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ABSTRACT. We study the local statistical behavior of the super-Coulombic Riesz gas of
particles in Euclidean space of arbitrary dimension, with inverse power distance repulsion
integrable near 0, and with a general confinement potential, in a certain regime of inverse
temperature. Using a bootstrap procedure, we prove local laws on the next order energy and
control on fluctuations of linear statistics that are valid down to the microscopic lengthscale,
and provide controls for instance, on the number of particles in a (mesoscopic or microscopic)
box, and the existence of a limit point process up to subsequences.

As a consequence of the local laws, we derive an almost additivity of the free energy
that allows us to exhibit for the first time a CLT for Riesz gases corresponding to small
enough inverse powers, at small mesoscopic length scales, which can be interpreted as the
convergence of the associated potential to a fractional Gaussian field.

Compared to the Coulomb interaction case, the main new issues arise from the nonlocal
aspect of the Riesz kernel. This manifests in (i) a novel technical difficulty in generalizing
the transport approach of Leblé and the second author to the Riesz gas which now requires
analyzing a degenerate and singular elliptic PDE, (ii) the fact that the transport map is not
localized, which makes it more delicate to localize the estimates, (iii) the need for coupling
the local laws and the fluctuations control inside the same bootstrap procedure.

1. INTRODUCTION

We are interested in proving local laws and studying the fluctuations of super-Coulombic

Riesz gases. These are ensembles of point configurations Xy = (x1,...,zy) with x; € R
whose law is given by
1 s

(1.1) APy g(x1,. .. xN) = 5—e PN IIN@LN) doy  day

ZN,s
with
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(1.2) Hy(Xn) = 52%(%‘ —z;)+ N> V(z)

i#j i=1
where

1 —s

=|x for s #0
(1.3 g(a)= 1" .

—log || for s =

with the condition
(1.4) d-2<s<d

The condition (1.4) that we will use throughout implies that the case s = 0, or log gas case, is

then only encountered in dimension d = 1. The case s = d—2 corresponds to the Coulomb case

in any dimension, this is why the condition (1.4) corresponds to a super-Coulombic Riesz gas.

Note that as s becomes larger than d, the kernel becomes nonintegrable near 0 but integrable
1
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at infinity. The regime s > d, called the hypersingular case [BHS14], corresponds to a short-
range interaction regime, and the behavior is quite different (see for instance [HLSS18]), hence
the restriction to s < d. The sub-Coulomb case s < d — 2 on the other hand is longer range
due to the slower decay of the interaction, bringing in new difficulties that are outside the
scope of this paper.

The function V is an external confining potential, on which we shall place assumptions
later.

The parameter § > 0 is an inverse temperature, and we have chosen to multiply the energy
by N~d because N is the typical energy per particle. Finally, the normalization factor

(1.5) ZNp = / e AN IHN@LIN) oy day
’ (RN

is called the partition function.
The Coulomb case is particularly natural and physical, because g is the fundamental solu-
tion to the Laplacian:

(1.6) —Ag = cqdp
where cq is a constant depending only on the dimension, and §g is the Dirac mass. In the

Riesz case with s € (d —2,d), and in that interval only, g is instead the fundamental solution
to a fractional Laplacian

d—s
(1.7) (—A) 2 g = cqs00-
In the following we denote
d—s
1.8 = .
(18) o=
The constant cqs is given by (see [KwalT])
d
m24T () d—s
1.9 Cds = —7—, Q= .
( ) d,s F(% . Oé) 2

We recall that the fractional Laplacian is a nonlocal operator (contrarily to the Laplacian
associated to the Coulomb case). It can be seen as an integral operator defined by (its various
definitions can be found for instance in [Kwal7] and [LPG™20])

(1.10)

ap(d a ol d a
(A () :P.V./(f(:v) —f(:n+y))wfjﬁdy, o, = FTE+0) _ adT(§+a)

~ a3D(—a)]  wT(1-a)

We will also use the homogeneous Sobolev norm defined by

(1.11) 17130 = // g(z — y)df (2)df ()

which is equivalent with the usual H?® definition via Fourier transform

(1.12) 13 = / €122 FP(€)de

Cds

as in [DNPV12, Proposition 3.4], where cq is the constant in (1.10), since g(&) = Cy ][5
for some constant Cy s (cf. [Ser24, Proposition 2.14]).

The nonlocality of the operator creates much of the difficulties encountered in the Riesz
case.
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The Coulomb gas is an important model of statistical physics, in particular due to its
connection to plasma physics, random matrix theory, quantum mechanics models, and con-
formal field theory. We refer to the introduction of [Ser24] for more detail. The Riesz gas is
less understood but also physically interesting (in solid state physics, ferrofluids, elasticity),
see [Maz11, BBDR05, CDR09, CDFR14, Tor18], and has attracted quite a bit of attention in
the recent physics literature, see for instance [KKK 22 KKK*21, ADK"19].

1.1. The equilibrium measure. The first order or mean-field asymptotic behavior of the
gas is well understood (see for instance [Ser24, Chap. 2]). From [Fro35], [Cho58], if the
potential V is lower semicontinuous, bounded below, finite on a set of positive capacity, and
satisfies the growth condition

(1.13) lim (V(z)+g(z)) = +o0,

|z| =400

then the continuous approximation of the Hamiltonian given by

(1.14) // (x —y) du(z)du(y /V ) dp(x
Rded

is well-defined as long as s < d (hence the restriction to that regime — this is called the potential
case) and has a unique, compactly supported minimizer py among the set of probability
measures on RY, called the equilibrium measure and characterized by the following Euler-
Lagrange equation: there exists a constant cy such that

(1.15)

h*V +V = ¢y quasi-everywhere on ¥
h*v +V > cy quasi-everywhere

where h*V = g * py is the potential generated by wy, and ¥ denotes the support of uy. In
the following, we denote the corresponding effective potential by

(1.16) v i =h"V +V —ey.

It is worth noting that in the Coulomb case, since —AR*Y = cquy in view of (1.6), taking
the Laplacian of the first relation in (1.15) we find

1 o
(1.17) wy = C—AV in 3,
d

where ¥ denotes the interior of . In contrast, such a manipulation is no longer possible
in the Riesz nonlocal case, and there is then no local or explicit expression for uy in terms
of V. The interested reader can refer to the articles [CSW22, CSW23] for examples of Riesz
equilibrium measures.

In the Riesz case s € [d — 2,d), this equilibrium measure problem can be rephrased in
terms of an obstacle problem / a fractional obstacle problem as was observed for instance
in [Ser15, Chapter 2]; this will be very useful for us as it will allow us to use results in that area
on the behavior of py and additional results proved in the appendix by X. Ros-Oton. Let us
recall more precisely the correspondence (the interested reader can also refer to [Ser24, Section
2.4], [CDM16,AS22]: the fractional obstacle problem

(1.18) min{(—A)*h,h — ¢} =0

with obstacle ¢ = cy — V and a = % has solution h = h*V. The much-studied classical
obstacle problem corresponds to the (Coulomb) case o = 1. The fractional obstacle problem,
studied for instance in [CSS08a,CDSS17a,ROS17al, is another free boundary problem. There
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are two sets in the solution to (1.18): the set {h*V = ¢} where the solution touches the
obstacle is known as the contact set or coincidence set, and its boundary is the free boundary.
In the set where h*V > ¢, then puy = (—A)*h*V must vanish. This corresponds to the
complement of ¥ in (1.15). Note that in general the contact set {(yy = h*V — ¢ = 0} contains
the droplet % = supp py, but may be larger, although generically it is not. In the Coulomb
case, imposing AV > 0 in a neighborhood of ¥ ensures that the two sets coincide by taking
the Laplacian of ¢y = 0 (as in the computation for (1.17)), but in the fractional case this
computation does not work. Since we want to appeal to the regularity of the free boundary,
we take as an assumption that the droplet and free boundary coincide, this is accomplished
by requiring that {yy > 0 on X¢, which is guaranteed by assumption (A1).

In the fractional case (contrarily to the Coulomb case), the density of py generically van-
ishes as one approaches 9% from the inside, near reqular points. This is one of the main
results of the appendix that we will need: if ¢ is a regular point of 9%, then

(1.19) py () ~ dist(x, 0X)' ™ as x — zg,z € X

Note that this behavior for instance matches the semi-circle law behavior of the equilibrium
measure in the one-dimensional log case (for which s =0 and o = 1/2).

The recent paper [CF25] also exploits the correspondence with the fractional obstacle
problem to prove that this behavior near all boundary points is generic with respect to V' in
dimension d < 3, for any s € [d — 2,d). For simplicity, we will thus assume that all boundary
points are regular, which can be guaranteed by assumption (A2) and (A3) below.

Additionally, we will need some regularity on the quotient this is assump-
tion (A4).

Finally, the “lift-off" rate from the obstacle, i.e. the growth of (y is known from the frac-
tional obstacle problem literature: it is

(1.20) Cv(z) > e(z)dist(z, B)HH

with ¢(z) > 0 near regular points. This is in assumption (A1).

mv
dist(z,05)1—

1.2. Goal of the paper. Proving local laws for the gas roughly corresponds to understanding
how much the distribution of the points deviates from the mean-field distribution py. We
do so via local controls on the next-order electric energy (called modulated energy in the
dynamics context) Fx (X, py), first introduced in [PS17] and defined via

(1.21) Fn(Xn,p) : // (x—y 25 )m)d(%éxi—N,u)(y)
i=1

where A denotes the diagonal in RY x R9. This quantity, whose properties are described
in [Ser24, Chap. 4], is bounded below by —CN' 3 where C depends only on lie]| L and
behaves effectively like the square of a distance between the empirical measure % > i 0z, and
the reference probability density p, more precisely like

1 & ?
Ni:l

(where H denotes a homogeneous Sobolev norm as in (1.11)~(1.12)), but here defined in
a renormalized manner that allows to admit Diracs thanks to the removal of the (infinite)
diagonal self-interaction terms.

. s—d
H™2
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As shown in prior works [PS17,LS15], see [Ser24, Chap. 4], the electric energy Fy provides
good controls on the difference % > i 0z, — i1, such as rough bounds on linear statistics, bounds
on minimal distances between points and bounds on charge discrepancies (i.e. integrals of
the difference over balls or cubes). These controls, based on the electric formulation of the
energy Fp, will be recalled in Section 3.1, particularly Proposition 3.5.

In parallel with the local laws, we wish to address the related question of understanding
the asymptotic behavior of fluctuations of linear statistics, of the form

N
(1.22) Fluct,, (¢) := Zgo(a:z) - N/npd,uv,
i=1

for regular enough test-functions ¢.

This program has been in large part completed in the Coulomb case in prior works: [Leb17]
for local laws in two dimensions (see [BBNY17] for related local laws), [AS22] for local laws
in general dimension, [LS18, BBNY19] for fluctuations in the two-dimensional case, [Ser23]
for fluctuations in general dimension. We also refer the reader to [Ser24] for a recap. These
local laws are proved by a method of boostrap on scales first introduced in [Leb17], while
the fluctuations analysis is based on a transport method, introduced in [L.S18] and re-used
in [Ser23].

The one-dimensional logarithmic case, which corresponds to the well-known situation of
[-ensembles, and is closely related to random matrix theory, was intensively studied: fluc-
tuations and questions similar to local laws were analyzed in [Joh98, Shcl3, Sheld, BG13,
BG24,BEY12, BEY 14, BMP22 BL18, BLS18], closer to our analysis here is the paper [Pei24]
which really studies local laws for (1.21) and serves partly as a blueprint for the present
paper. Finally, the one-dimensional Riesz gas with general s < 1 was extensively studied
in [Bou23b, Bou23al, leveraging on the convexity of the interaction in dimension 1, which
permits a very different treatment based on the Helffer-Sjostrand representation that yields
stronger results.

Our goal here is to carry out the program of [Leb17,L.S18, AS22, Ser23, Pei24] for super-
Coulombic Riesz gases of arbitrary dimension. Note that in contrast with [Ser23] and [Ser24],
we will not be able to obtain estimates that are optimal in 5 as § gets small, because this
would require using the “thermal equilibrium measure" (see [Ser24, Chap. 2]) instead of the
equilibrium measure and, contrarily to the Coulomb case [AS22], its behavior in the nonlocal
case is much less understood than the standard equilibrium measure for which we have detailed
knowledge (describe above) thanks to the fractional obstacle problem correspondance.

The paper focuses in particular on the new difficulties brought by the nonlocality of the
fractional Laplacian, which are the following:

e Generalizing the transport approach of [LS18] to the Riesz gas now requires analyzing
a degenerate and singular elliptic PDE. This was not needed in [Pei24] because in the
one-dimensional log case, and in that case only, explicit formulas are available for the
“master operator inversion" or equivalently for the transport map.

e That transport map ends up having nonlocalized tails, even if the test function ¢ one
considers is localized at a mesoscale.

e As in prior work, the local laws rely on a screening procedure, which itself relies on
the electric formulation of the energy together with a dimension-extension procedure
to handle the nonlocality. The screening in extended dimension requires subtle adap-
tations, in particular in this probabilistic setting, and controlling its errors requires
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one to couple the local laws and the fluctuations control inside the same bootstrap
procedure, a difficulty not present in the (local) Coulomb case.

1.3. Assumptions. We will use the notation |f|ce for the Holder semi-norm of order o for
any o > 0 (not necessarily integer). For instance |f|co = || fllzec, |flox = |DFfllpe and if
o € (k,k+ 1) for some k integer, we let

DF f(z) — DF
Flowiy = sup |D¥ f(x) gikf(y)l‘
wAyeQ |z —yl

We emphasize that with this convention f € C* does not mean that f is k times differentiable
but rather that D¥~!f is Lipschitz. For k > 1 integer, we will then use the notation

k
(1.23) I Fllcr = 1FllLe + D |flem.

m=1

For our main results, we assume the following, for some integer k£ > 3 that will be specified
and for some € > 0.

A1 (Nondegeneracy): ¢y > cdist(z, %)+ with ¢ > 0 in some strict neighborhood of X.

A2 (Positive Laplacian): AV >0 on {cy > V'}, where cy is as in (1.15).
A3 (Lipschitz Free Boundary): The free boundary 0% is a Lipschitz graph.
A4 (Regularity of Equilibrium Measure):

(1.24) py(x) = s(z)dist(z, 0%)

for some function s(x) € C*+¢(X) that is bounded from below.
A5 (Regularity and growth of VV): We assume V € C*+! and there exist » > 0, ¢ > 0
and C > 0 such that

(1.25) IVV| > clz|”, |VE"V|> Cla|™™ for |z| > C, 1 <m < k.

A6 (One-cut) ¥ = supp py is a connected set.

Note that these assumptions are genericity assumptions that avoid irregular cases. (A2)
allows us to apply Proposition A.3, which shows that all points of the free boundary are
regular. The assumption (1.24) is for instance reasonable in view of the generic behavior
(1.19), as shown in [CF25]. We also make the additional assumption (A6) that ¥ is connected
(what is commonly referred to the one-cut regime in the one-dimensional case) to avoid some
of the additional difficulties that the nonlocality of the interaction creates in the multicut
regime (cf. [BG24] for a treatment of the log-gas in the multicut regime). We refer to further
discussion of these assumptions in Section 2.3.

1.4. Main results. We prove the following two theorems in conjunction, by a bootstrap on
sales. We state both at the traditional scale (although the local law will be proven at blown
up scale).
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1.4.1. Local laws and consequences. The first theorem establishes local laws down to the mi-
croscale N~1/9. They are expressed in terms of a version of the energy localized in a cube [J;
of size ¢ (centered at an unspecified point), denoted IE%Z (Xy). The precise definition of Fy
will be given in Section 3, it relies on the electric formulation of the energy (as first introduced
in [PS17], see [Ser24, Chap. 4, Chap. 7]), in terms of the electric potential hy associated to
the couple (X, p) via

N
(1.26) hn[XN, p] = g * (Z Oz, —Nu>
i=1
and extended to be a function of R4*!. Briefly,
PO = [l Ve
Oex[—£,0)

where |y|7 is a weight to be specified later, and hpy, is a suitable truncation of hn[Xy, p].
At this point what matters is to know that this quantity is positive, coercive, and controls
charge discrepancies and fluctuations of linear statistics in the cube [l,. The lengthscale /¢
will range from ¢ = 1, which corresponds to the macroscale, to £ o« N~1/4 which corresponds
to the local scale or microscale.

The local laws are only valid in the bulk, i.e. well in the interior of ¥, the support of uy,
except if £ =1 (or ¢ is larger than a fixed constant) in which case they are easily seen to hold
and are valid globally (we will not state this but refer to (3.6)). More precisely, they are valid
in 3 defined as

(1.27) 3= {2 € X, dist(x,0%) > e}

where £ > 0 is some small fixed number.

In the whole paper we will denote #Iq the cardinality of { X5}, i.e. the number of points
in the set Q. The notation A < B means that A/B is bounded by a constant independent
of B, N, and other parameters of the problem, except possibly for d,s, V,e. The notation Cg
and Cg will denote constants which are independent of 8 when § is larger than a positive
constant, say 1, and which may depend on 3 for 8 < 1. In the same way A <g B means
A < CgB for such a Cg, and Og is also defined in the same way.

Theorem 1 (Local laws). Assume (A1)—(A6). There exists constants C > 0,Cp > 0,C; >
0,Cy > 0, depending only on d,s,V,e, and Cg > 0 depending on B only if B < 1, and a
lengthscale 4 < pg g 1, such that the following holds. For any ¢ > pﬁNfé and any cube
U C il, there exists a good event Gy satisfying

(1.28) Py 5(GE) < Cre~ 200N
such that, if Xy € Gy then

(1.29) FY (X, ) < CtdN'*a
and

(1.30) Co#lIn, < CslaN.

Here, in contrast with [AS22], the local laws are not obtained as exponential moments
controls, but only with bounds on the event tails. This is due to the nonlocal nature of the
problem and the need to couple local laws controls and fluctuations controls at each scale.



8 LUKE PEILEN AND SYLVIA SERFATY

As in the Coulomb case in [AS22], the local laws are valid down to a temperature-dependent
minimal scale pg, which depends on 8 and is expected to blow up as 8 — 0. Because we use
a description in terms of the equilibrium measure rather than in terms of the more precise
thermal equilibrium measure as in [Ser24], our -dependence in the estimates is sharp for
B > 1 but less good when g — 0, and also our estimate of the minimal scale is not optimal.

Thanks to the coercivity of IN:%‘ (Xn, 1) and the controls provided in Proposition 3.5, im-
ported from [Ser24, Chap. 4], we deduce the following corollaries.

Corollary 1.1. Assume (A1)—(AG6). There exist C1,Co,C > 0 depending only on d,s,V, e

such that the following holds.
(1) (Discrepancy control) Let By be a ball of radius ¢ > pﬁN_l/d, and if £ < 1 as-
sume moreover that By C 3. Letting D(By) := fBZ(Zi]\Ll 0z, — Nuy), we have either

ID(By)| < CN'=a¢d=1 op

(1.31) M min

gs

D(By) s
(220

except with probability < Cpe~C2ANE,
(2) (Fluctuations control) Assume Oy is a cube of sidelength ¢ > pBN_l/d included in 3,

and ¢ is a function such that Oy contains a 2N ~1/4
For any n > N~Y4 we have

N
@ 0, — N du)
[Rep>

except with probability < Cpe=C2ANE,
(3) (Minimal distance control) For a configuration Xy, let

-neighborhood of the support of .

1 s
(132) <o (1M el320) + 1 IVel32))* NI,

1
(1.33) r; == — min(min |x; — x|, N9y,
4 Ji
Assume Uy is a cube of sidelength £ included in S, We have
(1.34) > glr) Sp N ifs#0
CEiGDg
(1.35) 3 40 NTd) Sp AN ifs =0,
z; €0y

except with probability < C’le_C?/ﬂwd.

The control of linear statistics fluctuations of (1.32) is not optimal, we will provide a better
one below under stronger regularity assumptions on (.

Since (1.30) provides an N-independent control on the number of points in a ball of size
pgN_l/d <l< N~1/4 blowing up the configuration by the factor N*/4, taking large enough
microscopic balls and using a Borel-Cantelli type argument, we obtain the existence of a
limiting point process up to extraction (we will not provide details as they are almost identical
to [AS22, proof of Corollary 1.1]).

Corollary 1.2. Assume (A1)~(A6). Let x € 3 and for every i, let xh = NYdz;. For fived 3,
as N — oo, the law of the point configuration {z} —x,..., 2y —x} converges after extraction
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of a subsequence, to a limiting point process with simple points and finite first and second
correlation functions.

We thus provide the first evidence of the existence of a limiting point process, that one
may call a Riesz-f point process, but only after subsequences. Note that the only situation
outside of s = 0 in which the existence of such a point process is known is the one-dimensional
Riesz gas, thanks to the work [Bou23a]. For s = 0, it is known in one dimension and is the
sine-f point process, or in two dimensions in the special determinantal case of 8§ = 2, with
the Ginibre point process.

We note that with the ingredients developed for Theorem 1 we could prove a local version
of the Large Deviations Principle on empirical fields obtained in [LS15] characterizing the
local point process averaged at a scale > N9 as the minimum of a rate function. In the
particular case of energy minimizers, i.e. § = oo, taking advantage of the S-dependence in
the estimates, we could in particular derive precise equidistribution of the energy and number
of points as in [PRN18] but without the extra decay assumption needed there. The details,
both in the case of general 8 and 8 = co would be completely similar to the proof in [AS21],
so we omit these results.

