is a 

mismatch, albeit an understandable and functional one, between linguistic spatial 

categories and nonlinguistic spatial categories.  

Kranjec, Lupyan and Chatterjee (2014) worked with categorical and coordinate (i.e., fine-

grained) tasks. Dots were located within quadrants defined either by horizontal and 

vertical axes, or by diagonal axes, as shown in Figure 3. They label the former as “harder-

to-name” because the quadrants in this case require two words not one, e.g., top right not 

simply top. However, this case could also be called “easier-to-encode” in the sense that 

these axes provide the quadrants typically used for improving retrieval of coordinate 

information using categorical adjustment. Kranjec et al. found that the accuracy of 

coordinate information was higher in the “easier-to-encode” case.  This pattern again 

suggests a contrast between linguistic and non-linguistic categories.  

The categorical and coordinate terminology used by Kranjec et al. was taken from Kosslyn 

(1987).  As we have mentioned, Kosslyn’s approach did not tackle the problem of how 

these two kinds of information may be combined and used together. But it did tackle a 

different problem that Huttenlocher and her collaborators never addressed, namely the 
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neural substrates of the two kinds of information. Kosslyn proposed that encoding and 

maintaining coordinate information was a right-hemisphere function and encoding and 

maintaining categorical information was a left-hemisphere function, convenient enough if 

language picks out categories.  Further research has provided considerable support for this 

hypothesis (e.g., Amorapanth, Widick & Chatterjee, 2009; Kosslyn, Koenig, Barrett, Cave, 

Tang & Gabrieli, 1989).  

 

Thinking about these neural facts suggests an approach to the problem of the relation 

between spatial language and spatial thought. In the domain of color, Gilbert, Regier, Kay 

and Ivry (2006) found that perception is congruent with linguistic terms in the left 

hemisphere (as suggested by experiments lateralizing input to the right visual field) but 

not congruent in the right hemisphere. Similar patterns were found for categorization of 

profiles of cats and dogs (Gilbert, Regier, Kay & Ivry, 2006, 2008) and for novel figures that 

participants learned to categorize (Holmes & Wolff, 2012). As Regier and Kay (2009) put it, 

“Whorf was half right”.  Perhaps this approach can be extended to spatial categories. The 

right hemisphere, which is primarily concerned with coordinate or fine-grained 

information, might use the kind of categories that best address unreliability in that kind of 

information, in a combinatorial process. By contrast, without a strong concern with the 

reliability of fine-grained information, the left hemisphere might aim to maximize accuracy 

and precision of the usage of linguistic terms by centering categories on the easily-encoded 

axes.  Evaluation of this hypothesis is needed; one method might be to use Kranjec et al.’s 

paradigm in a design that would allow for evaluation of hemispheric differences.  
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In pursuing the question of spatial categories and linguistic encoding, we also need to move 

beyond the small, closed fields of spatial terminology, such as above/below, because the 

spatial categories used in natural scenes, natural environments, and geological categories 

involve irregular shapes, many of which have names, although not all do. The names, 

however, suggest shapes (e.g., crater suggests a concave depression) but the particular 

shape is not strongly constrained.  It is this kind of spatial meaning that Landau and 

Jackendoff (1993) had in mind when they discussed nouns as encoding spatial information. 

Whether or not names for these categories matter for their use in a combinatorial process 

has not been investigated. But if the names matter, they can’t matter too much. For 

instance, consider that the geologists in Holden et al. (2015) did not use the expert 

categories for which they surely have names if a smaller novice category more narrowly 

constrained a location.  

Development, Aging, and Individual Differences 

Considerable research has been done on children’s ability to estimate spatial location, 

converging on the view that there is evidence of early competence in both fine-grained and 

categorical estimation, as well as evidence of combinatorial processes (see review by 

Holden & Newcombe, 2013). At the same time, we also see developmental change, of a 

variety of kinds and with a variety of probable causes. First, the exactness of fine-grained 

estimation increases; increases in spatial precision have been used to model development 

in many tasks (Simmering, Schutte & Spencer, 2008). Second, categories may change, 

becoming richer as well as finer with development as more categories are acquired, 

especially in the natural environment, where categories have semantic content. Third, 

increases in working memory capacity may allow for combinatorial processes of wider 

scope (Sandberg, Huttenlocher & Newcombe, 1996). Fourth, feedback from the success of 

way finding and searches for lost objects may lead to progressive refinement in Bayesian 

combination. Such change has yet to be evaluated for CAM in the natural environment, but 

has been found for sensory combination (Nardini et al., 2013) and for combination of path 

integration and landmark use (Nardini et al., 2008).  

