

Experimental Study of the $3^{1}\Delta_{g}$ and $4^{1}\Delta_{g}$ States of ${}^{85}Rb_{2}$

J. T. Stahovich¹, B. A. Rowe¹, P. T. Arndt¹, A. D. Hersh¹, P. L. Wardach¹, J. P. Huennekens², A. M. Lyyra¹, and E. H. Ahmed¹

¹Physics Department, Temple University, Philadelphia, PA 19122, USA

²Physics Department, Lehigh University, Bethlehem, Pennsylvania 18015, USA

Abstract

We report a high-resolution experimental study of the highly excited $3^{1}\Delta_{g}$ and $4^{1}\Delta_{g}$ electronic states of the ⁸⁵Rb₂ dimer. Rovibrational levels of the two electronic states were probed using the optical-optical double resonance (OODR) technique by exciting ⁸⁵Rb₂ molecules from thermally populated levels of the $X^{1}\Sigma_{g}^{+}$ ground state through intermediate levels of the $B^{1}\Pi_{u}$ electronic state. The ${}^{1}\Delta_{g}$ resonances induced by the probe laser were observed by detecting laser induced fluorescence (LIF) from nearby, collisionally populated triplet states down to the $a^{3}\Sigma_{u}^{+}$ triplet ground state. The ${}^{1}\Delta_{g}$ character of the two electronic states was confirmed by showing that the transitions to these states abide by ${}^{1}\Pi - {}^{1}\Delta$ dipole selection rules and by observing that their lowest rotational level is J = 2. Preliminary molecular constants and Rydberg-Klein-Rees (RKR) potential energy curves from the observed term values were calculated for each electronic state and compared with ab initio calculations.

Excitation scheme and relevant electronic states of ⁸⁵**Rb**₂

Example OODR excitation spectra

Observed LIF from $4^{1}\Delta_{g}(v = 7, J = 9, 10, 11) \leftarrow B^{1}\Pi_{u}(v' = 5, J' = 10)$ for P (red), Q (black) and R branch (blue) pump excitations.

Identifying the Λ quantum number of the observed electronic states

Angular Momenta:

L: electron orbital angular momentum

 Λ : magnitude of projection of L onto internuclear axis R: nuclear rotational angular momentum

Observed ro-vibrational levels

Assigned rovibrational levels of the $3^{1}\Delta_{g}$ (red) and $4^{1}\Delta_{g}$ (black) electronic states. 480 rovibrational levels spanning from v = 0 to v = 20 and J = 2 to J = 74 were assigned for the $3^{1}\Delta_{g}$ state, and 543 rovibrational levels spanning from v = 0 to v = 16 and J = 2 to J = 76 were assigned for the $4^{1}\Delta_{g}$ state.

Analysis and potential curves

•Dunham Expansion [1]

S: electron spin

 Σ : magnitude of projection of S onto internuclear axis

 $\Omega = |\Lambda + \Sigma|$: total angular momentum projection onto internuclear axis

J = R + L + S: total angular momentum excluding nuclear spin

LIF from: (a) $4^{1}\Delta_{g}(v = 7, J = 2, 3, 4) - B^{1}\Pi_{u}(v' = 5, J' = 3)$ showing P, Q, and R branches; (b) $4^{1}\Delta_{g}(v = 7, J = 2, 3) - B^{1}\Pi_{u}(v' = 5, J' = 2)$ showing missing P branch; & (c) $4^{1}\Delta_{g}(v = 7, J = 2) - B^{1}\Pi_{u}(v' = 5, J' = 1)$ showing missing P and Q branches. All above probe spectra were recorded three times: pumping from a P branch (red), Q branch (black) and R branch (blue). The above spectra show that $\Lambda = 2$ (=> $^{1}\Delta$) for the observed state. *This pattern was observed for both states. (*not shown here*)

The energy levels of a vibrating rotor in the framework of first order semiclassical quantization is given by:

$$T_{v,J} = \sum_{k,l} Y_{k,l} \left(v + \frac{1}{2} \right)^k [J(J+1) - \Omega^2]^l$$

The $Y_{k,l}$ coefficients are related to the molecular potential parameters by a set of power series equations in *v* and *J* and given as follows:

$$\begin{aligned} G_{\nu} &= \sum_{k=1}^{N} Y_{k0} \left(\nu + \frac{1}{2} \right)^{\kappa} = \omega_e \left(\nu + \frac{1}{2} \right) - \omega_e x_e \left(\nu + \frac{1}{2} \right)^2 + \dots \\ G_J &= \sum_{l=0}^{N} Y_{0l} [J(J+1)]^l = B_{\nu} J(J+1) - D_{\nu} [J(J+1)]^2 + \dots \\ G_{\nu} &= B_e - \alpha_e \left(\nu + \frac{1}{2} \right) + \gamma_e \left(\nu + \frac{1}{2} \right)^2 + \dots \end{aligned}$$

