
 

 
1 

Spatial Proportional Reasoning is Associated with Formal Knowledge About 

Fractions 

 

Wenke Möhring
1,

, Nora S. Newcombe
1
, Susan C. Levine

2
, Andrea Frick

3 

 
1
Temple University,

2
University of Chicago,

3
University of Fribourg 

 

Wenke Möhring, Department of Psychology, University of Fribourg, Rue P.A. de 

Faucigny 2, 1700 Fribourg, Switzerland. 

Email: wenke.moehring@unifr.ch 

 

Received November 13, 2014 

 

Wenke Möhring and Nora S. Newcombe, Department of Psychology, Temple University, 

USA; 

Susan C. Levine, Department of Psychology, University of Chicago, USA; 

Andrea Frick, Department of Psychology, University of Fribourg, Switzerland. 

Wenke Möhring is now at the Department of Psychology, University of Fribourg, 

Switzerland. 

 

 

 

Abstract 

Proportional reasoning involves thinking about parts and wholes, i.e., about fractional 

quantities. Yet, research on proportional reasoning and fraction learning has proceeded 

separately. This study assessed proportional reasoning and formal fraction knowledge in 
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8- to 10-year-olds. Participants (N = 52) saw combinations of cherry juice and water, in 

displays that highlighted either part-whole or part-part relations. Their task was to 

indicate on a continuous rating scale how much each mixture would taste of cherries. 

Ratings suggested the use of a proportional integration rule for both kinds of displays, 

although more robustly and accurately for part-whole displays. Findings indicate that 

children may be more likely to scale proportional components when being presented with 

part-whole as compared to part-part displays. Crucially, ratings for part-whole problems 

correlated with fraction knowledge, even after controlling for age, suggesting that a sense 

of spatial proportions is associated with an understanding of fractional quantities.   

 

KEYWORDS: Proportional reasoning, fraction, magnitude estimation, 

mathematical development, numerical reasoning 

 

Reasoning about relative quantities is important for many science disciplines, as for example 

when one has to understand concentrations of liquids in chemistry or think about the density of 

objects in physics. However, thinking about relative quantities is also crucial for many problems 

that we encounter in everyday life: How much sugar is needed if I want to use a cake recipe 

calling for three eggs, when I have only two eggs? Is buying three detergent packets for the price 

of two a better deal than getting one packet for half price? Answering these problems exactly 

requires formal calculation using fractions; even estimating the answers requires understanding of 

the number system that goes beyond whole numbers. Unfortunately, students often exhibit 

difficulties when learning to understand and carry out calculations with fractions (e.g., Hecht & 

Vagi, 2010; Schneider & Siegler, 2010; Stafylidou & Vosniadou, 2004). 
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Such findings documenting children’s difficulties with fractions have led the National 

Mathematics Advisory Panel (2008, p. 18) to recommend that “the teaching of fractions must be 

acknowledged as critically important and improved”. The importance of this goal is underlined by 

recent findings that 6
th
 graders’ fraction understanding is correlated with their mathematics 

achievement (Siegler, Thompson, & Schneider, 2011) and predicts mathematical proficiency up 

to six years later (Bailey, Hoard, Nugent, & Geary; 2012; Siegler et al., 2012). In particular, 10- 

to 14-year-old children’s fraction understanding predicts their knowledge of algebra in high 

school (Booth & Newton, 2012; Booth, Newton, & Twiss-Garrity, 2013, Siegler et al., 2012). 

Thus, a well-developed understanding of fractions seems to be foundational for an understanding 

of higher mathematics.  

 

Fractions can be defined as one part or several equal parts of a whole (or as a quotient p/q), and 

their components can be scaled without changing the value of the fraction (i.e., 1/5 = 2/10 = 3/15; 

cf. Boyer & Levine, 2012). To compare fractions or to create equivalent fractions, one has to 

understand “relations between relations” (Piaget & Inhelder, 1975) and thus, be able to reason 

proportionally. Given the above-mentioned findings that children often struggle with fractions, 

the question arises as to whether children’s understanding of numeric fractions aligns with their 

sensitivity to proportions presented non-numerically.  

 

The seminal studies of Piaget and Inhelder (1975) suggested that the answer may be “yes”; they 

argued that proportional reasoning emerges late, around the age of 11 years. In their studies, 

children were presented with two sets of red and white marbles that differed in absolute numbers 

and proportions. They were then instructed to choose the set that was more likely to yield a red 

marble in a random draw. Children younger than 11 years predominantly selected the set with the 
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higher number of red marbles, thus focusing on the absolute number instead of the relation 

between differently colored marbles. Because this task also required an understanding of ‘random 

draw’ and probability, children’s difficulties may not have arisen because of lack of proportional 

knowledge. However, similarly low performance in children younger than 11 years was reported 

in subsequent studies using different procedures that did not involve probability judgments, for 

example tasks based on mixing juice and water (Fujimura, 2001; Noelting, 1980) or liquids of 

different temperature (Moore, Dixon, & Haines, 1991).  