1.4.2. Fluctuations of linear statistics. Our second theorem concerns fluctuations of linear
statistics, as defined in (1.22). We will assume that ¢ € C¥(RY), that pgN~%/4 < ¢ < 1 and
supp e C Uy C Ugp C S for some cube [y of sidelength ¢. The case ¢ = 1 corresponds to the
macroscopic case, the case £ < 1 to the mesoscopic case. We believe that in the macroscopic
case £ = 1, our results hold without the interior condition supp ¢ C 32, however the PDE
analysis of the transport map equation is a little trickier and we chose not to pursue this
generality here.

Because of the nonlocal nature of the problem, the results always involve a-harmonic
extensions of the test-functions. These are defined as follows: if ¢ is a function in RY, we let
©> denote its a-harmonic extension to ¢, that is the solution to

{@E:go in X

1.36
(1.36) (=A)*¥ =0 in X°.

This extension is possible for nice enough functions, and enjoys some regularity, that will be
important to us. In particular it is shown in Lemma A.8 that

(1.37) (—A)" = w(z)dist(z,08)™" asz — 0%,z € X

for some bounded w(z) and we will need to assume some regularity of w on 0X.

We develop a Riesz transport method (counterpart of that of [LL.S18], described in [Ser24,
Chap 9,10], in the Coulomb case), to obtain the following control of fluctuations of linear
statistics, as defined in (1.22). Here (y(z) denotes the cube of size ¢ centered at z.

Theorem 2 (Fluctuations control). Assume (A1l)-(A6) with k = 5 and (1.37) with w €
Cote,

Assume ¢ € C2(RY), that £ > pgN—4, and suppe C Oy(z) C Oy(z) C 5, with the
estimates

(1.38) Vo <5, |ploe < ME°

for some constant M > 0.
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Then, there exist C1,Co > 0 depending only on d,s,e,V,M such that for N sufficiently
large, there is an event Gy with

(1.39) Pr 5(GE) < CreC2ANE

such that if T(EN%)S_d is smaller than a constant depending only on d,s, e, V,M, ' we have

(1.40)

l0g Bry,, [ex0 (72 Flucty (9116, ) || €3 ((r] + e )e).

Note that if we did not make the assumption that ¥ is connected but instead the union of
n connected components, we would need to make the assumption

(1.41) / (—=A)%p* = 0 on each connected component ¥; of 3,
>

which suffices to build the needed transport map. Without the condition (1.41), the result may
be false due to the possibility of integer fluctuations in the multi-component case (see [BG24]
for the treatment of this situation in the one-dimensional log case). This will also be reflected
in the fact that without this condition, the equation for the transport map may not be solvable.
Since we couple the proofs of Theorem 2 and 1, and in particular make use of Theorem 2 for
functions that may not solve (1.41), we restrict our attention throughout the paper to the
case where supp (uy) = X is connected.

In the Coulomb case, the transport method combined with a local free energy expansion
with a good enough rate allows us in principle to derive a full Central Limit Theorem for
fluctuations of linear statistics, as described in [Ser23] and [Ser24, Chap 9,10]. In dimension
two (and one as well), any rate is sufficient to conclude, as seen in [L.S18]. In dimension three
and higher, the currently available rate, which corresponds to a surface error, is not enough
to conclude. The situation in the Riesz case is similar: the method in principle allows to get
convergence for any s and d such that s € (d —2,d), except that the rate we are able to obtain
is only sufficient when s is small enough and ¢ is small enough.

Let us first discuss the question of free energy expansion for the Riesz gas. In [LLS15], the
following expansion was shown:

log Zi5 = —AN*"EE(uy) + (4N 1og N ) =g + log Ky 5 (v, Cv)
log Kng(pv, Cv) = —NEnt(uy) + NZ(B, pv) + o(N).
Here Ent(u) = [pa plogu, € is as in (1.14) and

(1.42)

(1.43) 20610 i= =8 || 13 (0)fas(Bud (@))ds + LyEmt()Leca

The quantity fys is a function of the inverse temperature (note that here an effective temper-
ature B’/ appears), and corresponds to the pressure at that temperature, meaning the large
volume limit of the free energy per unit volume for a unit charge density. The expression
(1.43) then simply corresponds to scaling that limit in terms of the effective density, in other
words, to a local density approximation.

In [LS15], the function fys was characterized via the minimum of a rate function governing
a large deviations principle on point processes. Here we will characterize it directly as the

pressure, by showing in Lemma 7.2 the existence of the large volume limit of the free energy

ISince s < d, this is satisfied for N large enough for instance as soon as £ > N~1/9.
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(per unit volume) of a Riesz gas confined to a box, with a rate, corresponding to surface
additivity errors. This will be done by an almost additivity property of the free energy
obtained as a consequence of the local laws, as done in [AS22] in the Coulomb case. The rate
obtained in that limit allows in principle to improve the o(N) error in (1.42). However, there
are additional surface errors on 9% which damage this improvement. But in view of obtaining
a CLT via the transport method, what matters is not the rate in the free energy expansion,
but rather the rate in the relative free energy expansion

log Ky g(t) — log Ky (ko)
where i is the transported measure, and g = py the original one, and for that we can obtain
an improved rate.
To go further, we will thus assume a relative expansion of next-order partition functions
(see Sections 5 and 7 for a formal definition)

(1.44)  log K} 5(sue, G o @) — log K510, ) + N (Ent () — Ent(uo))
= N (2(8. 1) = Z(8,10)) + O((8 + )N LRy)

where Ry is the error rate and K]g\,{ 3 corresponds to the free energy restricted to the event Gy
where local laws hold as in Theorem 1.

We will also need an additional assumption on fqs: we assume that the function y — fq(v)
is p times differentiable and satisfies

1
(1.45) Vn <p, fory e §B%inus/d,25mmaxus/d , we have |(yfas()™| <g |y|* ™.
4 4

This can be interpreted as a no-phase transition assumption at the effective temperature
I3 ,uv(:c)%. It is reasonable to expect that the CLT result may fail if there is a phase transition.
We formulated an assumption that is uniform as 8 > 1 in order to be able to deduce a zero
temperature result by taking a uniform limit as § — oo, but one may dispense with the
uniformity in the assumption is one is not interested in that.

Our CLT result has two parts: the first is conditional and asserts that if R; can be shown to
be small enough (in terms of the scale N'/9¢), then the result holds. The second part asserts
that the rate can indeed be obtained small enough when s > 0 is small enough and ¢ small
enough, which effectively restricts the result to dimensions 1 and 2 (because of the constraint
s > d —2). This is the same limitation as encountered in the Coulomb case in [Ser23].
However, we expect that our error rate which saturates at surface errors is not sharp, and
thus that the result holds much beyond this setting.

Theorem 3 (Central Limit Theorem). Assume (A1)—(A6) and (1.37) for some k > 5.
Assume p = @o(52) for some gy € C¥(RY) and that pgN~H4 <0 <1 and supp p C Oy(z) C
Ooe(2) C X for some cube Oy(z) of sidelength €. If s # 0 assume that (1.45) holds.

Assume (1.44) with a rate Ry such that

(1.46) (le)g R o 0

. d a —
ol s

as N — oo for some p > 2 such that k > 2p + 3. Then,

(1.47) mw — (EN_%)ig Mean(yp)
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converges in distribution to a centered Gaussian with variance

Cq d=s {Hw?\l? oo ifl=1
3 2 H

(1.48) Var(yp) =

2Cd75 ||SOOH2 d—s ng — 0 asN — OO7
H

2

where cqs and cq o are as in (1.9) and (1.10), and

(1.49)
ﬁcjs <—1 n fdls:o) /Z(—A)“soz(loguv)

M _ 9 o S s s S 2. 22 .
ean(p) = _ VCd p i BN ((1 + ) fas (B )y + 5fd s(ﬁué-)uv"> Lo iff=1
0 ’ if{ — 0
Moreover,
(150) ﬂw _ i (KN*%)7§ Mean((p)

i

converges in distribution to 0 as N — oo, uniformly as § — oo.
The result holds without the additional assumption (1.46) ford =1,2 and s < s, where

{0.03973 ind=1,

0<sy~
%™ 0.06059 ind=2.

as long as
! < Nid(siQ) .

This theorem provides us with the precise (expected) order of the fluctuations after one
removes a deterministic shift (the factor containing the mean) which is divergent as soon as
s > 0.

Notice that the additional assumption on ¢ small holds automatically in the case s < 0 if
¢ = o(1), which allows to match the result of [Bou23b] in the one-dimensional case, which
was the only prior results in the Riesz case (however much less regularity of the test function
was needed in [Bou23b]). We could also have a result for larger s > 0 but at the expense of
being restricted to smaller £’s.

The second statement (1.50) in the theorem is meant to allow to take 8 — oo, which implies,

under the same suitable assumptions that for minimizers of the energy Hpy, a convergence
Flucty,, ()
eas 2]

Ndg)s/2

Let us di(scus)s the comparison of this result with the Coulomb case, which is solved only
in dimension 1 (see [Ser24]) and more interestingly, in dimension 2 in [LS18,Ser23] (refer also
to [Ser24,Ser23]). In the Coulomb case, when ¢ is supported in ¥, then its harmonic extension
(in that case aw = 1) outside ¥ is simply itself and the mean and variance expressions involve
only ¢ itself. However, when the support of ¢ overlaps 3¢, then, as first shown in [AHMI5]
in the particular (determinantal) setting of 3 = 2, the expressions involve ¢* instead of ¢.
In the Riesz case, even when ¢ is supported in X, it does not coincide with its a-harmonic
extension due to the nonlocality of the fractional Laplacian, thus ¢* is always involved, and
this counts among the difficulties in handling the Riesz case.

result for after substracting off the appropriate shift.
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In the (two-dimensional) Coulomb case, the variance expression was [|V¢[? (or more
generally [ |V¢>[?), leading to interpreting the limit of A=Y(3>N | 8., — Nuy) as the Gaussian
free field. Here in the Riesz case the variance is a homogeneous fractional Sobolev norm of
©>. Modulo the a-harmonic extension, this structure is characteristic of a fractional Gaussian
field (for a review of the notion, we refer to [LSSW16]).

This leads to the following interpretation:

Corollary 1.3. If convergence holds, the quantity (—A)~*(XN., 8. — Nuy) converges to a
Gaussian field of Hurst parameter —s/2 in the mesoscopic case £ — 0, or a variant® of it in
the macroscopic case.

To our knowledge, this is a new and natural occurence of such fractional Gaussian fields.

1.5. The transport method. Let us next outline the implementation of the transport
method, emphasizing the differences with the local situation.

The starting point is the rewriting of the Laplace transform (or moment generation func-
tion) of fluctuations as a ratio of partition functions, as done in this context for instance
since [Joh98]: a straightforward computation shows that Fluct,, (¢) being defined in (1.22),
we have

s 2-5§ Zn s (Vy

(1.51) Esy, [exp (—BtN'~iFluct,, (¢))| = N ) %"dﬂvm,

where V; :=V 4ty and Zy g(V') denotes the partition function of the Riesz gas of potential
V, asin (1.5). The interesting regime will be the regime of small ¢, thus we can think of the
Laplace transform of fluctuations as a ratio of two partition functions, that of a Riesz gas with
perturbed potential V; to that of the original Riesz gas. It then appears that understanding
the log Laplace transform of the fluctuations amounts to obtaining a fine expansion of the
free energy log Zn g(V') in terms of V. Since we cannot get a precise enough expansion for
this, we will bypass this by combining a cruder expansion of the free energy, with a second
way of estimating the ratio of partition functions. That second way is via a transport, which
is a good choice of change of variables. Computations reveal that a good choice is one that
transports the original equilibrium measure py into the equilibrium measure py, associated
to the perturbed external potential. When working in the regime of small ¢, we do not need
an exact transport map, it suffices to find a map which is a perturbation of identity and
transports at leading order py to py,, i.e. a map ¢ : RY — R9 such that

(1.52) (I +t)#uy = pv; + o),

which, by linearization of the Monge-Ampeére equation for instance, amounts to solving
i 0

(1.53) div ($pv) = v

In the bulk Coulomb case where the perturbation ¢ is supported in the support of uy (call
this the interior case), it is easy to check that the difference of the equilibrium measures is
supported in ¥ and is then explicit in view of (1.17) : it is

t
(1.54) pv, — by = —Agp.
Cd

Ve
capy

This makes solving (1.53) immediate : it suffices to take ¢ =

2due to the harmonic extension
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Still in the Coulomb case, when ¢ is not supported in ., this is no longer possible, as the
support of the equilibrium measure itself varies, as studied in [SS18], and the difference in
equilibrium measures involves the harmonic extension of ¢. The resolution of (1.53) becomes
much more delicate. In the present Riesz case, we always encounter that difficulty because
the support of the equilibrium measure always changes, even in the interior case. To carry
the method through, we need not only to find a solution v, but to ensure it is sufficiently
regular, and have sharp estimates for its derivatives in terms of those of ¢, in particular as
© get supported on small scales. This is the core of the new analysis performed in Section 2,
which is of analysis and PDE nature.

Note that the one-dimensional log case is also a nonlocal case. In that setting, finding
¥ solving (1.53) turns out to be the same as the inversion of a so-called “master operator"
(see for instance [BG13,BG24,BL18] and references therein). This is an integral operator
in one dimension, for which an explicit inversion formula is available from classical analysis,
see [Mus92], allowing to read off the needed estimates. This is the route that was taken
in [Pei24]. In higher dimension, or for s # 0, these formulae are not available, and the
inversion of the master operator should rather be seen as the solution of the appropriate PDE
(2.16) which is a rather nonstandard PDE, for which we need to get sharp estimates.

An important difficulty in the Riesz case is that, contrarily to the interior Coulomb case
(where we could take 1) = CV‘P ), the transport map 1 is no longer supported in the support
of . When we study fluctuations for test functions that live on a mesoscale, this prevents us
from localizing the estimates to the support of ¢. Instead, ¢ has decaying tails, and we need
to estimate their decay speed away from supp ¢, and to estimate the contributions of the tails
of the transport to the errors, which need to remain small in terms of the chosen mesoscale.

Once the transport has been found, a change of variables reduces the analysis of the ratio
of partition functions to one crucial term corresponding to the expectation of quantities of
the form

N N
(1.55) //( ooy V)~ V)T VO (e - y)d(; 52, = Npu) () ( L Nu)(y),

which correspond to the n-th variation of the energy Fy along the transport (I + ), as
described for instance in [Ser24, Chap. 6], and have a commutator structure. Such terms are
the analogues of the so-called “loop equation terms" in the case s = 0. To control them, we will
make crucial use of the sharp and localized commutator estimates recently proven in [RS25]
and recalled in Proposition 3.8. These ensure that for all configurations, these terms are all
controlled by a constant (which depends on norms of derivatives of 1) times (the localized
version of) Fy + CN'&. The control of this quantity at first order (n = 1), inserted into
(2.1) after the change of variables already allows to obtain the fluctuation bounds of Theorem
2. To obtain Theorem 3, we need the commutator estimates up to order n = p, and the
combination with another free energy expansion with a good enough rate.

1.6. Rest of the proof and plan of the paper. In addition to the transport problem,
dealing with the nonlocal Riesz case involves other difficulties, already encountered in [Pei24].
First, as introduced in [PS17], we use the Caffarelli-Silvestre extension to represent the frac-
tional Laplacian as a local divergence-form operator with singular weight. This makes the
electric formulation possible and is described in Section 3. The next ingredient is the screen-
ing procedure which is performed in the extended space R4t1, and is the crucial tool to show
the local laws, almost additivity and perform the bootstrap procedure. The need to control
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the energy on good “heights" in the extended dimension in order to perform the screening
requires to couple the bootstrap with the control of fluctuations.
The results are coupled and proved as follows:

e We assume local laws down to scale 2¢. We show that this implies the control of
fluctuations for test functions varying on scales > 2¢ stated in Theorem 2.

e Still assuming local laws hold down to scale 2¢, we use the fluctuations control to get
a control on the “electric field" at heights comparable to ¢. This allows to perform
the screening, which then allows to show that local laws hold down to scale £.

e One may then iterate down the scales to obtain the local laws at all scales £ > pgN ~
hence Theorem 1.

e This al/so implies that the fluctuations control of Theorem 2 holds at all scales £ >
PBN_l d.

Note that this coupling of the two proofs was not needed in the Coulomb case where no
control of the electric field in the extended dimension is needed for the screening.

As mentioned above, the proof of the CLT relies on the free expansion with a rate of (1.44).
This in turn is done as in [AS21,Ser23] by first obtaining a rate of convergence for the free
energy in a cube with uniform background equilibrium measure, obtained by almost additivity
of the free energy, then using the almost additivity again to split the domain into regions where
wy is close to constant, and using the transport method to estimate the difference with the
free energy with uniform background. This is done in Section 7.

The first part of the paper is devoted to proving the fluctuations bound stated in Theorem 2
at scale 2¢, assuming the local law Theorem 1 at scales > 2¢. It starts with Section 2, devoted
to solving the transport map problem and showing good estimates for it. Section 3 reviews
the electric formulation and extends the transport method to the Riesz setting, and finally
Section 4 concludes with the proof of the fluctuations bound stated in Theorem 2 at scale
2/, assuming the local law Theorem 1 at scales > 2¢. Much of the argument for Theorems 2
and 3 can be understood without a technical understanding of the local laws bootstrap, and
so we present the proof of these theorems first, for readers who are interested primarily in
fluctuations of linear statistics. The second part of the paper, in particular Section 6, is then
devoted to proving that the local law, Theorem 1, holds at scale ¢ if it holds at scale > 2.
In Section 7, we obtain the almost additivity of the free energy as a consequence of the local
law, and prove the free energy expansion with a rate via domain partitioning plus transport.
Section 8 gathers some independent estimates on fractional Laplacians that are needed, in
particular in the construction of the transport map. Section 9 presents the proof of the
screening procedure, adapted from [PS17]. Finally the paper concludes with the appendix by
Xavier Ros-Oton providing the fine behavior of solutions to the fractional obstacle problem.

1/d
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2. SOLVING THE TRANSPORT PROBLEM

2.1. Preliminary: reexpressing the Laplace transform. Let us start with the rewriting
of the Laplace transform of linear statistics, which will make the correct choice of transport
appear. We start by a generic change of variables ®; and will make a specific choice below.
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Lemma 2.1 (Reexpressing the Laplace transform). Let ¢ be a compactly supported measur-
able test function, and let Fluct,,, (@) be as in (1.22). Set V; :=V +tp. Then, for anyt € R
and any event G C RdN, we have

ZVt,g

(2.1) Epy , {exp (—ﬁtlegFluctw(cp)) 19] = exp (tﬁ]\ﬂz/ gpd,uv) NF
’ Rd ZNg

with

s 1 N
Z]‘\%’ﬁg = / exp | -GN "4 Z 5g(acZ —xj) + NZ Vi(x;) dXy.
GC®RHY it i=1
Furthermore, we can expand

(2.2) Epy , {exp (—BtNl_gFluctuv(cp)) lg} = €TOE]P>N’5 [eTH'TQ 1g} )
where
(2.3)

Toi= =85 (5 ] (e@ita) = 910) — o =) duv ) () + [ (Vio B = V) )

+ N | (logdet D®;) duy + BtN?~d /d wduy,
R

Rd

(2.4)

Ty = — NI~} /R d ( /R 8(@i(x) = @i(y)) — g — ) duv (y) + (Vio @ — V)(x)) dfluct,,, (),
@5)  Toim= T [ (@) - @ilw) - gl - v) ditucty (9)dituct, (2)

+ / log det D®, dfluct,,,, (x)
Rd

= — BN (Fn(®:(Xn), ®#uy) — Fn(Xn, py)) + Fluct,,, (log det D®;)

where we have let
N
(2.6) fluct,, := Z 0z, — Npu.
i=1
Proof. The relation (2.1) is immediate from spelling out the definition of Fluct,, (¢). We
then perform the change of variables y; = ®;(x;) in the integral defining Z}\/}Bg to obtain

Epy {exp (—ﬁtNl_gFluctw(go)) 19] exp (—BtNQ—S /Rd ¢duv)

1 N N
- % ; exp(—ﬁN d (5 ;g(‘bt(aji) — Dy(xj)) + N; Vi(@(%))) + glogdet D@t(xi)>dXN

— Ery, [exp( N5 5 S (6(0(e) = lay) ~ o) + Né(% 0B~ V)(a))
+ iv: log det D@t(xi)) lg] .
=1
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Expanding Zi]il 0z; as Npy + fluct,,, and collecting terms, we find the result. The relation
(2.5) follows by the definition (1.21).
O

2.2. Choice of transport and estimates. The choice of transport is made so that &, is a
perturbation of identity of the form ®; = I + 1, chosen so that, at leading order in ¢ — 0,
the T} term in the expansion above vanishes, leaving only the constant term Tj to compute,
and the subleading order term 75 to analyze.

Plugging in ®; = I + ¢ and linearizing the 77 term in ¢, we find that ¥ must be chosen so
that

en [ ([ Vel =9 @) = vl)dny )+ 0(@) + V(@) - vla) ) dincte (2).

We will choose 1 such that the term in factor of fluct,, vanishes identically. The reader can
recognize the condition Z(1)) = ¢ for a certain “master operator" = that needs to be inverted
(as in [BG13] and references therein for the one-dimensional log gas).

