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5 Spatial Skills, Reasoning, and
Mathematics

Nora S. Newcombe, Julie L. Booth, and Elizabeth
A. Gunderson

rorcEBHOn <houfd T
rathematics fearn:
iea, whiat has boen <

ok the habit of 18
ey fusd mathematics
cpatial-mathents
~ schuol mathams

Modern technotogical societies are built on a foundation of mathematics. We coz
not have extensive trade without book-keeping ~ we would be stuck with a bars
system. We could not build our long bridges without calculation —we would stil}!
relying on ferries to cross bodies of water. We have made impressive improveme:
in agricultural science in the past century based in part on experiments using
statistics of “split plots.” The examples could be multiplied but the lesson is ¢l
Given the importance of numeracy, there is good reason for educational systems
strive to teach mathematics effectively. Even though many children in contemporas:
«chools succeed in learning to calculate, many others struggle or progress slowi
and even more never achieve the levels required for full participation in our techns
logical society. There are many reasons for this situation and many propus
remedies. One potential way to improve mathematics education involves harvestiz
our. growing understanding of how human minds and brains process quantitati¥
information and how these processes develop. The teaching of reading has alread
benefited from the insights of cognitive science (Rayner et al., 2001; Castles, Rastls
& Nation, 2018) and the teaching of mathematics is starting to keep pace (Ansari
Lyons, 2016).
The purpose of this chapter is to evaluate the potential of leveraging mathemats
learning based on the. links. between spatial thinking and mathematical leamis;
A few sample findings give some sense of the variety of the evidence, whick
derived from many levels of analysis. At the neural level, for example, Amalric:
Dehaene (2016).found a great deal of overlap between the brain areas used for spat
and mathematical processing, even in expert mathematicians and across a wide rapge
of mathematical fields. In terms of development, spatial—numerical associations =z
apparently basic, present at birth and even shared with other species, although ais
modified by culture (Rugani & de Hevia, 2017). Behaviorally, there is a longitudisz
link between spatial skills and mathematical achievement, evident as young
preschool and continuing into high schook and university (Casey et al., 1953
Kyuald et al., 2003; Shea, Lubinski, & Benbow. 2001; Verdine et al., 2017; Wel
Lubinski. & Benbow, 2009).
Thus. one hope is that improving spatial skills will improve mathemati:
achievement.
This strategy would benefit, however, from delineating the pathways linki
spatial skills to numeracy- skills. We know that spatial skills and numeracy sk
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sre both multidimensional constructs (Mix & Cheng, 2012; Uttal et al., 2012}, so
specific spatial skills may underlie specific mathematical achievements, in which
‘sase intervention should focus on the relevant spatial skills. Altematively or in
sddition, mathematics learning may be facilitated overall by a general spatial way
+f thinking, what has been call_éd a spatial turn of mind. For example. children and
wults with the habit of visualizing problems, or perhaps even actually sketching
em, may find mathematical reasoning easier. We discuss what we know about the

wre of spatial-mathematical linkages in two major sectiors. concentrating first on
“Yementary school mathematics and then on secondary school mathematics.

‘Understanding spatial-mathematical linkages requires some understanding
#the pature of development of both domains. In this section, we begin with a short
summary of carly mathematical development and then turn to three kinds of spatial
bmncesses that may be relevant to mathematical development in this age range. One

wcess is visuospatial working memory (VSWM), which is arguably a resource
sare than a skill. As. we turn to skills, although there are a variety of spatial skills,
wiy some have been extensively investigated. In this section, we concentrate on
.=ntel rotation and on proportional reasoning/spatial scaling. Proportional reason-
& and spatial scaling have been studied separately buit turn out to have a great deal
eommon. We close with a consideration of spatial strategies, the more general way
. which spatial thinking may influence mathematical reasoning.

T2 Nature of Early Mathematical Learning

se important distinction for young children is between symbolic approximation
%30 {sometimes referred to as “pumber sense”) and exact numeracy skiils.
ssbolic approximation skitls involve rapidly estimating relations between sym-
e quantities (e.g., approximate symbolic catcuiation and numerical comparison)
‘& are thought to tely on a mapping between the gvolutionarily old, nonsymbolic
imgroximate number system (ANS) and a set of culturally created symbolic repre-
ations {number words and Arabic numerals) (Carey, 2009; Feigenson, Dehaene,
2 Spelke, 2004). Both symbolic and nonsymbolic approximate number representa-
s become more fine-tuned with age and education (Halberda & Feigenson, 2008;
stuler & Mierkiewicz, 1977), allowing adults to make faster and more: precise
“dements about numerical quantity than young-children. Interestingly, approxima-
tasks involve activation in the intraparietal sulcus (IPS) in children and adults
osfherda & Feigenson, 2008; Kaufinann et al., 2011), a region also implicated in
seprzal rotation skill (Zacks, 2007).
2 contrast, exact numeracy skills invalve concepts and procedures necessary to
sawsicely represent and manipulate quantities (e.2., cardinality and exact arithmetic).
wese exact numeracy skills, which for young children involve whole-number
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-as early as preschool and kindergarten (Ebersbach, 2015; Sella et al., 2017}

space to larger numbers (Opfer & Siegler, 2007; Opfer, Siegler, & Young, 201
Siegler & Opfer, 2003). However, with age and experience; children’s number-

concepts and procedures, are thought to rely on different processes and neurs
substrates than approximate nurneracy skills. Children ages 3—5 who are just lears
ing the cardinal meanings of the first few count words (i.e., “one,” “two,” amt
“three”} appear to map them onto an object-based representation system that ceg
hold up to'three or four items in memory (Carey, 2009} and only later map thern &