 

In sharp contrast to these studies, other research has suggested that proportional reasoning 

emerges much earlier (Spinillo & Bryant, 1991; Sophian, 2000; Sophian & Wood, 1997) and may 

even have its origins in infancy (McCrink & Wynn, 2007; Xu & Denison, 2009). For example, 

several studies have demonstrated that 5- to 6-year-olds showed successful proportional 

reasoning when presented with continuous amounts as opposed to discrete amounts (Boyer, 

Levine, & Huttenlocher, 2008; Jeong, Levine, & Huttenlocher, 2007; Spinillo & Bryant, 1999). 

Children also showed earlier competence at the age of 3 to 4 years when asked to produce equal 

proportions, possibly by tapping their ability to reason by analogy (Goswami, 1989; Singer-

Freeman & Goswami, 2001). Analogical reasoning may build on similar cognitive competencies 

as proportional reasoning, because it often also requires an understanding of relations between 

relations (e.g., bananas are related to fruits like cucumbers are related to vegetables; cf. Gentner, 

1989). Furthermore, studies using functional measurement paradigms have shown that 5- to 7-

year-olds made correct proportional judgments about the probability of events in complex 

situations (Acredolo, O’Connor, Banks, & Horobin, 1989; Anderson & Schlottmann, 1991; 

Schlottmann, 2001). In functional measurement methodology, two variables are typically 

manipulated in a full factorial design, and participants’ task is to judge the combinations of these 

variables on a rating scale. Thus, a reason for earlier success in these tasks may be that children 
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were asked to translate spatial proportions into spatial ratings, which might be more intuitively 

graspable than binary choice tasks (as used by Piaget & Inhelder, 1975). But does such intuitive 

sensitivity to proportions translate to explicit reasoning about proportions and numeric fractions? 

 

Even though young children seem to possess some sense of proportional magnitudes, early 

instruction emphasizes whole numbers and counting instead. This experience with counting and 

whole number calculation may initially interfere with the acquisition of fraction understanding 

(Mix, Levine, & Huttenlocher, 1999). This was underlined by findings showing that children who 

have greater proficiency with whole numbers have more trouble grasping the notion of fractional 

quantities (Paik & Mix, 2003; Thompson & Opfer, 2008). A possibility we explore in this study 

is that some children may be able to access continuous relative representations more than others, 

which in turn might help them in thinking and learning about formal fractions. 

 

In initial support of this notion, two previous studies have reported a relation between 

children’s understanding of non-numerical and numerical relative quantities (Ahl, Moore, 

& Dixon, 1992; Moore et al., 1991). However, these studies used a temperature-mixing 

task and thus, involved a highly abstract physical property that is often challenging for 

children (Stavy & Berkovitz, 1980; see Wiser & Carey, 1983, for a history of science 

perspective). In fact, 8-year-olds showed poor understanding of the temperature task and 

even many 11- and 14-year-olds struggled with it (Moore et al., 1991). Furthermore, the 

same stimulus set was presented in the numerical and non-numerical conditions, with the 

only difference being that in the numerical condition, additional numeric information 

about the temperature was displayed. Thus, it is possible that performance scores in these 
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conditions were related simply because children relied primarily on the visual cues in 

both, and largely ignored the numeric information.  

 

In the current study, we used two distinct tasks that differed in more than just additional 

numeric information, and assessed whether 8- to 10-year olds’ intuitive, non-numerical 

understanding of spatial proportions is related to their formal knowledge about numeric 

fractions. Children’s understanding of spatial proportions was measured by a task that 

adopted a functional measurement approach (Schlottmann, 2001; Anderson & 

Schlottmann, 1991). As this methodology allows for assessing not only absolute but 

relative responses, we analyzed each child’s information integration pattern and looked at 

children’s absolute accuracies. In line with previous studies, we presented different 

combinations of continuous quantities of juice and water (Boyer & Levine, 2012; Boyer 

et al., 2008; Fujimura, 2001; Noelting, 1980) and children were asked to indicate on a 

rating scale how much these mixtures would taste of juice. By varying a concrete 

property (taste) that could be visually indicated by color, the task was expected to be 

easier as compared to previous studies that used temperature-mixing tasks (Ahl et al., 

1992; Moore et al., 1991). 

 

Subsequently, participants were presented with a written test with formal fraction problems. This 

test measured school-taught fraction knowledge, covering several aspects of conceptual fraction 

knowledge (e.g., understanding fractional equivalence or comparing fractions; cf. Hallet, Nunes, 

& Bryant, 2010) and procedural fraction knowledge (e.g., performing mathematical algorithms 

with fractions; cf. Byrnes, 1992). We chose 8 years as the lower bound of the age range in this 

study, given that children do not receive much instruction about fractions prior to third grade. 
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Results showing a relation between children’s proportional reasoning and fraction knowledge 

would suggest that being able to think about proportions spatially may help to overcome the 

tendency to apply whole number concepts to fraction problems. Such a relation could also signify 

that better understanding of formal fractions enhances reasoning about non-numerical 

proportions. Although a correlation would not allow for firm conclusions about the causal 

direction, finding a relation is a critical first step in supporting theorizing and developing viable 

interventions. 

