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Thinking about quantity:

the intertwined development of
spatial and numerical cognition

Nora S. Newcombe,* Susan C. Levine” and Kelly S. Mix?

There are many continuous quantitative dimensions in the physical world. Philo-
sophical, psychological, and neural work has focused mostly on space and num-
ber. However, there are other important continuous dimensions (e.g., time and
mass). Moreover, space can be broken down into more specific dimensions (e.g.,
length, area, and density) and number can be conceptualized discretely or con-
tinuously (i.e., natural vs real numbers). Variation on these quantitative dimen-
sions is typically correlated, e.g., larger objects often weigh more than smaller
ones. Number is a distinctive continuous dimension because the natural num-
bers (i.e., positive integers) are used to quantify collections of discrete objects.
This aspect of number is emphasized by teaching of the count word sequence
and arithmetic during the early school years. We review research on spatial and
numerical estimation, and argue that a generalized magnitude system is the
starting point for development in both domains. Development occurs along sev-
eral lines: (1) changes in capacity, durability, and precision, (2) differentiation of
the generalized magnitude system into separable dimensions, (3) formation of a
discrete number system, i.e., the positive integers, (4) mapping the positive inte-
gers onto the continuous number line, and (5) acquiring abstract knowledge of
the relations between pairs of systems. We discuss implications of this approach
for teaching various topics in mathematics, including scaling, measurement, pro-
portional reasoning, and fractions. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION

A challenge in modern air travel is getting luggage
onto planes reliably and cheaply. Different air-
lines have different regulations: only two bags, total
luggage taking up a specified volume, each bag no
more than a certain weight, and so on. However,
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often there are few consequences of variations in
these regulations, because the dimensions of number,
volume, and weight are correlated. For example,
three suitcases are likely to take up more volume
than two suitcases and they also probably weigh
more. But number, volume, and weight are not per-
fectly correlated. Consider the situation of a traveler
carrying four small bags, each containing a few light
items of clothing. She will be penalized by a number
rule, but fare well under a volume or weight rule. On
the other hand, a traveler carrying one medium-sized
suitcase filled with books would fare well under a
number or volume rule, but be penalized by a weight
rule. By adulthood, most of us understand these
trade-offs, and know that various quantitative
dimensions are distinct, even if correlated, and that
they can vary in occasionally surprising ways. But
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how do we reach this point? How and when do dis-
tinct dimensions of quantity become differentiated?
Very different answers to these questions have been
given over the years, and the differences among these
approaches touch on many of the most challenging
issues in the contemporary study of cognitive
development.

A classic approach came from Piaget (1952),
who argued that true quantification is not observed
at all in infancy and preschool, and emerges during
the elementary school years. He observed that chil-
dren cannot measure, even in a rough way, e.g., they
cannot judge the relative heights of two towers of
blocks if one tower is on the floor and the other
tower is on a table. In the spatial domain, he
reported that young children encode space only topo-
logically. In his conservation of number task, he
found that children say that the number of objects in
a line of objects changes when the objects are spread
out, and the length of the line increases while the
density decreases; children often focus on length, dis-
regarding both density and number. However,
despite these striking (and replicable) observations,
Piaget’s view of the development of quantitative rea-
soning is no longer widely accepted, for many rea-
sons. One vital issue is that he vastly underestimated
the strength of the starting points for cognitive
development.'-

There are two contrasting contemporary
approaches to quantitative development, both of
which embrace strong starting points. One view
builds on the idea of a generalized magnitude system
extending across various dimensions of continuous
quantity>* to postulate that infants begin with this
system.>® In this view, development consists of
increasing precision in estimation, differentiation of
the correlated dimensions, formation of the discrete
number system, in part but not entirely through
acquisition of culturally transmitted symbol systems”
and eventual remapping of the quantitative dimen-
sions with formal specification of how they are
related. An alternative view is the core knowledge
view, which holds that infants begin life with separa-
ble modules that form the core components of
mature quantitative cognition, with two of these dis-
tinct modules involving number and space, namely
the approximate number system (ANS) as well as the
geometric module.”™” In this view, development
depends largely on the acquisition of culturally trans-
mitted symbol systems, notably language, and on
increasing precision in the ANS. The aim of this
paper is to make a case for the first view and to
explore its implications for education and instruc-
tion. In unfolding this story, we also critique the core
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knowledge proposal regarding number, while indi-
cating ways in which elements of that approach are
potentially compatible with our own. The hypothesis
of a geometric module is, however, discussed (and
questioned) elsewhere.'’