“ezospatial Working M
Af {s one componen
tive, phonological |
413 Itis thought to stor

. i : sras. V. undergoe
approximate representations in the ANS (Le Corre, 2014; Le Corre & Carey, 2007% - *-{)(14?2?13!1:2 rotiv;
In adults, performing exact calculations through direct retrieval involves activatiez o “n

svindergarten, VSW!

of the left angular gyrus (Grabner et al., 2007..2009), which is close to languags
processing areas but distinct from the IPS, the area that is implicated in approxims
tion tasks. Thus, the neural data suggest that exact calculation in adults is supportesd
by verbal processes.

In addition to skills imvolving approximate caiculation, number comparison
counting, and exact calcuiation, another important numerical representation that
develops in childhood is the number line. Humans are predisposed to associat
spatial magnitude (such as line length or area) with numerical magnitude, evex
in the absence of formal schooling {Dehaene, Bossini, & Giraux, 1993; Dehaern
et al., 2008; de Hevia & Spelke, 2010: Lourenco & Longo, 2010; Pinel et al.
2004: Zorzi, Priftis, & Umilta, 2002). Children in Western societies begin i
map symbolic numbers (Arabic numerals) to space in a left-to-right orientatia:

aumber line estimiati
ot al., 2007), and
dou-Dervou, van der
stion of VWM usit

;. 2014) and general
. 20010). These relatio
M at age five predi
ty-number compete
studinal study, four-
a fourteen-month p
#=d, and nonsymbolic 1
% 5WM, as a versatile ®
neracy that rely on &
sprgarteners complett
» memory, related to ap
ssemoty, but not VSWA
srou et al., 2015). Alt
moﬁzatioﬁ, rely heavi
%in, 2001), other sk
example, VSWM m
satize nonsymbolic 1
a 2 objects and 3 ot
. 2004; Huttenlock:
3 mwltistep symbolic ca
swiaiving carry operatior

Theoretical accounts describe. children’s number line representations as initially :
logarithmic, in which they allocate more space to smailer numbers and less

line representations shift toward greater linearity, such that numbers that are
equally distant in terms of numerical magnitude are represented in & spatiaily
equidistant manner {Booth & Siegler, 2006; Siegler, 2009; Siegler & Booth,
2004, 2005; Siegler & Opfer, 2003). Developing a linear number line represen-
tation may involve narrowing the neural “tuning curves™ associated with eacl
Arabic numeral in the IPS (for a réview, see Kaufmann et al., 2011), so that the
arnount of representational overlap between successive mumbers is similar
regardless of the size of the numbers.

Although it seems clear that mature performance on a typical number line task
involves proportional judgments about a munber in relation to the number line’s
endpoints (Slusser, Santiago, & Barth, 2013), there is controversy regarding how to
best describe the earlier, logarithmic (or psendo-logarithmic) stage (Barth &
Paladino, 2011; Barth et al., 2011; Ebersbach et al., 2008; Kim & Opfer, 2017,
Moeller et al., 2009; Opfer, Thompson, & Kim, 2016). Despite this controversy,.
there is strong.evidence that the accuracy of children’s number line estimations is
a strong predictor of other numeracy skills, including numerical magnitude compar-
ison, number recall. approximate calculation, and symbolic estimation {Booth &
Siegler, 2008: Laski & Siegler, 2007; Siegler & Ramani, 2008, 2009). Further,
lessons incorporating number lines are effective for teaching children concepts and
procedures related to whole numbers and fractions (Fuchs et al., 2013; Hamdan &
Gumderson, 2016, Saxe, Diakow, & Gearhart, 2013).

~ help children to rer
sn. which may, in turn
Legler & Ramani, 2008

#ontal Rotation

stental rotation is the at

.0 or 3-D) visual stimul
% puzzle) (Shepard & 1
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isuospatial Working Memory

'SWM is one component of the three-part model of working memory (central
#xecutive, phonological loop, and VSWM) proposed by Baddeley and Hitch
1974). It is thought to store and process information in terms of its visual and spatial
Seatures. VSWM undergoes substantial development in early childhood (Gathercole
al.. 2004) and is a robust predictor of numeracy skills in pre-k through 3rd grades.
5 prekindergarten, VSWM predicts counting skills (Kyttéld et al., 2003) and non-
erbal addition (Rasmussen & Bisanz, 2005). In kindergarten, VSWM correlates
7th number line estimation (0-100), rapid ideéntification of groups that add to 5
Geary et al., 2007), and arithmetic performance (McKenzie, Bull, & Gray, 2003;
Kenidou-Dervou, van der Schoot, & van Lieshout, 2015). In 1st grade, experimental
Zisruption of VSWM using a dual task harms arithmetic performance (McKenzie
al.,, 2003), In 2nd and 3rd grades, VSWM relates to calculation skiils (Nath &
iziics, 2014) and general math achievement (Gathercole & Pickering, 2000; Meyer
+al., 2010). These relations are not orily concurrent but also predictive. In one study,
'SWM at age five predicts general math achievement in 3rd grade, mediated by
r.;azantit_y—nufnber competencies at age six (Krajewski & Schneider, 2009). In another
Yongitudinal study, four-year-olds’ VSWM predicted growth in calculation skills
wer a fourteen-month period, even after accounting for vocabulary, processing
speed, and nonsymbolic numerical discrimination skills {Soto-Calvo et al., 2015).

