Angular Momentum Orientation in Molecules using the AT-effect

J. T. Stahovich¹, B. A. Rowe¹, J. P. Huennekens², A. M. Lyyra¹, and E. H. Ahmed¹

¹Physics Department, Temple University, Philadelphia, PA 19122, USA ²Physics Department, Lehigh University, Bethlehem, Pennsylvania 18015, USA

Abstract

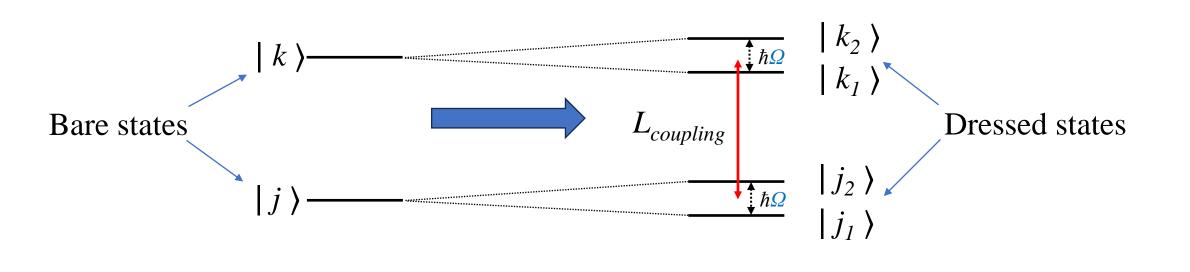
We report an experimental demonstration of state selective angular momentum orientation of nonpolar molecules using dressed states created by a strong cw control laser. Our results show that the M-dependent Rabi frequency of the Autler-Townes effect for circular polarization allows for M-state selective molecular angular momentum orientation, where M is the projected angular momentum onto a lab fixed axis. Our results also show the square-root relationship between the splitting of adjacent M-levels and the power of the control laser, and thus the requirement for a strong control field to achieve M-state selectivity. The effect was observed using Li₂ molecules and a combination of left- and right-handed circularly polarized lasers.

Autler-Townes (ac Stark) effect¹

A dynamic Stark effect - corresponding to the case when a *strong* oscillating electric field (e.g., that of a <u>laser</u>) is tuned in <u>resonance</u> (or close) to the transition frequency of a given spectral line, resulting in a change of the shape of the absorption/emission spectra of that spectral line.

In this case, the alternating field has the effect of splitting the two bare transition states into doublets, or "dressed states", that are separated by the Rabi frequency,

The bare molecular states are <u>no longer eigenstates</u> of the *molecule–field* Hamiltonian



Dressed state formalism²

Hamiltonian: $\mathcal{H} = H_{molecule} + H_{field} + H_{interaction}$,

- $H_{mol} = \sum_{k} \varepsilon_{k} |k\rangle\langle k|,$ $H_{f} = \hbar \omega_{c} (a^{\dagger} a + \frac{1}{2}),$

 - a^{\dagger} and a are the photon creation and • here $H_{mol}|k\rangle = \varepsilon_k|k\rangle$ annihilation operators
 - ω_c is the coupling laser (L_c) frequency
- $H_{int} = \frac{1}{2} \sum_{k} \hbar \Omega_{k} (|l_{k}\rangle\langle m_{k}| + |m_{k}\rangle\langle l_{k}|) (e^{i\omega_{k}t} + e^{-i\omega_{k}t}),$
 - summation is over all external laser fields L_k
 - w/ frequency ω_k , e-field amplitude E_k and Rabi frequency ($\Omega_k \equiv \frac{\mu E_k}{\hbar}$
 - $|l_k\rangle$ and $|m_k\rangle$ represent the l^{th} and m^{th} states coupled by laser L_k

Rabi frequency³

$$\Omega_k \equiv \frac{\mu E_k}{\hbar} = \frac{\mu_{ij}(\mathbf{r}) \cdot \mathbf{E}_k(\mathbf{r}, t)}{\hbar} = \frac{\langle \hat{\varepsilon}_l \cdot \vec{\mu} \rangle * E_k}{\hbar}$$