ORIGINS AND DEVELOPMENT
OF SPATIAL ESTIMATION

Spatial estimation is the basis for eventual coordina-
tion of various quantitative dimensions, so knowl-
edge concerning its developmental trajectory is
crucial. Research on this topic has largely concen-
trated on length (or distance), in response to Piaget’s
claim that spatial coding is topological, and hence
nonmetric, for the first decade of life. As researchers
developed new techniques to study infants and tod-
dlers, his conclusion was called into question, and
new ways of conceptualizing spatial location coding
and developmental change were proposed. More
recently, convergences and points of contact among
these different views of quantitative development
have become apparent.

Early Spatial Estimation

Children remember spatial location metrically, at
least in simple tasks. For example, children between
the ages of 18 and 24 months can search accurately
for an object hidden in a 5-foot-long sandbox, first
touching the sand only 3-4 inches from the correct
location.!! Once toddlers move around the box,
errors get larger, but children are still reasonably
accurate, far better than Piaget would have pre-
dicted.'* Even 5-month-olds look longer at hiding-
and-finding events in a 30-inch-long box when
objects emerge from locations 8 to 12 inches away
from the hiding location rather than where they had
disappeared.'®'* Infants are also sensitive to vertical
as well as horizontal extent, as shown by their reac-
tions to containers that were % and % filled with
bright red."?

Metric coding is not the only way to code spa-
tial location, however. Categorical location is also
important because it is easy to remember, e.g., people
are more likely to know that their keys are some-
where on the coffee table than to know exactly where
they are. In an influential model, Huttenlocher
et al.'® proposed that fine-grained estimations are
combined with memories for the spatial category in
which a location appeared, according to a Bayesian
combination rule. Initial experiments involved the
location of a dot in a circle, in which the spatial cate-
gories are the quadrants defined by horizontal and

Volume 6, November/December 2015



@™ WIREs Cognitive Science

vertical axes. Subsequent work extended the model
to maps,'” photographs of real-world scenes,'® and
the three-dimensional world.'” Applied to thinking
about development, this model suggests that toddlers’
bias patterns for search in the sandbox may index
the early availability of Bayesian combination of cat-
egorical and fine-grained metric information. Specifi-
cally, search is biased toward the center of the box,
suggesting that toddlers use the sandbox as a
category.

Developmental Change

Research on infants’ and children’s coding of loca-
tion in terms of length and height has not simply
shown early competence. The studies also delineate
several lines along which children change from a less
accurate or less flexible representational system to a
more mature one. One set of changes involves
improvements in the Bayesian system. While infants
seem to encode both metric and categorical location
and to combine them, they do none of this in an opti-
mal way. First, the capacity and durability of the sys-
tem is limited. When more than one object is hidden
at a time in the sandbox paradigm, or there is a
longer waiting period, they do poorly. The ability to
remember two objects, or one object for 2 min, devel-
ops only gradually over the preschool years.?! Sec-
ond, when there are two dimensions to consider
(e.g., radial distance and angle) rather than just one,
children cannot coordinate categorical and metric
coding until about 9 years of age.?” Third, the spatial
categories used become smaller with age, and hence
more informative; adjustment by a smaller category
draws estimates to a prototype value closer to the
actual location. Sub-division of a space into more
than one category appears between 4 and 8years,
depending on the size of the space, and results in
a distinctive bias pattern in the sandbox best
described as a quintic function® (see Figure 1 show-
ing spatial memory in 10-year-old children in the
sandbox task).

A second set of changes in early spatial repre-
sentation involves the fact that providing an enclos-
ing frame, such as a sandbox or a container, is
essential for infants’ success in metric estimation.?***
That is, infants rely on intensive (or proportional)
coding using a perceptually available standard
against which to estimate extent, and cannot succeed
without it. This reliance on relative coding of amount
extends through the preschool years and into early
elementary school.>>~2¢ The ability to code extent in
the absence of a salient perceptual standard, or
extensive coding of amount, only begins to emerge at
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FIGURE 1 | Quintic function describing spatial memory in
10-year-old children. Based on Ref. 20.

age 4 or 5, and is more fully developed by age 8 or
50.2%2 The change from an intensive to an extensive
coding system is not all-or-none, but rather entails
the addition of the flexibility to use extensive coding
when appropriate. Each system is relevant in some
situations and for different mathematical calcula-
tions, as illustrated in Figure 2.