This can be rewritten as
(2.8) (Vig*pv)+VV) - —gx (div(Ypy)) + ¢ =0 in R%

Using the notation hf for the potential g * f generated by f, and recalling the definition of
¢y in (1.16), this becomes

(2.9) Y-V —hWE) Lo =0 in RY.

This is the generalization to arbitrary dimension and interaction potential of the master
operator inversion.

Let us now explain how to solve (2.9). Since uy vanishes outside X, the function A4V (¥rv)
is a-harmonic there, hence the only possibility to solve (2.9) is to make ¥ - V{y + ¢ be a-
harmonic outside of 3. Since {y vanishes in 3, that function equals ¢ in X. Thus, the only
possibility to solve it continuously is to have 1 - V(i = ¢* — ¢. In other words we need to
find ¢ such that, in RY, there holds

div (Ypy) — 2
(2.10) {h 4

Y-V =¥ — ¢

or equivalently

(2.11) {div (Yuy) = i(_A)aSDE

Y- Viy =¥ — .
It is sufficient to solve (2.11) in order to obtain (2.10) since convolution with g uniquely inverts
(=A)* for L' functions, cf [Kwal9, Theorem 2.4]. By Lemma 8.1, ¢* € H® which embeds
into L' by [DNPV12, Theorem 6.5]. div (vuy) is continuous in ¥, compactly supported and
has an integrable singularity (~ (dist(,2z0%))~%) at 9%, so it is also in L1.

Since @ < 1, by (1.24) py vanishes at the boundary of ¥ and, if ¢ is regular enough, 1 uy
is continuous across 0%, and thus

(2.12) div (Ypy) = div (Ypuv)1s,

which means that the first equation needs to be solved in each connected component of X
only. While we only prove Theorems 1-3 in the case where X is connected, the results we state
in this section remain true in the case where X is a disjoint union of finitely many connected
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components. In that case, the solvability in each connected component is ensured by the
condition (1.41).

Care is needed for the boundary condition because of the blow up of (—A)%p* as w dist(-, 9%) ™
on the boundary as in (1.37). Because 1uy behaves like ¢sdist(-, %)% as in (1.24), whose
normal derivative along the boundary blows up like 1s(1 — a)dist(-, 0¥) ™, equating the two
blowing-up rates leads to imposing 1 - s(1 — ) = w, thus we are led to solving

div (Ypy) = ¢ (-A)%* in 3
(2.13) V= oy on 0%
P - VCV =¥ — in X°.
We will next see that this is solvable, and that the last two relations are compatible at 0.
Before proving the solvability with estimates, let us mention a word about the Coulomb

case in which o = 1. In that case puy is generically discontinuous across the boundary of X
and div (¢uy ) has a singular part on the boundary. The equation to solve is then

div (Yuy) = —éAgp in 2
(2.14) Y-t = —2—[Vp¥]-ii on %

Cdpv
V-V =¢” — ¢ in 3¢,
We refer to [LS18, Lemma 3.4] where this problem is formally derived and solved in any
dimension.

Proposition 2.2 (Good transport map and estimates). Let U be an open neighborhood of ¥..
Suppose that jy satisfies (A4) for s(x) € C*(X) for some e € (0,1), and that 0% is CF+1+e,
Assume V € CHIYRITY) o e CEHL(RY), that £ < 1 and suppy C Oy(z) C Oae(2) C B, with
the estimates

(2.15) Vo <k+1, [¢llcr <M

for some constant M > 0. Assume that ¢ satisfies (1.37) for some w(x) € C**<(U). Finally,
assume (1.41).

Then, there exists a map ¥ defined in RY, continuous in R, and a map ¥+ defined in
RN, vanishing in RA\U and continous in RE\X, perpendicular to VCy, and such that

div(Yuv) = g7 (-A)%" in %
(2.16) V-n= (l—wa)s on 0%
V= (¢" - P e + Ut in T

and v satisfies (2.9) in RY. Moreover, 1 € C*(X) N C*(2¢) N C(U).
Furthermore, for any m < k — 3, we have for any x ¢ 0%,

W if ¥ € Ogy(2)
(2.17) (Ve (z)| S M W—Zlgw if x € U\Dz(2)
u_,zf% if x € US.

Notice that in the one-dimensional log case s = 0, this scaling agrees with that of the
equivalent formulation of that transport in [Pei24, Lemma 4.10] obtained there by exact
formulas for the inversion of the master operator. We have been careful to assume that
s,w € C**€ and 0¥ is C*+17¢ since some of the fractional and degenerate regularity results we
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seek to apply, namely [TTV24, Theorem 1.1] and [ARO20a, Theorem 1.3], do not necessarily
hold for integer Holder classes.

Before moving on to the proof of Proposition 2.2, let us recall more about the solutions to
the fractional obstacle problem.

2.3. Preliminaries on the fractional obstacle problem. Theorem 5 in the appendix
recalls the result from the work of [CSS08a], [CDSS17a] and [ROS17a], which classifies the
free boundary points as regular or degenerate (or singular) points.

In our notation, regular points are those for which

(2.18) Cv(2) = c(mo)dist(z, 9%) () + O(|lz — x| ToH)

for some ¢(xp) > 0 and a > 0 with a+a < 1.

If we make an additional assumption on the obstacle, then we can guarantee that all points
are regular. Namely, this holds if the free boundary is Lipschitz, 1 € C?**7 for some v > «
and if Ay < 0 on {¢p = ¢y —V > 0}; this is Proposition A.3 in the appendix. As we will
see below, we actually need a slightly stronger condition on the free boundary; however, as
long as (A3) and (A2) hold, we can conclude that all points of the free boundary are regular.
With the additional regularity of V', X. Ros Oton proves in Proposition A.7 in the appendix
a quantified decay rate of uy near the free boundary: as r — zg € 9%y with xg a regular
free boundary point then we have in our notation

(2.19) py () ~ dist(x, 0%y ) 2,

justifying the assumption (1.24).

Let U D X be an open set such that (2.18) holds in U \ y. In order for us to define the
transport map with C7 regularity for a general 0 < o < 1, we will need the free boundary to
have C''*9 regularity. As a result of [JN17, Theorem 1.1], we have C?*7 regularity at regular
points for some v > 0 dependent on ¢ (and thus, in particular, C'*?) once V € C*; hence, for
standard existence of a general Holder continuous transport, we will need to assume V € C*.
Higher regularity can be obtained with higher regularity assumptions on V' and in fact if V' is
smooth, the free boundary will be smooth as well. This result was established independently
as well in [KRS19, Theorem 1.1]. The regularity assumptions (A4)-(A5) are the additional
higher regularity assumptions that we will need to recover the C* regularity estimates on 1)
given in Proposition 2.2.

2.4. Proof of Proposition 2.2. We now give the proof of our main analytic result, on
the existence of a good transport map with estimates on its derivatives. We will use some
auxiliary results on fractional harmonic extensions proved in Section 8.

First, we observe that under our assumptions py is an As-Muckenhoupt weight on X.
Since py is bounded below away from 03, we only need to verify this for small balls near the
boundary. We use the assumption that all points of the free boundary are regular, and the
quantitative form (A4) that we assume. Thus, for € > 0 small we find a uniform bound

Foavt it s tmpef mpet sdreet g,
Be Be Be Be
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establishing the required uniform bound, by definition an As weight. We now seek to establish
the existence of weak energy solutions in ¥ of

{—div (pyVu) = st(—A)agpz in ¥
7=

(2.20)

Vu - on x

(1—a)s

in the Hilbert space H! . This is the Hilbert space (see [GU09, Theorem 1]) of functions u
nv

such that
/uzuv —I—/ |Vul?uy < oo
b)) b

equipped with inner product

(2.21) (u,v)y = / UV Ly +/ Vu - Vouy.
b b
These weak solutions are ones that satisfy
1
(2.22) [ TuVon = [ -ayet
by Cds Jx

for all ¢ € H}LV.

Step 1: Existence of weak energy solutions. Let us first restrict to the subspace H of
all functions u with [upy = 0, which is a closed subspace since [wupy is a bounded linear

. 1
functional on H uy 88
) 1/2 1/2
< [ravavim < ([aw) " ([u) " <l

[

Notice that on H, the inner product

(2.23) (u,v)1 := /Vu -Vopy

induces a norm equivalent to the one defined in (2.21) because of the weighted Poincaré
inequality for As-weights in [FKS82, Theorem 1.5]. Letting & = [upy = f upy

(s < (o) = () + / WPy = (u,u)s + / (u— 1)y < Clu,u);

since u = 0 in H. We will conclude as usual via Riesz representation theorem once we
establish that ¢ — [ (—A)*p¥¢ is a bounded linear functional on H; this, however, presents
some difficulties because (—A)%p™ blows up like dist(z,0%)~* as  — 0. To get around
this, we follow the approach of [TTV24, Theorem 2.10] and show that (—A)%p” is at least
locally the divergence of a regular function.

Straightening the Boundary. Let k be fixed as in the assumptions of Proposition 2.2. Choose
o € 0%, and without loss of generality set g = 0. Locally then, in some open neighborhood
O we can write 2, = ¢(21,...,T,_1) with ¢ € C'T*(O N L). Define the diffeomorphism

(2.24) D(x1,...,n-1,2Tn) = (T1,. .., Tp_1,Tn + ¢(x)) = (T1,...,Tn)
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which maps B} = Br N {z, > 0} to O N {z, > 0} for some R > 0. We can assume
®(0) = ®71(0) = 0, and observe also that ®(Br N {x, = 0}) C ONIX. The Jacobian of this
map is then

1 ifi=gj
(2.25) (Jo(z))ij =4 22 ifi=n,1<j<n-—1
0 otherwise

and satisfies | det(Jp)| = 1. One can readily compute (albeit with some tedious multivariable
calculus) that —div (uyVu) = - (=A)** in ON Y if and only if

Cd,s
(2.26) —div (py AVau) = f
in Bg N {x, >0}, with iy = py o @, u=uo®, A= Jg (Jy")t and f = L (-A)%>" 0 ®.

Cd,s
Now, it follows (cf [TTV24, Lemma 2.4], as in the proof of [TTV24, Corollary 2.9]) from our
regularity assumptions on the boundary that

dist(z,0%) o @ c C’k(BE) and dist(z,0%) o

Tn Tn

>c>0

for some constant c¢. In particular, in view of (1.24), shrinking R if necessary, we have
(2.27) —div (zL"*Ava) = f

with A = (so @)MZ € C*(B}). Additionally, using (1.37), we can write

f = (wo ®)dist(®(x),08)! ™ := wa, “,
with w € C*(B}) and bounded from below. Then, if we define

1o
(228) F = (0,0,...70,1_04‘/0 @(.’El,...,ﬂfn_l,t)tia dt)

n
we have F' € C*(B},) with HFHCk(B};) < HEHC,C(BIJ%) < Hw”ck(B;) as in [TTV24, Lemma 2.4]
and the arguments therein. Furthermore, we can rewrite (2.27) as

—div (zL7*AvVa) = f = div (z17°F).
Reverting to our weight 77y and defining F = Iij;aF € C*(B}), we find
(2.29) —div (a7 AVa) = div (v F)

in B};. Finally, if we define G = Jg(Fo®™1), we have 1Gllex oy S llwller and F=J3 Go®)
and one can readily compute that

—div (v AVa) = div (i Jg (G o ®))
in BE if and only if
(2.30) —div (py Vu) = div (uyG)
in ONX.
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Bounded Linear Functional. We use the divergence form above to show that [(—A)%p¥¢ is
a bounded linear functional on H. Let {O;} denote a finite collection of charts covering a
small neighborhood F of 9%, and let {;} denote a partition of unity on E subject to this
collection of charts. Using the previous substep, we can write

1 .
& (—A)%™ = eidiv (uv Gi)

for some G; with [|Gil|cr(0,) S [lwllcx, and so

1 T L g~ ATy — i S
G =8 [ eyt = 5 [ oudiv G

E Cds
=-y Gi- V(i
Z‘/O%’/LV (¢¢)

= — Z /O VIvG: - (Vi iV + /uv oVi) .

By Cauchy-Schwarz and the boundedness of v;, we find
1/2

/Ecj’f(—A)a(pE < ZZ: (/Mv\Gin)l/z </O MV|V¢!2+MV¢2> < l16]la.

We can similarly bound using Cauchy-Schwarz on ¥\ E since (—A)®p* and uy are bounded
above and below there to conclude that ¢ — [ ¢(—A)%* is a bounded linear functional on
H.

(2.31)

Ezistence. The Riesz Representation theorem guarantees a unique u € H such that (2.22)
holds for all ¢ € H. To extend (2.22) to all test functions ¢ € Hﬁv, we need

a0

for compatibility. This follows from the fact that (—A)® is a mean-zero operator and thus
0= [-are® = [(are,

Step 2: Boundary Condition. Next, we show that these weak energy solutions have the
desired boundary condition. From [TTV24, Theorem 1.1], in the chart O; the boundary
condition satisfies

as desired.

(VU—}-Gi)'ﬁ:O,
where 77 is the outward pointing unit normal. Using the relation

1
C—(—A)‘“g@E = wdist(z, %)™ = div (uyG;) = div (s dist(x, 08)72G))
d,s

in view of (1.24), we find

wdist(z, 0%) ™ = dist(z, 08) "G Vs + s(1 — a)dist(x, 0X) " *Vdist(x, %) - G;
+ sdist(x, 0%) ~div Gy,
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which can be rewritten as
s(1 — a)Vdist(z,0%) - G; = w — dist(x, 0X)VsG; — sdist(z, 90¥)div G;.

Taking x — 0% and using the regularity of s, w and G; coupled with Vdist(x,0%) — —7i, we

find
w

E )

and thus
w

s(1—a)
Setting 1) = Vu, we find a solution to (2.16) in 3.

Vu-n=

Step 3: Schauder Estimate up to the Boundary. First, let us examine the behavior of
1 = Vu in the interior of 3. Writing £ = UQ; as above for the union of charts covering 0%,
observe that py is bounded below in ¥\ E. So, we can appeal to standard elliptic regularity
to control u inside F, thus finding

(2.32) ullc2toay S llwlleea)

for any A C E, recalling that for integer o we define C? as the Holder space C°~ 1. Applying
(2.32) to A = g (we omit the z in the notation) and using (8.16), we obtain for any
1<m<Ek,

om0 S 2 I(=A) %l o + 2@l grim S M2 4 pmd-mi1y

where we have also used (2.15) and Lemma 8.4. This proves (2.17) in Og.

In f]\Dgg we can obtain the decay as well by applying elliptic estimates in dyadic annuli
centered around [y, of radii 2%¢ until we hit the edge of the bulk. More precisely, choose k.
such that 2%/ is at macroscopic scale and o, , C 3. Let Ay = Oge \ Ogr—2,. We can use
(2.32) and (8.16) to obtain that

pllze
(Qk_QE)Qd—s-i-m—l :

[llemay S [ (2067 ) SEPNEA) el +

k)
The first term is dominant by Lemma 8.4, so

M4
(2k._2€)2d—5+m—1

[Pl emay <

by (2.15). Adjusting constants and summing over Ay yields

< M¢d
S |z — z|2d—s+m—1

[VET ()

which is (2.17) in £\

Near the boundary of ¥, we need to be more careful due to the decay of py and the blowup
of (—A)*¢*. Applying [TTV24, Theorem 1.1], we obtain the control
(2.33) lullcrteo,nn) S lullL2oins) + 1Gillce (0,n5)

for any o ¢ N. We can rewrite this estimate using the equation (2.16) and our divergence
form for the right hand side. With E = UQ; as above and recalling that [ |Vu|?uy is an
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equivalent norm on H, we write

1 1 1
(2.34) [[ul% = / VulPuy = / w(— D) = / (—A) P u+ / SN
b » Cd,s E

Cd,s S\E Cd,s

The integral on ¥\ E can be controlled via Cauchy-Schwarz, writing

@ 22 1/2 1/2
D) ‘(_A) Y ’ 2
/ u(=A)%p™ < / —_ / u”py
Y\E Y\E j20% Y\E

and so since [yt < oo,

e PR Py P

For the integral in E, we argue as in (2.31) that

[ ateare] e (fma)” ([ miw )

Cd,s
S NGl < llwll oo gsy llul -

(2

Inserting these into (2.34) we find

1/2

lull? S llwllze [lull
and from (2.33) we conclude that
||U||Cl+U(E) S HwHC"(E)-
for 0 ¢ N. Recalling the definition ¢» = Vu in ¥, we can rephrase the global estimate as
(=A)p”
dist(x, 03)~«

(2.35) 1Vllcos) S lwllees) = ’ :
Cco (%)

In view of Holder interpolation of (8.16), we have (applying (2.35) for o = k + ¢€)
|W”ck+e(g\§) < edH‘P”L"o + €d+2H(_A)a<P”L°°

which yields, in view of Lemma 8.4,

(2.36) Hchk(z\g) S M

using (2.15) and Lemma 8.4, which is (2.17) in ¥\ 3. Note that we needed to be careful to
apply (2.35) for o ¢ N as [TTV24, Theorem 1.1] is stated only for noninteger o.

Finally, the above estimates were only for V®™1) with m > 1. Extending the above
estimates on V&™) for m > 1 to an L*> (m = 0) bound on ¢ then follows from using that
[9] = O(¢%) at O and integrating the derivative estimate.

Step 4: Continuity Across the Boundary. We now establish continuity of 1 across the
boundary.
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Rewriting the external transport at the boundary. Let x¢ € 0%, and let ¢;(x¢) be the unique
constant such that

(2.37) Vv - i = ci(wo)dist(z, 02)* + O (|z — o[
where a > 0 is such that o + a < 1. Thus, in U \ ¥, as = approaches x from the outside,
b))
. L s 4
1 . =
$i>rgow (@) e c1(zp)dist(z, 0X)

Furthermore, since ¢ € C? we know that (—A)%p € L*; then, regularity for fractional elliptic
problems (cf. [ROS14, Theorem 1.2]) gives us a unique constant ca(zg) near zo such that

(2.38) 0> (x) — p(z) = colwo)dist(z, IX)* + o(dist(z, IX)*) as = — xg
and so

) _  ca(zo)
(2.39) :cligclo Y= o1 (20)

as x — xo from U \ X.

Agreement of Boundary Conditions. We now claim that the Neumann boundary condition in
(2.16) and (2.39) agree. First, recalling that for zy on the boundary
1
w(zy) = lim ——(—A)%%* (z)dist(z, 9X)*

=20 Cy g

and s(xg) = limg_z, %, we can rewrite the Neumann condition in (2.16) as

. ~ lim (—A)p>(z)dist(x, O%)
240 0] = 0 T g ()

Lemma A.8 yields

(2.41) (—A)%p® = (—=A)¥@ + Cqca(x0)dist(x, 0X) ™% + o(dist(x, OX) %)
where
(2.42) o = —m.

Proposition A.7 also gives
(2.43) (1 — @)caspv () = acr(zo)dist(z, OX) ™ + o(dist(x,08)' %) as x — g
where ¢ (x0) is as in (2.37). We then compute
—A)%p*(z)di by
o) — i A @) ist (0. 05)
w0 (1= a)eqspv (@)
. ((=A)*p + Cuea(g)dist(z, 02) ™) dist(z, 0X)
= lim = .
T—0 ¢oci(zo)dist(z, 0X)1 -2
. (=A)Y . CoCo(mg)dist(z, 0X)1
= lim —F—dist )+ 1
e (o) S, OB 4 i o st (@, )18
62(35'0)
C1 (.’L’o) ’

(2.44) =
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which agrees with (2.39). Thus, 9 is continuous in its normal component across the boundary.
We may then build 1 continuous exactly in the same way as in the proof of [LS18, Lemma
3.4] by compensating with an appropriate tangential vector field ¥*: consider the trace
¥ — (¢ - )i on X from the inside, and extend it to a regular vector field vanishing outside
U, then subtract off the projection of that vector field onto V{y to obtain a vector field 1"
which remains perpendicular to V¢ and vanishing in U¢. In view of (2.36), and the C**!
regularity of %, we can obtain ¥ such that, for m < k,

(2.45) VO™ oo (sey S lpllzot?.
The vector field v is now defined in RY.

Step 4: Exterior Schauder Estimate. We apply the boundary Harnack inequality for
a-harmonic functions from [ARO20a, Theorem 1.3]. Up to a rotation, we may as well assume
at a point zg € 9% that 7 = €, the unit vector in the z,, direction. The regularity of ¥t is
provided in (2.45), so it is sufficiently to consider

Viy
IV¢v]?
Notice that outside of ¥, we have (—A)*(y = py + (—A)4(V —cy) = (—A)*(V — ¢y ). Since
(y =0 in X, we then have
(=28)*(0i¢v) = (=A8)*(V —cv) in Bp(x) N X°
{8ZCV =0 in Br(Io) nx

(™ — )

for zp € 0¥ and r > 0 sufficiently small. We also have
(=A)*(¢™ —¢) = —(-A)% in By(z9) NZ°
= —p=0 in B,(zo) N Y.
Notice also that it follows from (2.18) (see also [ROS17a]) that 0,(y 2 dist(z, 0X)*. Now, it
follows from [ARO20a, Theorem 1.3] that
¥ —¢ Oy
Olv " OnCv

for any o ¢ N such that o + a,0 — o ¢ N. As in the proof of [ARO20a, Theorem 1.1], we
write

eC?

