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Abstract

Memory for spatial location is typically biased, with errors trending toward the center of a

surrounding region. According to the category adjustment model (CAM), this bias reflects the

optimal, Bayesian combination of fine-grained and categorical representations of a location. How-

ever, there is disagreement about whether categories are malleable. For instance, can categories be

redefined based on expert-level conceptual knowledge? Furthermore, if expert knowledge is used,

does it dominate other information sources, or is it used adaptively so as to minimize overall

error, as predicted by a Bayesian framework? We address these questions using images of geologi-

cal interest. The participants were experts in structural geology, organic chemistry, or English lit-

erature. Our data indicate that expertise-based categories influence estimates of location memory

—particularly when these categories better constrain errors than alternative (“novice”) categories.

Results are discussed with respect to the CAM.
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1. Introduction

Memory for spatial locations is often biased in predictable ways. For example, adults

recall irregular-shaped spaces or routes as being regular (e.g., Tversky, 1981), consistently

estimate the distance from A to B as different than the distance from B to A (McNamara

& Diwadkar, 1997; Newcombe, Huttenlocher, Sandberg, Lie, & Johnson, 1999), and

systematically misremember locations as being more central to the surrounding region

than they are (e.g., Holden, Curby, Newcombe, & Shipley, 2010; Holden, Newcombe, &
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Shipley, 2013; Huttenlocher, Hedges, & Duncan, 1991). Some investigators have taken

these errors to suggest that human spatial representations are distorted or schematized

with respect to the physical space (e.g., Tversky, 1981), while others have proposed that

such biases reflect processes of inference, based on hierarchical spatial representations

(Stevens & Coupe, 1978). More recently, however, research has suggested that systematic

errors in spatial memory can be accounted for in terms of the statistically optimal combi-

nation of multiple sources of information, which minimizes the mean squared error across

multiple estimates (e.g., Huttenlocher et al., 1991; Newcombe & Huttenlocher, 2000).

For example, Huttenlocher et al.’s (1991) category adjustment model (CAM) postu-

lates that locations are remembered hierarchically, at both a fine-grained (metric) level

and a coarser, categorical level. That is, one may remember that one’s keys were “on

the table” (categorical), and, more precisely, that they were “5 inches from the edge”

(fine-grained). According to the CAM, individuals combine these two representations, so

that every estimate is the result of an optimal combination process that weights each

representation by its relative certainty. This combination results in estimates that are

biased toward the center of the categorical representation (sometimes called the category

prototype), but it minimizes error variance across multiple estimates (Huttenlocher et al.,

1991; see also Cheng, Shettleworth, Huttenlocher, & Rieser, 2007). The decreased vari-

ance optimizes performance by decreasing the average absolute error over multiple esti-

mates—even though bias is introduced on individual trials. In this view, systematic

errors in spatial judgments are not due to distorted representations of space (e.g., Tver-

sky, 1981), but rather result from an optimal, Bayesian combination process across unbi-

ased, but hierarchically ordered representations. Empirical evidence for the CAM has

been found for numerous tasks, both spatial and non-spatial (e.g., Baud-Bovy & Gentaz,

2012; Corneille, Huart, Becquart, & Bredart, 2004; Duffy, Huttenlocher, & Crawford,

2006; Fitting, Wedell, & Allen, 2007; Holden et al., 2010, 2013; Huttenlocher, Hedges,

& Vevea, 2000; Huttenlocher et al., 1991; Lee & Brown, 2003; Schutte & Spencer,

2002; Spencer & Hund, 2002; Spencer, Simmering, & Schutte, 2006; Wedell, Fitting, &

Allen, 2007).

While there is abundant evidence that individuals encode locations at both a fine-

grained and a categorical level, the types of information used to define categories is not

clear. Complex environments can be organized in a variety of ways: a mountain may be

perceptually distinct from the plateau beneath it and the sky above it, but mountain is

also associated with specific concepts—such as the peak and base areas—that delineate

more specific spatial categories. Indeed, spatial regions may be defined in many ways,

including administrative procedures (e.g., political borders), thematic similarities (e.g.,

rainfall, presence of pine trees), functional interaction (e.g., migratory routes), or informal

cognitive processes (e.g., “downtown”; Montello, 2003, 2008).