VSWM, as a versatile “mental visual sketchpad,” may impact multiple aspects of
ameracy that rely on this capacity, both approximate and exact. In a study of
indergarteners completing single-digit calculations, VSWM, but not verbal work-
img memory, related to approximate symbolic calculation skills, and verbal working
memory, but not VSWM, related to exact symbolic calculation skills (Xenidou-
Flervou et al., 2015). Although exact calculations, particularly those involving rote
smemorization, rely heavily on verbal processes (¢.g., Grabner et al., 2007; Spelke &
Tsivkin, 2001), other strategies for exact calculation rely more heavily on VSWM.
For example, VSWM may help children keep track of objects while counting and
visualize nonsymbolic “mental models™ of simple arithmetic problems (e.g., visua-
%izing 2 objects and 3 objects to compute 2 + 3) (Alibali & DiRusso, 1999; Geary
¢ al.. 2004: Huttenlocher, Jordan, & Levine, 1994). Further. mentaliy computing
a multistep symbolic calculation requires VEWM to remember intermediate steps
savolving carry operations and place value, especially when problems are presented
sertically (Caviola et al., 2012; Trbovich & LeFevre, 2003). In addition, VWM
may help children to remember and later hold in mind the number line representa-
tion, which may, in turn, foster other numeracy skills (e.g., Booth & Siegler, 2008;
Siegler & Ramani, 2008).

Mental Rotation

#ental rotation is the ability to hold in mind and mentally rotate representations of
2-D or 3-D visual stimuli (e.g.. to decide whether a rotated puzzle piece would fit into
a puzzle) (Shepard & Metzler, 1971). Mental rotation has been found to predict
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@
“Which one of these (point to four shapes on right) makes &
square with this one (point to shape on lef)?”
()]

“_nok at these pieces. Now lock at these shapes. If you put the
piaces together, they will make cne of these shapes. Pointto
the shape the pleces make.”

Figure 5.1 (q) Hustration of the tupe of items used on the Thurstone mental rotation

task; (b} A sample item from the Children s Mental Transformation Task (from
‘Guaderson, et al., 2012, p, 1233. Reprinted with permission from the American
Psvchological Association)

several measures of numeracy in young children (pre-k-to 4th grade) using age-
appropriate tasks (Figure 5.1). In pre-k, mental ‘rotation skill correiates with

a'composite of numeracy skills (including counting, cardinality, number comparison, :

and ordering) (Kyttéld et al., 2003). Among 1st grade girls, mental rotation skili
correlates with arithmetic proficiency (Casey et al., 2014). Further, merital rotation
skills in 1st and 2nd grade predicted growth in number line knowledge over the
course of the school year (Gunderson et al., 2012).

In a separate sample, mental rotation skills at age five predicted approximate
symbolic arithmetic performance at age eight. The strongest correlational evidence
to date shaws that mental rotation skills uniquely relate to kindergarten and 3rd
graders’ (but not 6th graders’) concurrent math skills (measured as a single factor),
even after controlling for a variety of other spatial skills (Mix et al., 2016). Finally,
one experimental study found that experimentaily training mental rofation skilt
yielded improvements in arithmetic among six- to eight-year-olds, especially on
missing-term problems (Cheng & Mix, 2012), atthough one attempt to replicate this
effect of mental rotation training on numeracy was unsuccessful (Hawes et al,,
2015). However, encouragingly, several recent randomized studies using more
varied spatial training regimes, including mental rotation as well as other spatial
skills {often in a playful context), have found positive effects. of spatial training on

Figure 5.2 Props

rerical skills in young
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Figure 5.2 Proportional reasoning meastire

rmerical skills in young children (Grissmer et al., 2013; Hawes et al., 2017; Lowrie,
%agan, & Ramful, 2017). Taken together, the research robustly supports a correlation
Herween mental rotation skill and numeracy. The causal impact of spatial training (in
ereral) on numeracy is increasingly well-supported, although evidence for transfer
-+t mental rotation training (in particular) to numeracy is more mixed.

Despite the strong correlation between mental rotation skills and multiple aspects
s numeracy, the mechanisms through which mental rotation skili would affect
wamieracy are not obvious, One mechanism, proposed by Cheng and Mix (2012),

memblems (e.g., | + = 5) into a more conventional format (e.g.. __ =35 — 1).
ther possibility is that mental rotation skills are one component ofa broader skill
¥ spatial visualization — the ability to manipulate mental representations of objects
: space - and that this spatial visualization skill can be brought to bear in a variety of.
mgemerical contexts that involve grounding new or complex concepts in a spatiai
mmeatal model, Consistent with this hypothesis, block design (another measure of
smmiial visualization) was umquely related to newly learned math concepts, but not
Uzmmitiar math concepls, among children in kindergarten, 3rd, and 6th grades; mental
sessinn was related to both new and familiar concepts among kindergarten and 3rd
apaders (Mix etal, 2016).