There is an important educational implication
of the fact that intensive coding is available early: it
is exactly what is needed for intuitive scaling and
proportional reasoning. In fact, soon after children
become able to appreciate symbolic representations
at all (for an overview),?’” 3-year-old children can use
a small representation of the sandbox to locate toys
buried in the sandbox.?® Initially, finding hidden
objects using a map or model is harder than placing
visible objects in accord with a map or model, but
this difference passes quickly.”” Indeed, 4-year-olds
can use a small-scale representation to find objects in
larger-scale spaces when there is only a small differ-
ence in scale (1:6); by 5 years, children succeed even
when the difference is more dramatic (1:19.2).%° Pre-
cision in scaling tasks proceeds regularly and sequen-
tially from 3 to Syears, and can be assessed with
paper-and-pencil tasks.>! But even later, at least
through age 10, a larger scaling factor results in
lower accuracy on a proportional matching task.>?
Performance seems to be supported by proportional
perceptual estimation—roughly a quarter of the way
across on a map implies roughly a quarter of the way
across on a referent space.>® These findings suggest
that scaling, one of the important aspects of mathe-
matical development according to recent mathemati-
cal standards, can and should be supported by
preschool play activities, such as using maps to solve
maze puzzles.**
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FIGURE 2 | Two types of quantity.

ORIGINS AND DEVELOPMENT
OF NUMERICAL ESTIMATION

Infants have been found to encode size, area, contour
length, and volume as well as distance.>>->® They also
encode time®>”*® and speed, a ratio of distance and
time.>” But no domain has attracted more interest
than number, in which reconsideration of Piaget’s
claims of protracted development began four decades
ago, but about which there continues to be consider-
able controversy. Initial experiments on number
focused on preschool children,*® but experimenters
soon began to study infants.

The Innate Number Hypothesis
The core knowledge view is that infants spontane-
ously notice and process discrete number because
humans are naturally wired to perceive it.>”*! While
the first reports of sensitivity to number involved
numbers within the subitizing range from 1 to 4,*
subsequent work involved larger numbers that
involve a separate system often called the ANS.*3**
Because accumulating evidence shows that small and
large number representations differ at both the
behavioral and the neural levels in infants as well as
adults,*~*” the appearance of strong starting points
in both systems is interesting and important.*®

There are, however, several reasons to suggest
that the findings in these studies may show sensitivity
to continuous magnitude rather than discrete num-
ber.®**-% Cantrell and Smith*’ offer an exceptionally
clear recent review of the voluminous literature. They
argue that ‘discrete quantity in the environment is
correlated with other stimulus dimensions; as the
number of discrete elements in a set increases, other
perceptual properties change as well, and although
one might control one of these properties in any one
experiment, all of them cannot be controlled simulta-
neously’ (p. 332).*” While there are various ways of
attempting to control for these correlated

494 © 2015 Wiley Periodicals, Inc.

wires.wiley.com/cogsci

dimensions, none of them is perfect, and in fact Can-
trell and Smith*” note that each method has its own
distinctive drawbacks. Thus, the demonstrations of
infant sensitivities to discrete number, both small and
large, could reflect the operation of a quantification
mechanism that attends to correlated quantitative
dimensions in the world. In fact, work with adults
provides evidence that adults may persist in using
correlated visual cues in number judgment tasks.’'~*2
While one possible rebuttal point is that num-
ber is easier to process than other dimensions of
quantity, such as area,”>>* there are conflicting
reports about judgments of area’® and it is not clear
these studies ruled out other variables, such as con-
tour length.®*® Importantly, Cantrell and Smith*® do
not claim that any single spatial dimension (e.g.,
area) trumps number, or underlies number. Instead,
the idea is that there are a host of quantitative vari-
ables so correlated with one another as well as with
discrete number that babies may not initially disen-
tangle them, or do so only weakly and with diffi-
culty. The natural prediction of this position is that
adults, children, and (perhaps especially) infants
should all show cross-dimensional generalization.