Whether these kinds of conceptual information are used in defining spatial categories

is unclear. Spencer and colleagues’ dynamic field theory (DFT; e.g., Spencer et al., 2006)

is, in many ways, a complementary model to the CAM, making many of the same predic-

tions, and offering a neurally plausible framework for the type of Bayesian combination

proposed by the CAM. However, DFT explicitly states that only perceptual information is
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used to define spatial categories (e.g., Simmering & Spencer, 2007), implying that spatial

categories are not based on conceptual information and are therefore non-malleable.

Ignoring conceptual information in defining spatial categories seems unlikely under a

Bayesian framework—in which estimates are adapted as more information becomes avail-

able. Holden et al. (2010) began to address this question, examining location memory

errors in images manipulated to alter their low-level visual properties (color negatives) or

the accessibility of their more conceptual structure (inverted images). Bias patterns dif-

fered for both conditions, suggesting that a variety of cues can be used in forming spatial

categories. However, these results are based on scenes in which one type of information

or the other was systematically disrupted (Holden et al., 2010). Thus, it remains unclear

how categories are formed in canonical scenes in which various types of information are

readily accessible.

This issue of the malleability of spatial categorization schemes has received some

attention in recent years. In many studies of location memory, participants are asked to

recall point locations within a blank circle, and estimates are often biased toward the cen-

ter of the circle’s quadrants, as defined by the horizontal and vertical axes. Huttenlocher,

Hedges, Corrigan, and Crawford (2004) attempted to overcome this “default” categoriza-

tion scheme by altering the distribution of points, and even requiring participants to cate-

gorize the points (during encoding) according to an alternative categorization scheme.

Their data showed that participants continued to use the default scheme, leading the

authors to state the use of the default scheme is “immutable” (p. 78). On the other hand,

Simmering and Spencer (2007) determined that an alternative categorization scheme

would be used, but only if it were perceptually supported throughout the trial. Finally,

Sampaio and Wang (2010) demonstrated that the use of an alternative categorization

scheme could be induced by visually cuing the alternative category membership at test or

by using targets that were unique to each of the alternative categories (and while still pro-

viding perceptual cues as to the alternative categories at test). Each of these studies there-

fore converges on the idea that default categorization schemes are difficult to override,

and that the use of an alternative categorization scheme requires fairly extensive percep-

tual support.

Here, we address these issues by analyzing the location memory errors made by

experts in structural geology, organic chemistry, and English literature, using images of

geological interest. Critically, the visual input for these images is identical across all

participants, and the visual cues remain unaltered. However, we reasoned that experts in

structural geology should be more likely to notice the presence of geologically relevant

items—such as a subtle sedimentary structure—depicted in the images, and use that

information to structure their memory for location. Indeed, in his seminal work on “pro-

fessional vision,” Goodwin (1994) states that domain expertise can affect how individu-

als process a given stimulus, noting that “an archaeologist and a farmer see quite

different phenomena in the same patch of dirt” (p. 2). Similarly, research on perceptual

learning has suggested that experts detect and distinguish features, differences, and rela-

tions not registered by novices in their field, and that they do so with increasing auto-

maticity (see Kellman & Garrigan, 2009 for a review). If geology experts, therefore,
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process scenes of geological interest differently than novices, experts may segment these

scenes into different spatial categories by using geologically relevant conceptual

information. It would therefore be predicted that expert geologists’ location memory

estimates will be influenced by these geologically defined categories, implying that spa-

tial categorization processes are both malleable and able to make use of conceptual

information.

If structural geologists do use their expertise to define spatial categories in geologi-

cally relevant scenes, it is possible (though unlikely) that they might exclusively use geo-

logically defined categories. Alternatively, when different categorization schemes are

available, people might adaptively switch between them so as to minimize error on a

trial-by-trial basis. For example, they might encode locations by using the smallest spa-

tial category because this would best constrain their potential errors. If so, novices might

define spatial categories based on low-level visual features or on informal conceptual

information (e.g., the base of the mountain), while experts might adaptively choose

between using these same “novice categories” or those based on domain-specific knowl-

edge. Indeed, a third (though related) possibility is that the expert geologists may encode

locations with respect to both the “novice” and the “expertise-based” categories. A fully

Bayesian account would advocate this position, assuming that each source of information

(metric and the two categorical representations) would all be weighted according to their

relative reliability. In order to distinguish between the possibilities of relatively rigid ver-

sus flexible use of conceptual information in spatial categorization, we conducted our

location memory task using stimuli for which the relative size of novice-defined and

expert-defined categories differed.