‘Eroportional Reasoning and Spatial Scaling

Froportional reasoning and spatial scaling are two spatial skills that- have only
wszeptly begun to be investigated in terms of individual differences (Frick
: Newcombe, 2012; Mhring et al., 2014, 2016). Proportional reasoning involves
. imderstanding part-whole or part-part relations between spatial extents (see
izare 5.2); spatial scaling involves reasoning about a representation that differs
. size from its referent (e.g., a map that differs in size from the city it represents}.

&, that mental rotation skills help children to “rotate” missing-term arithmetic-



1ty

NORA 5. NEWCOMBE, JULIE.L. BOGOTH, AND ELIZABETH A. GUNDERSON

These skills are deeply related: Proportional reasoning requires recoguizing equiva- _' sxptain the relation between s
tent proportions at different scales (e.g., 2 cm of a 10 cm line is proportionaily : 3,

2012): Spatial skills m:
equivalent to20 cm of 2 100 cm line), and spatial scaling involvés using proportionat w1 use) of the linear numb-.
information to map locations between scales (e.g..a location on a map that is one- simeeracy skills, especially t
third of the way between two buildings will also e one-third of the way betwesn 22 24, 2012). Gunderson ef al.
those buildings at full scale). Indeed, recent work indicates that proportional reasor- heory. In the first study.
ing (using nonsymbolic spatial extents) and spatial scaling are significantly corre- s predicted improvemen
lated in childhood (Méhring, Newcombe, & Frick, 2015}, ool year, even after accou

Although classic work by Piaget and Inhelder (1975) argued that proportional r. In the second study. «
reasoning skill did not emerge until around eleven years of age, more recent work has oximate symbolic calcu
shown sensitivity to proportions even in infancy (Duffy, Huttenlocher, & Levine, ~wledge at age six. A sep
2005; Huttenlocher, Duffy, & Levine; 2002). Starting af six months of age, infants rzaded these resulis, findis
and young children are quite sensitive to proportional relations between spatial sl
extents (e.g., lengths), while the ability to discriminate exact spatial extents emerges
much later, after age four (Duffy et al., 2005; Huttenlocher et al., 2002). Botk
children and adults spontaneously use proportional strategies., biased toward the
center of salient spatial categories' (such as quadrants of a circle or number line), te
remember locations and make explicit proportion judgments rélated to 1-D and
2-D spaces (Huttenlocher, et al., 2004; Hutienlocher, Hedges, & Vevea, 200
Hutteniocher, Newcombe, & Sandberg, 1994; Spence & Krizel, 1994). Spatiat
scaling ability also develops early: Children ages 3-6 show individual differences
in the ability to use a 2-D map to find a Jocation in another 2-D space that differs =
size (Frick & Newcombe, 2012; Mdhring et al., 2014; Vasilyeva & Huttenlocher.
2004).

Work on proportional reasoning and scaling is relatively new, and their Iinks to
numeracy are less well-tested than for mental rotation and VSWM. One recent study
has shown that proportional reasoning skill is correlated with symbolic fractio
concepts in children ages 810 (Mohring et al., 2016). Further, there are stron
theoretical Teasons to believe that proportional reasoning should relate to mimber
line knowledge, since the number line also requires estimating quantities and relatin
parts to wholes. In fact, there is evidence that mature performance on a symbolie |
number line task involves proportion judgments that are biased toward the center of
salient categories (such as haives or quarters of the number line), similar to propor-;
tion judgments in nonsymbolic, visual tasks (Barth & Paladino, 2011; Barth et al
2011). Consistent with this, Sth graders’ nonsymbolic proportional reasoning skiits
loaded onto the same factor as mumber line estimation (Ye et al., 2016). s symbolic numeracy s
1f proportional reasoning helps children’s number line estimation, this may in turn- <2 and correct errors nt

benefit their numeracy skills more broadly. 5 have also shown a s
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The Linear Number Line

Despite decades of research showing a correlation between spatial skills and numer-
acy, relatively little work has probed the mechanisms that might explain this link.
One potential mechanism is that the acquisition of a specific cultural tool that brings
together spatial and iumerical representations — the linear number line —may help fo

-ther potential mechanis
es (i.e., use of exg
=ematic spatial images ¢
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ain the relation between spatial skills and symbolic numeracy skills (Gunderson
#d.. 2012). Spatial skills may facilitate the development (i.e., learning, retention,
imd use) of the linear number line representation, which in turn enhances other
zmeracy skills, especially those related to symbolic approximation (Gunderson
22.. 2012). Gunderson et al. (2012) reported on two longitudinal studies supporting
s theory. Inthe first study, 1st and 2nd graders’ beginning-of-year mental rotation
s predicted improvement in number line knowledge over the course of the
oot year, even after accounting for beginning-of-year math and reading achieve-
wwt. In the second.study, children’s mental rotation skills at dge five predicted
ximate symbolic calculation ability at age eight, mediated by number line
wwledge at age six. A separate study of 2nd through 4th graders replicated .and
dmmemeded these results, finding that the jongitudinal relation between spatial skills
% later calculation skill was partially mediated by number line knowledge
Lafevre et al, 2013).