 

We also investigated whether the cognitive processes involved in spatial proportional reasoning 

differ for part-whole and part-part reasoning. Proportions can be represented as either part-whole 

relations (e.g., the amount of juice in relation to the total amount of liquid) or part-part relations 

(e.g., the amount of juice in relation to the amount of water). Some previous research suggested 

that part-part encoding is easier for 6- to 8-year-old children (Spinillo & Bryant, 1991). Another 

study (Singer & Resnick, 1992) showed that 11- to 13-year-old children needed to have 

information about both parts to make decisions about proportional problems, whereas information 

about the whole was less crucial, indicating that children relied on part-part rather than part-

whole relations. However, a study by Sophian and Wood (1997) found evidence that children 

performed better for problems involving part-whole reasoning than part-part reasoning.  

 

These results suggest that the framing of problems might influence young children’s proportional 

reasoning, and account for these differences. Therefore, in the present study we varied the 

presentation such that half of the children saw proportions in which amounts of juice and water 

were presented on top of each other, making the parts as well as the part-whole relation easily 

accessible (stacked displays, see Figure 1). The other half saw proportions in which the amounts 
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were presented aligned next to each other, thus providing easy access to the sizes of the parts, but 

less obvious information about the part-whole relation (side-by-side displays). If encoding of 

part-whole relations is easier than part-part relations or vice versa, we expected to see differences 

in strategies and/or accuracies. Moreover, given that fractions are part-whole relations, it was 

reasonable to expect a more robust association between formal fraction knowledge and 

presentations that highlight part-whole relations.  

 

To date, it also remains an open question why these different kinds of presentations might 

lead to different results. One possible reason may be that they promote a different 

understanding of how proportional components should be scaled. Scaling can be defined 

as a process of transforming absolute magnitudes while conserving relational properties, 

and it is therefore an important aspect of proportional reasoning (Barth, Baron, Spelke, & 

Carey, 2009; Boyer & Levine, 2012; McCrink & Spelke, 2010). The importance of 

scaling for proportional reasoning is evident in everyday life, for instance when one 

wants to adjust the amounts of ingredients for a cake for 4 people to 6 people, or prepare 

the same concentrations of syrup-water mixtures in different jugs. It is possible that 

during part-part reasoning, in which the focus lies on the parts themselves as well as on 

the relation of the parts to each other (e.g., part A is bigger than part B), it is harder to see 

how much the magnitudes have to be scaled, as compared to part-whole presentations, in 

which the focus lies on the total amount. To test this assumption, we took advantage of 

the fact that previous research showed that error rates increased linearly with larger 

scaling factors (cf. Boyer & Levine, 2012; McCrink & Spelke, 2010; Möhring, 

Newcombe, & Frick, 2014), indicating that scaling entails cognitive costs. Thus, we 
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presented proportions of different magnitudes, such that their sizes had to be transformed 

by four different scaling factors to match the size of the rating scale. If scaling was used 

predominantly in part-whole presentations, one could expect errors to increase as a linear 

function of scaling factor for part-whole displays but not for part-part displays.  

 

METHOD 

Participants 

Fifty-two 8- to 10-year-old children participated in the present study. Half of the children 

were assigned to the stacked condition (n = 26, 14 girls, mean age = 9;3, range: 8;0 – 

10;8) and the other half to the side-by-side condition (n = 26, 12 girls, mean age = 9;3, 

range: 8;1 – 10;8). Four additional children were tested but excluded from the final 

sample due to unclear status in mathematics because of homeschooling (one 8-year-old), 

diagnoses of an attention deficit disorder (one 9-year-old and one 10-year-old), or 

incomplete data on the proportional reasoning test (one 10-year-old). Children were 

recruited from a pool of families that had volunteered to take part in studies of child 

development and came from 28 different schools that were located in 15 different school 

districts near a large U.S. city. Children were predominantly Caucasian and from middle-

class backgrounds.  

 

STIMULI 

The materials for the proportional reasoning task consisted of 16 pictures that were 

presented on white paper in a ring binder. The pictures showed a red and a blue rectangle, 

representing cherry juice and water, respectively. The rectangles were 2 cm wide; their 
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length was varied systematically, according to a factorial design. Below the rectangles, a 

12 cm long horizontal line served as a rating scale. A single cherry was printed next to the 

left end of the scale, indicating a faint taste of cherries; a heap of many cherries was 

shown next to the right end of the scale, indicating a strong taste of cherries. In the 

stacked condition, the red and blue rectangles were presented stacked on top of each 

other; in the side-by-side condition, they were presented next to each other, aligned on 

the bottom with 1 cm between them (see Figure 1).  