The CAM makes two predictions for this study: First, if conceptual information is

used to define spatial categories, then the location memory biases of structural geolo-

gists will differ from those of experts in unrelated fields. That is, the geology experts’

errors will be influenced by the geologically relevant categories, while the novices’

errors will be biased toward the center of the novice category. Second, and modifying

the first prediction, if different reference frames can be used flexibly, then the frame

that produces the smaller spatial category—which better constrains one’s estimates,

reducing overall error—will be more influential in guiding recall. Thus, the geology

experts’ biases may approximate or even match those of novices for images in which

a novice-defined category is smaller than the geologically relevant category (as in the

case of Fig. 1a and c) but will show distinct expertise effects when the opposite is

true (as in the case of Fig. 1b and d). That is, the “expert” category in Fig. 1d would

exert more influence in the estimates of structural geologists than the corresponding

category in Fig. 1c because the expert category is smaller than the novice category in

the former image, and larger in the latter. Thus, expert performance is predicted to

more closely approximate novice performance when the novice categories better con-

strain errors than expert categories. Conversely, expert performance is predicted to dif-

fer from novice performance when the expert categories better constrain potential

errors.
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2. Method

2.1. Participants

Three groups of experts were asked to recall point locations within scenes of geologi-

cal interest (e.g., an outcrop of faulted rock). We examined bias in location memory esti-

mates, comparing experts in structural geology (n = 9), organic chemistry (n = 11), and

English literature (n = 9). Expertise was defined as having obtained a doctoral degree

and having at least an additional 5 years of experience. All groups had therefore received

the same level of education and had attained approximately equivalent levels of expertise

in their respective fields. The stopping rule for data collection was to test all structural

geologists who agreed to participate (and met the selection criteria) within a 100-mile

(a) Expert-Larger Image (b) Expert-Smaller Image

(c) Expert and Novice Categories (d) Expert and Novice Categories

Fig. 1. Sample Expert-larger and Expert-smaller images. (a) depicts the axial plane of a fold, while (b) is an

example of “boudinage” (sausage links). The target location is indicated by a yellow dot. Images (c) and (d)

mark sample spatial categories identified by the expert geologists (blue) and novices (pink). In image (c), the

expert geologists have categorized the location as falling along the fold’s axial plane (essentially the line of

symmetry on the surface) while in image (d) the point lies along the line of boudinage, between two of the

“sausage links.” Novices appear to have categorized locations on the basis of low-level visual cues, such as

“the end of the lighter line” (c) and “on the flat region of rock” (d).
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radius of the tester. A similar rule, using a 40-mile radius, was used for the organic

chemistry and English literature experts. A larger radius was used for the structural geolo-

gists because there were fewer in the immediate area.1

The groups of experts were chosen based on predicted differences both in terms of

spatial abilities and in experience with images of geological content. That is, structural

geology and organic chemistry are generally considered to be highly spatial domains,

requiring skills such as spatial visualization, mental rotation, and visual penetrative think-

ing, among others; English literature, though, is not typically associated with these skills

(e.g., Coleman & Gotch, 1998; Kastens et al., 2009; Resnick & Shipley, 2013). Further-

more, structural geology is a branch of geology that is highly associated with fieldwork

and thus likely to be familiar with landscape-scale geological categories. Comparing loca-

tion memory error patterns across these groups would therefore allow us to differentiate

between effects due to domain-specific knowledge versus greater spatial reasoning skills.

2.2. Materials and procedure

The task used here was based on one described in detail by Holden et al. (2010).

Briefly, participants were asked to recall point locations within high-resolution, color pho-

tographs of natural landscapes. Target locations in these images were indicated by a

small, yellow dot, which stood out against the natural background colors. These dots were

made to be elliptical, corresponding to the slope that they appeared on, and were blurred

slightly at the edges in order to support the impression that it was a location within the

scene, rather than a point on the photographic surface (Holden et al., 2010).