(0* —©)0iCv (¥ — @) B¢y OnCy

2.46 =
(2.46) V(v | Iy Vv
Now,
' 9iCv
azg/angv _ OnCyv : c CU(BT($0))
Vvl 1+ (%)
by the boundary Harnack inequality, and
X
-9
e =) S (=) lloo-o( ey + 167 = Pllzoeqan
OnCv
" C7(Br(xo))

S I(=A) % ellgo—a@ns)-
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where we have used [ROS16, Theorem 1.2] to control the L*° term. Inserting these into (2.46)
and using [GTO01, (4.7)], we find

- ore

which, using (8.7) and (2.15) coupled with Holder interpolation completes the proof. We have
been careful to apply [ARO20a, Theorem 1.3] for ¢ = k + ¢, since that result does not hold
for integer k.

To control the decay of ¥ in U¢, we note that by definition (1.16) we have V(i = VR*V +
VV. Since uy has compact support, VA*V and its derivatives decay like those of g, i.e. faster
than |z|=>7!. Since s > d — 2 > —1, this means that VA*V and all its derivatives tend to 0
at infinity, thus V(i ~ VV at infinity. It follows from the definition of ¥ in (2.16) (and the
fact that 1+ is compactly supported) that

S (=)0l grte-a@n sy,
CFk+¢(Br(x0))

s VV
VV[?
Using (8.9), (2.15), Lemma 8.4, s > d — 2 and (A5) we have that

[(=2)%@ll oo €472 + [l et _ ML
|x _ Z|s+2 ~ ‘x _ Z|s+2’

VEMap ~ VO™ <<p ) as || — oo
S

which is (2.17). For the derivatives, we have using (8.9), (A5), (2.15) and the Faa-di Bruno
formula that

Zm : (1 1(=24)*@l o £4% + ||l oo £ M
®m < Yo m—j [ - < L <
IVE"L S = HD ¥ H HD (|VV|> H ~ |z — z|st2+m ~ | — z|st2tm

for |z| large enough. This completes the proof of (2.17) and of Proposition 2.2.

We will often need the following set of consequences.

Lemma 2.3. Assume (2.15) hold for k = 3. For 1) as above, and any n > 1 integer, for U
as above, we have

(2.47) / |Q]Z)|” < Mng(l—n)d—&-ns—i-n’

U
(2.48) / D[ < Mrg(—n)d+ns,

U
(2.49) / [(@) —v@I" e [0 max (e — 2|, )IEOTOTD i e U

' UL e VA PR G if € U°
where z is the center of Ly, and
(2.50) / M dzdy < Mn£(2—n)d+(n—1)s.
w2 |@ -yt ~

Proof. From the estimates (2.17), we have

(2.51) || < M L 4 ¢ ' L dr | < Mrpd(1—n)+n(s+1)
. U ~ gn(d—s—l) ¢ Tn(2d—s—1) r ~ .
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Next, we write

gd q 1 rdfl (1—n)d+
n < n n < n —n ns
(2.52) /UD1/;| <M (Wd_s) + ¢ /4 TG dr) <MY :

For (2. 49) we first consider € Ogy. Then, using % < Mes=4 from (2.17), we find

|(z) —v(y)" [(x) —P(y)|"” [ (@)|" + [ ()"
dy < —
/ |SU - y|s+n e /yEU,|yz|§€ ’l' - y|s+n " /yEU,|yz|>€ |$ - y|s+n

Me ot 1
= d M0~ n(d—s— 1)/ d
~ gn(d—s) 0 TST T+ <|ul<C ‘u|s+n u

5 Mng(lfn)(dfs).

Next, for x € U\Oyy, we obtain similarly using (2.17), z being the center of [y,

b —vr, v vl , e
gr=att P T s T2 —
x yeUly—z|<glz—z[ 1T 7Y yeU,ly—a|>3|z—z| 1L

@)
s+n d
yeU,|ly— x|> |x—z| ‘.%'—y‘

Mngnd 2|:z: 2| 1 1
ST iy / —srdfl dr + M9 — z|*"(2d*5*1) / - du
|z — 2| 0 r Lg—z|<ul<C |Ul

1 ynd
M / N
lo—z|<|y—z|<C ¥ — z[sT max(|y — z|, £)(2d=s=1)
S Mngnd|x — z‘d(l 2n)+s(n—1)

Finally, for x € U¢, we obtain similarly

(@) — P(y)|"” (@) —v)|" (@)™
2 dy < — d
/E ’1’ - y’s—i-n Ve /yEE ly— a:\<1 |z—2z| ’.%' - y’5+n yr /yEU,|y—a:|>§a:—z| ‘.%' - y‘s—l-n

- Wl
yeX, ly—z|>e ’$ - |

End
S Mnend‘.r . z‘d(l—Qn)-i-s(n—l) + M

|£C _ Z|n(s+2) ’

This proves (2.49).
For (2.50), we integrate (2.49) over U to find

/ [Y(z) —(y)|" dudy < M (Edg(d—s)(l—n) . end£d+d(1—2n)+s(n—1)>
w2 |z —y[ste ~ ’

which yields the result. O

3. SPLITTING, THE ELECTRIC FORMULATION, AND TRANSPORT CALCULUS

In order to complete the proof of Theorems 2-3, we need to recall the main ingredients of
our electric-formulation based analysis, originating in [PS17]. Most of what follows is based
on material that can be found in [Ser24].
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3.1. The next-order energy and partition functions. As discussed in the introduction,
under our assumptions on V' the sequence of empirical measures % >~ 64, converges in a large
deviations sense [Ser24, Theorem 3.3] to the equilibrium measure uy . Splitting off the main
term of the interaction leads to a definition of the next-order energy.

Lemma 3.1 (Splitting Formula). Given any configuration Xy € (RN, the energy being as
in (1.2), we have

N

(3.1) Hn(Xn) = N?E(uv) + N> (v (i) + Fy(Xn, o)
=1

where € is defined in (1.14) and the next-order energy Fn(Xn, py) is defined in (1.21).

We refer to [Ser24, Lemma 5.1] for the proof.
Associated to this next-order energy is the next-order partition function

N
(3.2) Kn g, Q) == /(Rd)N exp (—ﬁNZ (FN(XN,M) + NZC(:Q))) dXn.
i=1

The Gibbs measure can then be rewritten as

1 s o
(3.3) dPNﬁ(XN) = mexp (ﬁN (FN(XNaMV) + N;CV(-&))) dXn.

We will also need in the proofs of Theorem 2 and 3 a next-order partition function restricted
to a given event G, which will be denoted as

N
(3.4) K 51, €) == /(Rd)N exp <—5N_°s’ (FN(XNa wU)+NY C(%’))) 1gdXn.
i=1

In [Ser24, Corollary 5.23] an exponential moment control of the energy in the form
(3.5)

N
log Ep, , (exp (§N—3 (FN<XN,MV> +(Gg108N ) Lo + Nzcvm))))
=1

where C' > 0 depends on s,d,{y and ||uy||p~, are shown from upper and lower bounds on

KN,ﬁ (,LL, C_:)
They can be seen as a “local law" at the macroscale. In particular it follows that, except

with probability e=“#V, we have

< C(1+pB)N,

N N .
(3.6) Fn(Xn, py) + <2d log N) 1s—0 + Nng(a:i) <s NIt+3
i=1
where C' > 0 depends on s,d, y and ||uy||~. We will thus be able to intersect all our good
events with this large probability event.

3.1.1. FElectric formulation. We will use the so-called electrostatic approach to studying Fy,
introduced for the general Riesz gas in [PS17]. A key tool in this approach is the Caffarelli-
Silvestre [CS07] extension procedure for reinterpreting fractional Laplace operators, as intro-
duced in the Riesz context in [PS17]. The connection is based on the observation that (up to

a constant) g is the solution kernel for the fractional Laplace operator (—A)®, where o = %.



30 LUKE PEILEN AND SYLVIA SERFATY

Considering the extended function g(z,y) on R*! (where z € RY and y € R) one can observe
that g is a fundamental solution of a degenerate elliptic equation, i.e. up to a constant solves
(3.7) {div (Jjy"Vu) =0 in RY x (R \ {0})
—limyy 10 |y|7Oyu(-,y) = do on R x {0}

with v satisfying

(3.8) d—1+~v=s.

In particular, if we let ; denote a measure on RY, then the extension of the potential h#* = gxpu
to R4*t! given by

1 1

B9 W= [ s M = [ g )

solves

(3.10) ~div (Jy["VA") = cgepdga  in RITL

where we denote by dga the uniform measure on RY x {0} characterized by the fact that for
any continuous function ¢ in R, [b4, ¢ 0pa = [pe o(2,0)dz.

To formalize the electrostatic rewriting of the next-order energy, we will need a smearing
procedure that regularizes the electrostatic potential generated by point charges. That pro-
cedure is only needed in the case s > 0 where g is singular at the origin. While much of what
we define can be found in [Ser24, Sec. 4.1.3], we restate much of it here for readability. If we
define

(3.11) fy(z) = (g(z) —(n))+

either for € RY or by extension for 2 € R4*!, this is a function supported in B(0,7) and
satisfying

(3.12) —div (jy]"VF;) = cas (J0 — o")

) _

where we define 52(2710 = —%div (ly|"Vgy(r—x0)). It is a weighted measure of mass 1 supported

on 0B(0,n) satisfying
1

/@56") = / oz, y)ly"g'(n)
Cd,s JOB(0,n)

for smooth ¢. If u solves

N
(3.13) —div (Jy["Vu) = cq;s (Z O(wi,0) — uéRd> ,
i=1
for any truncation vector 77 = (n1,...,nn), we define
N
(3.14) ug(X) = u— me(:c — (24,0))
i=1

and observe that
N

(3.15) —div (Jy|"Vug) = cas (Z 510 — M%) .
=1

We will also commonly identify z; € RY with (2;,0) € R4t
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For our computations, we will often make use of the identification
(3.16) [ o) dusstoy) = [ @) duo)
Ux[—h,h) U
We will frequently use that
(3.17) / Vo, | < CpfmsTm
Rd

A truncation parameter that we will often choose is the minimal distance (1.33). With this
truncation defined, we can now integrate by parts. The following exact formula follows from
an examination of the proof of [PS17, Proposition 1.6] using the decay of hy ; at infinity;
see [Ser24, Lemma 4.10].

Lemma 3.2 (Riesz electric formulation of the next order energy). Let Xx be a configuration
of points in R, u a probability density on RY such that

(3.18) // gz — )| dul(@)dlpl(y) < +o0

and let 177 denote a truncation vector with n; < r; for all 1 <i < N. Let

(3.19) hn (X, ] : (Z Oz; — >

(which will most often be abbreviated as hy ). Then, with the notation (3.14), we have

1 N
Vgl - - N§ : _
2cqs </]Rd+1 [y 1V A Cd,s;g(nz)> / (z — ;) dp(z).

We will very often use the truncated potential at distances r;, then simply denoted Ay .
We can then define the local energy as announced in the introduction.

(3.20) F(Xn,p) =

Definition 3.3 (Local energy). If O, is some cube of sidelength ¢ included in RY, we let

(3.21) FY (X, 1) =/ ly|" VA,
DEX[ ff]

where hy is defined as in (3.19).
The following provides minimal distance controls.

Proposition 3.4. Assume s € [(d — 2)4,d). Let p € LYRY) N L®(RY) with [pap = 1,
satisfying (3.18), and let X € (RHYN be a pairwise distinct configuration.
Let Q C RY. For any 7 satisfying %ri <m; <r; for every 1 <i < N, it holds that

1

1 c > g(ni) ifs#0
>1n-1/d

3.22) — y["|Vhn 7 2 > 1w, €Q,dist(2;,0Q0) > 1 N

T T > g(40p NV ifs =0,

i:m; €Q,dist(2;,00) > 1 N—1/d

where C > 0 depends only on d, s and ||p||re.
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If Q =RY, then we also have that

gni)  ifs#0

Ql ~
W'Mz

Nlog N :
(3.23) 2 (FN(XN,M)Jr ;)dg 1S:0> +ONTFE >
S gmNYY) ifs =0,
=1
and
NIO N s
(3.24) [ Vil < € (P + St ) + onted,
R

where C > 0 depends only on d, s and ||p||re-.

Note that it follows from (3.24) (if s < 0 there is nothing to prove) that

Nlog N
2d

where C' > 0 depends only on d,s and ||u||z~, which proves that Fy is uniformly bounded
below.

We note that (3.24) implies that the macroscopic law (3.6) can be expressed as a control
of the form

(3.25) Fa (X, p) + le_o > —CN'ta,

N
(3.26) /M Y [Vhne* + N> Gy (i) Sp N'Fa
R =1

except with probability < e"“SN | where C' > 0 depends only on d,s, ¢y and ||py||e.

The following is obtained by combining Proposition 4.28, Lemma 4.20, Lemma 4.25 and
Lemma 4.26 in [Ser24] (taking N—1/9 for the value of A there since we do not track the ||| o
dependence).

Proposition 3.5 (Control of fluctuations, discrepancies and minimal distances). Assume
@ is a function such that Q@ C RY contains a 2N ~V/9-neighborhood of its support. For any
configuration X (€ ROHN, let Io denote {i,x; € Q} and $#Iq its cardinality. For any n >
N4 we have

N
® 0y, — N du)
[Rge>

1
<C (777_1H<PHQL2(Q) + 777+1HV<PH%2(Q)) i </Q
where C' > 0 depends only on d and s and ||py || gee.
If Bg is some ball of radius R > 2N~ letting D(BR) = fBRd (Zfil Oz, — N,uv), we
have either |D(Bpr)| < CN'=4¢RI1 op
D(Bg)? D(B
(Br)™ | . (1’ (Br)

(3.27)

1
3
1
|y’7‘VhN,r|2> + C#lalo|lca N4,
x[—2n,2n]

(3.28) = =

)\ <c 7V Ao P X, 1]
BQRX [—2R72R]

where C > 0 depends on d,s and ||p| .



LOCAL LAWS AND FLUCTUATIONS FOR SUPER-COULOMBIC RIESZ GASES 33

If Q is a general set of finite perimeter and Qs its d-neighborhood, if D(2) > 0, for any
lull 2 < 6 < N4,

2 Qs \7 [
(329) (D(Q) ~ |l 12\9) g(;(gQ!) \5 e VP
+ ‘ 6‘ (Q§\Q)X_‘agé§‘_5v|3§fa‘ 5]
If D(Q) <0, for any —N"4 < 6 < —|ul| X,
2 21 \7 19 2
3.30)  (D(Q) + ||l 2| Q\Q gc() y|"|Vhy, 2
(3:30) (DO + Wl 1) <C(Gar) T o e TN

[09] 6%

Thus, thanks to the control (1.29), which provides a control on #Iq, we easily deduce
controls on the quantities in (3.27) and (3.28) except with small probability.
We will also need the following simple control on fluctuations.

Lemma 3.6. Assume that o € C1(RY) is compactly supported in some cube O, C S. Let Xn
be a configuration such that the local laws of Theorem 1 hold on Ug,. D O,. Then,

(3.31) S Nr¥lloll e (o,)-

/ p(x) dfluct,,,, ()

i

Proof. We may bound

< el o @) (F#1og + NIO|[lpv ] ze)-

| ela)dituct,y (o)

T

The local laws on [y, provide the desired bound.

3.2. Transport calculus and commutator estimates. We may now recast the change
of variables made in the proof of Lemma 2.1 at this next-order level as follows. This is a
“post-splitting" version of Lemma 2.1.

Lemma 3.7. Let ®; = I + ty with ¥ as in Proposition 2.2, and p; = ®i#uy. Let G be an
event. We have

(3.32)

Kjgv,/a(,utaﬁf o ®; )
Ky, Cv)

= logEs,, , (exp (—BN 3 (Fn(®4(Xn), ®uftpv) — (X, i) + Fluet,,, (log det D®;) ) 1)

= logEz,, (¢ 1g),

log + N(Ent(p) — Ent(uy))

where Ty is as in (2.5).
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Proof. By the change of variables y; = ®;(z;) we have

K]g\/,ﬁ(lu’tv C o (P;l)
Kn,g(pv, Cv)

1 s N N
Y S —BN"dFN(P¢(XN), P N i det D®y(x;)1g dX
Kn.s(v, Cv) /(Rd)N exp < g N(P(XN), Pe#py) + ;CV(I‘ )) g et D®y(x;)1g dXn

N
— E]}DNﬂ (exp <—BN_§ (FN((I)t(XN),(I)t#,uv) — FN(XN,,LLv)) + Zlog det DCI)t(.CUl))) 1g dXy,
=1

where we used (3.3). Since pu; = ®4#puo we have det D®; = and thus

MO‘I)’

(3.33) /log det D®;dpg = /log fodjto — /log we(Pe(z))dpe = Ent(po) — Ent(uy).
The result follows by (2.5). O

Wishing to linearize these expressions as ¢ — 0, we are led to considering successive deriva-
tives of Fy along a general transport. More precisely, we denote for any 1,
(3.34)

N N
AL(X N, p, ) - / Ve(z —y) - (¥(z) —¥(y))d (Z Ox; — Nu) €9 (Z Oz, — NM) (v)
i=1 i=1
and more generally
(3.35)

1 N N

An(XN, 1) = 5 R Vg(x—y) : (Y(x)—¥(y)*"d (Z Oz; — NM) (z) (Z Oz; — NM) (y)--
¢ i=1 i=1

It is easy to check [Ser23, Lemma 4.1] that, if &, = I 4 1, we have

d" _

T PN (@HXN), @idtp) = An(@(XN), @i, o @771,

To control such terms, we will need the following recent sharp and localized commutator
estimates of all order from [RS25]. *

(3.36)

Proposition 3.8 ( [RS25]). Let p € LY(RY) N L®(RY) with [pe pda = 1 satisfying (3.18).
There exists a constant C' > 0 depending only d, s and |||/~ such that the following holds.
Let 1 be a Lipschitz vector field ¥ : RY — RY and Q be a closed set containing a N1/
neighborhood of supp . For any pairwise distinct configuration Xy € (Rd)N, it holds that

2

(3.37) ’ /(Rd)g\Awm)—w( ) Ve(z—y (Zém ~Nu)” (@)

< C\|V¢||Loo</ Iy!”VhN,r|2+C#IQN3>.
Qx[—4,0]

3They are slightly restated, because up to allowing constants that depend on ||u| L~ we can work with
A= N~V there.
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Suppose in addition that VO~ is Lipschitz and that Q contains a (5€+N_1/d)—neighb0rhood
of supp 1, where ¢ satisfies £ > 2N~ For any n > 2, we have

(3.38

I

)
N ®2
o VOB =) () - V() d( D 0e, = Npu) (a,9)

i=1

n
<C Z(EHV@)QW’L‘X’)I) Z Naltn=p)=>77_, Cn—k)Hv@CleLm || VB oo
p=0 1<c1ymCnp
n—p<c1+t+enp<2m

X </ ly|" |V A, +C#IQN3>-
Qx[—£,0]

3.3. Variation of energy along a transport. In the macroscopic case ¢ = 1, taking ) =
RY, we can immediately control the energy of the transported configuration in terms of the
initial configuration: let

Nlog N

E(t) := Fn(®¢(XnN), ®i#10) + g

for C' large enough; in view of (3.36), applying the first order commutator estimate (3.37)
and combining it with (3.24), we find that

1.0+ CN1+§,

(3.39) 2'(t) < ClIVY | =E(),
and applying Gronwall’s lemma yields
(3.40) 2(t) < exp(CHIV Y| 1<)Z(0),

which gives the desired control.

The mesoscopic case ¢ < 1 is much more delicate, and presents additional difficulties
compared to the Coulomb case, due to the nonlocalized nature of the transport. We address
this difficulty by considering the transport on increasing dyadic scales and leveraging the
decay of the transport away from supp (.

Let as above [y be a cube of size ¢ such that suppp C U, C Oy C 3 and assume without
loss of generality, that it is centered at the origin. Let k* be such that

(3.41) U C DQ’“*Z)
where U is a neighborhood of ¥ as in Proposition 2.2. For k in [0, k.], let
(3.42) Dy = Oyryy  Ap = Drya\Dp—2, Ap,41=Dj,.

Finally, denote
p=2k¢
where the dependence in k is implicit.
First we prove a preliminary lemma, which is a weighted trace inequality.