 

A test of fraction knowledge was developed based on the Common Core State Standards 

for Mathematics (for examples see Appendix). Several aspects of fraction understanding 

from grade 3 to 5 were included (e.g., 3
rd

 grade: using visual fraction models, 

understanding fraction equivalence by comparing fractions with equal denominators; 4
th

 

grade: understanding fraction equivalence by comparing fractions with unequal 

denominators, adding and subtracting fractions with equal denominators, multiplying 

fractions with whole numbers, understanding decimal notation for fractions; 5
th

 grade: 

adding and subtracting fractions with unequal denominators, multiplication and division 

of fractions, calculating with mixed numbers). The questions were presented numerically 

(i.e., no word problems were included) as fraction estimations or comparisons, missing 

value problems, or open-ended problems. All children worked on the same fractions test 

that consisted of problems addressing knowledge from 3
rd

 to 5
th

 grade. Children of every 

age group attempted all problems. There were a total of 25 problems that were scored 

with one point each if solved correctly, and the number of points was translated into a 
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percentage score. Children were allowed to skip a problem if they did not know the 

answer, which was scored with zero points.  

 

PROCEDURE & DESIGN 

Children were tested individually in a laboratory room. The experimenter first presented 

the proportional reasoning task, showing the child a picture of a bear and telling a short 

story about how this bear likes to drink cherry juice with water. The experimenter 

explained that cherry juice is made of cherries, very sweet and red. Then, the child was 

presented with different combinations of cherry juice and water and asked to help the 

bear decide how much each combination would taste of cherry.  

 

Children were randomly assigned to either the stacked or the side-by-side condition, and 

they received three instruction trials in the same format as the later test trials. The first 

two instruction trials served as end-anchor trials in which the experimenter explained the 

two end anchors of the scale and pointed out the two amounts of cherry juice and water 

using gestures by indicating their length between index finger and thumb. For the first 

end-anchor trial (28 units of juice vs. 2 units of water, with one unit being equal to 0.5 

cm), the experimenter placed a small rubber peg on the correct location on the 12-cm 

scale. In the second trial (2 units of juice vs. 28 units of water), the experimenter asked 

the child to guess how much this mixture would taste of cherry and place the rubber peg 

accordingly. Children received corrective feedback on their responses. On the third 

instruction trial (22 units of juice vs. 8 units of water), children were asked to place the 

rubber peg at a point between the end anchors on the rating scale that would indicate the 
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cherry taste of this mixture. This trial served to prevent children from only using the end 

positions of the scale and to further familiarize them with the rating scale and the 

placement of the rubber peg. The experimenter marked each child’s response using a 

fine-tip wet-erase marker and flipped the page for the next trial. Amounts of juice and 

water presented in instruction trials were different from those in subsequent test trials.  

 

Test trials consisted of systematic combinations of cherry juice and water, such that the 

cherry juice part (3, 4, 5, 6 units) as well as the total amount (6, 12, 18, 24 units) varied 

on 4 levels. These 16 combinations were presented twice in two consecutive blocks, 

yielding a total of 32 trials that took about 10 minutes. Because the total amounts of 6, 

12, 18, and 24 units had to be mapped onto a rating scale of 24 units (which equals 12 

cm), children had to scale the total amount by a factor of 4, 2, 1.33, or not to scale (factor 

of 1), respectively. Thus, the design involved four scaling factors, in which the 

proportional components had to be either mapped directly (i.e., scaling factor 1:1) or 

scaled to fit the size of the rating scale (i.e., scaling factors 1:1.33, 1:2, or 1:4). Children 

did not receive any feedback. The combinations were presented in one of two different 

quasi-random orders, in which immediate repetitions of factor levels were avoided. 

Roughly half of the participants were randomly assigned to each order. 

 

After the proportional reasoning task, children were presented with the paper-and-

pencil fractions test involving numeric fractions. The experimenter read the questions 

aloud to each child and no feedback was given. The fraction test took about 15 to 25 

minutes.  
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RESULTS 

In a first step, children’s information integration strategies on the proportional reasoning task 

were classified by means of analyses of variance (ANOVAs) for children in the stacked and side-

by-side condition. Single main effects of either juice or total amount were taken as an indicator 

that participants focused on one of these two dimensions (centration). Main effects of both juice 

and total amount indicated that the two pieces of information were integrated. As can be seen in 

the normative response pattern in Figure 2, a correct proportional integration strategy would 

result in a fan-shaped pattern, which is statistically indicated by significant main effects as well as 

an interaction of total amount and juice. In contrast, a subtractive integration strategy would be 

evident in a parallel pattern and, statistically, in significant main effects only
1
. In a second step, 

we examined children’s accuracy on an absolute level, i.e., we focused on the question of how 

close their ratings were to the normative responses and tested how scaling factors influenced 

children’s accuracy. Finally, the relation between children’s accuracy in the proportional 

reasoning task and their fraction test scores was investigated. 

