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ScienceDirect
Much scientific thinking is spatial in nature, and even

non-spatial information is often communicated using maps,

diagrams, graphs, analogies and other forms of spatial

communication. Students’ spatial skills are correlated with their

success in learning science, both concurrently and predictively.

Given that spatial skills are malleable, can spatial thinking be

used to improve science education? This article reviews two

ways in which we might proceed. Strategy 1 is to enhance

students’ spatial skills early in life, or at least prior to instruction.

Strategy 2 is to make more effective use of spatial teaching

techniques that allow for spatial as well as verbal learning, even

by students with weaker spatial skills. Recent evidence

suggests optimism about both approaches.
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Introduction
An important aspect of many scientific discoveries stems

from the spatial nature of the relevant data. Consider, as

an example, the history of understanding infectious dis-

ease. Ignaz Semmelweis, a careful observer with a bril-

liant hunch, made a start by observing in the 1840s that

washing hands between examining obstetric patients

reduced the incidence of puerperal fever. But why should

washing help? One step toward a germ theory of disease

was taken in the 1850s, when John Snow put his observa-

tions of cholera cases in London on a map in juxtaposition

with the location of water pumps, showing clustering

around the pump on Broad Street (see Figure 1, top

panel, for two modern visualizations of the data). Visua-

lizations continue to play a role in scientific work on

infectious disease, as shown in research on the history

of the HIV virus (Figure 1, bottom panel). In addition,

scientific education often uses spatial displays to commu-

nicate key ideas. Continuing with the science of infectious
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disease as an example, in the 1860s, Louis Pasteur con-

ducted experiments on pasteurization, effectively shown

in a modern diagram as often found in science textbooks

(Figure 1, middle left). Also in the 1860s, Robert Koch

figured out how to grow bacteria on agar, using a micro-

scope for visualization (an example of such a preparation is

shown in Figure 1, middle right).

If scientific thinking is spatial, could spatial learning be

harnessed to support more effective education in science

and mathematics? There is in fact empirical support for

the idea, based on various observations, for example, the

fact that students with higher spatial skills show better

learning of topics such as kinematics [1] or a finding that

gender differences in spatial ability mediate gender differ-

ences in science achievement in middle school [2��]. How-

ever, this general idea could play out in two different ways in

the educational system. Strategy 1 might be to enhance

students’ spatial skills early in life, or at least prior to

instruction, to enable better science learning. Strategy

2 might be for science educators to make more effective

use of spatial teaching techniques that could allow for spatial

as well as verbal learning, even by students with weaker

spatial skills. That is, the focus would be on the curriculum,

not on the learner. These possibilities are not mutually

exclusive — both strategies might be important and effec-

tive. In that case, they could either be used together, or

choices could be made between them on practical grounds,

such as whether time and resources are available for pre-

instruction spatial skills training. The purpose of this paper

is to review recent evidence on these two strategies: (a)

whether improving spatial skills affects science learning,

and (b) how to spatialize the science curriculum.

Strategy 1: Improving spatial skills
Strategy 1 would be a non-starter if people were born with

some innately-determined fixed level of spatial ability,

with some individuals destined to be spatial geniuses

while others are doomed to a permanent spatial fog.

Fortunately, this belief, though common, is a myth.

Meta-analysis of a wide variety of spatial training studies

shows that spatial skills can be improved, for both men

and women, and for adults as well as children. Further-

more, these improvements seem to be durable and trans-

ferable [3]. These findings give rise to the hope that

right-shifting the distribution of spatial skill in a popula-

tion would increase the pool of people qualified to be-

come part of the science and technology workforce ([3,4];

see Figure 2). Interest in the malleability of spatial skills

is growing, and experimenters continue to design engag-

ing programs for spatial training suited to various ages and

different spatial skills [5].
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Figure 1
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Heat applied Let flask sit No bacteria present

Heat applied Remove the neck
and let it sit

Bacteria present
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At top, two examples of modern visualization created from John Snow’s cholera data http://qgissextante.blogspot.com/2012/10/

analyzing-john-snows-cholera-dataset.html. In the middle panel, a diagram of Pasteur’s experiment on the left and bacteria growing on agar on

the right https://en.wikipedia.org/wiki/Petri_dish#/media/File:Agar_plate_with_colonies.jpg. At bottom, how the HIV virus spread and changed

http://www.wired.com/2014/12/best-science-graphics-visualizations-2014/#slide-12.
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Figure 2
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Spatial training could potentially double the number of students ‘spatially qualified’ to become engineers. Based on Uttal et al. [4].
Randomized control trials