The landscape images used in this study were drawn from a larger pool of images, all

of which contained some item of geological interest. Preliminary locations were chosen

to be within these categories (or very near them, in the case of 2D categories such as a

line indicating a geological fault or a fold’s axial plane). In addition, locations were con-

strained such that they could not fall within 2 cm of the image edges, so as to prevent

individuals from recalling the location based on distance from a border, rather than prop-

erties of the scene. All scenes were 20 cm in length, but varied in height.

Using these preliminary locations, “expert” and “novice” spatial categories were identi-

fied a priori, through consultation with two additional experts in structural geology, and

by testing a group of novice undergraduate students.2 The instructions for the category

identification task explained that location memory “sometimes involves using broad levels

of information—such as ‘the keys are on the table’—and sometimes involves more spe-

cific information—such as remembering that they were right there.” The participants were

then asked to identify the spatial category they would use in such a task by “identify[ing]

the region that surrounds or encloses the [prospective] point’s location.” The spatial cate-

gory could therefore be any regular or irregular shape.

Based on the results of the category identification task, 30 images were chosen from

the pool based on high levels of agreement among the experts, and among the novices

(see Scoring and Analysis), and such that equal numbers of images contained expert-

defined categories that were larger or smaller in area than those identified by the novices
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(see Fig. 1). We will refer to these image types as “expert-larger” and “expert-smaller,”

respectively.3 Small adjustments were then made to the point locations within these

images so as to approximately maximize the angle difference between the prototypes of

the expert- and novice-defined categories (described below). For example, bias toward the

center of the expert category in Fig. 1d would lead to approximately downward errors,

while bias toward the center of the novice category would result in upward and leftward

errors. No adjustment moved the location more than 5 mm, and the final target locations

were still contained within the original categories.

For the location memory task, participants were asked to recall the target locations. On

every trial, two scenes were presented serially, each containing one target location. These

study images were presented for 2,500 ms each, separated by a 250 ms blank screen. Fol-

lowing another 250 ms delay, the identical scenes (but without the yellow points) were

presented, in order. The participants’ task was to indicate the position of the dot, as accu-

rately as possible, using the computer’s mouse. The test images each remained on-screen

until a response was made. This method has been shown to increase the information col-

lected while retaining the characteristic error patterns of bias toward category prototypes

(e.g., Holden et al., 2010; Huttenlocher et al., 1991). In addition, previous work in our

lab has found no difference in bias patterns between the first and second images in a pair

(e.g., Holden, Duff-Canning, & Hampson, 2015; Holden et al., 2010). Stimuli were

presented electronically using E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA,

USA), and responses were recorded by the program with pixel precision, allowing even

subtle response patterns to be detected.

2.3. Scoring and analysis

The distributions of participants’ errors were examined for systematic bias toward

either the expert- or novice-defined category prototypes. As outlined above, a separate

group of structural geology experts and novices identified these categories a priori. The

category identification task involved outlining the spatial category on a physical copy of

the image, using a medium-tipped permanent marker. Each outlined category was then

transformed into a digital copy, and the categories for a given location (within each

group) were overlaid using photo-editing software. For the “expert” categories, we used a

stringent criterion for agreement; only images for which the number of overlapping pixels

was greater than 95% of the total identified pixels (across both experts) were used in this

study. This often amounted to the difference between outlining along the edges of a rock

(for example) and “coloring within the lines” of the same category. The center of mass

of the category was then calculated by weighting all pixels by the degree to which they

were agreed upon. Thus, portions of the category identified by both experts were

weighted twice as heavily as those identified by only one. For the “novice” categories,

digitized copies of the outlined categories were again overlaid. In this case, though, all

regions that were identified by two or fewer participants were discarded, and the proto-

type of the composite category was again determined by weighting each pixel based on

the level of agreement (see also Holden et al., 2010, Analysis 1B).
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Location memory data were analyzed using the method described in detail by Holden

and colleagues (Holden et al., 2010, 2013, 2015). Briefly, all responses were converted to

vectors, originating at the correct location and ending at the response location. Similarly,

the category prototype was also converted to a vector, also originating at the correct loca-

tion and ending at the category prototype (see Fig. 2 for an example). These two vectors

represent the observed and predicted error directions, respectively, for that location. The

difference angle between these two vectors was then calculated. A difference angle of 0°
would mean that the observed error was precisely in the direction of that category’s pro-

totype, while a difference angle of 180° would imply that the error was in precisely the

opposite direction. All participants’ responses were analyzed both with respect to the

expert- and to the novice-defined categories.