Lemma 3.9. Let h be a function in A x [—Ap, A\p] such that fAkx[—Ap » ly["|Vh|? < co. Let
h= JCAkx[—)\p,Ap} h. Then

(3.43) / "k — B2 < Cp / [V,
O(Dgx[=Ap,Ap]) A x[=Ap,Ap]

where C' > 0 depends only on's, d and X > 0. The same holds with Ay replaced by Dy.
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Proof. Let us denote by h, = JfAkx{z} h. Since h = JCAkx[—/\p ] = h., for some zy € [—\p, Ap]
by the mean value property, we may write, using Cauchy-Schwarz, assuming without loss of
generality that zg < z,

c ([ ° c ?
(3.44) |h., —h|? < —- (/ o) (/ h(x,y)d:v) dy> < — (/ 0 h)
p2d Z0 Y Akx{y} de AkX[Z,Z()] Y

C 1
< V[ L < gpre " [V
2d 0%
P A x[=Ap,Ap] Apx[=2p o] Y] Apx[=2p,Ap]

where C' > 0 depends on d,s and \. It follows that, letting hy = J[Akx[,\p/2 Ml h, |hy — h|? is

controlled in the same way. Thus, using the standard trace theorem in Ay x [Ap/2, Ap] and
the triangle inequality, we deduce that

Ga) [ pPh-hP2 [ pra-hPer [ P - AR
Apx{Ap} Apx{Ap} Apx{Ap}

<Cp Y[ VA% 4+ Cpra+id / 7V
ArX[Ap/2,7] Apx[=Ap,Ap]

<Cp / [V
ApX[=Ap,Ap]

The same relation holds on A x {—Ap}. We next turn to the integral on 0Ay x [—Ap, Ap].
By standard trace theorem, we have

/ 7k — B ? < Cp / [V,
8ALx{y} Apx{y}

and using (3.44) and the triangle inequality, we deduce

/ [k — B2 < Cp / [V,
OARX[=Ap,Ap] A x[=Ap,Ap]

The result is proven for Aj. The proof is the same over Dj,. O

Lemma 3.10. Assume p is a bounded probability density satisfying (3.18). Let Q be Ay, for
some 0 < k < k.. Let ¢ be a map supported in Q or in Q° and let ; := I + ti). Assume that
0Q is at distance > p = 2¥71¢ from supp ¢, and |7||[¢)|| < min(ip,2). Then letting n; be
the minimum over t € [0,7] of the r;’s of the ®(Xy), we have

(3.46)
vt € [0, 7], /Q . W [Vhn gl®u(Xn), ®utpl]? < Cexp (Ctp™ [l + [Plen))
X|=ApP,Ap,

X ( / 1" | Vhy gl Xn, 1|? + #IoNd + N_g(#IQ)Qp_S_2>
QX [=Ap,\p]

where C' depends only on's, d, X\ > 0 and ||p|| .

Proof. For shortcut, let us drop the tildes for the proof, and denote hl, = h N[®H(XN), Oi#p)]
as in (3.19). Let us start with the case where 1 is supported in Q = A;. We note that since
supp ¢ is at distance > Zp from 0Q and |7][[¢)[| L < 1p, ®; maps Q to 2, and coincides with

the identity in Q¢ and in the part of  at distance < %p from 9<, for any t € [0, 7]. Denoting
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Q = {z € Q,dist(z,0Q) > %p}, we have that suppy C Q and supp® is even at distance
> %p > %6 > %pﬁN_l/d > 2N~Vd from 9Q.

The commutator estimate provides us With an estimate on LN (D (XN), pit), s0 we need
to estimate the difference between that and 4 = fo[ ol ly[|V Rl |2

Since ®; coincides with the identity map outside € for each t € [0, 7], spelling out the
definition (3.20) (the equality case with n; = r;), we may write that

1
/ [Vl A2 — [y [V, A2
Qx[=Ap,Ap]

FN(Pe(XN), pe) — FN (XN, po) = 9,
)

-
2¢d,s JRIT1\(Qx A, Ao))

(3.47) —NZ/ S — @) dpe (z +NZ/ z;)dpo(z),

i€l i€l

Y[ [Vhiy 57 = ly[IVAR 512,

where we note that r; for X and n; are within a factor in [%, 2] of each other.
Since points at distance < % p from 02 and points in Q¢ are fixed points of &, and since

%p > %é > %pgN*Ld and r; < %Nﬁl/d, since pg > 4, the smeared charges 53(;?i) coincide in
Q¢, and thus the function hl}\/,ﬁ — h?v,ﬁ = u! solves
—div (Jy"Vu') =0 in R\ (Q x [=Ap, M),

and decays at infinity, and its gradient as well. Hence, writing Vhﬁvﬁ = Vh?\,ﬁ + Vu! and
integrating by parts, we obtain

/ [Vl o2 — [y [V A2 = / [Vl
REFI\(@x[=Ap,20]) RIHI\(Qx [=Ap,2p])
- out
3.48 +2/ y'yho R A Sl
( ) DX [-Ap, )\p})| ’ ( N, N,n) on

where 7 is the inner pointing unit normal to 99 and A9 N, 18 the weighted average of h{ N, on
A(2 x [=Ap, Ap]). By Cauchy-Schwarz and Lemma 3.9 we may write

(3.49)
out

y[" (A%~ — hY
/8 PN G e e

We next estimate Vu! in the complement of € x [—Ap, Ap]. By definition,

N
ul(2) = /R gl— 1) (Zém —Nut> (2') - /R dg(fﬂ—f)d<z5fﬁ?i)—Nﬂo> ().

=1

< C/OQHVhNnHLl (X [=2p,00]) HVu HL‘? NECMEVIVE

We compute that

Rd

N
O’ (x) = 0y (Z]QB(O . gle —@y(xi) =) - N | gle— <I>t(y))duo(y)>

—z / V(e — ) - (@u(2)00 @)~ N [ Vele — ') (o) dpule)

Rd
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where we have denoted v := %. Hence

t N
ul(x) = / [ Va(a— ') - wn(a)d (Z O ) — Nus> (a') ds

i=1
(3.50) / [ Vel — ') (0a(®a(a1)) — 0s(a) 650, (2 ds.
and
Vaul( / V®2g(x — 2 : s (2))div (|y| VA (2') ds
Cds Rd
t+ N
O2g( — i s 7:) ") ds.

(351) //Mv B — 1)+ (Ya(@al0) — () 3, () ds

The function x,(z') := V®2g(z — 2) : ¥s(z') is compactly supported where ) is, moreover,
it can be checked to satisfy

(3.52) \vxz(x')\<< 195l o= 2y sl oy )

dist(z, supp ¢)st3  dist(z, supp 1)5+2

We extend the function y, to Q x [—=Ap, Ap] by multiplying x, by a function ¢(y) supported
in [—Ap, Ap] with ||¢||r < 1 and H cpH .S %. Then, for z € Q°,

(3.53) / W Vxal? < (1l ey + pltbelenay) o~
QX[=Ap,Ap]

using d + v = s+ 1. Using Green’s formula and the Cauchy-Schwarz inequality to control the
first term in (3.51), and a rough bound for the second term, we are led to

V' (2)* <

2
t t
t/ (sl +p|¢s!cl)zp‘s‘4/ !y\”\Vh?v,ﬁ\gdSth/ |¥s|En (E m-,o‘s‘Q) ds.
0 Qx[=Ap,Ap] 0 k

i€lg

Since this is true for all z € (2 x [—~Ap, A\p])¢, inserting n; < N~Y9 it follows that

[ e s
O(Qx[=Ap,Ap])
t
[ (ol + plialen? (p” / [y VA 72 + N4 (#1a)20~ )ds
0 Qx[~Ap,\p]

Combining with (3.48) and (3.49), and noting that fRdH\(Qx[—Ap o) ly["|Vut|? is an order
O(t?) term, it follows that

o
dt[t=0 Jra+1\ (Qx [~ Ap,\0])

< (P E 21V 2 @ty + N ).

ly|"|Vhly 77 <pt VAR 7 ”L‘ 2 (@X[=2p.A]) P 5 (ol 2= + pltbolcn)
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On the other hand, by definition (3.11), we have

Z — Oy (i) dpe (x

i€lq

=12/ — ;) - (Wo(z) — Yo(xs))dpo(z)

dt|t =0 icTo

< |tpoler Y / ’3«"\_5 < C#lololn N~=°F

i€lq

Combining the above with (3.47) and (3.48), and by definition (3.36) and the commutator
estimate in the form (3.37), after using Young’s inequality, we are led to

d / £
el y|' VR, -
dt |10 Qx[—Ap,Ap] | | ’ . |

_ _ _2 s _ s
<p 1/ "IV R 1 + p 1/ Y|V, 1 + N™d (#10)%p57% + #1ap 1Nd>.
Qx[=Ap,Ap] Qx[=Ap,Ap]

< C(l[Yollze + plboler)x

We next wish to estimate [ |y|7|Vhy,|? in terms of [ |y|?|Vhy 7|?. Using the definition (3.14),
if a; and k; are < r;, we have

N
Vhng = Vhng+ Y V(e —fa,) (@ — z;)
i=1

hence, using that the B(z;,r;) are disjoint, we find

/ P Vhxal? <2 | P Vhal + 3 [ V6 )P
Qx[=Ap,Ap] Qx[=Ap, 0] iclg JRIT
(3.54) 5/ Wl [Vhyal? + 3 (57 + ar®).

Qx[=Ap,Ap] ieQ

Applying in Q to a; =r; and Kk, = 1; > rl, we obtain

[ wmw&fs[ Wi e
Qx[=Ap,Ap] Qx[=Ap,Ap] j

’LGIQ

and using (3.22) and the definition of 2, we may absorb these terms into the others.
The same reasoning yields that the relation is true at any ¢, so we find

; /
— ly|"| VRl |
dt Jox-xp) a

(3.55) < Clp~ HlwhellL= + |voelen) </

Qx[=Ap,Ap]

VAl g1° + #IgNG + N4 (#Im%—s—z) :

Applying Gronwall’s lemma, we deduce the result (3.10) in the case ¥ supported in .
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Let us now turn to the case where the support of ¥ is in Q¢. With the same notation, we
may write hy . — hY - = u’ where u’ solves —div (|y]"Vu') = 0 in Q x R, and we may write

(3.56) / Y17Vl 712 — [y VRS 512
Qx[=Ap,Ap

- out
— 7Vl + 2 / Iyl (h 5 — %)
/QX[—/\p,/\p] (X [=Ap,Ap] A M on

1 2\ 3
— 0(?) + 0 ( / \ywm,ﬁﬁ) ( / P ) ,
QX [—Ap,Ap] X [—Ap,Ap]

where 7 is the outwards pointing unit normal to 02 and i_z(])vﬁ is the weighted average of h?v,ﬁ
on 0. The rest of the computation is identical to the first step and yields (3.55), and we
finish the proof in the same way. We can then check that all the cases considered in the
statement lemma have been treated. (Il

o
on

Proposition 3.11. Let v be as constructed in Proposition 2.2, and let ®; = I +tp. Assume
that Xy € Gy, a set of configurations with Py g(Gf) < Cre PCN syuch that the local laws
(1.29)~(1.30) hold in each Dy, of (3.42) with k > 1 (in ) and that (3.26) holds. Then if t

is small enough that |[t|¢>=9M is smaller than a constant depending only on the constant in
(2.17), for any k € [1, k] integer and Dy as in (3.42), ki as in (3.41), we have

(3.57) / Y[V [®(XN), Bituy]|? < C(2F0)ENIT,
(Dk+%\Dk+%)>< [—2k€,2k2]
and
(3.58) / Y| Vhn[®:(XN), ®#tuv]> < CANHE,
D3/2X[—f,ﬂ

where C' > 0 depends only on s,d, ||uy ||z and the prior constants.
Proof. Let, for k integer,
(3.59) Bk = Dk+2\Dk fork < k‘*, Bk*—I—l = Dli*—&-l'

Let xx be a partition of unity associated to {Bk}ﬁ’j}l, such that supp xx C By, Zi*;gl xr =1

and |Vyg| < 27Fe—1

Let k € [0, k] be a given integer. We are going to decompose I + t1) as a composition of
transports I + t1; such that each 1; has support in B;. For that, we let mg,...,mg, 41 be
the sequence given by

m():/{—l

mlzk:

m2:k+1

mp=p—3 for3<p<k+1
my, =p fork+2<p<k,+1

i.e. we take away the indices from k£ — 1 to k4 1 and put them at the beginning. If &k = 0, we
do the same but moving only two indices to the beginning.
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We define inductively v, by

i i1 _
(3.60) I+t = (I+t(z mew) o (I+t(z me)w) g
p=0 p=0

In other words, we have decomposed the transport into successive localized transports I +t1);.
One may check by induction that

ket1

(3.61) T+t =T+t> xj0=I+thy41)0- o0 +tey).
j=0

We decompose this as

(3.62) I+t = Tout © Tinn

where Tin, = (I + thg) o (I 4 tah1) o (I + tahg), and Toyy = H?*:ng(l + t1p;) (or the same with
only two maps set aside if appropriate).

If t6579||pg||cs is small enough, then by (2.17), we can make t|[1)||f < t||g00\|03% < L
One may then check that in view of (3.60) and definition of the x;, for j > 3, 1; is supported
in By,;, and letting p; = 2"/, and in view of (2.17) we have

o A
(3.63) [Viler S =g Vil S —g—<7-
Pj Pj

Thus, the transport Ti,, leaves Ay invariant (where Ay is as in (3.42)), is supported at
distance > %2’“6 from its boundary, and coincides with identity outside. Thus we may ap-

ply Lemma 3.10 in that set with ¢ = Tjun (we have that |t|||Tinn|lre < (2,%%% hence if

~

1t]65=9]|@ol|c1 is small depending on the constant in (2.17), the assumption |t|||Tinn|/ze <
min(3(2%¢), 1) is verified) and obtain

(3.64) / Vo[ Thon (X ), Thnepa ]2
Ak X [—Qkf,Qkf]

¢ s _2 e
Sexp | Ot sy / Vhn (X, av] P+ #14, N3 + N73 (#1,)2(250) 72,
(280)24=5 | ] 4 x[—2k0,2%0)

For j > 3, the transports I + t1; have support in (Dy42\Dy)¢, so we can say that their
support is at distance > 2%¢ from 9(D, , 3\D, . 1) (resp. 0D5,5 if k = 0). We may thus apply
pp k+3 \Hk+1 3/

Lemma 3.10 iteratively in D, s\ D resp. D3y if k = 0, (which is a set of similar nature as
2

k+1o
in the assumption) with ¢ = ¢/, (again we verify that the assumption [¢|[|1);]| Lo < min(%, )
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is satisfied if |t|¢*~9||¢ol/c1 is small enough), and find

(365) / |vhN,r[Tout (Crinn(XN))a Tout#(j—‘inn#HV)HQ
(Dk+%\Dk+%)X [—2’“4,2’“3]

2% 41 gd fd
S, exp Ct ]2% (2j£)2d—s + 2k€(2j5)2d—s—1
X (/ |VhN,r[T1inn(XN)7Tinn(XN)#;uV”Q
(Dk+%\Dk+%)x [—2’“&2’“6]

3 -2 2 ok p)—s—2
9D, g\p, N+ N d(#IDH%\DH%) (2%0)~® )
Combining (3.64) and (3.65), we are led to

so0) [ Ve [(T + ) (X), (1 + )]
(Dk+%\Dk+%)X [72’%2’%]

. s _2 —s—
< o ( / Vhoo X ]2 + #14, N3 + N73 (#14,)2(250) )
(AkX[—2k8,2k£]

The result then follows from the local laws for X and (3.28) to control (#14,)%. We note
that since O, is at distance > ¢ > 0 from 0%, either Aj is included in the set where the
local laws hold, or 2¥¢ is larger than a constant depending on ¢, in which case we can use the

macroscopic law (for £ = 1) valid up to the boundary.
]

These local controls on the transported energy cover all dyadic annuli and allow us to
control the A,, terms, except with small probability.

Lemma 3.12. Assume that Xy € Gy with Gy as in Proposition 3.11. Let 1 be the transport
constructed in Proposition 2.2 for o satisfying (2.15) at order k = 5. If [t|{>=9M is smaller
than a constant depending only on the constant in (2.17), we have

(3.67) AL(@4(X ), Dby, o @] Sp MNITaEe
and more generally, if (2.15) holds at order 2n 4 3, we have
(3.68) (An(Pe(X ), ByFpy, b o @) g M7 N LS prs—(n—1)d_

Proof. Let us first treat the easiest situation of n = 1. Let k. be as above. Let x; be the

partition of unity relative to the Ag’s this time defined as

(3.69) Ak = Dk\Dkfg’ for k < k, + 1, Ak*+g = DZ 41
*T2

with V& x| < (28)=™. The Ay’s are chosen to form a covering of RY, and each Ay

intersects only Ax_q1 and Agyq1, with Ax_1 and Axyq at positive distance 2k/2¢ from each

other. Let us decompose 1) into Z]Zj)l(xmb) and use the linearity of A; with respect to v,
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the commutator estimate (3.37), the local laws (1.29), the law (3.26) in U¢, the estimate on
¥ (2.17) and the result of the above proposition to obtain that for Xy € Gy, we have

k«+1

(AL(®(XN), Dy, V) S D HV(XW)HLoo/ Y[ Vhn (X N), Pi(uv)) |
k=0 BkX[—Qk&QZ]

S

ke d .
Ss (Z IV (x) [z (2°€)" N1 4 ||v(7/)Xk*+1)||L°°(UC)N1+d)

k=0
ko (W)dNH%zd
d_
= (k™

k
s (e 1
<p MEENFS (§ —— 1) :

3
o (297%)

The proof for larger n relies similarly on a dyadic decomposition coupled with the higher
order commutator estimates (3.38), although the combinatorics are a bit more complicated
due to the tensor products in the integrand. We first describe the approach for n = 2 since it
is instructive and easier to follow, before giving a detailed proof for all n > 2.

For notational ease, we will write Xy, u and v instead of ®4(Xy), ®;#puy and 9 o <I>t_1;
this makes the notation below more readable, and the local law applies as desired by Propo-
sition 3.11.

Description for n = 2.

As in the n = 1 case, we decompose ¥ as ZI,:*:JBI(ka); denoting x4t by ¥* for notational
ease, we find

<

<sM + AN

(3'70) 1 ks+1
Ao(Xns ) = 5 D // Vg(r—y) (0 (@) =0 (1) © (" (@) — ™ () diiuct 7 (z, ).
k,m=0

There are three kinds of terms in the summands:

(1) k=m
(2) |m— k| =1
(3) |m—k| > 2.

The k = m case is simplest, as the term is itself a higher order commutator

Mol pt) = 5 [[ V5o =) (0@ = vH ) dituct§Pan)

which we will estimate using (3.38) and the local law (1.29) at the scale 2/ at which ¥ lives.

The case where |m — k| = 1 is a bit challenging, because although it is not literally a
commutator it is very close to one as 1* and ™ live at similar scales. The idea is to use
polarization; letting

plhm) =[] V(e =y 04@) — 0 ) @ (07 (@) — 7)) et )
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we notice that ¢(k,m) is bilinear in k and m, where the sum k +m corresponds to ¥ + ¢™.

Polarizing, we find

ol m) = PE Tk m) — ok, k) — p(m,m)

Each ¢(7,7) term is then a commutator, which we can control using (3.38) and the local law
at the corresponding scale (1.29) as in Case 1.

In the third case, |m—k| > 2, the analysis is quite different since the supports of ¥ and )™
are then disjoint. While this case will be a bit computationally intensive, it is conceptually
easier because the summand can then be seen as the double fluctuation of a regular function.
Notice that the domain of integration for

/AC Vg(x —y) : (U (2) — " (y) ® (" (2) — ¥™(y)) diluctP(z,y)

// By — 1) (WF () — 6F () (" () — 67 (y)) dituctS2(z,y),

i,j=1

where we have denoted the ith coordinate of ¥* by ¢f , is only on the support of (@ZJ{“ (x) —
@bf(y))(wjm(:c) —9j"(y)). Both of these factors must be nonzero, and since the supports are
disjoint then we need one of x and y to be in each. In particular, via the symmetry of g,

S ] uste - k) - )W) - 6 ) diue§e. )

2,j=1

d
=23 [ aysle - et ) diueiP.y).

i,j=1

We will apply the energy estimate Proposition 3.5 twice to obtain the requisite control, once
on each fluctuation. With this background for n = 2, we now explain how to work through
the argument for generic n.

Detailed argument for generic n > 2.

Decomposing 1 = 3. ¥ as above, we write

n

(3.71) An(XN,u,m:% 3 / VErg(r —y): @ (5 (2) — ¥M(y)) diuctF(z,y)

k* +2]n =1

where [k]" = {0,1,...,k}". We have three kinds of terms in the summation.
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Case 1: k = (k,k,...,k). This corresponds to the first type discussed in the n = 2 case. It
is a true commutator and we compute using (3.38), (1.29) and (2.17) at scale 2/

‘// . Ve g(z —y) : <¢k(x) - wk(y))(gn dftuct$? (z, v)| <p <2kg)dN1+§ zn: <2k€||V®21/1||Loo)p

p=0
x 3 NEOTPEL e [TE g
1<c1,eesCnp
n—p<eit-ten_p<2n
k)9 s o (9PMP 1 e R (4M
Ss (28)" N1 3 N =)= )

p:O (2k€)2d—5 (2k£)2d—s+cq—1

1<ec1,....n—p
n—p<ci+--+cp—p<2n

_ d(l*ﬂ)‘i’San#’%Mn (2n(sfd)+d(17n))k

where we have used that the largest possible ¢, is 2n and that
Nd(np)zkl (kg)np+2qlq<1

since N™1/4 < 2%¢ and (n — p) — X3P ¢, > 0. Summing over k yields

// Vg —y) : é(wm Whi(y)) diiuet$P(a,y)

=1

k=(k,k,. ke[k*Jrl]
<5 g(lfn)d+STLN1+% M™

~

In the case k = k. +2, we use the bound (2.17) and (3.26) to obtain that this term is controlled
by (4N H%, which can be incorporated into the previous estimate.