fental rotation may contribute to a visual transformation strategy (e.g., zooming)
¢ number line estimation. Additional spatial skilis may also be involved.
- moted previously, proportional reasoning (Ye et al., 2016) and VSWM (Geary
zi. 2007) have alse been linked to number line estimation skill. Proportional
“wsoning may contribute to a proportion judgment strategy, and VSWM may help
aidren to recall locations on number lines they have encountered in school.
wwever, because the relations of mental rotation, proportional reasoning; and
‘3% to number line knowledge have been investigated in separate studies,
= work is needed to determine whether all three skills contribute uniquely to
fidren’s number line knowledge. Despite these limitations and open questions,
srch to date is consistent with the hypothesized causal chain linking spatial skills
wzmber line knowledge to symbolic calculation skills, both exact (LeFevre et al.,
 and approximate (Gunderson et al.. 2012).

i terms of its relation to numeracy, one theoretical possibility is that the number
sepresentation is particularly helpful for approximate symbolic numeracy skills,
2xtent that improvement on the number line task indicates more finely tuned
semitude representations that are especially critical for approximation. Indeed.
ey studies showing the impact of number line estimation on numerical skill
. ¢sed approximate measures {Booth & Siegler, 2008; Gunderson et al., 2012;
ki & Siegler, 2007; Siegler & Ramani, 2008, 2009). However, even if it is
wwiaily important for approximation, number line estimation skill may impact
20t symbolic numeracy skills as well, perhaps by increasing children’s ability to
sre and correct errors in exact calculation procedures. Consistent with this, recent

tion skill (LeFevre et al., 2013; Xenidou-Dervou et al., 2013).

Strategy Use

ser potential mechanism finking spatial skills and numeracy is the use of spatial
o wmmegies (ie., use of explicit visualization or extemal representations, such as
Swrmatic spatial images or sketches) to represent and solve a math problem. Use
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of spatial sirategies is related to both spatial skills aod math achievemerd st bgh sehool, Algebra t
(Blazhenkova, Becker, & Kozhevnikov, 2011; Hegarty & Kozhevnikov, 1999 s 1% siskin. 1988) and &
which gives reason to believe that spatial strategy usc may mediate the relation amd word problems at
betweer spatial skills and numeracy skills. Children as young as age eight, as well r et facet of secondar
adults, can reliably self-report their preference for the use of spatial visualizati w3 in a stand-alone co
strategies, object visualization strategies (i-e., detailed pictorial fmages of objects § razmton 2-D and 3-D fige
the relevant problem), and verbal strategies (Blajenkova, Kozhevnikov, & Motes, zed a5 “branches of nm
2006; Blazhenkova et al., 2011). Among older children (ages 8-18). spatial sirateg wsrermns. understand proo
preference is significantly related to children’s mental rotation skill and relates " {Royal Society an
children’s intention to pursue STEM fields (physics, chemistry, math, and comput artier mathematies ¢
science) (Blazhenkova et al., 2011). In addition, children’s actual use of spatial i to advanced high:
strategies while completing math word problems predicts success on those problems 2zdy of change in matks
(Hegarty & Kozhevnikov, 1999). Thus, children with higher levels of spatial skilis; wwatives, integrals, and B
may be more likely to use spatial strategies while completing numerical tasks: Furhaps because they an
(especially novel or difficult ones), leading to improved performance. However, 3 topics dominate. the
given the paucity of research in this area, it may be fruitful for researchers t G gre surprisingly few s
investigate the relations between specific spatial skills (such as mental rotatios, Fmach, 2012).

VSWM, and propottional reasoning), spatial strategy preference and use, and math Lompared with algebra.
achievement among young children. meecen spatial ability ¢
. Delgado & Prieto, 2¢
warning caleulus at ali,
Here, we review the exs
zial rotation. Where s
ed to all three of these
-, may be considered the i
¢ wevondary mathematics.

tial-fMathemati 1y Ci ch

Much like findings for primary mathewnatics content, there is evidence for the
influence of spatial skills on higher-level mathematics skills, such as those learned i
secondary school. Both VSWM and mental rotation (but not verbal working memory;
are predictive of higher-level mathematics achievement scores (Reuhkala, 2001), and zatred in higher mathem:
3. spatial visualization tasks such as mental rotation and paper folding have bee
found to predict students” SAT-M scores as they exit secondary school, as well as t
mediate the observed relation between verbal working memﬁry and SAT-M scores
(Tolar, Lederberg, & Fletcher, 2009). Correlations between these types of 3-D spatial -
visualization measures and mathematics achievement tend to be greater for higher-
level mathematics skills than for elementary mathematics. skills (Casey, Nuttall, & : ict Australian high sch
Pezaris, 1997; Friedman, 1995; Reuhkala, 2001). zezise & Reeve, 2014).

In the following sections, we first describe the types of mathematical content . wevween VSWM and perf
studied in secondary schools and then describe evidence for relations between spatial arhool students; however, ¢
skills and these various areas of higher-level mathematics. We then discuss the d geometry problem-sols
mechanisms that may explain the connections between spatial reasoning and these Even.in cases where st

higher-level mathematics skills. gzometry achievement app
volving mental manipulai

. 46) distinction betweer
75113) also found that the
sdwrally mediated principl
2xd geometrieal trangforma
sz, Buclidean geometry, a