$3^1\Delta_{ m g}$	$T_0(Y_{00})$	$\omega_e(Y_{10})$	$-\omega_{\mathrm{e}}x_{e}(Y_{20})$	$\omega_e y_e (Y_{30})$	$B_{e}\left(Y_{01}\right)$
This work	26710.370	51.9815	-0.09021913857	-0.002996955245	0.018255
ab initio [2]	26697.7	47.4			0.01809
ab initio [3]	27212	56.5			0.01668
$4^1\Delta_{ m g}$	$T_0(Y_{00})$	$\omega_e(Y_{10})$	$-\omega_{\mathrm{e}}x_{e}(Y_{20})$	$\omega_e y_e (Y_{30})$	$B_{e}\left(Y_{01}\right)$
This work	26853.648	47.7014	-2.52581	0.259762	0.017503
ab initio [2]	26886.7	43.2			0.01696

All above values are given in units of cm⁻¹.

•RKR Potential Energy Curves [4]

The fitted G_v and B_v constants from the Dunham expansion are related to the potential energy curve turning points via the Klein integrals:

$$r_{2}(v) - r_{1}(v) = C \int_{v_{min}}^{v} \frac{dv'}{[G_{v} - G_{v'}]^{1/2}} \text{ and}$$
$$\frac{1}{r_{1}(v)} - \frac{1}{r_{2}(v)} = C \int_{v_{min}}^{v} \frac{B_{v'}dv'}{[G_{v} - G_{v'}]^{1/2}}$$

Experimental setup

Orientation Factors for $\Delta \Omega = +1$, $\Delta M = 0$ (e.g. ${}^{1}\Delta \leftarrow {}^{1}\Pi$, ${}^{1}\Pi \leftarrow {}^{1}\Sigma$) transitions

• These are <u>independent of *v*</u> and <u>proportional to the overall signal</u>, but derived <u>for single laser excitations</u>.

 $\langle \Omega JM | \alpha_{Z}^{-} | \Omega' J'M' \rangle = \langle \Omega = \Omega' + 1, J, M = M' | \alpha_{Z}^{-} | \Omega' J'M' \rangle = f(J,J') (g_{x} - ig_{y}) h_{Z}$

$$= -\frac{\sqrt{(J'+\Omega'+1)(J'+\Omega'+2)}\sqrt{(J'+1)^2 - M'^2}}{(J'+1)\sqrt{(2J'+1)(2J'+3)}} \qquad \text{for } J = J'+1$$

$$=\frac{\sqrt{(J'-\Omega')(J'+\Omega'+1)}M'}{J'(J'+1)}$$

for
$$J = J$$

= J' - 1

$$\frac{\sqrt{(J'-\Omega')(J'-\Omega'-1)}\sqrt{J'^2-M'^2}}{J'\sqrt{(2J'+1)(2J'-1)}}$$
 for J

• Predicted vs. observed excitation-dependent rotational-branch signalstrength ratios for $4^{1}\Delta_{g} \leftarrow {}^{1}\Pi_{u} \leftarrow {}^{1}\Sigma_{g}^{+}$ (<u>two laser</u>) excitations:

	J'	Pump	Predicted	Observed	
		R	0.54: 0.65: 1	0.65 : 0.73 : 1	
	10	Q	0.11:1:0.25	0.34 : 1 : 0.52	
		Р	0.53:0.83:1	0.80:0.97:1	
)		R	0.11:0.26:1	0.09 : 0.36 : 1	
	3	Q	0.03 : 1 : 0.55	$0.03:(0.45:1)^{\dagger}$	
		Р	0.10:0.54:1	0.30 : 0.66 : 1	
		R	0:0.13:1	0: 0.18: 1	
	2	Q	0:1:0.94	$0:(0.66:1)^{\dagger}$	
		Р	0:0.38:1	0:0.40:1	

where $C = (2\hbar^2/\mu)^{1/2}$. The unique set of turning points for each vibrational level is solved for using numerical integration. The results of this analysis is plotted against *ab initio* curves.

•Residuals for the $3^{1}\Delta_{\rho}$ (red) and $4^{1}\Delta_{\rho}$ (black) electronic states