The difference angles (and error magnitudes) for all responses by a given participant

were then combined into an average “difference vector” for that participant (Holden

et al., 2010, 2013, 2015). This point is important because minor deviations from correct

are expected to be randomly distributed about the correct location (as they are more

likely due to errors in physically responding than true errors of memory) and could inflate

the average difference angle between the observed and predicted biases. To account for

this issue, the difference angle for each response made by a given participant was con-

verted into a vector with a length equal to the error magnitude (distance from correct)

divided by the average absolute error across all responses for that participant. These “dif-

ference vectors” were then added, and the length of the summed vector is divided by the

number of responses.

As a result, each participant is associated with a single, standardized average difference

vector. The angle of this vector indicates the mean difference between observed errors

Fig. 2. An example of the data scoring procedure. Participants were asked to recall a given location, indi-

cated by the small yellow dot on the figure. Here, the “novice” category is outlined, and the category proto-

type is indicated by a star. A sample participant’s response is indicated by the arrow (i.e., the response was

made at the arrow’s head). The difference angle between the response vector and the dotted line (connecting

the correct location with the category center) was measured.
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and the predicted direction of bias, while the length of the vector indicates how variable

the responses were for that participant (i.e., vector length will range from 0 to 1, with

longer lengths indicating that errors were more consistently in a given direction relative

to predicted; Batschelet, 1981). Averaging vectors in this way ensures that minor devia-

tions from correct exert much less of an effect on the average difference angle than larger

errors, and standardizing the vectors controls for individual differences in response accu-

racy. Hotelling’s one-sample test for circular data compares the distribution of these stan-

dardized average difference vectors against the null hypothesis that there is no mean

direction of bias (i.e., random error, indicated by a small vector length; Zar, 1998), while

Hotelling’s two-sample test compares the distributions of these vectors between two

groups (Zar, 1998).

3. Results

The 95% confidence ellipses of the mean (Batschelet, 1981) of the average difference

vectors for each expert group, within each image type, and coded with respect to the

expert- and novice-defined categories are shown in Fig. 3. The mean vectors for each

group would connect the origin of the figure to the center of their respective ellipses.

Recall that longer vectors indicate that errors were more consistently in a given direction

relative to predicted (e.g., toward the category prototype—indicated by a difference angle

near 0°), while shorter vectors indicate random errors. Therefore, a confidence ellipse that

overlaps the origin of these figures indicates random error, while one that does not over-

lap the origin indicates that errors are significantly biased. Also recall that all responses

were coded both with respect to the expert- and to the novice-defined categories, indi-

cated by the two rows of the figure. Thus, if location memory errors for a given group

are randomly distributed when coded with respect to one definition of a category, but are

significantly biased when coded with respect to the other definition, then this would indi-

cate that they used the latter definition to form their spatial categorical representation.

As expected, neither English nor chemistry experts’ responses were biased toward the

center of the geologically defined categories, whether these were larger or smaller than

the novice-defined categories (all Fs < 1.07, ns; Fig. 3a and b) Their responses, however,

were significantly biased toward the center of the novice-defined categories, in all condi-

tions (all Fs > 9.17, all ps < 0.01; Fig. 3c and d). Furthermore, the bias patterns did not

differ between these groups in any condition, (all Fs < 1.15, ns).
Geology experts’ location memory errors were biased toward the center of both types

of category, depending on the image type. Bias was primarily in the direction of the geo-

logically defined category prototypes only for images in which these categories were

smaller than the novice-defined categories (expert-larger: F(2, 7) < 1, ns; expert-smaller:
F(2, 7) = 11.09, p < .01; Fig. 3a and b). Conversely, bias toward the novice-defined cate-

gories was found only for images in which the geologically defined categories were larger

(expert-larger: F(2, 7) = 6.15, p = .03; expert-smaller: F(2, 7) = 1.91, ns; Fig. 3c and d).