 

                                                           

1
 Strategies were also analyzed on an individual level (cf. Wilkening, 1979), in order to rule out averaging 

artifacts. The majority of children used a proportional integration rule in both conditions, but a slightly 

smaller percentage of children in the side-by-side condition (38.5%) than in the stacked condition (57.7%) 

did so. An equal number of children used a subtractive strategy in both conditions (30.8%). Fisher’s exact 

tests showed no significant difference in strategy use between the two conditions (p = .31), nor between 

younger and older children (p = .36). Children who used a proportional or a subtractive integration rule 

applied this rule with very high consistency (i.e., Pearson correlations between measurement repetitions 

were r = .93 and r =. 76, respectively). 
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INFORMATION INTEGRATION STRATEGIES ON THE PROPORTIONAL 

REASONING TASK 

A preliminary overall ANOVA of “cherriness” ratings (in cm) revealed a significant interaction 

of juice and sex, F(3, 144) = 2.91, p < .05, η
2
 = .06, due to girls’ higher ratings for the two largest 

juice amounts; however, Bonferroni-corrected post hoc tests revealed no significant differences 

(all ps > .05). As this interaction was unexpected and not easily interpretable, and because there 

were no further significant effects of order and sex (all Fs < 2.06, ps > .10), data were collapsed 

across these variables in subsequent analyses. 

 

To investigate the effects of presentation type on children’s responses, an ANOVA with this 

between-participants variable and the within-participant variables of total amount (4) and juice 

(4) was calculated. Given the relatively wide age range in the present study, children were 

divided into younger (mean age = 8;6, SD = 5 months) and older children (mean age = 10;1, SD 

= 6 months) using a median split, and age (younger vs. older children) was added to the analysis 

as a between-participants variable. This analysis revealed significant interactions of presentation 

type with total amount, F(3, 144) = 6.70, p < .001, η
2
 = .12, and presentation type with juice, F(3, 

144) = 5.01, p < .01, η
2
 = .10, as well as a significant three-way interaction of presentation type, 

total amount, and juice, F(9, 432) = 2.60, p < .01, η
2
 = .05. These effects indicate that children in 

the stacked and side-by-side conditions differed in their integration of the two components. In 

addition, the ANOVA revealed a significant interaction of age group with total amount, F(3, 144) 

= 3.92, p < .05, η
2
 = .08. Older children’s ratings differed more between the total amounts, 

whereas younger children’s ratings were closer together. However, Bonferroni-corrected post hoc 

comparisons showed that only the two smallest total amounts of 6 and 12 units (both ps < .05) 
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differed significantly between younger and older children. There were no further significant 

effects of age group (all Fs < 3.75, all ps > .059) or presentation type (all Fs < 3.09, ps > .08). 

 

In order to shed light on the three-way interaction of presentation type, total amount, and 

juice reported above, separate ANOVAs for the two conditions were carried out. In the 

stacked condition, the ANOVA yielded significant main effects of total amount, F(3, 75) 

= 601.16, p < .001, η
2 

= .96, and of juice, F(3, 75) = 242.06, p < .001, η
2 

= .91, and a 

significant interaction of total amount and juice, F(9, 225) = 25.95, p < .001, η
2 

= .51. In 

the side-by-side condition, the same effects were found: a significant effect of total 

amount, F(3, 75) = 80.77, p < .001, η
2 

= .76, and of juice, F(3, 75) = 68.72, p < .001, η
2 

= 

.73, and a significant interaction of total amount and juice, F(9, 225) = 9.20, p < .001, η
2 

= .27. These results indicate that on the group level, children integrated the information 

according to a proportional integration rule in both conditions. However, as Figure 2 

indicates, the response pattern of children in the stacked condition looked almost 

identical to the normative pattern, but the pattern was somewhat less clear in the side-by-

side condition. That is, even though children integrated both proportional components in 

both conditions, their integration pattern appeared less accurate on an absolute level in 

the side-by-side condition. Thus, in the next section, children’s absolute accuracy was 

investigated further.  

 

CHILDREN’S ABSOLUTE ACCURACY  

To investigate children’s absolute accuracy, it was necessary to transform the data and 

standardize scores across differences in using the rating scale. For example, one child might have 
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used only a small part of the scale, whereas another child might have used the total length, 

distributing the responses over the whole scale. Such individual usage of the rating scale does not 

affect analyses of response strategies reported above, because these are based on relative 

differences between single responses. However, it would be misleading when averaging across 

absolute accuracies. Furthermore, the slightly compressed response pattern in the side-by-side 

condition as compared to the stacked condition might have been a result of a restricted usage of 

the rating scale. In order to control for such restricted usage by different individuals or in 

different conditions, children’s responses were standardized by dividing the raw responses by 

each child’s individual standard deviation. This procedure, termed ipsatization, is one way of 

standardizing individual data and is typically used to address systematic response biases or 

tendencies to shift responses to one end of the rating scale (Fischer, 2004; Hicks, 1970). In a next 

step, a variable for children’s overall performance in the proportional reasoning task was created. 

To this end, children’s responses (ipsatized) were subtracted from the normative (ipsatized) 

responses. Then, the absolute values of these deviations from the norm were averaged across 

trials. 