A Generalized Magnitude System

Both adults and preschool children have in fact been
found to link number and space,’®~>? although there
are dissenting opinions.®® There are a variety of
kinds of evidence. For example, behaviorally, chil-
dren between 2 and 4 years show very similar Weber
fractions for number and area with similar growth
patterns for each, and they apply the word ‘more’
accurately in both number and area contexts, begin-
ning at the same ages.’>®' In adults as well, there is
evidence of links between number and space, both
from these studies and from neuroimaging studies,
where it has been shown that topographic field maps
based on nonnumerical sensory information and dis-
crete number cannot be disentangled.®*¢

Research with infants using looking time para-
digms also suggests a generalized magnitude system.
Infants form expectations about number based on
length and temporal duration, as well as vice
versa.®*~¢” Moving beyond space, number, and time
to the auditory dimension, infants may show cross-
modal transfer when using pitch,®® although Sriniva-
san and Carey®’ found no transfer between length
and loudness.

Collectively, these findings make a strong case
for a generalized magnitude system that is present in
infancy and persists into adult life. Further work is
needed to specify for what dimensions, and whether
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some dimensions are primary. Intriguingly, space is
arguably the best candidate for ‘basic’ status, if there
is a basic dimension. Children can map length to
number and (partially) length to brightness, but they
do not seem to relate brightness to number.®” Along
similar lines, human adults show larger effects of
space on time than time on space, although symmet-
ric effects appear in rhesus monkeys.”®

DEVELOPING UNDERSTANDING
OF DISCRETE AND
CONTINUOUS NUMBER

If quantitative thinking begins with a generalized
magnitude system, children must overcome several
obstacles to achieve a mature understanding of quan-
tity, some of which are included in a developmental
model proposed by Leibovich and Henik.’® Specific
challenges include: (1) differentiating the correlated
dimensions; (2) understanding the positive integers,
which allow for the determination of exact set size;
(3) using and coordinating the approximate and sym-
bolic number systems; (4) mapping the positive inte-
gers onto notions of continuous or approximate
quantity, in order to deal with mathematical topics
that involve continuous quantity, such as measure-
ment and any topic involving the rational numbers;
and (5) systematically mapping the differentiated
continuous dimensions onto each other, to under-
stand abstractly the relation between, for example,
surface area and volume.

Differentiation of Dimensions

Because the idea that infants begin with a generalized
magnitude system has only recently been taken seri-
ously, there is little evidence bearing directly on the
issue of how a generalized magnitude system differ-
entiates into distinct dimensions over developmental
time. Cantrell and Smith*’ suggest a Signal Clarity
hypothesis, in which the correlated quantitative
dimensions proceed from an integral to a separable
state.”! Such a developmental sequence has been
studied already at other ages and with respect to dif-
ferent kinds of stimuli.”* Some of the predictions of
Signal Clarity have already been confirmed, e.g.,
Cantrell and Smith’s Hypothesis 1,* the malleability
of the Weber fraction,”® and new research is appear-
ing.”* Dramatic cases of inverse correlation might be
especially helpful for children learning to differentiate
different dimensions of quantity, e.g., when 100 ants
take up much less space than 1 elephant. The
approach is broadly compatible with ideas about
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statistical learning, which has been extensively stud-
ied in other domains.”> Much more research is
needed, however, to understand how statistical learn-
ing supports differentiation of quantitative dimen-
sions, if indeed it does.

Identifying Discrete Number and

Mapping the Count Words

Counting ability precedes discrete quantification in
object-based tasks.?’® The initial stages of counting
system acquisition may involve acquiring the mean-
ings of the words one, fwo, and three, and then
learning the cardinal principle, i.e., that each succes-
sive number in one’s count list refers to a set size that
is one more than the previous number.**”” Because
the small numbers map to numbers within the subi-
tizing range, whose conceptual representations may
depend on object files and/or formation of easily
recognized shapes,*®”® it is tempting to conclude that
mapping small numbers to corresponding count
words is easy, but that is not the case. The words
one, two, and three are not acquired simultaneously
but rather slowly and sequentially over an extended
time period.””””?