Case 2: |J;supp (¢¥*%) is connected. This corresponds to the second type discussed in the
n = 2 case. Since the supports of ¥¥ and ¢™ only overlap for |m — k| < 1, this is only possible
if the index vector k takes the form (up to reordering)

k=(kk+a,k+a+as,.. . k+a+ -+an1), a;€{0,1}

Note that for each k, there are only a constant dependent on n number of such vectors. For
these indices, we make use of multilinear polarization. For notational ease, we again let

ki, k) = /AC Vg — ) : @ (v* (@) = b () dftuctF(w,y).

i=1

Notice that ¢(kq,...,k,) is symmetric and multilinear in E, where the sum k£ + m again
corresponds to ¥* + ™. Using the polarization formula for symmetric, multilinear forms we
have

Pl ) = S p =1 Y (D el et )

1<j1<<jp<n

where we have simplified ¢(m) := ¢(m,m,...,m). Now, for a vector of the form k=
(k,k+a1,k+a1+as,....,k+a1+---+a,—1) with a; as above, all of the k; live at the same
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scale (up to an n-dependent constant). Hence, we can apply (1.29) and (2.17) at scale 2¥¢,
up to adjusting constants, which coupled with (3.38) as in Case 1 yields

‘90(]431, ceey k:n)| 55 [d(l_”)+S”N1+§Mn (2n(s—d)+(1—n)d)k

In the case k = k, + 2, we again use the bound (2.17) and (3.26) to obtain that this term is
controlled by (4N H‘%, which can be incorporated into the previous estimate. Summing over
k again yields

// . Vg(x —y) : é (@bki (z) — i (y)) dfuct$?(z, y)

i=1

K is Case 2
<5 Mngns—(n—l)le—l—g

using that there are an O(n) number of k associated to each k.

Case 3: |J; supp (¢*1) is not connected. This corresponds to the third type discussed in the
n = 2 case. The first observation to make here is that we only need to consider the situation
where |J; supp (¢%) is a disjoint union of two connected sets. Indeed, suppose that it could
be written as a disjoint union of three connected sets. Then, since the support of distinct ¥
and 9™ only overlap for |m — k| < 1, we can write the & (up to reordering) as

k=(kk+ag,....k+ai+-+ap 1,mym+by,...,m+by+--+by_1,
r,r4co, ..., r 1+ Cnepg—1)
where all of the a;, b; and ¢; belong to {0,1} and the sets

P g n—p—q
A= U supp <wk+al+m+a"’1), B = U supp (¢m+bl+~-~+b¢71), C = U supp (¢ Tertteinn)
=1 i=1 =

are pairwise disjoint. We have set ag = by = ¢g for notational ease. Now, let us examine the
corresponding terms of A,,, which look like

> // h1vsin8(T — Y f[( PTOTTE () — g T () )

U1yeenyin =

q
+bo++-+bi— +bo++-+bi—
e € B T (D) B

J=1

ptq+i ptq+i

n—p—1
[T (wpfeotomt(@) — oo (y)) diuctFP(e,y)
j=1

In order for the integral to be nonzero, all three factors need to not vanish. So, at least one of
x or y needs to belong to A, B and C. However, since A, B and C' are pairwise disjoint this is
impossible! The same argument works for more than three disjoint sets. Hence, |J; supp (¢*)
is a disjoint union of two connected sets and k takes the form (up to reordering)

k=(kk+an,.. . k+a+ +ap1,mm+by,...,m+b+--+byp 1)
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where all of the a;, b; and ¢; belong to {0,1} and the sets A and B as above are disjoint. There
are a constant bounded by a number dependent only on n number of vectors associated to
each k£ and m. The corresponding terms of A,, take the form

p
// 811, an T H ( k-‘rao-i- +a;— 1(1,) _w2+a0+"'+di—1 (y)) v

tp+j Ip+j

n—p
m~+bo+---+b;— m~+bo+---+b;—
H (w +bo+--+ 1($) ! +bo+--+ 1(y)) dﬂuct%(m,y)

and the integral is only nonzero if € A and y € B (or vice versa). Without loss of generality,
assume x € A. Then, the terms above become

n—p
k+ag+--+a; +bo+-++bi—
I o iutte = Hw e @) [Tl ) dive R, y)
j=1

= // Cé’il,...,ing(w — y)e1(x)p2(y) diiuctS? (z,y)

with 0;,,._i,g(x —y) ~ |r —y|~>""™. We bound as described in the third type discussed in the
n = 2 case. We set

= / Oiy,...in&(T — y)p2(y) dilucty(y)

and first bound f and its derivatives using Proposition 3.5 and (1.29) and (2.17) at scale 2/
(if m = k. + 2 then the same estimates hold with 2"¢ ~ 1). Using |z — y| 2 2™¢, we have

n—p

10008 — W)oa ()22 < ! il dy

i15eein L2 B U;MTZOJF by 1, |x_y‘25+2n |y|4df2sf2
d—1

<, p2d(n—p)\p2(n—p) "
~pB ¢ M /O<(2m+b0+“‘+bn—p—1)d) 725+2n+(4d—2s—2)(n—p) dr

¢2d(n—p) \2(n—p)
~B (2m£)25+2n+(4d—2s—2)(n—p)—d )

An analogous computation yields

¢2d(n—p)\2(n—p)
IV (Oi.,....in8(x — y)p2(y)) ”L2 ~B (2m£)25+2n+(4d Z25—2)(n—p)—d+2

¢2d(n—p)\j2(n—p)
”V®2( iv,in 8T — Y)p2(Y)) ”L2 ~B (2m€)25+2n+(4d —25—2)(n—p)—d+4

We first use Proposition 3.5 to get L*° bounds on h and its gradient in supp wf. As a
simplification, notice that it is sufficient to control

(77 ol 2y + 1 IVl 2y ) (2700 N1

for i to be chosen below, with ¢(y) = i, i.g(z — y)pa(y) using (1.29) at scale 2™, since
%)d * by the energy at scale 2™¢. A

1/2

the error term is strictly smaller; one can bound #Iq(N
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computation shows that the terms above are balanced by choosing n = 2™¢, and we conclude
by Proposition 3.5 that

). A=) M2(n=p) (mp)d N1+§
1f(@)|" <p (2m€)25+2n+(4d 2s=2)(n—p)—d+1—y

£2d(n—p) \j2(n—p) (9myp N1+
Vi@ S5 SO
(2m€)25+2n+(4d 2s—2)(n—p)—d+3—v"

We now use these estimates to control

/ o1(z) f(z) dluct vy (x)

using Proposition 3.5. We find using (2.17) (again, if k = k. + 2 then the same estimates hold
with 2% ~ 1)

€2d(n p)M2(n p)N1+d (24 V2 p
e e e TN o= I
(2m0) P giheottensa g\ Jyl
€2an2an+§

<
B (2m£>25+2n+(4d—25—2)(n—p)—2d+1—7 (2¢0) (4d—2s—2)p—d "

We also have

€2d(n D) M2(n p)Nl+d £2d\2 p
IV (pr(2) f@)I72 <s 25t 2nt (4d—25—2)(n—p)—2d+3— | ktagtta,_ a2z | W
(2mg)2st2nt( Jn=p)=2d+3=y ] frraottapyy A\ Jyl

m=k

p2d(n—p) \j2(n—p) N 1+5 72d\2 p-1 7242
+ (2m€)2s+2n+(4d72572)(nfp)72d+17'y /ij+a0+~--+ap1Ak |y|4d—25—2 |y‘4d—25 dy

m=k

which yields the bound

IV (p1() f(2))l72 g

ﬁanM2”N1+d 1 1
(ng)5+2n+(4d —25—2)(n—p)—d (ng)(4d—25—2)P—d (2m0)? * (2k€)2

—1/2
+ -1 > and (1.29) at

using v +d — 1 = s. Applying Proposition 3.5 with n = <(grie)2 (2t0)?

scale 27 to find

d
dnpan (okp\ 2 AT1+S 1y
. (nmn (2k¢)* N1+ (1 1>4.
(

+
(2m£)%+n+(2d7571)(n7p)7% (2k€)(2d7571)p7% 2mg)2 (2k€)2

‘/apl x) dflucty(z)

which, simplifying, yields

P n—p
a0t +bo++bi
//A Oir .. —y) [T wE ot @) TL o002 () dftuct Pz, y)
c ]:1

J=1
Mrgns—(n—1)d Nr1+5 1 1 o
< _—
~ (2m)%+n+(2d7571)(n7p)7% + (2k)(2d7571)p7g (22m t 22]‘3)
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Summing over all choices of k£ and m, we find
n
ks ks
S e @ (6@ - R ) dinetF )

k is Case 3 i=1
Combining Cases 1 — 3 yields the result. O

55 Mngns—(n—l)le—s—g )

As a corollary, we obtain a first bound on the term 75 defined in (2.5).

Corollary 3.13 (A first bound on 75). Under the same assumptions, supposing that (2.15)
holds at order 4, if t/~9M is small enough, for every N sufficiently large, we have

(3.72) log Bz, ,(e™1g,)| S5 BMIt|NE

where Gy is as in Proposition 3.11.

Proof. Let Xn € Gp. From (3.36), we have
t
Fn(Pu(XnN), Petro) — Fn (XN, po) = / AL(®s(X ), pis, ¥ 0 D 1)ds.
0
In view of (3.67) this is <g MN'Td/s. Similarly, using (3.31) on dyadic scales can bound

d pd
|WWMM@WQWWWWZ@@(%%ﬂﬁwwwwf

f)
using the transport bounds (2.17). Combining all of the above with (2.5) yields the result. O
4. PROOF OF THEOREMS 2 AND 3

We now have all of the tools needed to examine fluctuations of linear statistics, and complete
the proofs of Theorems 2 and 3. Let us first recall the expansion in Lemma 2.1, which allows
us to expand the Laplace transform of Fluct,, (¢) on a good event G by

Epy 4 {exp (—&Nl*gFluctw((p)) 1g] = eTOEPN,,@ |:€T1+T2 1g] .
We now examine each of these terms individually.

4.1. Computation of Tj. Using the explicit choice of ¢ in Proposition 2.2, we can compute
Ty, which is a completely deterministic computation. We start with the log det D®; term.

Lemma 4.1. Let ®; = I + typ with ¢ as in Proposition 2.2. Denoting ps = ®i#uy, we have

(4.1) / log det D, djry = Ent(u) — Bnt(u) = ¢ M(p) + O (M2 (%)
Rd
with
1
(4.2) M(p) = (—A)*@™(log pv').-
Cds JX¥

Proof. Since ®; = I + ty, and py = ®:#uy we have det DO, = £V and thus

m
oy’

(4.3) /log det D®iduy = /log uyvdpy — /log (P (x))dpy = Ent(uy) — Ent ().
We can also write explicitly

(4.4) log det D&, = tdivy + O (12| Dy]?)
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and have

(4.5) /R (div)m = /R div () /]R v Vioguy = /R div () (1 + log ).
Thus, using (2.12) and (2.16)

) 1 o
[ @ivon = - [ (<8751 +logay)
Rd Cd7s »
1
=— [ (=A)%*(1 +loguy)
Cd,s JRd
1

- Capren
Cds Jx

where we have used that (—A)®p™ is mean zero.
Integrating the error term and using (2.48), we obtain the result. (Il

Let us turn to the remaining terms.

Lemma 4.2. Let &, = I + t¢ with ¥ as in Proposition 2.2 with (2.15) at order 4. Let Ty be
as in (2.3). Then, we have

_ ﬁNQ?%tQ 3aT2—2 3 p2s—d 2\ 2 2s—d
(46)  Tp= "5 Var(p) + tNM(p) + O (BNZE M2 4 2M2N )
where
o Cd,« b)) 2
(4.7) Var(p) = . HHd;

with M(p) as in (4.2) and cq o as in (1.10).

Proof. The proof is based on a second order Taylor expansion in ¢. First, a careful computation
yields

1 t

3 (g(Pi(z) — Pi(y)) —glz —y)) = §Vg(-’r —y) - (Y(z) —¥(y))

t? ¥ () —d(y)
+ 7Y Duale — ) (i) — i) ((x) — () + O (t:”‘x_ygﬂ
i,J
where the O is uniform despite the singularity in the derivative of g; this again can be obtained
by factoring out |x — y| so that we Taylor expand instead about -—%, where g is bounded.

lz—yl”
Similarly,

Vo + () = V(@) = 19V - () + = 3200, Vista)iy @) + 0 (B0l

([:7‘7‘

and
tp(z + 1 (x)) — to(x) = Ve - (@) + O (£ D?¢l[w?).
After integration, the first order terms give by symmetry

5 [ Vet =) @) — vy du @y )+ ¢ [ IV o6 duy )

¢ / V(B + V) () day () = 0,
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where the vanishing is thanks to (1.16) and the fact that (y vanishes in the support of uy

Now, expanding (¢;(x) — ¥i(y))(¢j(x) — ¢(y)) and using symmetry we find

2
// tz Z 9i,j&(x — y) (Yi(w) — i(y)) (Wi (z) — ¥;(y)) dpy (z)dpy (y)

Z//a,]gm Y)i(x)Yi(x) duy (x)dpy (y Z//a,ggw Y)i(2);(y) dpy (x)dpy (y).

Notice that

/ S 0V (a) dunv () + 3 // 01 j(x — y)i(a); (x) d ()dpy (y)
1,7 1,]
_ / Bj (V. + g * iy ) (@) s(@); () dpry () = 0

by the same argument as above using (1.16). Thus, the order ¢? terms that remain are just

2 [ Vo - —Z ] 2s58te = st diy @) (),

For the first term, integrating by parts and using (2.12) and (2.16) yields

2 2 Cda 9

, t a
t2/ Vo - ihduy = —t2/ pdiv (Puy) = — /wz(—A) 7=
Rd Rd Cd;s 2 ¢4

since we have via fractional integration by parts and [DNPV12, Proposition 3.6] that

[ rears = [1earne =i,

with cg o the constant in (1.10), in view of the definitions (1.10) and (1.12). Integrating the
second term by parts in z and y and using (2.16) yields

Z//a,gga:— Do) s @ () = 5[] e i ) )t ()0

i

ch

_t2 a by a, X
=5 [ s AT W@
_t2 by} b _t2 Cda b 2
- ~A) = Ya .
o [ F@earee = e ]

Finally, we need to integrate the error terms. This is done using (2.47), (2.48) and (2.50), to

/‘D2 "1/}’2 < 62 d-i-25-i-2M37

and similarly for the other terms. Combining with (4.1) we have thus established (4.6)

write

0
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4.2. Control of T7. We next turn our attention to 73 as in (2.4); the choice of transport 1
made in Section 4 was so that 77 would vanish at leading order in t. We verify that here, and
estimate the next order in t.

Lemma 4.3. Let &, = I + ty) with ¢ as in Proposition 2.2 with (2.15) at order 5. If t is
small enough that |[ty|cr < 5 and [t[¢4=°M is smaller than a constant, then

T = BNthQ/ u(x)dfluct,,, (x)
Rd

where u satisfies

P max(|z — 2|, )73 ifzeU
4.8 < M 7
(4.8) lu(z)| < {£2d‘$ _ 2172(s+2) if v e U°.
and

M2
(4.9) [Dulp~ < fd—s+1°

Proof. The approach is similar to [Pei24, Lemma 4.14, Lemma 5.5].
We use Taylor’s formula to write (m denoting multi-indices of length 2)

[ (€)= @1(0)) ~ o~ 1))y () + (Vi B = V(@)
—t ([ Velo — ) (6(a) = )iy ) + (V- 6+ 9)(0))

+ 262 /
Rd

+2 [ Y —w / (1= a)D™V (z + at(x)) da + t*9 () - /Dw(w +aty(z)) da

mi=2 """

1
(2) — ()™ / (1= a)D"g(x — y + at(b(x) — (y)) da v (1)

mj=2 """ 0

and denote t?u(z) the sum of the last two lines.
As in (2.8)—(2.9), we then may rewrite

/Vg z—y)- (@) = (@)duy(y) + VV -+ = VG — k) 4o
which vanishes by our definition of 9 (see Proposition 2.2). It follows that
Ty = BN'"d¢? /R ul)dftucty,, ().
Step 1: Pointwise control on u. Let
(410 w(e) =2 3 = Jw@—swrm | (1-a) Dy at((x)—0())) da duy (y).
mi=2""

A computation shows that

DYg(z) = 2 ‘s+212 j+(z) for z # 0
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and so the da-integrand in (4.10) can be reexpressed as

1 —S
/0 (1_a)(\x—y+at(w(x)— Y(y))[s+2
s(s +2)(x —y +at(P(x) —P(y)))i(z — y + at(P(z )—w(y)))y) da
[z —y +at((x) —P(y)) s+ '

Now, using ||t1)||cr < 3 we can write |z — y + at((z) — 1(y))| 2 |2 — y| and control (4.10),
using (2.49), by

_l’_

| (z o [ max(|z — 2|, )73 ifzcU
< <
an) s [ OO g < L o
We can give a similar control, much more easily, for
1
(4.12) =2 > —ap / (1—a)D"V (z+aty)(z)) daﬂz)(az)./ Do(x+at(x)) da
jmi=2 """ 0

For z € Oy, using (2.17), we can immediately bound

[ua ()] $ MEE7HD 4 %M%‘d*s“ < M2(gemdHs-d42) 4 gs—d) < \g2ged.

For x ¢ Oy, if ||t]|cr is small enough, x + ti(x) ¢ supp @, hence fol Dy(x + atyp(z)) da
vanishes. Thus, we can immediately apply the decay of 1(z) to the remaining term to control

uz ()| < (=) ?
finally giving the decay bound

(P max(|z — 2|, 0)74942H2 if e U
413 < m? ’
(4.13) ua(2)] S {ufjdﬁ if 2 € U°.

Taking the dominant terms in (4.11) and (4.13), and recalling that u = uj + ua, yields the
decay estimate in (4.8).

Step 2: Derivative control on u. We will only need an L* control on Du. A computation
allows us to write

(4.14) /(g@t(iv) —®4(y)) —glz —y)) duv(y) — t/Vg(af —y) - (@) —P(y)) duv(y)

e (L R (== J ey )

the utility of this computation is that the derivatives of g are uniformly bounded in a neigh-

borhood of ‘x Z| Differentiating with respect to any x variable, we see that the derivative

either falls on ‘x%y or the function in parentheses.

Let us do the latter first. We can write the function in parentheses as

(4.15) 22 % 1 (7/’(9“)_¢(y)>m/01(1—a)pmg<|x + t<w(x)—¢(y))> da.

—y
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A computation, using that the derivatives of g are uniformly bounded near

é:g‘ and a mean
value bound, yields that for |z —y| <,
. m 1 _ —
b 30 L (MEVONYT [ g (220 (UELZV))
e ™\ =yl 0 |z —y| |z -yl

S Clllellélios + 21011E + il llvles S Elelle s,
where we have used |[t¢||cn < 1. For |z — y| > ¢, we do not apply a mean value control to
quotients of the form %ﬁ(y) (except for those coming from the chain rule on D™g) and
instead bound

o (o 2 5 () [ 0o (3 (25250

|z —yl |z =y
S 1 S 1 0 ST 1
Tolr -yl eyl z =y T - yP
where we have again used ||t1)||c1 < 1and |[z—y| < 1. An explicit analysis of this computation
in one dimension can be found in [Pei24, Appendix C|. Integrating these bounds, we find for
any i,

1 _ _ _ _
/ s@<€<$ G w@»_ﬁf¢vg<x y)‘¢@) ¢@U WW@ﬂ
|z -yl |z =y |z =yl |z —y| |z =y
Yl 1Pl o 917
< ————— duv(y +—/ﬂ L duy (y
/a:y<€ ’33 - y’s ( ) |lz—y|>£ ‘x - y‘3+s ( )
M2 f 1, M2 1
N g2d—25+1/0 =T drt g2d—2s—2/£ At dr
2N\ 12
< t*M
~ pd—s+1°

Now, returning to (4.14), we also need to deal with terms of the form

1 r—y ) =Yy r—y\ ¥@) 9Pl
Jor(os) (e (ol + M=) g D00 gy )
|z -yl [z =y [z =yl |z —yl |z =y
where 0; indicates differentiation with respect to the ith component of the z variable. This
can be dealt with via integration by parts, using that the integrand is symmetric in z and y

and that uy(y) vanishes on 9%; in the second and third lines of the following environment,
0; denotes differentiation in y:

1 z—y Y@ —Y(y) r—y\ @) —9Q)
il —— = —1- : d
Jo () (s (e ™) - me (=) ™)
1 z—y Y@ —Y(y) r—y\ @) —9y)
= — )5 —1— : d
[ () o (s (e ™) - me (=) - ) v
1 z—y Y@ —Y(y) z—y\ @) —vQy)
- 1 : ; dy.
#f (o) (s (e ™) e (=) ™) e
The second line is what we have just controlled. Furthermore, since uy (y) ~ s(y)dist(y, 9%)1=«
by (1.24), O;uy (y) ~ s(y)dist(y,0X)~“ is integrable at the boundary. Hence, we can repeat
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the proof of (4.11) (which never used the explicit density py, just that it was integrable at
0%) and retrieve the same estimate. In particular,

(4.16)
D [ (el@1(a) = @) — gl = ) div ) ¢ [ Vel =) - (6(0) = v0) diavl)|
t*M?
NN

The remaining terms are much easier to control. These terms are
Vio ®@i(x) = V(z) —tVV - (z) — p(x).

Differentiating the expansion (4.12) yields control

1D (Vio ®4(z) = V(z) = tVV - ¢(z) — o(2))] Lo

S e | DYl + 19120 + Y170 | DYl oo + 8 DY < [[ollen
+ [Pl llellcz + Elll=llelcz ¢l

which controlling [[t9||c1 < 1 allows us to simplify, using (2.17) and (2.15), as

1D (Vi o @4(x) = V(z) = tVV - () = (@)

t2

t2
S PNl [ DYl e + 29[| 7 00 + 7 I1PYllzeM + 5[] 1M

t2M? t2M? t2M?
~ £2d72572 gd75+1 g gd75+1’

where we have used that 2d —2s—1 < d —s+ 1. Coupling this with (4.16) yields the | Du||
bound in (4.9).

n

Notice that in the mesoscopic case, ||t1)]|c1 is small for IN& — 400, since by (2.17)
145, 1\ —(d=s)
tlpller S Nt = (Niﬁ) — 0.
Once we have these scaling estimates, we can estimate 77.