Pisuospatial Working M

we 2008, several studis:
sner-level mathematics s

The Nature of Secondary Mathematical Learning

Tn secondary schools, mathematics leaming typically encompasses thiree types of
content through which students progress at different speeds and to different
degrees. Secondary mathematics often begins with the study of algebra in middle or
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#zchy high school. Algebra focuses on the understanding of variables and their opera-
ws (Usiskin, 1988) and generally contains. component skills such as solving equa-
s and word problems and graphing linear, quadratic, and exponential functions.
= next facet of secondary mathematics is typically geometry, which is typically

dizd in a stand-alone course in high school in the United States, but significant
%ﬂm on 2-D and 3-D figures is also addressed in middle school. Geometry has been
ed as “branches of mathematics that exploit visual intuition ... to remember
zorems, understand proof, inspire comjecture, perceive reality, and give giobal
sehi” (Royal Society and JMC, 2001). Finally, students who are successful in
samse-earlier mathematics courses may begin the study of caleulus, which is typically

= =udy of change in mathematical quantities, typically encompassing knowledge of
Sumvatives, integrals, and limits (Zuccheri & Zudini, 2014). '

Perhaps because they are studied by most secondary students, algebra and geo-
zry topics dominate the literature on secondary mathematics learning. However,

e are surprisingly' few studies on connections between spatial skills and algebra

sach, 2012).

wmpared with algebra, a greater amount of research has established the link
ween spatial ability and geometry (e.g., Battista, Wheatley, & Talsma,
Delgado & Pneto, 2004}, Unfortunately, there is a relative dearth of research
‘zarning calculus at all, much less on the role of spatial abilities.

Here, we review the extant literature on two types of spatial skiils: VSWM and

weemal rotation. Where available, we include findings on how spatial skills are

wed to all three of these types of secondary mathematics content; though geome-
xy be considered the most obvious example of how spatial reasoning is relevant
wwewnndary mathematics. mathematicians argue that “much of the thinking that is
ized in higher mathematics is spatial in nature” (Jones 2001, p. 55}.

patial Working Memory

2008, several studies have examined potential connections between. various
zr-fevel mathematics skills and VSWM. For instance, VSWM was shown tfo
22 Australian high school students® ability to selve symbolic aigebraic probiems
wese & Reeve, 2014). Kyttdld and Lehto (2008) also found a direct relation
smeen VSWM and performance on algebraic word problems for Finnish high
of students; however, they did not find a comparable relation between VSWM
peometry problem-solving in that population.
“wen i cases where. such a relation is found, the link between VSWM and
=ty achievement appears to be very weak and perhaps limited only to tasks
siwing mental manipulation (Giofté et al., 2013). Using Dehaene and colleagues’
4 distinction between types of geometric principles, Giofré and colleagues
%31 also found that the relation between VSWM and geometry was limited to
rrally mediated principles of geometry (i.e., symmetry, chirality, mefric properties,
gromeirical transformations) and not to core principles of geometry (i.e., topol-
e, Fuclidean geometry, and geometric figures; see Figure 5.3).

zicted 1o advanced high school and college students. Caleulus can be thought of as
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Figure 5.3 Emmpfes.qf core vs. culturally mediated principles of geomenry (from
Giofié, et al., 2013, p: 117. Copyright 2013 by Elsevier. Reprinted with
permission}

In a recent meta-analysis, Peng and colleagues (2015) aimed to compare the
impact of different facets of working memory on various aspects of secondary
mathematics learning. They concluded that the role of working memory in geometry
performance was generally small and that VSWM was no mote influential than any
other type of WM. They did not draw conclusions regarding VSWM and other facets
of secondary mathematics, however, due to an insufficient number of studies on
VSWM in algebra or any type of working memory at all in caleulus.

achanisms for Explair
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Mental Rotation

Compared with those for VSWM, studies on the links between mental rotation (a
other sorts of 3-D spatial visualization) and higher-level mathematics have yielded
more conclusive findings. In general, much stronger evidence exists linking
3-D spatial visualization to geometry compared with algebra (Battista, 1990
Delgado & Prieto, 2004). For instance, Kyttild-and Lehto (2008) found a direc
relation between mental rotation and solving geometry problems but only an indirect :
relation between mental rotation and solving algebraic word problems. High school f-
students’ performance on the Mental Rotation Test (MRT) has been found to refate
both geometry course grades and performance on a geometry achievement test, as
well as to the students’ perceptions of how well they do in geometry (Weckbacher & :
Okamoto, 2014); Mental rotation was.also positively related to the students’ percep- -
tions of how well they do in algebra but not to their actual algebra course grades
{Weckbacher & Okamoto, 2014). One recent study, however, found that scores on
a paper folding task were predictive of both algebra pattern knowledge and geometry
problem-solving for 6th grade students in Singapore (Logan, 2015).

il
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. Three-dimensional spatial visualization has also been linked to calculus perfor-
‘mmnce. Cromley and colleagues (2017) demonstrated a relationship between mental
ion and high school and college caleulus students’ scores on items from the AP
wlus test, though mental rotation was not related to performance on a conceptual
whis measure. Similarly, Samuels (2010) found a significant correlation between
smres on the Purdue Spatial Visualization Tests (PSVT) Development (3-D paper
widing) task and solution of problems invelving finding the derivative in a college
~Zrulus class. There is also some causal evidence of the relation, as.practice reason-
+ whout the rotation of 3-D objects led to improved calculus grades for low-spatial
rgraduate engineering students {Sorby et al., 2013).
Paalis and Christou (2010) isolated the effects of a compaosite spatial abilities
rssure (which included both mental rotation and paper folding tasks but ot
AWM across the board for four separate types of geometry reasoning (see
smeve 5.4) in Cyprian middle-grade students; strong relations were found between
wrtal abilities and students® representations of 3-D objects and measurement skills
3-D) objects (i.e., calculating surface area and volume), while slightly weaker
ons were found with spatial structuring tasks. (i.., arranging and enumerating
s cubes) and conceptualizing properties of 3-D shapes. A different composite
‘pzial ability measure (that still included both mental rotation and paper folding
“seris) was related not only to Canadian 7th and 8th graders’ initial knowledge about
ntation of 3-D geometric shapes but also to how much they were able to learn
o geometry instruction (Kirby & Boulter, 1999). However, only a weak link
»ween-a 3-D spatial visualization composite (mental rotation and paper folding)
# sigebraic equation solving was found in undergraduate students (Tolar et al,
L