There is a considerable literature at this point
concerning whether the count words are initially
mapped to the ANS (or AMS), to a separate system
in which the small numbers are maintained as object
files, or to both. An influential paper by Le Corre
and Carey® supported the importance of the initial
mapping to an object-based system (enriched by lin-
guistic quantifiers) acquisition of a cardinality princi-
ple based on that acquisition, and only subsequent
mapping of the count words to the approximate sys-
tem. Other papers have provided evidence for map-
ping to an analogue system before acquisition of the
cardinality principle®' although there are doubts.?* It
is possible that mapping of small and large number
words onto quantity may occur independently of
each other, with approximate mapping of larger
count words to large sets being related to the child’s
age rather than to their mapping of smaller count
words to small sets.®® In this case, the mapping of
large number words to large sets might occur for
some children prior to acquiring the cardinal princi-
ple, and for others after acquiring the cardinal princi-
ple. Yet another view is that a step-by-step process of
mapping to an object-based system eventually trans-
fers to an analogue system, perhaps based on the fact
that the count words seem to apply to both.* In sup-
port of this view, a key turning point may occur for
children who know three as well as one and two,
who then acquire or can be trained to use four in a

© 2015 Wiley Periodicals, Inc. 495



Advanced Review

fashion that generalizes.””"®® Thus, 1, 2, and 3 in the
object-file system may be progressively mapped to
their count words by associative mechanisms, then
4 may also be associatively mapped, but to distribu-
tions in the approximate system. Once the associative
system is included, with the addition of 4, generaliza-
tion and inference is possible. Finally, 5- to 7-year-
old children may become able to relate the larger
count words to the approximate system using struc-
ture mapping.®® Eventually, conceptual understand-
ing of numerical relations appears to move away
from associations between numerical symbols and
their concrete referents and move to associations
among numerical symbols,®” a view that is consistent
with theories of symbol grounding.®®

Development of the Approximate and
Symbolic Number Systems

The core knowledge view proposes that the ANS
is innately specified,® but investigators working
within this tradition have also investigated individual
differences and malleability in the ANS. They
have reported evidence that individual differences
in ANS precision are linked to mathematics
achievement,®”~®!  that culture and education
enhances ANS precision,”* that ANS precision waxes
and wanes within a session depending on the indivi-
dual’s history of making easy or difficult judgments’?
and that symbolic arithmetic can be improved by
ANS training.”*"* However, an alternative point of
view is that facility with symbolic number—not pro-
ficiency with nonverbal processes—predicts later
mathematical achievement.”>~*® This conclusion is
supported by a recent review.”’

One way to reconcile these suggestions is to
posit that the ANS influences mathematical achieve-
ment by exerting an influence on the early develop-
ment of symbolic number abilities. Data are
accumulating to support this argument. For example,
a mediation analysis of longitudinal data within the
preschool age range showed that ANS acuity did not
predict mathematics achievement with symbolic med-
iators in the model.'” Indeed, the relations may
change developmentally, with the ANS important in
preschool and early elementary school in supporting
learning of symbolic arithmetic, but later oversha-
dowed in importance by knowledge of the symbolic
system. Findings that symbolic and nonsymbolic sys-
tems are correlated in younger children but not older

children or adults provide support for this
view, 101,102
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Number Lines: Mapping the Positive
Integers onto Continuous Quantity

Our argument so far suggests that children in elemen-
tary school have both a continuous quantity estima-
tor and an increasingly robust and separate system of
discrete number, which they are beginning to link to
symbolic representations. However, in some cases,
continuous quantity and discrete number may com-
pete, as we shall explore in the next section. In addi-
tion, the two systems need to be coordinated, as
when placing numbers on a number line that spans
some range, such as 0—10 or 0-100. If the numbers
are placed correctly, they should be evenly spaced,
resulting in a perfectly linear relation between num-
ber and position. Performance on these number line
tasks has now been extensively studied.'®3~1% Chil-
dren initially tend to space small numbers farther
apart than they should be, and bunch together the
larger numbers, a pattern of responses best fit by a
logarithmic function. Responses shift to a more
mature, linear function, but the logarithmic-to-linear
shift depends on the number range. Although 7-year-
olds respond linearly on the 0—100 number line, they
respond logarithmically on the 0-1000 number line.
By 9 years of age, children respond linearly on the
0-1000 number line, but respond logarithmically on
the 0-10,000 number line, and so on. Number line
performance is associated with better subsequent
learning and performance in mathematics more
generally,'%~1%% and children with poor number line
performance are more likely to have mathematics
learning disabilities.'