Lemma 4.4. Let &, = I + ty with ¢ as in Proposition 2.2 with (2.15) satisfied at order 5.
Assume that X € Gy, with Gy as in Proposition 3.11 and Lemma 3.12, a set of configurations
such that the local laws (1.29)(1.30) hold for each Dy, in (3.42) (in'32) and (3.26) holds. Then,
for N large enough, we have
NRCEDIC) o4
Ve <(de) 2(3d—s) + €2d—s> if ¢ 5 N 37d—3)
—2s—4

¢ ((N%E)%E‘?d*s) g2sta otherwise.

(4.17) IT1| <p BEEN?~3M? x

In either case, we can write the (suboptimal) bound
(4.18) Ty <5 t2N2aM25(1 4 (Na£)~°)

for some o > 0.



56 LUKE PEILEN AND SYLVIA SERFATY

Proof. The idea is to use Proposition 3.5 on the cube Og(z) with R > 2¢ to be determined
below, and estimate more easily with Lemma 3.6 outside. Notice that, for v as in Lemma 4.3,

HUH2 fﬂif?i
L2(Or) ~ p2(d—s)

and
M4 Rd

2
”VUHLZ(DR) S 2d=—s)p2

If £ <1and R < ¢ (as in the definition of ¥) then the local laws holds in Cp, if not we use
the global law (3.26). Using Proposition 3.5 (applied with n = ¢) coupled with the local /
macroscopic law depending on the case, we obtain

2
M*R¢ M*Rd .

-1 +1 . dy A7+ S

g <€7 729 + 0 YZCESYE min(1, RY)N""4d

/ u(x) dfluct,,, ()
Ur

where we have also used (3.28) (or its consequence (1.30)) to show that the additive error
term in (3.27) is strictly smaller. We find

N

(4.19)

/ u(x) dluct,, (z)| Sg (g'y—l+25—2dM4 min(Rd,de)N1+§)
Ur

<5 M2026-9) min(RY2, R N2t 3

using d — 1+~ = s. On the other hand, using Lemma 4.3 coupled with the local laws on
dyadic scales > 2/, as long as 2F¢ < ¢, or (3.26) otherwise, and Lemma 3.6, we obtain

X d €2dM2
/C w(@) dfiuet,, (z)| S5 . N (min(1,2%0)) P
mNall) kZlogQ%
2d—s
<o NEM? Y min (92, (22208 <5 New? (é) min(1, R~9)
k>log, %

S NM2(* min(Re24, R5739).

Note that if R exceeds a large enough constant, then [0, N U = &, so the integral vanishes,
and we can thus replace the result by

(4.20) <g NM?(2d gs—2d,

/ u(x) dfluct,,, ()
0g,NU
Finally, using a very crude bound and (4.8), we have

(4.21) <p Nlullpoe@e) S N9 min(1, R72ET2))M2,

/ u(x) dluct,,, (z)
Qs,NUe

We then choose
d—s

(4.22) Ri= ¢ (evE) 79
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s—d
if this is such that R is smaller than a constant, which happens when ¢ < Nd@d=39 . Then
(4.19) and (4.20) balance and R > ¢. Indeed,

E%(S—d)RdN%-i-% — NEQdRS_Qd — R3d—s _ g%d—%sN%—Qd _ €3d—s (fN%>T ]

We arrive at the desired result in that case.
Otherwise, we optimize the sum of (4.19) and (4.21) and take

1
d—
nggd—s> dt25t4 :

(4.23) R=((N30)

s—d
notice that this is 2 1 precisely when ¢ 2> Nd@d=3s) which is the regime under consideration.
Then, for N large enough we have % NU = &. In that case we also obtain the result by
substituting (4.23) into (4.19) and (4.21).
O

4.3. Proof of Theorem 2. As in the Coulomb case, once we have control of the Ty term

via explicit controls of the transport, of the 77 term via bounds on fluctuations, and of the

Ty term from the commutator estimate, we have a first bound on the fluctuations, which is

Theorem 2. We take Gy as in Proposition 3.11 and Lemma 3.12, a set of configurations such

that the local laws (1.29)(1.30) hold for each Dy in (3.42) (in ) and (3.26) holds, which we

can assume satisfies Py g(Gf) < C’le_C?BZdN, up to adjusting the definitions of C; and Cj.
Combining (2.2), (4.6), (4.18) and (3.72), we are led to

s BNQ—th Cdb
log . —BtN " dFlucty, (¢)1 ) e/ T e

oz — M)

So (BN?EAMP 4 £2(1 4 JIMENEE) 4 BEENZTEMAE(1 + (N'40) ) + M N,
for some o > 0, with M(p) is as in (4.2). We then let ¢t = —ﬁ]\f—Hﬁr, and note that
the condition ¢/*~9M small enough that was needed for our proofs amounts to 7(¢/N %)S*dl\/l
small enough. In view of the definition (4.2) and Lemma 8.6, we obtain the result under this
assumption.

4.4. Holder trick for the CLT. We can now turn to the proof of the Central Limit Theorem
for fluctuations. We now assume that ¢ = ¢o(=%), which implies (2.15) with M = |[¢ol|cr-+1.
The goal of this section is to improve the estimate on 75, assuming that we have an expansion
of the relative free energy with a good enough rate. The method of proof, introduced in
[LS18] consists in comparing this expansion of the difference of free energies with the relative
expansion obtained by transport in (3.32).

We next assume that we have an expansion of the form (1.44), that is

(4.24)  log K (1, (v 0 ;") — log Kiv (10, Gv) + N (Ent(pr) — Ent(po))
= N(Z(8, 1) — Z(B, o)) + O((1 + B)NL'Ry)

Here, Z is as in (1.43), K]gv,ﬂ is as in (3.4), Ry is the error rate, and fq is the pressure for

the unit density system defined in Lemma 7.2. Indeed, this is precisely the expansion that

we will prove in Proposition 7.5 leveraging the local laws of Theorem 1 down to microscopic

scales. We will analyze when the rate R; we obtain is sufficient at the end of this section.
Let us record some information about the function Z.
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Lemma 4.5. Denote ®; = I+t p := O # 1y where ¢ is the transport map constructed in
Proposition 2.2, with oy € C°. Assume that the function y — fas(y) is p times differentiable
and satisfies (1.45). Letting then By (B, u,v) be the k-th derivative at t = 0 of the function
o(t) == Z(B, ), if [t} pollcs s small enough, we have

(4.25) Z(B, ) — Z(B, po) = Z Bk (B, 10, ¥) + O (B pol |7, 171472

and
(4.26) | Bi(B, 10, )| S Bllollga Tk,
We also have the explicit expression
(4.27)
B __Bs AYSE Svud o Bs [ g3 2 L AT
1(B, pv, ) = — ; L+ ) [ (CA)Y%™ fas(Bui)ny — d fas(Bui )y (A)%
1 5 >
—1 —A)%p™ 1 )
+cd752d 50/( )¢~ log v

Proof. We may write
[ ol factnd) = [ Bud fosGdittuo = [ 5o 80 fo (3 #)3) .

Next we recall that by definition of the push forward we have

%
42 S ol —
(428) HEO U= Qet(I + tDY)’

hence if t|Dy| < 3, which in view of (2.17) is implied by [t[¢579||¢o||cs small enough, we may
bound

&
—— 1y 0 By < [Dy.

4.2
(4.29) T

We also set g(x) = Bad fgs(627) and check that by the assumption (1.45), we have [g™ (y)| <
Cp for n < p when y takes values B,uv(x)g. Using the Faa di Bruno formula, we now have

dk ] ) k dl J
Wg(ﬂt 0®;) = Z ng(Jﬁmﬂk)(Mt o ®y) H <dtl’ut o ‘I)t>
J1+2jo+-+kjr=Fk =1

where Cj is some combinatorial factor, and inserting the above estimates we deduce that

k

d
Wg(ﬂt 0d) < 5\D¢‘ka

with a uniform constant over S > 1. In the same way

/ fit log puy = / log(ps © ®¢)dpy

and the derivatives of log(us o ®;) are bounded by C|Dw|F. Integrating against duy on the
support of ¥, and using (2.48), we deduce that

(4.30) 6® ()| < OB / DY < Bl 0P TEs,
>
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with a constant that is uniform for § > 1. The result (4.26) follows by Taylor expansion. For
(4.27), a direct calculation using that O¢pu|i=0 = —div (o) yields

S . s s S s s
BBy, ) =51+ 3) [ div () fas(oud o+ 5 [ Fastonduifdiv (o)
- ﬁls:@ / div (¢py ) log py .

2d
Inserting (2.12) and (2.16), we obtain the result. O

We can now obtain our main result on the expansion of partition functions relevant to 75.

Proposition 4.6. Assume the same hypotheses as in the previous lemma. Let puy = (I +
t)#uy as in the previous lemma. Let Gy be as in Proposition 3.11 and Lemma 3.12, a set
of configurations such that the local laws (1.29)~(1.30) hold for each Oy, with k > 1 (in %)
and (3.26) holds. Assume we know that for each r < €975, we have

(4.31)

K]g\/e,ﬁ(:uﬁ Cvo q);l)

K1)

log +N(Ent(ur) —Ent(no)) = N (Z(8, pr) — Z(B, p10)) +O((B+1)NE'R,)

with MAX|,.|<pd—s R, < C and R, continuous in r for |r| < vd=s. For any integer p > 1 such

2p+3 d—s “p
that wo € C*PT°, for every t such that [t|0°°||pollc2p+s (maX|T|§€d—s Rr) is smaller than

a small enough constant (depending only on d,s, puy,p), a being the largest number < ¢473
such that

P
(4.32) a=—"( max R, | 473,
leollczo+s \[-asal
for some ¢ > 0 small enough, we have

P
logEp, , <exp ( Z ’yktk) 1g[>
k=1

where i, = BN~ A(X, pto, ) — 5 Br(B, 1o, v). Moreoever,

1—41
g
(4.33) < O[t|(8 + V)N o]l gz (Tnfix 72)

p—1 Lk
t
(434) longN,g (6T2 1g4) - Nkzl gBk(IB’ Wy, q)[))‘
1—1
St 1>N€5(ﬁ3" Rp) 7 Bl po [Py s NEA PP,
r|<a

where the bound depends on p and the above bounds.
Proof. Expanding the next-order energy to order p via (3.36), we have
(4.35) Fn(®:(Xn), ®i#p0) — FN(Xn, po)

p—1 g t
t 1 - -
= > Me(Xn o, 9) + p'/ (t = )" Ap(@s(Xn), prs, ¥ 0 D) ds.
i - JO
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In the same way
(4.36) log det D®; = Z thep () + O(tP| Dap|P),

for certain expressions ci(¢). Inserting into (3.32) and using (3.68) to bound A,, we obtain

(4.37) ™1, =exp( BN™ d<2t’fAk X, 10, %) + Op (1Pl 0o lfps “‘“”SNHZ))
k=1

p—1
+ 3 tFFluct,, (cx(1)) + O (Fluct,,,, (7| Dy|?)) ) 1g,.

Let us first bound Fluct,,, (|D9|P). For that we rewrite ¢ as > (xx1) where xy, is a partition
of unity relative to the Ag’s as in the proof of Lemma 3.12. We use the rough bound of
Lemma 3.6 (and a rough bound by N||¢||ze in Ag,12), and obtain using (2.17) that

(4.38)

0o oo gd »
Fluct,,, (|DY[") 1, 5 kZ Fluct,, (ID(xx¥)I") 1g, < Nllvollgs (kz <(2k€)2ds> (2F0)¢ + ¢
(4.39) < ||¢0‘|%5N ([d(l—p)-i-sp + gd) < HSOO|’€«5N€d(1_p)+Sp-

N——

Inserting this into (4.37) and inserting (4.37) into (3.32), we obtain an expansion that we
may equate with the expansion (4.31) and (4.25). Setting

_s N
(440) Ve = _BN d Ak(XN7 Ho, ¢) + FIUCt(ck(¢)) - yBk(Ba Ho, ¢)
this yields that

p—1
log By, (exp (3= tw) 1ge) = 03 (1P (1+ BN 60][Zast747°) 0 (1 4+ B)NE (R + Ro)) .

We next wish to choose a < £47% such that
0P [[ipo | [Braps 1PV < CUY(Ro + Ra).

For that we choose

1
p
a=supb< s, b<¥ max R, | ¢755%.
leollozes \rel-bi]

We note that a < ¢475 if mMax,.c(_gd-s pi-s) Ry is bounded and ¢ > 0 is chosen small enough.
Thus by continuity, we must have

S

(4.41) a=—" (max Rr> 04,

leollczo+s \[-asal
With this choice we then have
p—1
(4.42) logEp, , (exp (Z akfyk) 1g[) = ((ﬁ + 1)N¥ max R )

Ir|<a



LOCAL LAWS AND FLUCTUATIONS FOR SUPER-COULOMBIC RIESZ GASES 61

We note by Hélder’s inequality we have E(el)E(e~) > 1 thus we can transform (4.43) into

p—1
log Epy 4 (exp ( + Z ak,yk) ]_ge)

(4.43)

((5 +1)Nt9max R )

Ir|<a

Let now Xi,...X, be p equally-spaced points in [1/2,1], and let P;’s be the Lagrange
interpolation polynomials of degree p — 1 associated to Xi,..., X, i.e. such that P;(X;) =

0i;. We may expand each P; as Zf;%) cinX", where the coefficients ¢;, depend only on p.
Expressing the polynomial Zﬁ;ll Ypa" X" along the P;’s we obtain that

p—1 p p—1 p—1 p p—1
Y oma" X" =3O wd" XP)P =YY (O wa X )einX
n=1 =1 k=1 n=01i=1 k=1

Equating the coefficients, it follows that for 1 <n <p-—1,

p p
(4.44) V@™ = Cin (Z 'wca’“Xf> :
=1 k=1

Note that (4.43) is also true with a replaced by aX; (for X; € [3,1]). Choosing C a constant
large enough (depending only on p) and using the generalized Holder’s inequality, we may
write that for each 1 <n <p—1, in view of (4.43),

p—1
logEp, , (exp (Z ykalel“) 1gz>
k=1

<g (B+ 1N 1\(11\3}(7%,

p
(4.45) logEpy, (exp (7 = ) 1g£) <3 [cinl

=0

where C' depends on p. The same result holds starting from the opposite of (4.44), that is we
can also obtain

(4.46) logEp, , (exp (—%g ) ]_gé) <5 (B+1)N ‘H1|2XRT.

Using again E(el)E(e=1) > 1, we obtain a two-sided bound

(4.47) logEp,, , <exp <

%g >1gé>‘ Sp (B+ DN maxR,,

Ir|<a

Using Holder’s inequality again we deduce that if |¢|/a is small enough (in particular < 1),

p—1 p—1
logEp, , (exp (z yktk> ]_ge) < Z

k
t|
olt”
ok

k
logEp, , | exp sgn(tk)—%a 1g,
k=1 1 ’ c

p—1 k
(4.48) < C‘a‘ Z logEpy 4 (exp (sgn(tk)vgllg )) s U(ﬁ + 1)N Fl‘alxR
k—1 T a

Inserting (4.40) and (4.48) into (4.37) and using the definition of a, we obtain (4.33).
Inserting (4.33) into (4.37), we obtain (4.34) after another application of Hélder’s inequality.
([l
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4.5. Proof of Theorem 3. The Holder trick of the previous subsection gives us improved
control on T», which will allow us to obtain the CLT.

Lemma 4.7. Under the same assumptions, suppose there is some p > 2 such that

1-1
s P
(4.49) (£N5> : (maer> —0 as N — oc.
Ir|<a
Ift= T2 N-355075 where T is fized, then, as N — oo, we have

VB
2
(4.50) log Ep, , (eT21g2) _ T2y

VB T EN BB, wy, ¥)1sx0 + o(1),

where o(1) may depend on 5.
Ift = —TT‘?NiAE*% where T is fized, then, as N — oo, we have

T™V2 s s
(4.51) log Ep, , (€T21g£> = —7N2d Y2 NB(B, pyv, ¥)1ss0 + o(1),

where o(1) is uniform as f — oco.

Moreover, (4.49) holds for p large enough if
(4.52) (< N™&%mD
and s < sg, where sy s approrimately

{0.03973 ind=1,

(4.53) ,
0.06059 in d = 2.

Notice that (4.52) holds automatically in the case s < 0 and in the case s = 0 as soon as
¢ =o(1).
Proof. The first item is an immediate consequence of (4.34): with the choice of ¢, if (4.49)

holds we have
1-1 11
P P
tN (max Rr> <m|zix Rr> — 0.

Ir|<a
2(s—d)+(1-5)d

N|n

s (o)

Moreover,

[t NP+ =0

S NPHEE NN - (o)

since s < d and p > 2, establishing the desired o(1) limiting behavior for log Ep, , (eT2 1g) —
ZZ: tk%Bk(ﬁ,uo,ib). Finally, using (4.26) and (2.17) we obtain

)(1flc)d+%

O BB, )| S NNB ke oheet (g
For any k > 2, the exponent is negative as d — dk + % < (k — 1)(s —d) < 0. For k = 1,
the exponent is only negative for s < 0. In the s > 0 regime, we possibly have some limit
limNﬁoo(N_ié)_éBl(ﬁ, uy, ). This establishes (4.50). The proof of (4.51) is analogous and
left to the reader.

We now examine the condition under which (4.49) holds. From Proposition 7.5, for all
|t|¢s=9 < ¢ small enough, we have
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d—s
R, < max (<rtw5—d>2d"s (¢ ((Na=))* rtres—d>
with

KR =

1~ rraer ifd<5ors<d-1
1— (d—ﬁ% otherwise

and
&(R) = R "logR
The definition (4.32) together with a < 475 thus implies that
d—s
(154) max Ry < max ((g ((viny)) = ) |

r|<a
Moreover, abbreviating & ((N%E)ﬁ) into &, in view of (4.32), we have
TR dy Ly pd
(4.55) a < max (&9 (ae> )P )e°,
which together with (4.54) yields

(456)  maxR, < max <(g ((N%e)%ﬂ))ﬁ 7 (f)%, (éa((N%g)%ﬂ)% (g)d—s> _

Ir|<a € 15

Taking for instance p = 2, in order to guarantee (4.49), it is thus sufficient to guarantee that

(4.57) Lon (d—s)<07 (U\f%)ﬁé:o(l)forsomele.

s

2 4r+1\2d—s

This condition will only be possibly satisfied for small enough s, which requires d = 1,2.
The second condition is satisfied as soon as ¢ < N 7@, which yields (4.52). For the first
condition in (4.57), we examine each dimension separately. In d = 2 we only have s > 0, and
the condition becomes

;—% (82_255> (it) <0 = 45® —336% 4+ 68s — 4 <0,

which is true for all s < sp :~ 0.06059. In d = 1 we always have (4.49) for s < 0, so we only
need to look at s > 0; there, we need to check

S 1 1—s 1—s 3 )
31 (5750) (570) <0 o= st <o
which is true for all s < sy :~ 0.03973. .

We can now prove Theorem 3.

Proof of Theorem 3. Letting t = —%N%_lﬁ_% and assembling the results of Lemma 2.1,
(4.6), Lemma 4.4 and (4.50), under the assumptions (1.45) and (4.49) we obtain

log Ep, , (exp (T\/%(N%E)_%Fluctw (cp)) 1g€> =
2 (i)

1 a, 2 T2 —scd’%
- z(_A) o= (log py) + B1(B, pv, ) +?£ —

o2 w0

VB

Cd,s
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Furthermore, since

Esy, (exp (7v2B(N0) 3 Fluct,, (¢)) 1g,) = Epy , (exp (7v/2B(N70) "3 Fluct,,, (¢)1g, ))
+Pns(G7)

and Py 5(Gf) ~ Cre~C2BEN 0, we have obtained that the Laplace transform of

VEB(N0)~EFluctyy (o)1,
converges in distribution to that of a Gaussian. Inserting into the above (8.19), we thus have
that

converges in distribution to a centered Gaussian of variance equal to
)12 e
{”900 1% 4 ifl=1
H™2

||s00||2d75 if £ — 0.

2
In view of (8.20), (4.27) and Py g(Gf) — 0, this establishes the first claim of Theorem 3.

If we take t = —TT‘?Ni_lé_%, we instead use (4.51), and obtain the result in the same
way. O

5. LoCAL ENERGIES AND SCREENING

We turn now to the proof of Theorem 1. The argument here is inspired by the bootstrap
on scales carried out in [Leb17], [AS21] and [Pei24], and relies heavily on the electric energy
formulation introduced in [PS17]. The main notions for this approach were introduced in
Section 3, where the next-order energy Fy (X, py) was introduced. The typical order of this
quantity is well understood, from [Ser24, Corollary 5.23], see (3.5) and the consequence in
(3.26) and serves as the base case for our bootstrap on scales. This section introduces notation
and terminology for examining the system at the blown-up scale and for the localization to
length scales ¢ < 1.

