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Experimental Setup

Angular Momenta, Parity, and Selection Rules

We report the results of an experimental study on the highly excited 11  
1Σ𝑔

+ and 61Π𝑔 

electronic states of the cesium-133 dimer. The rovibrational structure of these states was 

probed using the optical-optical double resonance (OODR) technique in which 133Cs2 

molecules from thermally populated levels in the 𝑋  
1Σ𝑔

+ ground state were excited through 

intermediate levels in either the 𝐵1Π𝑢 state or the mixed 𝐴  
1Σ𝑢

+~𝑏3Π𝑢 manifold. Probe laser 

resonance frequencies were determined by detecting laser induced fluorescence (LIF) from 

the target states to the ground 𝑎3Σ𝑢
+ triplet state. The observed states were identified as 1Σ𝑔

+ 

and  1Π𝑔 electronic states based on the selection rules for dipole allowed transitions 

followed by the line patterns in the recorded excitation spectra. Bound-bound fluorescence 

spectra from rovibrational levels in the target states down to the A ∼ b manifold were also 

taken to further confirm electronic state multiplicity. Two sets of Dunham coefficients 

corresponding to the two target states were fitted from experimentally determined term 

values and are reported in the present work. Potential energy curves constructed from these 

Dunham coefficients are also presented and compared to ab initio curves from our 

collaborators.
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Angular Momenta:

𝑳: electronic orbital angular momentum

𝜦: magnitude of projection of 𝑳 across internuclear axis 

R: nuclear rotational angular momentum

S: electronic spin 

Σ: magnitude of projection of S across internuclear axis

Ω =  𝜦 + Σ : total angular momentum projection across 

internuclear axis 

J = R + L + S: total angular momentum excluding 

nuclear spin

Parity:

g/u: electronic wavefunction inversion symmetry

+/-: electronic wavefunction reflection symmetry

e/f: rotationless total rovibronic wavefunction parity

Angular momentum coupling 

scheme for Hund’s case (a):

J

R
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The total energy of a diatomic molecule can be decomposed into three distinct terms:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑒𝑙 + 𝐸𝑣𝑖𝑏 + 𝐸𝑟𝑜𝑡 = 𝑇𝑒 + 𝐺 𝑣 + 𝐹𝑣 𝐽 .

The electronic energy term 𝑇𝑒 sets the position of the potential well minimum for a given 

electronic state. 

The vibrational and rotational terms 𝐺 𝑣  and 𝐹𝑣 𝐽  produce the energy levels associated with 

a vibrating rotor potential and can be expanded into the following power series:

𝐺 𝑣 = 𝜔𝑒 𝑣 +
1

2
− 𝜔𝑒𝑥𝑒 𝑣 +

1

2

2

+ 𝜔𝑒𝑦𝑒 𝑣 +
1

2

3

+ ⋯

and

𝐹𝑣 𝐽 = 𝐵 𝑣  𝐽 𝐽 + 1 − 𝐷 𝑣  𝐽2 𝐽 + 1 2 + ⋯ .

The leading term of the 𝐺 𝑣  expansion generates the energy levels corresponding to a 

harmonic oscillator potential, while subsequent higher order terms alter said levels to account 

for the anharmonicity of the actual physical potential. 

The rotational coefficient 𝐵 𝑣  and the centrifugal distortion coefficient 𝐷 𝑣  of the 

𝐹𝑣 𝐽  expansion can be further expanded still:

𝐵 𝑣 = 𝐵𝑒 − 𝛼𝑒 𝑣 +
1

2
+ 𝛾𝑒 𝑣 +

1

2

2

+ ⋯

and

𝐷 𝑣 = 𝐷𝑒 + 𝛽𝑒 𝑣 +
1

2
+ ⋯ .

These four series can be neatly summarized into one all-encompassing expansion, known as a 

“Dunham expansion”, given by:

𝑇𝑣,𝐽 = 

𝑘,𝑙

𝑌𝑘,𝑙 (𝑣 +
1

2
)𝑘 𝑗 𝑗 + 1 − Λ2 𝑙 ,

Where the coefficients 𝑌𝑘,𝑙 relate to the previously given spectroscopic coefficients by:

The Dunham coefficients of our target states, calculated via a least squares fitting procedure 

from found term values, were determined to be:

𝑌10 ≈ 𝜔𝑒 𝑌20 ≈ −𝜔𝑒𝑥𝑒 𝑌30 ≈ 𝜔𝑒𝑦𝑒

𝑌01 ≈ 𝐵𝑒 𝑌11 ≈ −α𝑒 𝑌21 ≈ γ𝑒

𝑌02 ≈ −𝐷𝑒 𝑌12 ≈ −β𝑒 etc.