 

To find out whether children in the stacked and side-by-side condition differed on an absolute 

level, an ANOVA was calculated with presentation type (stacked vs. side-by-side) and age group 

(younger vs. older) as between-participants variables, and absolute deviation as dependent 

variable. The analysis showed a significant main effect of presentation type, F(1, 48) = 8.78, p < 

.01, η
2
 = .16, with children in the stacked condition (M = 0.35, SE = 0.03) showing smaller 

deviations from the correct response than children in the side-by-side condition (M = 0.62, SE = 

0.09, all ps < .01). Age group also had a significant effect, F(1, 48) = 7.19, p < .01, η
2
 = .13, with 

older children (M = 0.37, SE = 0.04) outperforming younger ones (M = 0.60, SE = 0.09, all ps < 

.01). There were no further significant effects (all Fs < 2.49, all ps > .12). 
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THE INFLUENCE OF SCALING ON CHILDREN’S ACCURACY 

Children’s absolute deviations were averaged across scaling factors and a repeated measures 

ANOVA was calculated, with scaling factor (1:1, 1:1.33, 1:2, 1:4) as within-participant variable, 

and presentation type (stacked vs. side-by-side) and age group (younger vs. older) as between-

participants variables. The ANOVA yielded a significant effect of scaling factor, F(3, 144) = 

4.22, p < .01, η
2
 = .08, which was qualified by a significant 3-way-interaction between scaling 

factor, presentation type, and age group, F(3, 144) = 2.69, p < .05, η
2
 = .05. There were no further 

significant effects (all Fs < 2.50, all ps > .06). To shed light on this three-way interaction, 

separate ANOVAs with scaling factor and age group for the different presentation types were 

calculated. In the stacked condition, scaling factor had a significant effect, F(3, 72) = 14.71, p < 

.001, η
2
 = .38, which was best explained by a linear function, F(1, 24) = 26.60, p < .001, η

2
 = .53, 

indicating that deviations increased linearly with larger scaling factors (see Figure 3). There were 

no further significant effects (all Fs < 2.94, all ps > .09). By contrast, there was no effect of 

scaling factor in the side-by-side condition, F(3, 72) = 0.68, p = .57, η
2
 = .03, and no interaction 

with age group, F(3, 72) = 1.50, p = .22, η
2
 = .06. The ANOVA yielded a significant main effect 

of age group only, F(1, 24) = 5.06, p < .05, η
2
 = .17, because older children (M = 0.43, SE = 0.12) 

outperformed younger ones (M = 0.81, SE = 0.12). Thus, even though children’s accuracy 

increased with age in the side-by-side condition, performance was not influenced by scaling 

factor, as it was in the stacked condition.  

 

Test Of Fraction Knowledge 

An ANOVA with children’s fraction test score as the dependent variable and age group (younger 

vs. older) and presentation type (stacked vs. side-by-side) as between-participants variables 
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yielded a significant main effect of age group, F(2, 48) = 47.19, p < .001, η
2
 = .50, showing that 

older children (M = 74.0%, SE = 3.57) performed better than younger children (M = 44.9%, SE = 

2.13; all ps < .001). The ANOVA yielded no other significant effects (all Fs < .16, ps > .69) and 

therefore, no significant difference between the fraction test score of children in the stacked (M = 

58.6%, SE = 4.12) and side-by-side conditions (M = 60.3%, SE = 4.13). This difference was 

partly due to younger children (M 35.1 %, SE = 2.88) solving more problems incorrectly than 

older children (M = 24.4%, SE = 3.53), t(50) = 2.33, p < .05, d = 0.66. In addition, younger 

children skipped more problems (M = 20.0%, SE = 3.76) as compared to older children (M = 

1.1%, SE = 0.47), t(50) = 5.00, p < .001, d = 1.41. 

 

Relation Between Proportional Reasoning And Fraction Knowledge  

Pearson correlations between children’s fraction knowledge (fraction test score) and their 

proportional reasoning (mean absolute deviation) were calculated. If children’s proportional 

reasoning is related to their fraction knowledge, a significant negative correlation would be 

expected, with smaller deviations in the proportional reasoning task going along with a higher 

score in the fractions test. The correlation in the stacked condition was highly significant and 

negative, r(24) = -.61, p < .001, even after controlling for age, r(23) = -.47, p < .05. By contrast, 

the correlation in the side-by-side condition was not significant, r(24) = -.28, p = .17, and 

remained non-significant after controlling for age, r(23) = .07, p = .75. Using the Fisher’s r-to-z 

transformation, the difference between these age-controlled correlations in the two conditions was 

found to be significant, z = -1.97, p < .05.  

 

Linear regression analyses were carried out, with age entered in a first step, absolute deviation 

from the correct answer entered in a second step, and the fraction test score as the predicted 
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variable. In the stacked condition, these two predictors accounted for a significant part of the 

variance, R
2
 = .72, F(2, 25) = 28.95, p < .001. As would be expected, age explained a significant 

part (63%) of the variance (  = .66, p < .001). However, adding proportional reasoning as a 

predictor significantly increased the explained variance of the model ( R
2
 = .08,  = -.32, p < 

.05). In the side-by-side condition, the explained variance was R
2
 = .40, F(2, 25) = 7.60, p < .01. 

In this case, age explained all 40% of the variance (  = .66, p < .01), and proportional reasoning 

did not add any explained variance (  = .06, p = .75). 