While the descriptive facts about developing
number line representations are reasonably clear,
there are many differing interpretations of the effects.
Siegler and colleagues conceptualize the logarithmic-
to-linear shift in terms of representational change.
When errors are logarithmic, the underlying repre-
sentation itself is skewed, based on an approximate
sense of quantity that distorts and compresses larger
nonverbal quantities. However, a second possibility
is that the data reflect the existence of two (or more)
linear segments of knowledge about certain ranges of
numbers, each with its own slope (e.g., one slope for
the numbers within a child’s counting range, and a
different slope for larger numbers, outside the child’s
counting range; different slopes for different areas of
the count list based on different levels of familiarity
and fluency)."1%=113 A third possibility is that num-
ber placements are based on proportional reasoning
using the endpoints of the line, sometimes in connec-
tion with use of the midpoint, therefore obeying a
cyclic power law. This model can also generate the
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logarithmic-to-linear shift, but in addition predicts
that seemingly linear patterns actually contain subtle
deviations from linearity, as seen in Figure 3, Panels
(b) and (C).H4’“5

Only the third explanation explicitly emphasizes
the spatial aspect of the number line task. But the
large literature on the spatial-numerical association
of response codes (SNARC) effect certainly suggests
linkages, as do other findings regarding space and
number such as the fact that preschool spatial skills
longitudinally predict number line accuracy''® (for
an overview of space—number effects, see McCrink
and Opfer).''” Along these lines, it is striking that
the patterns in Figures 1 and 3 appear identical. The
quintic function reflects the division of a range of
numbers into halves, which would aid scaling and
proportional reasoning. Because scaling and propor-
tional reasoning are likely to be especially challenging
for unfamiliar number ranges, aspects of the second
explanation (that responses differ based on fluency
in a given numerical range) can even be integrated
with the third (that responses are proportional).

There is evidence in support of this line of
thought. Adults who respond linearly on a
2000-3000 number line respond logarithmically for
the same range of quantities placed on a 1639-2897
number line.''® Adults also respond logarithmically
with unfamiliar symbolic number formats''® and
with large or even fictitious numbers defining the
right end of the line.'?® Similarly, even first-grade
children are sensitive to the number line endpoints
on the 0-100 task, suggesting an early application of
proportional reasoning, and older children (up to
fifth grade) achieve greater accuracy by mentally

Thinking about quantity

children perform better when given a line without a
rightmost boundary, and when provided with a
measurement unit.'*?

The number line is, of course, a cultural inven-
tion, although arguably one that leverages the deep
associations between space and number. (For con-
trasting views of how unschooled indigenous people
use number lines, see Dehaene et al.'*> and Nuiez
et al."*). But people have great difficulty in under-
standing magnitudes that are outside their experi-
ence, both very big magnitudes, as in billions of
dollars or sizes of planets, and very small magni-
tudes, as in nanoseconds or sizes of atomic parti-
cles.'?®  This barrier is a real challenge to
understanding politics and economics (e.g., the fed-
eral budget) and also science, where many quantities
are outside the range of human experience (e.g.,
nanoseconds and light years). One way to address
problems with number lines of this kind is to nest
time scales that students do understand to build other
scales using techniques of analogical learning'?®; the
crucial goal is to establish salient markers on the oth-
erwise difficult-to-understand continuum.

DISCRETE AND
CONTINUOUS NUMBER

The theoretical position presented so far suggests the
possibility that learning the discrete number system
could overshadow the use of continuous magnitude,
and thus interfere with important kinds of mathemat-
ical learning. In this section, we show that in fact
there is evidence for such interference, in three differ-
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FIGURE 3 | Predictions of a proportion-judgment model of the number line task. Panel C shows the pattern expected with the midpoint used

as a reference. Taken from Ref. 115, Figure 1.
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learning to measure, learning to think about propor-
tions and probabilities, and learning to calculate with
fractional quantities. These difficulties occur despite
the fact that discrete number and continuous quantity
seem to have common developmental origins in a gen-
eralized magnitude system and that number and pro-
portions have common neural coding schemes.'?” The
challenge, it seems, is to coordinate these systems once
discrete and continuous quantities are differentiated.