where $\langle \hat{\varepsilon}_I \cdot \vec{\mu} \rangle =$

 $\langle n_f \Lambda_i | \mu_z | n_i \Lambda_i \rangle \langle \Omega_i J_f M_f | \alpha_I^z | \Omega_i J_i M_i \rangle$; $\Delta\Lambda = \Delta\Omega = 0$, $\Delta \Lambda = \Delta \Omega = \pm 1 \text{ (with } \Lambda_i, \Lambda_f > 0),$ $\frac{1}{2} \langle n_f(\Lambda_i \pm 1) | \mu^{\pm} | n_i \Lambda_i \rangle \langle (\Omega_i \pm 1) J_f M_f | \alpha_I^{\mp} | \Omega_i J_i M_i \rangle ;$ $\left| \frac{1}{\sqrt{2}} \langle n_f(\Lambda_i \pm 1) | \mu^{\pm} | n_i \Lambda_i \rangle \langle (\Omega_i \pm 1) J_f M_f | \alpha_I^{\mp} | \Omega_i J_i M_i \rangle; \quad \Delta \Lambda = \Delta \Omega = \pm 1 \text{ (with either } \Lambda_i = 0 \text{ or } \Lambda_f = 0),$

 $\alpha_I^J \equiv \hat{I} \cdot \hat{j}$ are direction cosine operator components linking unit vectors in the space fixed (XYZ) and body fixed (xyz) coordinate systems; $\alpha_I^{\pm} = \alpha_I^x \pm \alpha_I^y$ and $\mu^{\pm} = \mp \frac{1}{\sqrt{2}} (\mu_x \pm i \mu_y)$.

 $\langle \Omega_i J_f M_f | \alpha_I^z | \Omega_i J_i M_i \rangle$, $\langle (\Omega_i \pm 1) J_f M_f | \alpha_I^{\mp} | \Omega_i J_i M_i \rangle \propto \begin{cases} M^2, & \Delta M = 0 \quad (linear polarization) \\ M, & \Delta M = \pm 1 \quad (circular polarization) \end{cases}$

and $E_k = \sqrt{\frac{2}{c\varepsilon_0}} \sqrt{\frac{8P_k}{\pi w_k^2}}$ is the electric field amplitude. here P_k is the power, and w_k is the beam waist spot size of the k^{th} laser

 $\therefore \Omega_k \propto \sqrt{\frac{P_k}{w_k^2}} * \begin{cases} M^2, \ \Delta M = 0 \ (linear polarization) \\ M, \ \Delta M = \pm 1 \ (circular polarization) \end{cases}$

Orientation Factors⁴ for $\Delta\Omega=0, \Delta M=0, \pm 1$ (e.g. $^1\Sigma\leftarrow^1\Sigma$) transitions

$f(J'J)g_zh_I$	$\hat{\varepsilon}_I = \hat{Z}$ $M' = M$	$\hat{\varepsilon}_I = \frac{1}{\sqrt{2}} \left(\hat{X} + i\hat{Y} \right)$ $M' = M + 1$	$\hat{\varepsilon}_I = \frac{1}{\sqrt{2}} \left(\hat{X} - i\hat{Y} \right)$ $M' = M - 1$
J' = J + 1	$\frac{\sqrt{(J+1)^2 - M^2}}{\sqrt{(2J+1)(2J+3)}}$	$-\frac{\sqrt{(J+M+1)(J+M+2)}}{\sqrt{(2J+1)(2J+3)}}$	$\frac{\sqrt{(J-M+1)(J-M+2)}}{\sqrt{(2J+1)(2J+3)}}$
J' = J	0	0	0
J' = J - 1	$\frac{\sqrt{J^2 - M^2}}{\sqrt{(2J+1)(2J-1)}}$	$\frac{\sqrt{(J-M)(J-M-1)}}{\sqrt{(2J+1)(2J-1)}}$	$-\frac{\sqrt{(J+M)(J+M-1)}}{\sqrt{(2J+1)(2J-1)}}$

• These are independent of v and proportional to the overall splitting.

Angular Momenta:

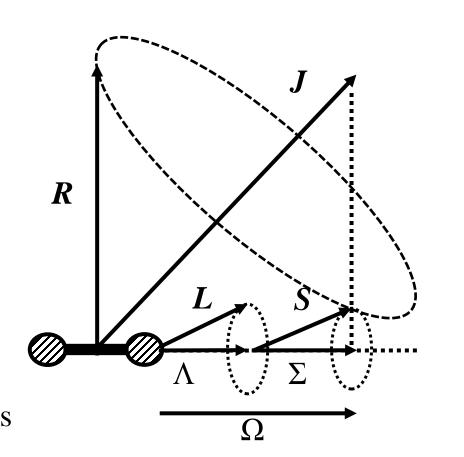
L: electron orbital angular momentum Λ : magnitude of projection of L onto internuclear axis