Note, however, that Figure 2, while built from facts, is

still a thought experiment. The hope embodied in the

figure would be more directly supported by experimental

trials in which students were randomized to spatial skills

training versus an active control group, with STEM

achievement as the outcome [6]. There have so far been

few such efforts but, in the past few years, there are at

least three publications with some positive findings. First,

highly-capable physics students got higher grades after

spatial training than a control group, although the effects

did not appear as students went on to take later courses

[7]. Second, using a regression discontinuity design,

investigators observed a positive effect of spatial training

on performance in calculus, for less-capable students [8].

Third, although this study lacked an effective active

control group, education majors playing either of two

kinds of video games seemed to improve on math perfor-

mance as well as on other cognitive skills [9]. Further

studies of this kind are in progress, so we can expect more

news in the next few years.

Varieties of spatial skills

The three studies we have just examined used very

different kinds of spatial training: practice on mental

rotation and cross-sectioning [7], a one-credit course using

a workbook designed to help engineering students with a

variety of visualization skills and incorporating a good

deal of drawing with feedback [8] and action-oriented

video games of two different kinds, a first-person shooter

game that requires a variety of spatial skills, and a low-

stress game [9]. Such heterogeneity is typical of the

spatial training literature [3]. However, there may be a

variety of different spatial skills, each with different
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relevance to various scientific disciplines. Which should

we train? There are hundreds of spatial tests, but how can

they be grouped into kinds? One effort at a typology

[3,10] suggests that skills that focus on coding the struc-

ture of objects are different from skills involved in coding

relations among objects in a wider world, and that intrinsic

and extrinsic coding can each be static, or can involve

active mental manipulation of the encoded information

(see Figure 3). This typology, however, has yet to be

thoroughly examined empirically. It may be too simple,

because a close comparison of two skills (mental rotation

and mental folding) that are both conceptually located in

the bottom left of the figure as intrinsic-dynamic skills,

reveals differences as well as similarities [11]. Notably,

mental rotation reliably shows a large sex difference

whereas mental folding does not, but we do not know

why they should be different in this regard. Even for

mental rotation, a skill that has been the focus of consid-

erable attention in cognitive science over the past dec-

ades, we are still uncovering new facts about its nature

[12] and how it develops [13]. Neural data might help to

develop and differentiate this typology but only mental

rotation has yet been studied extensively at the neural

level [11].

Furthermore, even though there are hundreds of spatial

tests, they have been devised over the past century almost

entirely by psychometricians who were not interested in

the particular kinds of spatial skills needed for success in

specific scientific disciplines. One way to remedy the

situation is to work closely with disciplinary experts to

uncover neglected spatial skills, and to devise assess-

ments for them. Interdisciplinary work between cognitive

scientists and geoscientists indeed led to uncovering two
Current Opinion in Behavioral Sciences 2016, 10:1–6
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Figure 3
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Typology of spatial skills, in which there is a distinction between

thinking about objects and thinking about the environment, and also

between static representations and dynamic transformations. The

upper left cell includes tasks in which people represent the shape and

structure of objects, and the lower left shows tasks in which that

shape is changed, for example, by cross-sectioning. The upper right

cell shows tasks that require representing the relations among many

objects in the wider world, and the lower right shows tasks that

require imagining those relations changing, for example, by changing

vantage point.
such skills, bending and brittle transformation [14,15].

Many more may remain, and of course, fitting them into

the typology proposed above will be a further challenge.

Assessing young children

One front on which there has recently been considerable

progress is a basic practical matter. Many of the skills that

have been well-studied in adults have lacked techniques

by which they could be examined in young children,

especially important if we want to set children on a

trajectory of strong spatial thinking. In the past few years,

investigators have published new tests that tap mental

rotation [16], perspective taking [17], paper folding [18],

perception of diagrammatic representations [19], scaling

[20] and the sophistication of 3-year-olds’ ability to copy

designs [21��]. Using these tools, we can demonstrate

relations to developing scientific and mathematical skills

[21��,22,23] and the importance in such development of

activities such as construction play and working memory

[24].

Strategy 2: Spatializing the science curriculum
Strategy 2 suggests that spatializing the science curricu-

lum could improve science achievement for all learners.