hanisms for Explaining Spatial-Achievement Relations in Secondary
matics

- glgcbra, VSWM seems to be:more influential than 3-D spatial visualization,
hereas the opposite may be true in geometry and calculus. The effect of
spatial visualization seems to manifest across the board for geometry content
gz ooy certain facets of algebra and calculus may be influenced by spatial skills.
» might particular facets of spafial ability influence particular domains (or

Furhaps the most obvious mechanism is that many mathematical domains are
sorently spatial, Geometry involves working with two and three dimensional
es, and both algebra and calculus involve working with lines or curves on

% spatial visualization are especially influential in the domains of geometry and
tus is that the spatial aspects of the. requisite mathematics are not static.
seometry, students learn about their invariance, symmetry, and transformations
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Ability Description of Tasks Example
Recognition 1. ldentification of cuboids nets  Complete the following net in a proper
and 2, Construction of a cylinder net manner to censtruct a triangular prism
construction of 3. Construction of a triangular  when falded. '
nets prism net

4. Identification of pyramid nets

Manipulation 5. Transiation of an orthogonal
of 3D shapes view to isometric
representation 8. Translation of a side

modses projection view to an orthogonal.

one
7&8. Recognition of

paralielperpendicular edges of a
cube drawn in an isometric view

9&10. Enumeration of the
triangular faces of & trangular
pyramid/prism drawn in a
transparent view

Draw the front, side and top-view of the
object.

Structuring 30 11. Enumeration of the cubes

How many unit-sized cubes can fit.in the

arrays of cubes needed to transform an object to box?’

a cuboid

12. Enumetration of the cubes
and cubgids that fit in a box {the
box is not empty)

13. Enumeration of the cubes
that fit in an open/not empty box
14415, Enumeration of the
cubes that fit in an empty box

Recognition of 16. Recognition of cubeids
3D shapes’  17. Recognition of solids that
properties  have a specific number of
vertices
18,19&20. Enumerating the

vertices/faces/edgss of pyramids

Circle the solids that have at least 8
vartices.
R

Catculation of  21. Calculation of the area of a.
the volume and sclid constructed by unit-sized
: cubes
thesgﬂgz of 22523, Calculation of the
area fvolume of cuboids
presented as open nets
24. Gomparing tha capacity of
rectangular and cylinder
resenvairs

How mueh paper is needsd to wrap the
box?

Comparison 25, Right’wrong statements
of 3D shapes refering to the elements and
; properties of three solids
properties 28827, Exploration of the
Euler's ruls in
pyramids/extension in ptisms

Which of the following statements are
wrong?
{a) The faces of prisms and cubolds are

tectangles, (b) the base of ptisms-and
‘cuboids could be a rectangle and (¢} the

base of prisms and cuboids could be a
triangle

Figure 5.4 Classifications of spatial abilities (from Christou, 2010, p. 209,
Copyright 2010 by Springer Sciencer Business Media B.V, Reprinted with.
permission)
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“wagent to the curve changes as the x value changes (Bremigan, 2005; Sorby et al,,
13}, Thus, effective mathematics instruction. in these fields involves a lot of object
smzaipulation and visualization (Kirby & Boulter, 1999), and mentally imagining
wwse phenomena in class may draw on exactly the same components skilis as
\wagining the rotation of block figures or flat paper being folded into 3-D shapes.
ps the observed lower impact of spatial skills such as mental rotation on algebra:
wempared with geometry and caleultus is due to the fact that algebra (especially
ing equations) is not as dependent on visualization and rotation of objects or
wisres (Battista, 1981; Weckbacher & Okamoto, 2014). As previously mentioned,
eraphing functions component of algebra may be more linked to 3-D spatial
essing but this connection has not yet been tested.
The mechanism. by which VSWM impacts mathematics performance is that
WM capacity is thought to be a “mental blackboard” on which operations are
: out with the help of internal visual imagery (Heathoote, 1994).
™~ connection between. VSWM and mental arithmetic is well established
shovich & LeFevre, 2003) and, while not necessarily the focus, mental arithmetic
rerinly oceurs in higher-level mathematics: Ashcraft (1996) argues that VSWM is
sesssary for success in math because one must accurately perceive the visuospatial
sweation of digits and variables within mathematics problems in order to solve them.
s=haps this explains the potentially greater impact of VSWM in algebra compared
% geometry — the symbolic nature of algebraic equations may require more
sracessing of numerical and variable locations, operations, and mental arithmetic.
iz role of VSWM has not yet been tested in calculus, but it could be predicted that
‘zedents with greater VSWM capacities should have greater success with the sym-
algebraic components in calculus as well.
scould also be argned that VSWM is where mental rotation and other visuospatial
Semenssing takes place (Heatheote, 1994), so limited VSWM necessarily restricts the
“emtial processing that can occur, regardless of individuals’ skili with particular types
‘swocessing. However, for geometry; calculns, and some component skills in
~hra (and likely other facets of algebra that are yet untested), 3-D spatial visiia-
Jimion may mediate the relation between working memory and math achievement
wwler et al., 2009). Further research is certainly necessary to tease apart the relations
ween these two key spatial variables.
Fesardiess of the specific spatial skills that are influential for mathematics suc-
5. there is one other important mechanism to consider, This stems from the fact
= sndents who do not have strong spatial skills perceive themselves to be poorer in