Critically, pairwise comparisons indicate that the geology experts’ patterns of bias differ
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significantly from those of the other groups only in the expert-smaller condition (geol-

ogy-English: F(2,15) = 3.77, p < .05, d = 1.00; geology-chemistry: F(2, 17) = 5.08,

p = .02, d = 1.09), but not in the expert-larger condition (all Fs < 1, ns).
We also examined location memory accuracy using the absolute displacement of the

responses from the correct locations, in pixels. If using (or heavily weighting) the small-

est potential spatial category was advantageous, as expected, then it would stand to rea-

son that structural geologists’ memory for spatial locations would be more accurate

compared to the other expert populations, but only within the expert-smaller condition.

The results support this prediction. When the geologically defined category was smaller,

geology experts were significantly more accurate than English experts (geology:

M = 24.25, SD = 8.62; English: M = 35.17, SD = 9.98), t(16) = 2.49, p = .02,

d = 1.25, and than chemistry experts (chemistry: M = 32.69, SD = 6.85), t(18) = 2.44,

(a) Expert Categories, Expert-Larger Images (b) Expert Categories, Expert-Smaller Images

(c) Novice Categories, Expert-Larger Images (d) Novice Categories, Expert-Smaller Images

Fig. 3. Ninety-five percent confidence ellipses of the mean difference vectors (observed-predicted) for each

group (white = Geology, medium-gray = Chemistry, light gray = English). Responses were coded with

respect to the geologically defined categories (a and b) and to the novice-defined categories (c and d). Note

that errors of 0° indicate bias toward the category prototype, and that ellipses that encompass the origin indi-

cate no significant bias (i.e., random error).
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p = .03, d = 1.15). However, in the expert-larger condition, no significant differences in

accuracy were found (geology: M = 23.50, SD = 8.81; English: M = 26.19, SD = 8.95;

chemistry: M = 26.84, SD = 8.67), all ts ≤ 0.85, ns. No difference in accuracy was

found between the English and chemistry experts in either condition, all ts < 0.66, ns.

4. Discussion

The primary goals of this study were to examine whether spatial categorization pro-

cesses may be affected by relevant conceptual information, and—if both perceptual and

conceptual cues are available—whether the spatial category that best constrains errors will

be more influential in guiding recall (thereby minimizing error). Our results clearly indicate

that, when recalling locations in scenes of geological relevance, geology experts’ concep-

tual knowledge resulted in different patterns of bias compared to experts from unrelated

fields. Critically, this difference was only significant for images in which the geologically

defined categories were smaller in area than those identified by novices (either on the basis

of low-level visual cues, or perhaps by using a different, informal conceptual framework).

More specifically, expert geologists’ errors were biased toward the center of the geologi-

cally defined categories in the expert-smaller images but were generally biased toward the

center of the novice-defined category in the expert-larger images. In contrast, both English

literature and organic chemistry experts’ location memory errors were biased toward the

center of the novice-defined categories in all conditions.

The CAM states that these systematic errors in location memory are the result of an

optimal, Bayesian combination process across hierarchically ordered pieces of information

(Huttenlocher et al., 1991). Accordingly, these results suggest not only that expert geolo-

gists were able to use acquired conceptual information to define spatial categories, but

that they did so adaptively, using the source(s) of information that best constrained their

estimates. The results in terms of absolute error support this conclusion: When geologi-

cally defined categories were smaller than the novice-defined ones (the expert-smaller

condition), geologists were significantly more accurate in their recall than either of the

other two expert groups. On the other hand, when the expert-defined categories were lar-

ger, no significant differences in absolute error were found between any of the groups.

It is important to point out that these results cannot be accounted for by any type of

exposure effect or by differences between groups in the spatial content of their respective

fields. That is, if geology experts’ heightened accuracy in the expert-smaller condition

were due to increased familiarity with geological images (and not to the use of relevant

conceptual knowledge), then one would expect their accuracy to be higher across all con-

ditions. However, neither the geology experts’ accuracy nor their bias patterns differed

significantly from those of the other groups in the expert-larger condition. Similarly, if

the observed differences were due to the relatively spatial nature of structural geology,

one would expect that organic chemists would perform similarly to geologists, given the

highly spatial nature of this field as well. However, the organic chemistry and English lit-

erature experts did not differ in any of the comparisons.
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It is interesting that the location memory task engaged the coding schemes relevant to

the work of professional geologists. Identifying a fault is not a necessary step toward

recalling a particular location on a rock face; indeed, the additional processing required

might place further limits on the cognitive resources available to perform the location

memory task. Nevertheless, despite the brief exposure time and (seemingly) unrelated nat-

ure of the task, geology experts did appear to extract this information in order to encode

locations at a categorical level. This may imply an almost automatic extraction of concep-

tual information from the image, regardless of the nature of the task. Of course, this inter-

pretation requires direct experimentation, but it is in line with research on perceptual

learning suggesting that, with increasing expertise, individuals become more attuned to

features relevant to that domain and extract them with increasing automaticity (e.g., see

Kellman & Garrigan, 2009).