Such changes can occur at all instructional levels, begin-

ning with playful science activities in preschool and
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extending into advanced science education at the gradu-

ate level. This strategy seems at odds with the common

assumption that different students learn different ways,

but there is encouraging evidence that appropriate mod-

ifications can aid weaker learners while not disadvanta-

ging stronger learners, and maybe even helping them as

well. In a recent study of organic chemistry classes [25��],
women showed best achievement levels when the pro-

fessor used a combination of spatial and analytic strategies

for understanding molecular structure, compared to spa-

tial strategies alone, or analytic strategies alone. Men

performed comparably across conditions. If spatial strate-

gies and spatial thinking should be added to existing

science curricula, there are several techniques that we

have reason to believe would be helpful.

Maps and diagrams

As we saw in discussing the science of infectious disease,

maps and diagrams play a ubiquitous role in science

instruction and in scientific reasoning. Sadly, however,

many instructors assume that these representations are

basically pictorial, and that reading them does not require

instruction. It turns out, however, that students need to be

taught the reading of these representations, and that their

science learning benefits [26]. Further, they need to learn

how to coordinate their reading of text and their reading

of diagrams [27]. One area of active investigation is when

static representations (e.g., a diagram of a machine) are

sufficient and when dynamic representations (e.g., a video

or animation that shows the machine in action) add value,

and for whom [28]. We also need to specify better for early

educators when and how to introduce these symbols

[29,30], although it is clear that their use should not be

delayed, but rather start early but with careful sequencing

and support.

Sketching

Sketching is the active creation of diagrams or maps by

the learner. As a form of active learning, it is likely to be

helpful, and its spatial nature is suited to science. How-

ever, this common belief needs further empirical assess-

ment, although a recent study suggests support for the

idea [31]. Additionally, the nature of student sketches is

diagnostic of their conceptual understanding [32], and

sketching is thus likely to be helpful as a formative

assessment in the classroom.

Action-to-abstraction

If active learning is helpful, then one might expect that

literally active learning might be yet more helpful, that is,

physical experience of relevant scientific concepts. There

is impressive cognitive and neural support for this idea, at

least for concepts such as angular momentum that have

obvious ways in which they can be felt [33��]. However, not

all scientific concepts can be directly experienced, and

even for those concepts that can be, science eventually

requires abstraction for generality. These considerations
www.sciencedirect.com
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give rise to the hypothesis that learning works best when

arranged on an action-to-abstraction continuum [34]. Ges-

ture may be helpful in advancing the learner along this

continuum, as it is both physical and abstract. It can express

spatial relations at least as well as language, better in some

ways because it can more easily show several relations close

to simultaneously and also can indicate relations in an

analog fashion rather than making categorical cuts. Indeed,

two recent studies support the efficacy of gesture, showing

the involvement of the motor system in understanding

others’ gestures [35] and showing that gesture can work

better than action, even action that is accompanied by

words [36].

Analogy

Science instruction often uses analogy, as when the

atom is compared to the solar system, or as when

students are asked to understand the geologic time scale

by analogy to the human life span. Analogies may be

pictorial or verbal, but even when they are verbal, they

have a spatial aspect in that they involve a structure

mapping between elements in the two entities being

compared. We are getting an increasingly good idea of

when and how and why analogies work in the elemen-

tary classroom [37,38��], in children’s museums [39] and

for university students [40,41], as well as some idea of

the neural underpinnings of analogical reasoning [38��].
Basic behavioral research continues on children [42] and

adults [43].

Conclusion
Research on the use of spatial thinking in improving

science education is entering a new phase. It is now well

established that spatial thinking is intimately interwoven

with science learning, that spatial skills are predictively as

well as concurrently predictive of science success, and

that spatial skills are malleable. We now need to rigor-

ously specify and evaluate how to use this information.

We can improve students’ spatial skills, but we need to

use randomized control trials to evaluate effects on sci-

ence achievement, as well as the durability of such effects

and whether there is transfer to other domains. Improved

specification of the domain of spatial skills would improve

the incisiveness of such experiments and analyses, and

research using brain imaging might aid such work. Ex-

pansion of inquiry into navigation skills and their rele-

vance for scientific visualizations such as mapping would

be welcome, especially given the probable plasticity in

such skills and existing knowledge of their neural sub-

strates (see for example, [44,45]). We can also improve

how a variety of spatial tools are used in the science

classroom, but those changes also need to be rigorously

evaluated, and we need a sophisticated and deep under-

standing of how the tools work, at both the behavioral and

the brain levels, to enable educators to adapt the tools for

new contexts.
www.sciencedirect.com 
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