There is not yet much research on individual differences in spatial location memory, other 

than age differences. A few papers have started to appear, however. Holden, Duff-Canning 

and Hampson (2015) found that women emphasize categorical information more than men 

in encoding both dots-in-a-circle and natural scenes, with this emphasis likely occurring 

during encoding, perhaps due to differential attention (see also Holden & Hampson, 2014, 

on sex differences in angle estimation). Crawford, Landy and Salthouse (2016) reanalyzed 

data from a large study of cognitive aging. They found that spatial working memory 

capacity was related to spatial bias for a task involving memory for the location of a dot on 

a computer screen. Lower-capacity individuals showed higher bias, as predicted from data 

already reviewed suggesting that working memory is relevant to the acquisition of fine-
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grained information. If such information is less reliable, we expect greater bias. In addition, 

in an important methodological development, Crawford et al. fitted separate models to 

individual data sets, which has never been done previously. They found that only some 

people showed patterns that were consistent with CAM. A good proportion of participants 

showed different patterns, which will need further exploration.  

Criticisms of CAM 

Over the years, CAM has been the target of a variety of criticisms. Some of them are a 

matter of theoretical taste. For example, Barth, Lesser, Taggart and Slusser (2015) argued 

that a Bayesian approach is not needed for spatial estimation tasks, because a simpler 

psychophysical model is sufficient to explain the data. While that is probably true, 

Bayesianism may be considered the more attractive interpretive framework because it 

explains a wider variety of phenomena, generates more predictions about behavior in 

other situations, and provides a psychological model of what is occurring when. Indeed, 

much of this chapter has reviewed tests of this model and overviewed its scope.  

Other investigators have focused on the issue possibly implicit in the Barth et al. criticism, 

namely whether perceptual factors are sufficient to account for some of the phenomena 

discussed in this chapter, without invoking cognitive and conceptual issues. An early 

exchange involved research on the perceived and remembered tilt of lines in right-angled 

frames. Tversky and Schiano (1989) had explored the tilt of lines in L-shaped frames in the 

context of research on people’s use of graphs. Responses varied depending on whether 

people thought they were looking at graphs or not, and Tversky and Schiano argued that 

there is a perceptual bias even when there isn’t a conceptual one. Engebretson and 

Huttenlocher (1996) used L-shaped and also V-shaped frames without interpretive 

contexts, and found varying bias patterns that depended on the certainty with which 

vertical and horizontal lines can be remembered, which fit the CAM framework. This 

exchange did not develop into controversy, however, as Tversky and Schiano (1997) 

simply agreed that the phenomena were interesting, although seeing them as not 

inconsistent with their interpretation or with prior research on such displays.   

The issue of the relevance of perceptual and conceptual phenomena to bias effects has 

continued to generate varying views. In a series of articles, Spencer and his colleagues (e.g., 

Simmering et al., 2008) have argued for the adequacy of a fundamentally perceptual 

account in their Dynamic Field Theory (DFT) approach. Furthermore, Friedman, Montello, 

and Burte (2012) found that category effects in experiments on placements of geographic 

locations were similar even when participants saw polygons shaped like Alberta or 

California and had to remember the location of dots, suggesting that perception alone could 

account for the phenomena. However, these criticisms do not explain the importance of the 

expert categories used in location estimations by geology experts (Holden et al., 2015). 
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Furthermore, Crawford, Huttenlocher and Engebretson (2000) showed that line estimation 

in the context of the Muller-Lyer illusion has both perceptual and conceptual components.  

Conclusion 

We have reviewed a variety of evidence concerning the success of CAM in explaining why 

and when people show biases in spatial memory.  This debate is part of a more general 

debate about the existence of cognitive maps. After all, if spatial location judgments are 

subject to biases and (worse) illogical judgment patterns, it’s hard to see how they could be 

map-like. Recent models of cognitive maps are, however, starting to suggest 

rapprochements. There may be locally metric representations with broad directional 

relations among them (Chrastil & Warren, 2013, 2014; Jacobs & Schenk, 2003; Kuipers & 

Byun, 1991), along with individual differences in the ability for formation of both the 

component representations and the directional relations (Schinazi, Nardi, Newcombe, 

Shipley & Epstein, 2013; Weisberg & Newcombe, 2016; Weisberg, Schinazi, Newcombe, 

Shipley, & Epstein, 2014).  

This view, derived from cognitive, behavioral and modeling approaches, is beginning to 

converge with data at the neural level. The discovery of grid cells (Hafting, Fyhn, Molden, 

Moser & Moser, 2005), and their gradation from finer to broader tunings at various levels 

(Giocomo, Zilli, Fransén & Hasselmo, 2007) has combined with decades of work on place 

cells and head direction cells to begin to create a sophisticated model of way-finding and 

spatial representation. Interestingly, grid cells and place cells seem to encode spatial 

relations in particular enclosed spaces, raising the question of how the spaces are identified 

(e.g., Julian, Keinath, Muzzio & Epstein, 2015) and inter-related (Grieves, Jenkins, Harland, 

Wood & Dudchenko, 2016). 

In turn, debates about both biases in spatial representation and cognitive maps are part of 

a wider effort to determine the nature and limits of human rationality, to understand the 

role of evolution in shaping “good enough” rationality to ensure adaptation, survival and 

reproduction, and to trace the origins and development of this “good enough” rationality 

while avoiding the extremes of nativism and empiricism 
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