Angular Momentum Orientation in Molecules using the AT-effect
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Abstract Angular Momenta: Probing higher Jin 312, (v = 4)

We report an experimental demonstration of state selective angular momentum L: electron orbital angular momentum
orientation of nonpolar molecules using dressed states created by a strong cw control A: magnitude of projection of L onto
laser. Our results show that the M-dependent Rabi frequency of the Autler-Townes internuclear axis
effect for circular polarization allows for M-state selective molecular angular S: electron spin Experimentally  fully  resolved
momentum orientation, where M is the projected angular momentum onto a lab fixed ¥: magnitude of projection of S onto Individual M; levels for the lowest =
axis. Our results also show the square-root relationship between the splitting of internuclear axis three rotational levels with non- =z
adjacent M-levels and the power of the control laser, and thus the requirement for a R: nuclear rotational angular momentum zero angular momentum (3 =1,J 2
strong control field to achieve M-state selectivity. The effect was observed using L, J=L+S+R : total angular momentum = 2, and J = 3) of the Li, &
molecules and a combination of left- and right-handed circularly polarized lasers. excluding nuclear spin 315 (v =4) vibrational level 3

Autler-Townes (ac Stark) effect’ Q=|A+X]|: r_nag_nitude of_total angular | - (bla(_:k)_ compared with theoretical
momentum projection onto Internuclear axis 0 > predictions (red).

A dynamic Stark effect - corresponding to the case when a strong oscillating electric

field (e.g., that of a laser) is tuned In resonance (or close) to the transition Excitation Scheme )
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frequency of a given spectral line, resulting in a change of the shape of
the absorption/emission spectra of that spectral line.
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In this case, the alternating field has the effect of splitting the two bare transition
states into doublets, or "dressed states", that are separated by the Rabi frequency,
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