Learning to Measure

Piaget was correct when he observed that young chil-
dren find it difficult to measure. Surveys of the math-
ematical abilities of American children consistently
show difficulties in understanding ruler measurement,
which persist at least through the fourth grade.'?®
Consider the sample test item shown below, in which
children are shown a crayon and a ruler, but the
crayon’s left end is not at the zero point. When chil-
dren are asked to select a number that captures the
length of the crayon from the four response choices
shown, some of them simply report the number at
one end (i.e., 5 in the example below), or (in a
slightly more sophisticated fashion) count the hash
marks on the ruler from initial to final (i.e., 4 in the
example below). These problems have been shown in
experimental settings as well as national assess-
ments.”>'2*13% Teaching measurement effectively is
an important target of instruction because the persist-
ence of difficulties into late elementary school poses
challenges to instruction, e.g., in science classes and
labs that assume that children understand measure-
ment and units of measure.

Consistent with the theoretical framework out-
lined in this article, Solomon et al.’s"*° findings show
that children’s problems in measurement are at least
partially attributable to the difficulty of thinking
about discrete units in the context of a continuous
measurement instrument such as a ruler. Children’s
strong impulse to count something that looks like a
discrete object gets in the way of learning to count
the spatial intervals demarcated by these numbers.
Interestingly, kindergarten and second-grade children
perform much better on misaligned problems when
the units are discrete objects (adjacent pennies) that
make clear what the countable unit should be,
exactly because children are used to counting objects.
Other techniques leveraging this insight have recently
been devised to teach measurement more effectively
in the early grades by utilizing misaligned ruler pro-
blems and emphasizing that the relevant countable
units are spatial extents, even though those units do
not look like discrete objects (Figure 4).'2%131
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FIGURE 4 | Test item assessing children’s understanding of
measurement.

Proportional and Probabilistic Reasoning
In learning to measure, elementary school children
have difficulty conceptualizing continuous spatial
intervals as countable units of measurement because
they are focused on the idea of numbers as enumerat-
ing a set of discrete objects. In proportional reason-
ing, there is a similar problem. When countable units
are salient, children as old as fifth graders have diffi-
culty concentrating on spatial extent when they
should do so. For example, consider the two pro-
blems shown below, in which people are asked to
select which of the two alternatives best matches a
standard. Adults and children both do well with the
problem at the left where length is quite salient and
they can use an intuitive perceptual strategy based on
intensive coding; these problems are very similar to
scaling problems although the cover story for the
task is typically quite different. Adults also do well
with the problem at the right, but children often say
that the correct answer is the alternative that shows
2 units because the standard has 2 units. Children
are seduced by this error until they are 8 or 9 years
of age (Figure §).3%132

The same pattern is seen in probabilistic rea-
soning. Children were shown two donut-shaped
forms that were divided into red and blue regions,
each with a spinner in the center. Their task was to
decide for which donut the spinner was most likely
to land on one color or the other. Performance on
this task was above chance by age 6 years, but only
when the different colored regions were presented as
continuous amounts. When the red and blue regions
were divided into several equal-sized, bounded units,
children performed worse and did not begin to succeed
until 10 years of age.'**> Again, the continuous task is
easier because these quantities can be mapped onto
approximate magnitude representations more readily,
and the task with units is hard because of children’s
impulse to count anything that is countable and to
erroneously base their responses on these counts.