Potential energy curves can be generated from Dunham coefficients via the Rydberg-Klein-Rees 

(RKR) method. This method provides a means of numerically calculating the turning points of 

the PE curve for a given state by iteratively solving the following Klein integrals:

𝑅+ − 𝑅− = 𝐶 𝑣𝑚𝑖𝑛

𝑣 𝑑𝑣′

𝐺𝑣−𝐺𝑣′
ൗ1

2
  

and

1

𝑅−
−

1

𝑅+
= 𝐶 න

𝑣𝑚𝑖𝑛

𝑣 𝐵𝑣′ 𝑑𝑣′

𝐺𝑣 − 𝐺𝑣′
ൗ1

2

where 𝐶 =
2ℏ

𝜇

Τ1
2

. Via this process, the following RKR curves for our target states were 

produced:

Selection rules for rovibronic transitions derived by evaluating transition dipole moment 

matrix elements:

𝑴𝜶𝜷 = ⟨𝑛𝛼𝛬𝛼𝑆𝛼𝛴𝛼 𝑣𝛼 Ω𝛼𝐽𝛼𝑀𝛼  𝝁𝒛 Ω𝛽𝐽𝛽𝑀𝛽⟩ |𝑣𝛽⟩ 𝑛𝛽𝛬𝛽𝑆𝛽Σ𝛽

= න 𝑑𝜏𝑒 𝜓𝛼,𝑒
∗  𝝁𝒛,𝒆 𝜓𝛽,𝑒 න 𝑑𝑟 𝜓𝛼,𝑣

∗  𝜓𝛽,𝑣 න 𝑑𝜃 𝑑𝜑 sin 𝜃 cos 𝜃 𝜓𝛼,𝑟
∗  𝜓𝛽,𝑟

Where 𝜓𝑒/𝑣/𝑟 is the electronic/vibrational/rotational component of the total molecular 

wavefunction, respectively. Dipole transition selection rules are tabulated below:

• ∆𝛬 = 0, ±1

• ∆𝑆 = 0

• 𝑔 𝑢

• + +, − −    (electronic wavefunction only, need only be specified when 𝛬 = 0)

• ∆𝐽 = −1, 0, 1 (“P branch”, “Q branch”, “R branch”)

• When 𝛬′ = 𝛬′′ = 0, ∆𝐽 = ±1 ONLY. 

• ∆𝐽 = 0 transition tends to be weak/nonexistent when ∆𝛬 = 0 and J is large

• 𝑒 𝑒, 𝑓 𝑓 for P/R branches, 𝑒 𝑓 for Q branches

• Note: All rotational levels in 1Σ+ states have e parity ONLY, whereas levels in 1Π 

states and above come in degenerate e/f pairs.

6 1Πg(v=13, J=114/115/116) ← A1Σu
+(n=167, J=115)

11 1Σg
+(v=1, J=99/100/101) ← B1Πu (v=2, J=100)

6 1Πg(v=14, J=99/101) ← B1Πu (v=2, J=100)
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Bound-Bound Fluorescence Spectra

Fluorescence to levels with predominately singlet character in the mixed A1Σu
+~ b3Πu 

manifold ~1000x stronger than that of predominately triplet character levels.
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 6 1Pg  RKR

 6 1Pg ab-initio

 11 1Sg
+ RKR

 11 1Sg
+ab-initio

State 𝑻𝒆 + 𝒀𝟎𝟎 𝒀𝟏𝟎(𝝎𝒆) 𝒀𝟐𝟎(−𝝎𝒆𝒙𝒆) 𝒀𝟑𝟎(𝝎𝒆𝒚𝒆) 𝒀𝟒𝟎(𝝎𝒆𝒛𝒆)

11 1Σg
+ 25496.5018(229) 33.28830(544) −7.8307(921) ×10−2 −4.9450(9041) ×10−4 4.4178(4113) ×10−5

6 1Πg
  e 25146.9142(2889) 32.50844(29732) 0.319694(86980) −9.45641(151248) × 10−2 1.2074862(1458082) × 10−2

6 1Πg f 25146.4905(2779) 32.05255(25341) 0.258184(133295) −0.1307251(332948) 2.6117630(5138468) × 10−2

State 𝒀𝟎𝟏(𝑩𝒆) 𝒀𝟏𝟏(−𝜶𝒆) 𝒀𝟐𝟏(𝜸𝒆) 𝒀𝟑𝟏 𝒀𝟎𝟐(−𝑫𝒆)

11 1Σg
+ 9.44898(195) ×10−3 −3.5330(349) ×10−5 6.254(284) ×10−7 −2.0281(713) ×10−8 −3.407(54) ×10−9

6 1Πg
  e 8.63825(2183) × 10−3 1.30526(19162) × 10−4 −5.59740(66535) × 10−5 1.032241(117249) × 10−5 −2.874(72) × 10−9

6 1Πg f 8.68724(1991) × 10−3 5.0752(17975) × 10−5 −2.53727(63545) × 10−5 4.71660(113030) × 10−6 −6.30(111) × 10−10

Fitted Dunham coefficients for the reported states. All values given in units of cm-1.
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