2.2}, Countless studies have shown that believing you wilt not succeed in mathe-
zirs leads to failure in mathematics, while liking or feeling you are competent in

it skills cause students to doubt their competence, they are unlikely to succeed
: = to pursue further study of mathematics. To date, this has only been tested
© iplicitly with mental rotation; however, itis conceivable that the same kind of effect
3¢ be found for deficits in other spatial skills, perhaps especially VSWM as math

% - even if they don’t actually earn lower math scores (Weckbacher & Qkamoto,

s leads to success (e.g., Eccles et al.. 1983; Elliot & Church, 1997). If deficits in.
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anxiety/worry has been shown to be parti'cularly problematic for students with low
working memory {(Asheraft & Kirk, 2001).

i Thus, caution is w
serant for initial mathen
were are other versions
¢ about in terms of thi
-irion — for example, €
sed eardier in this cha
sryant because it sugge
¢ are known to be helpf
+ will be the challenge

It is now .well established that spatial skills predict numerical skills, cross-
sectionally and longitudinally, across a wide variety of age spans and using appro-
priate statistical controls. However, although this accomplishment is. a solid ooe;
leveraging it in education requires further work. We need to move beyond correla<
tional analyses to evaluation of causal effects. The most obvious experiments
involve intervening to improve spatial skills, and we know we can do so effective
although it would be nice to know more about best metheds, necessary duration, ang:
other parameters of training (Uttal et al., 2013). Showing transfer to numerical skifls
may be a challenge, however; existing studies have shown a mixed bag of posithve
and negative results. One fear is that changes may be only local or at best. oni¥
moderately generalizable, as research attempting to increase performance on various
cognitive tasks by training working memory has arguably shown (Shipstead, Redick;
& Engle, 2012).

'We may be able to improve training experiments by probing more deeply into th
nature of spatial-numerical linkages. As discussed in this chapter, there are many
different spatial skills as well as many different mathematical operations taught =
widely different ages. So, for example, it is possible that effects may vary witk
children’s age and whether they are learhing a-new mathematical concept or opers-
tion or practicing one already acquired. Novice learners might rely on spatis
representations to aid them in acquiring new numerical concepts (Jordan et al. anxiety, and perfon
2008; McKenzie et al.,, 2003; Uttal & Cohen, 2012} but spatial represeniations; 243248, htips:i-do
might become less critical as children acquire domain-specific knowledge (e.g- asgeizy. A D. & Hitch G ¢
memorized arithmetic facts) and algorithis for solving problems. This phenomenos learning and mofive
has been observed among adults, for whom spatial skills are strongly related & . & Paladino, A M
STEM performance among novices but less so among experts, who come to rely oz against a represents
more knowledge-based, verbal, and analytical strategies (Hambrick et al., 2012 " '21;1‘3‘”10‘1;5“3' l: f;
Stieff, 2007; Uttal & Cohen, 2012). e Siealerar

However, there is some contrary evidence. For example, Mix and colleagues L:m;};o 1'111,?1 367
{2016) performed an analysis in which they divided mathematics tests into those _— 3«.«1‘ Ei98‘l). Tlh‘;ime
covering familiar versus novel content at each grade level and found few clear aures and spatial-vi
patterns of spatial predictors (although block design did predict a better grasp ¢ 337-341. httpstfde
novel content at all three grade levels). Furthermore, recall that Amalric. an »eEky. Spatial visuslizat
Dehaene (2016) found a great deal of overlap between the brain areas used fi Research in Muthe
spatial and mathematical processing, even in expert mathematicians. Along similas 5. T, Wheatley. G.
lines, one study: found that VSWM predicts arithmetic performance among young and cognitive deve
children {ages 6-7, the age at which arithmetic is first introduced in school) but n Jonrnad for Resear
older children (ages &9) (McKenzie et al., 2003). But another study found th 23077749007
VSWM predicted mathematics performance at kindergarten, 3rd grade, and 6t
orade, and indeed was the strongest spatial predictor at 6th grade (Mix et al
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%%, Thus, caution is warranted about the idea that spatial thinking is most
~ortant for initial mathematics learring.

ere are other versions of the general hypothesis that we need to get more
sswific about in terms of the nature of the linkage between spatial and mathematicai
izmition — for example, the work on spatial scaling and proportional reasoning
sed earlier in this chapter or the possibility that a spatial um of mind is most
~ortant because it suggests strategies such as sketching during problem-solving
: zre known to be helpful (Miller-Cotto et al., under review). Evaluating these
Swrs will be the challenge for the next decade.
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