S: electron spin

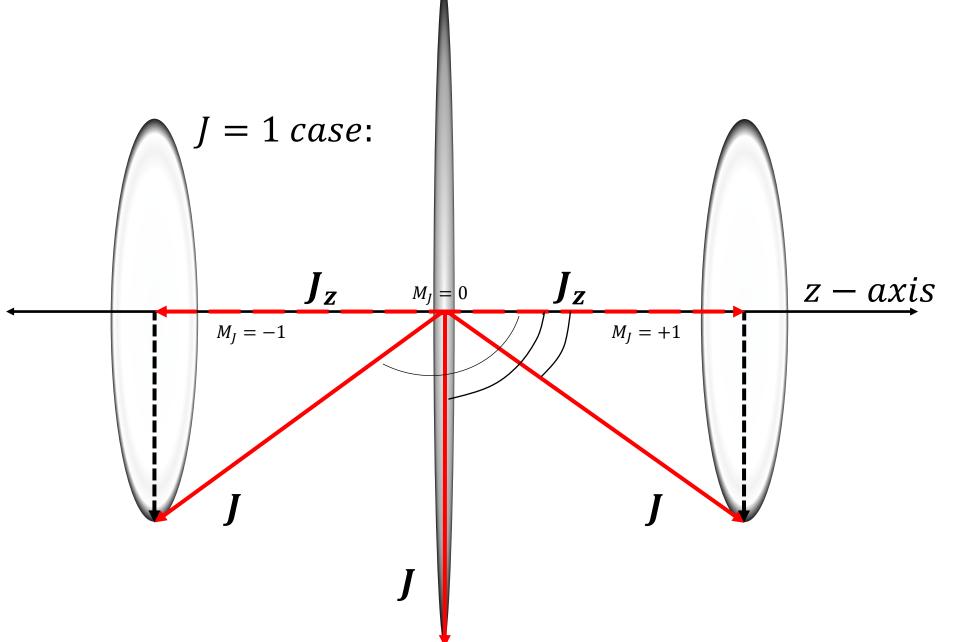
 Σ : magnitude of projection of S onto internuclear axis

R: nuclear rotational angular momentum J = L + S + R: total angular momentum excluding nuclear spin

 $\Omega = |\Lambda + \Sigma|$: magnitude of total angular momentum projection onto internuclear axis



Excitation Scheme propagation axis $3^{1}\Sigma_{g}^{+}(4,1)$ $A^{1}\Sigma_{u}^{+}(6,2)$ $A^{1}\Sigma_{u}^{+}(4,2)$ $X^{1}\Sigma_{q}^{+}(0,3)$