 

DISCUSSION 

The present study investigated 8- to 10-year-olds’ proportional reasoning, in terms of 

their integration of proportional components, their absolute accuracy, and the relation 

between children’s proportional reasoning and formal fraction understanding. Findings 

suggested that children as young as 8 years old were able to consider both components 

that constitute a proportion and integrate them in a normative proportional way
2
. These 

results stand in contrast to previous claims that proportional reasoning does not emerge 

before the age of 11 years (Moore et al., 1991; Noelting, 1980; Piaget & Inhelder, 1975) 

and confirm other findings that even younger children are able to reason about 

proportions (Acredolo et al., 1989; Boyer & Levine, 2012; Boyer et al., 2008; Jeong et 

al., 2007; Schlottmann, 2001; Singer-Freeman & Goswami, 2001; Sophian, 2000; 

Spinillo & Bryant, 1991, 1999). In line with previous paradigms showing earlier success 

in children’s proportional reasoning, it is possible that the presentation of continuous 

                                                           

2
 A substantial number of children applied a proportional strategy on the individual level, suggesting that 

these group results were not due to averaging artifacts. 
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proportional quantities and the nature of the response mode (spatial ratings that are more 

intuitively graspable) led to children’s success on our proportional reasoning task. 

 

PART-WHOLE VERSUS PART-PART ENCODING 

Although on the group level, children in both presentation conditions integrated 

components proportionally, the compressed integration pattern in the side-by-side 

condition suggested that children differentiated the units of juice less than in the stacked 

condition. Even after controlling for idiosyncratic usage of the rating scale by 

normalizing the variance of the responses, children’s deviations from the norm were 

significantly higher in the side-by-side condition than in the stacked condition. This 

finding indicates that the task was more difficult if the components were presented side-

by-side as two separate objects. The finding that children in the two conditions did not 

differ in their average fraction test scores rules out the possibility that the present results 

are due to children in the stacked condition having a better overall understanding of 

rational numbers. In general, these results are in line with previous studies that 

demonstrated better proportional reasoning performance in the context of part-whole than 

part-part relations (Sophian & Wood, 1997). These results imply that the instruction of 

proportions in school may benefit from focusing on part-whole relations instead of 

comparing separate parts.  

 

Analyses of how scaling influenced children’s absolute errors revealed that children in 

the side-by-side condition showed large errors overall, but that these deviations were not 

affected by scaling factor. Neither older nor younger children showed signs of scaling in 
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the side-by-side condition, even though performance generally improved with age
3
. By 

contrast, children in the stacked condition showed smaller errors that increased with 

larger scaling factors, suggesting that they mentally expanded the proportional amounts 

to match them onto the rating scale (cf. Boyer & Levine, 2012; Möhring et al., 2014). 

Thus, it appears that children in the stacked condition were aware of the necessity to scale 

the magnitudes, whereas children in the side-by-side condition did not seem to transform 

the proportions accordingly. An understanding of scaling may have been more difficult in 

the side-by-side condition, because the separate parts were more prominent and a 

between-object relation had to be mapped onto a unitary rating scale, which may have 

included an additional processing step of mentally combining the two amounts. By 

contrast, in the stacked condition, the two amounts were presented already combined into 

one coherent Gestalt, which may have been easier to map onto the rating scale.  

 

It is also conceivable that such between-object relations may have led children to focus 

on absolute amounts, which may have misled them to focus on extensive rather than 

intensive properties (Howe, Nunes, & Bryant, 2010; Jäger & Wilkening, 2001; Strauss & 

Stavy, 1982). Whereas intensive properties do not depend on the extent or absolute 

amount of the whole, extensive properties do. For example, if someone drank half of the 

cherry-water mixture in a glass, the remaining mixture would still taste the same 

                                                           

3
 The fact that older children outperformed younger ones in the present proportional reasoning task could 

be explained by a general increase in cognitive abilities, but it could also be that older children benefitted 

more from feedback during the instruction trials (cf. Opfer & Thompson, 2014). Future studies may 

systematically investigate the importance of feedback for proportional reasoning at different ages. 
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(intensive property), whereas its volume would decrease (extensive property). Thus, in 

the side-by-side condition children may have focused on volume or absolute amount, 

whereas an understanding of proportion would require focusing on intensive quantities 

such as juice concentration (taste). 

 

THE RELATION BETWEEN PROPORTIONAL REASONING AND FRACTION 

UNDERSTANDING 

Importantly, it was found that children’s proportional judgments were associated with 

their knowledge about fractions. However, this correlation was significant in the stacked 

condition only, which was the easier condition in that overall accuracy was significantly 

higher than in the side-by-side condition. This correlational finding is in line with 

previous findings that numerical magnitude estimations (i.e., ability to compare sets of 

dots or place whole numbers or fractions on a number line) are associated with 

mathematics achievement (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; 

Halberda, Mazzocco, & Feigenson, 2008; Siegler & Booth, 2004, Siegler et al., 2011). 

