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Abstract Example OODR excitation spectra Observed ro-vibrational levels
We report a high-resolution experimental study of the highly excited Observed LIF from 4*A (v =7,J=9, 10, 11) < BUI,(v' =5, J’ = 10) Assigned rovibrational levels of the 3'A, (red) and 4'A, (black) electronic
3'A, and 4'A, electronic states of the 85Rb, dimer. Rovibrational levels of the for P (red), Q (black) and R branch (blue) pump excitations. states. 480 rovibrational levels spanning fromv=0tov=20and J=2to J =
two electronic states were probed using the optical-optical double resonance P branch pump 74 were assigned for the 3*A state, and 543 rovibrational levels spanning from
(OODR) technique by exciting 2Rb, molecules from thermally populated gg:::gg gﬁmg R) v=0tov=16andJ=2toJ =76 were assigned for the 4'A state.
levels of the X'X;* ground state through intermediate levels of the B'II, 2 [ 2, - 4,
electronic state. The 'A; resonances induced by the probe laser were observed > Q(10) 2.76-
by detecting laser induced fluorescence (LIF) from nearby, collisionally ‘;§ p(Q)
populated triplet states down to the a°Z,* triplet ground state. The *A, character & -
of the two electronic states was confirmed by showing that the transitions to g —~
these states abide by IT - 1A dipole selection rules and by observing that their w §
lowest rotational level is J = 2. Preliminary molecular constants and Rydberg- - o 2.72
Klein-Rees (RKR) potential energy curves from the observed term values were o
calculated for each electronic state and compared with ab initio calculations. M w M 2.70-
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The energy levels of a vibrating rotor in the framework of first order
semiclassical quantization is given by:

S: electron spin
Y. magnitude of projection of S onto internuclear axis
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Internuclear distance (A) - B l | k “ The fitted G, and B, constants from the Dunham expansion are related to the
. : - 7 AT et D L . potential energy curve turning points via the Klein integrals:
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