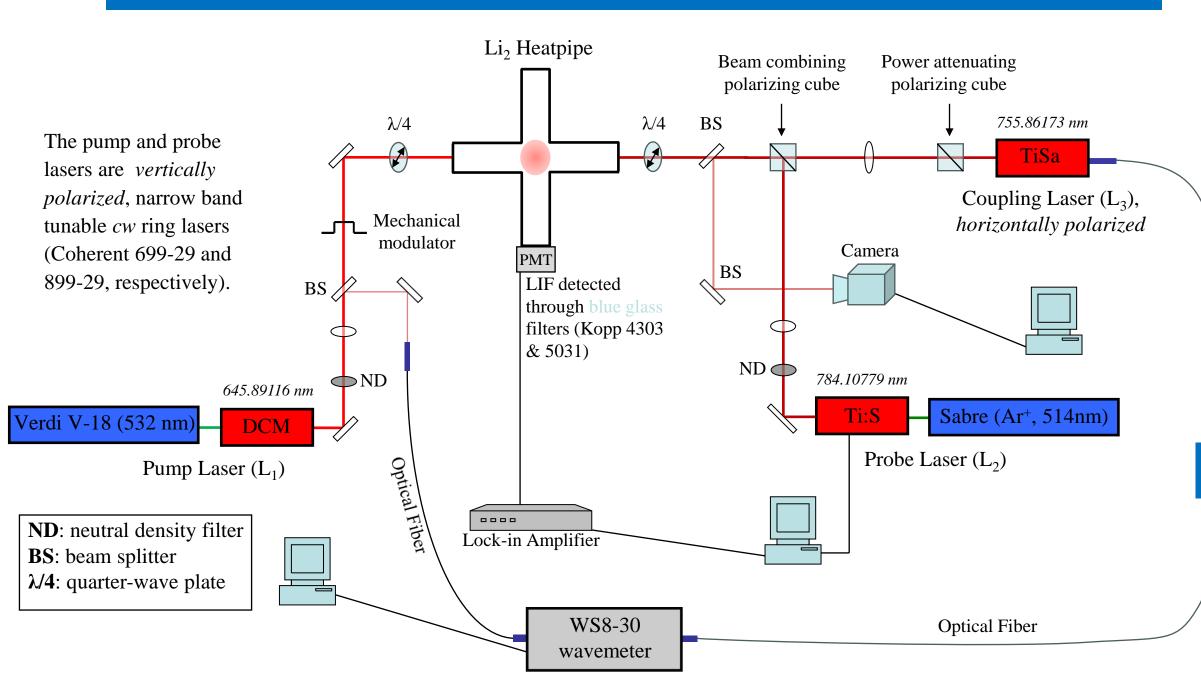


A <u>strong</u> (RHCP) coupling laser tuned to the $3^1\Sigma_{\sigma}^{+}(4,1)$ - $A^1\Sigma_{\Pi}^{+}(4,2)$ transition splits both levels into individual M_I components.

A weak (LHCP) pump laser tuned to $A^1\Sigma_u^+(6,2)$ - $X^1\Sigma_g^+(0,3)$ selectively excites a narrow velocity group of molecules from the ground state to in the intermediate state.

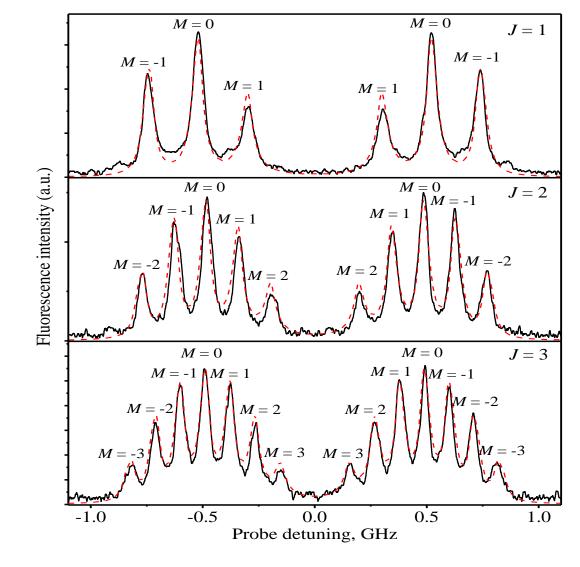
Tuning the weak (LHCP) probe laser to individual M_I components of the upper AT-split $3^{1}\Sigma_{g}^{+}(4,1)$ state produces magnetic sublevel selective molecular orientation.

Experimental setup

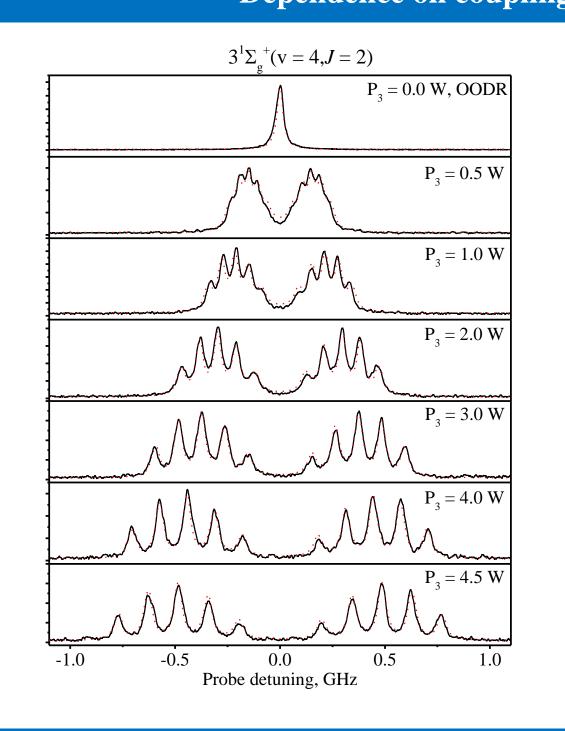


Probing higher *J* in $3^{1}\Sigma_{g}(v=4)$

Experimentally fully resolved individual M_I levels for the lowest three rotational levels with nonzero angular momentum (J = 1, J= 2, and J = 3) of the Li₂ $3^{1}\Sigma_{a}^{+}(v=4)$ vibrational (black) compared with theoretical predictions (red).