Overall, the developmental challenge is to
impose discrete, countable, equal-size units onto
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Discrete condition

FIGURE 5 | Examples of continuous and discrete proportional matching tasks. Adapted from Ref. 32.

continuous amounts and to know which system to
use, when, and how. Formal instruction in propor-
tional and probabilistic reasoning may be helped by
building on children’s intuitions about continuous
amounts and intuitive proportional reasoning and
then provide strong analogies to these same amounts
with discrete units imposed.'**

Understanding Fractions
Just as for proportional reasoning and measurement,
children struggle to see fractions in terms of counta-
ble units. One indication is that they initially ignore
portion size in tests of fraction comprehension. For
example, when dividing sets of different sized ‘can-
dies’ among recipients, children doled out an equal
number of candies with no regard for size, even when
it would have been straightforward to equate the
total amount for each recipient by allocating the
small and large candies in a 2:1 ratio'* (see Sophian
et al. for a similar pattern of findings with different
materials).!?® Children also exhibit a whole number
bias when interpreting written and spoken fraction
names. Specifically, they tend to match fraction
names to pictures that show the cardinal number of
pieces for both the numerator and denominator (e.g.,
a picture of 3 shaded and 5 unshaded parts to repre-
sent the fraction name, ‘three-fifths’ rather than the
correct choice of 3 shaded and 2 unshaded
parts).137138

Despite these difficulties, studies that show chil-
dren readily acquire the meanings of common frac-
tions, such as one-half, but are limited to
demonstrating this understanding on tasks that
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require an approximate sense of ratio, such as match-
ing equivalent fraction pictures,'>” estimating the
results of additions and subtractions,'*® or completing
pictorial analogies based on equivalent fractions.'*!
This approximate ability emerges years earlier than
children can complete more precise, symbolic fraction
tasks. Young children also can use approximate com-
parisons to make equal shares of continuous amounts
by comparing the sizes of the shares'**!*—
procedures not too far removed from conventional
measurement. Perhaps competence on these nonverbal
tasks reflects children’s ability to recruit generalized
magnitude representations as referents at the same
time they have difficulty understanding of the referents
for fraction symbols (i.e., unit counts).

This pattern is also evident in research showing
that children perform intuitive fraction tasks better
when the quantities are continuous (i.e., spatially
contiguous), rather than discrete (i.e., unitized).
Hunting and Sharpley'** found that 35% of 4- to 7-
year-olds successfully divided a clay sausage in half,
but only 11% of the same children did so for a deck
of 12 cards. This is noteworthy because units come
for free in discrete sets—units that could support
more precise divisions than one could achieve for
unmeasured, continuous amount. Yet, children per-
formed better without the built-in units, perhaps
because they based their responses on magnitude
representations and these continuous quantities were,
thus, easier to map.

Finally, there is evidence that adults and 11- to
13-year-old children can represent the meanings of
fraction symbols as magnitudes on a mental number
line.'**='4¢ This mapping is based on a rough

© 2015 Wiley Periodicals, Inc. 499
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estimate of the absolute quantity represented by a
fraction, rather than precise, part-whole relations
based on unit measures. Such a representation
appears to be quite effortful but unlike erroneous
strategies such as simply comparing numerators, sup-
ports accurate performance.

Taken together, these studies suggest that
adults and children map fraction meanings to their
quantitative referents in a holistic way. However,
holistic mappings only go so far. Recognizing physi-
cal situations that can be called ‘half,” is not the same
as mapping a numerator and denominator onto their
specific referents. To achieve this mapping, children
need to understand measurement units and how
these units represent the hierarchical relations
between parts and wholes, as well as the way the
numbers of units and their sizes are represented in
symbolic fractions. Although rough part-whole con-
cepts emerge by preschool in nonverbal tasks, chil-
dren struggle to master fraction notation throughout
the elementary grades and into adolescence.'*”1*®
Even when they attain some competence, it is often
based on rote application of procedures and whole
number confusion. For example, Kerslake'*’
observed that approximately 1 in 5 students between
the ages of 12 and 15 years erroneously claimed that
1/3 + 1/4 = 2/7. Understanding the generalized magni-
tude system and its differentiation during develop-
ment may be a key part of gaining a deep
understanding of units and fractions.'*’

In particular, it may not be clear to children
that the numerals in fractions stand for counts. That
is, the denominator stands for the number of divi-
sions of the whole that were made to yield equal-
sized units, and the numerator stands for the number
of these equal-sized pieces in the total quantity. This
failure to interpret fraction symbols in terms of meas-
urement units has long been recognized as a major
obstacle to understanding’*°~'*? and may be rooted
in the same challenges of separating and integrating
number and spatial extent noted previously, for
measurement and proportional reasoning. Impor-
tantly, recent research suggests that successfully
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