Our findings extend these results by showing that children’s estimations of spatial, non-

numerical proportions are related to their formal, numerical fraction knowledge. This 

relation was found even after controlling for age, showing that individual differences in a 

spatial sense of proportions are associated with the ability to conceptualize formal 

fractions and perform mathematical operations on them above and beyond effects of age.  

 

A possible explanation for why these abilities are related is that children who have a 

better understanding of the relative size of proportions are better able to visualize 
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fractions in terms of spatial analogues, which in turn may help them to understand 

numerical fractions (perhaps because they can differentiate plausible and implausible 

answers). The importance of spatial analogues for students’ understanding of fractional 

magnitudes was shown in a recent intervention study with at-risk children (Fuchs et al., 

2013). This training mainly involved representing, comparing, ordering, and placing 

fractions on a number line from 0 to 1. Children in the training group showed 

considerable gains in their ability to carry out operations with fractions relative to a 

control group. Along the same lines, cultural differences in how fractional magnitudes are 

introduced in school has been shown to affect children’s fraction understanding (Ma, 

1999; Moseley, Okamoto, & Ishida, 2007). Whereas teachers in the U.S. explain fractions 

often with the concept of counting parts (e.g., 1/3 as one of three slices of a pizza), 

teachers in Japan or China explain fractions as distances on number lines. Even though in 

both cases children may develop a representation of fractional magnitudes, imagining 

magnitudes by partitioning can be troublesome when it comes to very big fractions (e.g., 

385/975), improper fractions (e.g., 5/4), and negative fractions (-1/4). However, the same 

examples of fractions can be imagined more easily on a number line, which might be one 

reason why Chinese and Japanese students show a better overall fraction understanding 

as compared to U.S. students (Ma, 1999; Moseley, Okamoto, & Ishida, 2007). In line 

with these observations, several researchers have suggested that teaching fractions in U.S. 

schools would profit from using multiple representations ranging from subdividing 

circles, to folding paper strips, and to using sets of discrete chips to represent a fraction 

(cf. The Rational Number Project, Cramer, Behr, Post, & Lesh, 2009/1997). 

 

D
ow

nl
oa

de
d 

by
 [

N
or

a 
S.

 N
ew

co
m

be
] 

at
 1

1:
41

 0
7 

Ju
ly

 2
01

5 



 

 
24 

Another explanation for the correlation between proportional reasoning and fraction 

understanding in the stacked condition may be that children with better fraction 

knowledge performed better in the proportional reasoning task. That is, children’s formal 

fraction knowledge may have helped them to encode spatial proportions and to reproduce 

them on the rating scale. Even though this possibility cannot be eliminated by our 

correlational results, it seems unlikely in light of many studies (Acredolo et al., 1989; 

Boyer & Levine, 2012; Boyer et al., 2008; Jeong et al., 2007; Schlottmann, 2001; Singer-

Freeman & Goswami, 2001; Sophian, 2000; Spinillo & Bryant, 1991, 1999) showing 

signs of proportional reasoning at an age when understanding of formal fractions is not 

present (Hecht & Vagi, 2010; Schneider & Siegler, 2010; Stafylidou & Vosniadou, 2004). 

Nonetheless, future studies using longitudinal designs or training components are needed 

to pin down the causal direction of the relation we have identified. It should also be noted 

that children in our sample came from various schools and thus differed in how they 

learned about fractions. Even though we were able to control for general effects of 

fraction exposure in school by controlling for age, we were not able to investigate the 

specific effects that differences in fraction instruction had on children’s proportional 

reasoning. Future studies may incorporate this aspect in their design and try to 

disentangle effects of differences in fraction instruction.  

 

One testable implication of our findings is that experience and training with spatial 

proportions may facilitate children’s understanding of fractions and thus their eventual 

success in mathematics. For example, fostering children’s ability to visualize proportions 

may improve their understanding of fractional equivalence because they may realize that 
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part-whole relations stay the same even though they involve different numbers of parts 

and different unit sizes (e.g., 1/5 and 2/10). Such training may also increase children’s 

visual-spatial competencies, which have been found to be an important predictor for 

fraction concepts (Vukovic et al., 2014). In addition, children’s fraction knowledge may 

benefit from experience localizing proportions on a (mental) line or scale. Overall, our 

finding of a significant relation between children’s ability to rate proportional magnitudes 

and their ability to understand formal fractions adds to a growing body of research 

supporting the importance of spatializing the mathematics curriculum in the elementary 

school years (Mix & Cheng, 2012; Newcombe, 2013; Newcombe, Uttal, & Sauter, 2013). 
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APPENDIX: EXAMPLES OF PROBLEMS IN THE FRACTION TEST 
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Figure 1. Examples of a stacked (left) and a side-by-side (right) presentation of 

cherry juice (e.g., 6 units) and water (e.g., 24 units) in the proportional reasoning task. 
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Figure 2. Children’s ratings of the combined juice and total amount units 

(integration patterns) on the group level for children in the stacked and side-by-side 

condition. 
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Figure 3. Absolute (ipsatized) errors averaged over scaling factors for younger 

and older children in the stacked and side-by-side condition. 
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