That structural geology experts’ estimates of location were more strongly influenced

by their specialized categories when these were smaller in area, and they were more

strongly influenced by the novice categories when they were most helpful suggests that

encoding a location entails adaptive use of available categories. Both the efficacy of

acquired categories and the flexible use of both conceptual and visually defined categories

would appear to argue against alternative models of spatial memory based on single per-

ceptual categories. Although DFT (e.g., Spencer et al., 2006) may offer a neurally plausi-

ble framework for the type of Bayesian combination proposed by the CAM, it explicitly

states that only perceptual information is used to define spatial categories. As such, it is

not clear that DFT can accommodate the present data.4

Finally, although our results demonstrate that location memory estimates were most

strongly influenced by the spatial category that best constrained potential errors, it

remains an open question as to whether these different sources of information were used

in isolation or in conjunction with one another. That is, any frame of reference that sur-

rounds a given location will necessarily overlap with any other frame of reference that

does the same. It is unclear, though, whether individuals simply use the (single) represen-

tation that best constrains errors, or whether they combine across the two representations,

with categories akin to the overlapping region of a Venn diagram. A fully Bayesian

account would advocate the latter position, assuming that all sources of information about

a location (metric and the two categorical representations, in this case) would each be

weighted according to its relative reliability. This would allow the individual to make use

of all available sources of information to minimize errors. Unfortunately, our data do not

allow us to distinguish between these alternatives because in some images, the smaller

category was completely subsumed by the larger one. Future work should address this

issue.

In summary, the study presented here is the first to directly assess the malleability of

categorical spatial representations using new conceptual knowledge. Under the framework

of the CAM, the results clearly indicate that domain-specific conceptual information was

used by expert geologists to define spatial categories. Furthermore, different sources of

information were used flexibly, so that spatial categories were defined by the reference

frame that best constrained location memory estimates. These results suggest that our
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extraction and definition of spatial categories is malleable and changes adaptively to

optimize particular tasks.
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Notes

1. Because geology is generally a less populated field than chemistry, and because

structural geology is a specific subfield within geology, there is an expected diffi-

culty in obtaining a large sample of experts—even across a number of universities.

However, power analyses in our lab using random sampling of groups with known

differences (e.g., males and females; Holden & Hampson, 2014) had revealed a pri-

ori that sample sizes of approximately n = 10 per cell would be sufficient to detect

significant differences in the data patterns.

2. In addition, “novice” categories were identified by two experts in English literature

and two experts in organic chemistry. The categories identified by these individuals

did not differ from those identified by the undergraduate students. However,

because the undergraduate composite was based on 30 data points, rather than 4,

we used that data set for subsequent analyses.

3. It is worth noting that the relatively large, expert-defined categories in the “expert-
larger” images did not significantly differ in area from the relatively large, novice-

defined categories in the “expert-smaller” images (large expert categories:

M = 29,703.40 pixels, SD = 19,783.11; large novice categories: M = 27,501.07

pixels, SD = 17,000.37), t(28) = 0.48, ns. Likewise, the smaller of the expert- and

novice-defined categories did not differ in area (small expert categories:

M = 5,430.27 pixels, SD = 2,569.58; small novice categories: M = 7,640.60 pix-

els, SD = 6,120.18), t(28) = 1.29, ns.
4. It is possible that DFT, with some modifications, could accommodate this finding.

Because perception includes both bottom–up and top–down processes, it could be

that structural geologists’ conceptual framework led them to literally perceive the

scenes differently than the other expert groups. If so, the spatial categories formed

by geology experts via conceptual knowledge could be considered the use of “per-

ceptual” reference frames. However, DFT would need to include a mechanism by

which top–down processes in spatial categorization proceed.
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