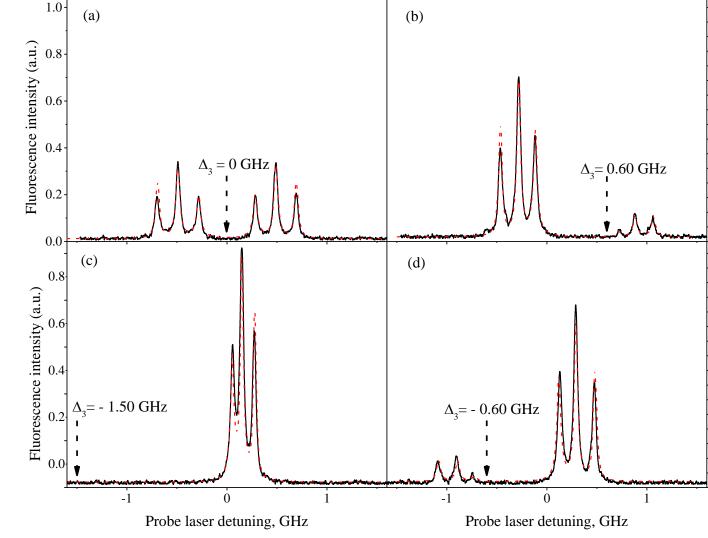
Dependence on coupling laser power



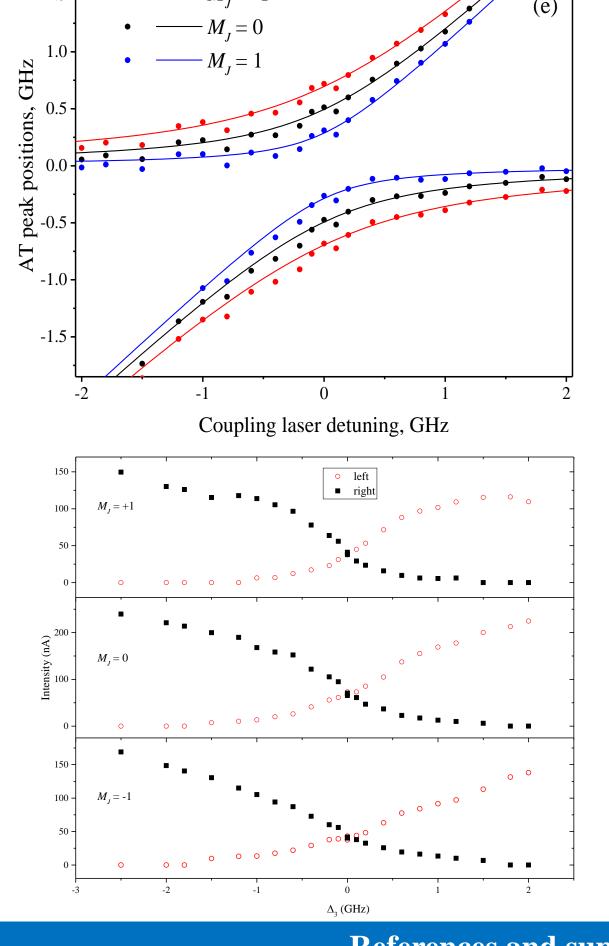
Dependence of the splitting of the M_I levels on the laser coupling power illustrated with spectra for the J = 2 rotational level of the Li₂ $3^{1}\Sigma_{g}^{+}(v=4)$ state (black) compared with theoretical predictions (red). Similar behavior is observed also for the other rotational levels.

Coupling laser off-resonance

Comparison of the Li₂ $3^{1}\Sigma_{g}^{+}(v=4,J=1)$ Autler-Townes line shapes for selected values of coupling laser detuning is presented in panels (a) though (d). The positions of the coupling laser detuning from the $|3\rangle$ – |4| resonance are indicated with red arrows on the horizontal axis in each panel. Theoretical predictions are in



Coupling laser off-resonance



AT peak positions (relative to the OODR condition top) and relative intensities (bottom) plotted as a function of the coupling detuning, Δ_3 . The experimental measurements for the $M_I = -1$, 0, and +1levels are plotted with solid circles, while the solid lines represent the behavior predicted by $\Delta_{AT,M} = \frac{\Delta_3}{2} \pm$ $\frac{1}{2}(\Delta_3^2 + \Omega_{3,M}^2)^{1/2}$ of a simple two-level atom model. The upper (lower) data sets in the top panel and black squares (red circles) on the bottom panel correspond to the AT-split peaks that are shifted higher (lower) in than the OODR position.

References and support

- 1. S.H. Autler and C.H. Townes, Phys. Rev. 100, 703 (1955). 2. C. Cohen-Tannoudji et al., Wiley-VCH, Weinheim (2004).
- 3. H. Lefebvre-Brion and R.W. Field, Academic Press,
- Amsterdam (2004). 4. J.T. Stahovich, Phys. Rev. A 109, 012805 (2024).

We gratefully Acknowledge support from NSF (Grants PHY 2018443 and PHY 2207665) and the Lagerqvist Research Fund of TU.