5.1. Blowup and Subadditive Approximation. First, it is convenient to change coordi-
nates so that the typical interparticle distance is order 1. In the blown-up scale the length

scale ,ogN_l/d < ¢ <1 will be replaced by pg < L < N%.
Setting X} = N9 Xy and pwy (z) = uv(ch_%), we can compute that

s N
(1) P (X, ) = N3F(Xh i) = (108 ) 1emo

where, for any nonnegative density u with u(RY) = N, we let F be defined by

1 N N
5.2 F( Xy, pn) == x—1y)d Oz, — z)d Op, — .
(52) o= 5[] ge=u) (Z u)() (Z u)@)

Note that (5.1) and (3.25) yield that
(5.3) F(Xn,p) > —CN
where C' > 0 depends only on d,s, ||| -
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A similar blow up computation yields
N¢y (w:) = Nagy ()

where
T

¢ (z) = WV + N'=av ( ) — N'aey.

N

We can then expand as before

Zng = exp (~BN*"EE(uv) ) Ks (ki Cir)

where we define more generally

N
(5.4) Ka(p,¢) == N~V /(Rd)N exp <—ﬁ <F(XN,M) + ZC(%))) dXn.

i=1

In the subsequent analysis, we will need subadditive and superadditive minimal approxi-

mations of our local energy that are purely local quantities, unlike the above energies which
depend on the global configuration. We proceed to define the subadditive approximation now,
again in analogy with the Coulomb gas [AS21, Section 2] and the 1-d log gas [Pei24, Section 2].
The superadditive approximation is easier to present following a discussion of the screening
procedure, and so we postpone that discussion to later in this section.

5.1.1. Subadditive approximation. Let us start with our subadditive approximation, which is
a Neumann energy, following the steps of [Ser24, Chap. 7]. It is now better to work with a
generic nonnegative density p in a generic domain U. Let U C RY be a domain with piecewise
C' boundary and such that fU u = N is an integer. When U is unbounded, we will need an

additional decay assumption in the case s < 0: there exists m > 0 and a set U such that
w>m > 0in U, such that

1
(5.5) D) //(U)CX(U)C g(z —y)du(x)du(y) > —CN,

which is easily satisfied by the blown-up equilibrium measure in the generic case we are
studying.
We need a new version of the minimal distance to make the energy subadditive: we set

(5.6) ti= %min (leerg’rjl#l |z; — x|, dist(z;, 0U), 1) .
This will shrink the radii of the balls when they approach OU, ensuring that all B(z;,¥;)
remain included in U if z; € U. Let now A be a set of the form U x [—H, H| for some
H € (0,+0o0] (interior case), or of the form (U¢ x [—H, H])¢ (exterior case).

If u(U) = N, for a configuration Xy of points in U C RY and A € R4t of the form above,
we let u solve

N
—div (Jy|"Vu) = cqs <Z Oz, — ,uéRd> in A
i=1
(5.7) % -0 on OA

Vu— 0 at oo.
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If U and A are bounded, the condition at oo is dropped. The associated subadditive approzi-
mation is the Neumann energy

N N
68 FXvd) = 5 ( / |ymww—cd,szg<m) - [ e =) duta),
=1

S i=1
where f, is defined in (3.11). Note that F(Xy, 1, RI1) = F(Xy, 1), the quantity defined in
(5.2).
Notice also that for any A; C Ao, we have

(59) F(XN,,U,, AQ) S F(XN“LL, A1)+F(XN7/’L7A2\A1)

The proof is as in [Ser24, Corollary 7.6] and relies on the following projection lemma, which
tells us that gradients minimize energy, cf. [PS17].

Lemma 5.1 (Projection lemma). Assume that U is an open subset of RY with piecewise O
boundary, and let Xy C U x {0} € A C R, where A is an open subset of RT! with
piecewise C' boundary. Assume E is a vector-field satisfying a relation of the form

—di TR — N _ ;
(5.10) div (ly]"B) = cas (S0 0 — pdga) - in A

E-n=0 on OA,
and u solves

—div (Jy|"Vu) = cqs (Zf\il Oz, — ,uéRd) in A

g—g =0 on OA,
and u(g—g —FE-n)— 0 as |x| = oo,z € A if A is unbounded. Then

[orivu < [ 1o
A A

where B = E — YN | Vi (x — ;).

2
)

Extending Vu; by a zero vector field and using the projection lemma as in [Ser24, Corollary
7.7], we have that

(511) F(Xqu?A) > F(XNHU]-AaRd) = F(XNvﬂ]-A)a
which implies in view of (5.3) the lower bound
(5.12) F(Xw.,A) > —~CN

with C' depending only on d,s, ||| o

5.1.2. Local versions. We next turn to local versions of these energies. First we define a new
minimal distance relative to 9Q where Q C R9:

(5.13)
min (minxjeQJ# |z; — xj, dist(x;, 0U N Q), 1) if dist(x;, 0Q2) > %
_— 1 | min(1, dist(x;,0U N Q)) if dist(z;, 9Q\OU) < 1
" 4 ) tmin (minmjeg’#i |z — x4, dist(x;, 0U N Q\OU), 1)
+(1 — t) min(1, dist(z;, 0U N Q)) if dist(z;, 0Q\0U) = Lt € [0,1].

We note that this minimal distance coincides with (5.6) when taking Q = RY. Here, the
balls are enlarged to their largest possible values for points that approach the boundary of €
(except for the part included in OU). This way, balls can potentially overlap the boundary
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and not be disjoint. This also ensures that for x; € €1, ¥; does not depend on the points of
the configuration that lie outside of €. In addition the definition is made so that the radii
are continuous with respect to the position of the points.

Given a set Q C Rt of the form Q x [—h, h] or its complement, we then let

- 1 B
(5.14) F*(Xn,p,A) = 2eqs (/Qm\ Y| Vue® — cas Y g(ri)) -y /Ufh(ﬂﬁ — ;) dp(x).

iEIQ iEIQ

This definition provides the following important superadditivity property (see [Ser24, Section
4.5, Lemma 7.8])

(5.15) F(Xn, 1 A) > FA( Xy, A) + FO (X, 1, A).

We have the following control, as in [Ser24, Proposition 4.28, Lemma 7.8]: there exists
Co > 0 depending only on d,s and ||p| e such that

(5.16) /Q [yl |Vhel? < deas (FH (X, 1, A) + Cotl ) -

5.1.3. Local partition function. Associated to U C RY we also define a local partition function
respect to a height H in the extended dimension. For ¢ > 0 such that [ e~¢(®)dz is convergent,
¢ vanishing in the support of u, and u associated to U via (5.7), let

N
(5.17)  Kau(U,p,¢) = NN /U exp (—B <F (Xn,u,U x [~H, H]) + ch)) dXy.

=1

We associate a measure to this partition function by

(5.18)
1 N
= -6 (F(X —H, H i Xn,
dQ,B,H(U7,U7<) NNK,B,H<U7M7C) eXp( 6 ( ( NnuaUX [ ) ])—I—;C(.ﬁ ))) d N
and we also introduce external partition functions
(5.19)
! Nl
KGO = (V)N [ e | = | F Ot (U [ HI) + 3¢ | | o
N i=1

where N/ = p(U¢), assumed to be integer.
Coupled with (5.9), we have the following superadditivity of partition functions.

Lemma 5.2. Let U be as above, and suppose U is partitioned into p disjoint sets Q;, 1 <i <p
with p(Q;) = N; € Z. Let H, hy,...,h, € (0,+00] and suppose h; < H for all i. Then,

NIN-N L
(5.20) Kp.zr (U, 1, ¢) > — 1 Ko (Qi, 1, 0).
=1

Ny! - NNy MU N,
We also have, if u(RY) = N and p(U) =7,

NIN-N ext frre
(5:21) Kot (R 11,0) 2 gy — s <ot (U OKEH (U 1. ).
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Proof. The argument is exactly as in [Ser24, Lemma 7.3|, with the added observation in
(5.20) that we can decrease H by appending a zero electric field for |y| > h; in the extended
dimension to the vector field defining F(Xn|q,, i, Qi x [—hi, hs]) and applying Lemma 5.1
above. g

5.2. Preliminary free energy controls. To obtain free energy controls, we use, as in
[Ser24], the following rewriting.

Lemma 5.3. Let U be an open subset of RY with bounded and piecewise C' boundary and u
a bounded nonnegative density such that (U) = N is an integer. Let h € (0,+o0c|, and let
Gy solve

—~div o |y VGu (2, 20)) = Cas (Sug(®) = sy (2)0ps) i U x [=h,}]
(5.22) (95%[] =0 on 0 (U x [=h,h])
VGy — 0 at oo.
Let
HU(x7 xl) = GU(QB’ xl) - g(ﬂj‘ - ZE/),

where g is naturally extended to R4TY. Then for any configuration Xy of points in U, we
have

(5.23)

N N
F(Xn, 1, U x [-H, H]) = ;//Rd\A (Z Oy — H1U> <Z M1U> y)

3 ) Hoa (Zaxl—u> (Z%—u)

The proof is analogous to [Ser24, Lemma 7.9] except working in extended space with natural
extension of g and Gy.
We can now obtain the a priori bound on the Neumann free energies.

Proposition 5.4 (Neumann free energy bound). Let U be an open subset of RY with bounded
and piecewise C* boundary and pu a bounded nonnegative density in U such that u(U) = N is
an integer. Let H € (0,+o0]. Under the assumption (5.5), we have

(5.24) log Kg,ir (U, 11, ¢) + Ent(p) > —C(1 4 )N

where C' > 0 depends only on d,s, |||/ and the constants in the assumptions.
Under the assumption that U is bounded, we have

U
(5.25) logKg 1 (U, 11,0) < CSN + N log |N|

Proof. Let us start with the lower bound. The difference with the proof of [Ser24, Prop 7.10]
is that the reference measure in the definition of Kg f is e~ <@ dz and not p. By definition
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and using Jensen’s inequality, we may write

(5.26)
N N
log Kg 1 (U, 1, ¢) = log <NN /UN exp <_/BF(XN7H’ U)+ > C(x) = > log M(fﬂi)) dM®N(XN)>
i=1 i=1

N
> NlN/UN ( BF(Xn, 1, U +Z< glogu(n)> ap= (Xy)

Inserting the rewriting (5.23), expanding all the sums and observing that the terms involving
Hy; cancel after integration against du®”, we are led to

logKﬁ,H(U,u,C)Z/UCdu—/ulogqu// z,y)du(z)du(y).

If s > 0 then g > 0 and we deduce the lower bound. If s < 0, we argue by splitting the region
into cells of size R and optimizing over R. It is an adaptation of the proof of Propositions
7.10 and 5.14 in [Ser24], left to the reader, and using (5.5).

For the upper bound, it suffices to insert the lower bound (5.12) for F into (5.17). O

5.3. Riesz Screening and Superadditive Approximation. The main technical tool that
we use in the proof of Theorem 1 is a screening procedure for Riesz gases, adapted from the
procedure for Coulomb gases described in [Ser24, Section 7.2]. This kind of procedure is
based on ideas from [ACO09] and [SS12], and adapted to Riesz gases in [PS17], then also
used extensively in [LS15]. The difficulty in the adaptation is in having to work in the
extended space. The version below is optimized from [PS17] as was done for the Coulomb
gas in [AS21], introducing a new approach in dealing with the extended dimension for the
so-called “outer screening' (which was up to [AS21] called inner screening).

A detailed description of the ideas and motivations involved in the screening can be found
n [Ser24, Section 7.2], some of which we summarize here. Consider a hyperrectangle € in
which the background measure p is bounded from below, the localization superadditivity as
in (5.15) yields
(5.27) F(Xn, p, RY) > FOXIRA xR 4 FOXEERADE (x RY).
A matching upper bound is of course not true, but if the energy on  is (reasonably) well
controlled we can screen the configuration Xy, which means modify it near 92 and produce

new configurations Yz and Yy _g with corresponding electric fields that have a zero Neumann
boundary condition and energy smaller than the original ones, up to small errors, i.e.

F(Ya, @, Q2 x [—h,h]) < FOx[=h.h] (Xn, M,Rd) + screening errors
and
F(Yn_n, fi, (Q x [—h, h])¢) < FOX=RRDY (X 1 RY) + screening errors.

Here the configurations Y; and Yy _g coincide with X except in a boundary layer near 952,
the same for i with p. By subadditivity of the Neumann energy (5.9), gluing together Y;
and Yy _j into a new configuration Yy on RY, we then have

F(YN7 K, Rd) <F (Yﬁa f, Q x [_h7 h]) +F (YN—fla H, (Q X [_h’7 h])c)
< FOXERRDT (X RY)  FOX IRl (X 1 RY) + screening errors.
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The configuration Yy being considered as an approximation of X, this constitutes a sort
of converse (with error) to the superadditivity of (5.27), providing an estimate of additivity
error. We will be able to do this for most point configurations and corresponding electric
fields, this will allow the above relations to be integrated over configurations and turned into
a free energy almost additivity result. The crucial point here is that the screening errors
hence addivity errors are negligible with respect to the volume of the box €2, even when 2 is
small, which is what will allow to obtain the local laws down to the microscale of Theorem 1.
An important fact is that screening can only be performed in regions where the density u is
bounded below by some constant m > 0.

5.3.1. Riesz screenability. Before delving into a more detailed description of the procedure,
we first give a definition of screenable electric fields. We let Qg be the set of closed hyper-
rectangles of the form Qg x [—h, h] in R*! with the sidelengths of Qg in [%R, 2R] and which
are such that |, oy 1t is an integer.

We will screen fairly generic electric fields satisfying relations of the form (5.28), respecting
Neumann boundary data constraints if there are any, and for such vector fields we define
their truncations as in (3.14), with the truncation radii ¥, which we notice coincides with
¥ for points at distance larger than 1 from all considered boundaries (hence the truncated
fields coincide as well once at distance > 1 from the boundary). The main difference with
the Coulomb case is in the need to control the energy on horizontal slices parallel to RY in
the extended space. In what follows m > 0 is a positive constant: screening can only be
performed in regions where the density p is bounded away from O.

Definition 5.5. Let pu be a nonnegative bounded density. Assume A is either R9TL or o the
cartesian product of a hyperrectangle with an interval [—H, H|, or the complement of such a
set. Let h < R/2 and let Q@ = (Qgr x [—h,h]) N A (inner case), resp. Q@ = A\(Qr x [—h, h))
(outer case) where Qg s a hyperrectangle of sidelengths in [R,2R] with sides parallel to those
of A, and such that ,u(fl) =1, an integer. Let £ and { be such that R > { > { > C, where C is
some constant dependent on m. In the inner case, assume that p > m > 0 in ((Qr\Qx_o7) X
{0}) N A and in the outer case, assume that that p > m > 0 in ((Qp57\Qr) x {0}) NA. In
the outer case, also assume that the faces of OQr are at distance > 20 from their respective
parallel faces of OA.
In the inner screening, let X, be a configuration of points in Q and let w solve

(5.28) {—div ([y[" V) = cas (Sy 8, — pdga) i O

%‘;:0 on OA N Q.

In the outer screening, let X,, be a configuration of points in Q and let w solve

—di Y _ n o ™
(5.29) {dwuy\ Vw) = cgs (LI 0r, — pbps) in Q)

g—:f:() on OA N Q.
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In the inner screening, denote

(5.30) S(Xn,w, h) = / [y | Vs |2
(Qr_i\Qpr_2p)X[—h,h)NA

(5.31) S (X, w,h) = Sup/ ly| | Vs |
T J((Qr_i\QRr—29)NOe(x)) X [—h,R[)NA

(5.32) e(Xn,w, h) = / Iy | Vwl|?.
QRX{fh’h}

In the outer screening, denote

(5.33) S(wh) = | [y [Vaorf?

((QR+22\QR+Z)X[_h7h])mA
2

(5.34) S'(Xp,w, h) = sup/
T J(((QRr420\Qr47)NDe(@)) X [—h,R])NA

(5.35) (X, w, h) = / [Vl
Qr*x{(—(R+h),(R+h)}

Y[V

We say that a configuration X, and potential w are screenable at height h if

1 Rt S(Xn, w, h)
(5.36) max (the(Xn,w, h), a1 min (S'(Xn, w, h), Z)) <c

where ¢ is a constant dependent only on upper and lower bounds for p (and defined in (9.13)).

With a notion of screenability in hand, we can define the minimal energy approximation
that we will need for the screening statement. It is analogous to a Dirichlet energy.

Definition 5.6 (Best screenable potential and energy). With the same notation as above, we
let

(5.37)

Gzz/eXt(Xn, Q) = min{

7|V |* — . ti -y b (@ — x;)dp(x)ORd
(/Q‘y’ |Vl Cd,s;g( z)) ;/an( i)dp(2) O,

w inner/outer screenable satisfying a relation of the form

—div (|y["Vw) = cas (i1 8, — p0ga +32;057)) in Q
%ﬁ =0 on AN

1
2Cd,5

~ 1
with z; ¢ Q,n; < Zmin(l,dist(:rj,af\))
and satisfying (5.36) at level h and e(X,,,w,h) < a},

(with the min understood as +oc if the set is empty), with e(X,,w, h) as in (5.32) and (5.35),
respectively. By the direct method in the calculus of variations, one may check that the minima
are achieved. Note that G depends on A and p but for the sake of lightness we do not retain
it in the notation.
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We also define
(5.38)

San(Xn) = inf{S(X,,w, h),w achieving the min in GETE(X”, Q), resp. Gfﬁ.i(Xn, )}
(5.39)
7é’h(Xn) = inf{S"(X,,w, h),w achieving the min in ;?E(Xn,ﬂ), resp. ZT}E,(XmQ)}

When w is inner/outer screenable at level h with an a-bound on e, it is a competitor in the
definition of G™»/°ut  thus we have

(5.40) FO(Xy, 1, A) > G/ (X |6 ).

5.3.2. Riesz screening. Before we state the screening procedure formally let us give a heuristic
description (see Figure 1). For a screenable field and configuration, we select by a mean-value
argument a “good boundary" enclosing a set O (like old), in which we keep the configuration
and field unchanged. We let A/ (like new) be the complement layer to O, and N, be N with
a buffer layer of size n < 1 removed. We place new points in A, in a way that neutralizes the
background measure, and define a new field in N x [—h, h] with a zero Neumann boundary
condition on 9O x [—h,h]. A novel component of the screening in the Riesz case is that we
need to complete the field away from the subspace RY; this is done in Q x ([~ R, R]\ [~h, h])
by matching the current field at level A and setting a Neumann zero boundary condition
elsewhere.

The inner screening is analogous, except we are now working with the field in (Q x [—R, R]);
see diagram (B) in Figure 1 below, where E stands for the electric field Vw.

We now state the screening procedure formally.

Proposition 5.7 (Riesz Screening). Let us take the same assumptions as in Definition 5.5,
and suppose 0 < n < 1. Then, there exists a C > 5 dependent only on d,s,m and ||| pe such
that the following holds. Suppose that X,, and w satisfy (5.28) (respectively, (5.29)) and are
screenable at height h in the sense of Definition 5.5. Then, there exists a set @ C RY such
that

(Qp_os x{0})NA C O x{0} C(Qr_o x{0})NA (inner screening),
resp.

(Qhi0r ¥ {0}H) NAC O X {0} C (Qy, s x{0})NA (outer screening),

a subset Iy C {1,...,n}, and a nonnegative density fi supported in Nyy = {x € N : dist(z, O) >
n}y with N' C RY such that N x {0} = Qr x {0} N A\ (O x {0}) in the inner screening and
N x {0} = ((Q% x {0}) NA)\ (O x {0}) in the outer screening, such that the following holds:

(1) no being the number of points of X, such that B(x;,t;) intersects O, we have

G4 AN = AN =1 mo, W) - )] < € (Re 4 S
B m - 2 S(X’ruw?h) 7772 d—1
(5.42) e = All ooy < 5 %QW_M)SC£Z+C€R

S(Xn,w,h)
() 1 < O5Kn)
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B 0 E-n=0 match bound-
= ary conditions
Q x{R}
e}
Il
=er-
l:ﬁ keep field fixed here t//- place new points
= :cg >
}v keep configuration fixed
place new points g O X {—h} m
- =
I
o
match bound-
ary conditions E-n= 0

(A) inner screening

O°x{R+h}

match bound-

ary conditions

Q x {R}
keep field fixed tlj E-i=0 . -
B~ place new points
here F-1 Ly
=) E=0
> T
ﬁ kdep configuration fixed
place new points — T?
E-7n=0 )

match bound-

ary conditions

(B) outer screening

FIGURE 1. The screening procedure

(8) The Neumann approximation is comparable to the original energy, i.e.

(5.43)
F(Vio i Qr X [ R R) — (22 ( R —cdzgm)) > [ 6o - nint >>
S RX|— I, =1

2
< ChS(me + Z g(x —ZJ +|n —n| + i+R &(Xn, w, h)
¢ (if)e] .

+ (14 27) R* 4 F(Zano, 1, Ny X [~h, B])
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where
J ={(,7) EIax{l,...,ﬁ—n@}:|xi—2j\ <t}

in the inner case, and

N ( {

(5.44)
1 o -
F (Yo i (Qr % [~ R, RI)F) - (2 ( / \ywww?\?—cdzg(n)) +> [fla
Cd ,S (QRX[fR,R])C =1 =1
hS(X,, ?
< C———~ 5 ) + Z gz — z; +|n_n|+R~<R +R>€(me7h)

(iped min(h, ¢)

+ (Z—i_ h_,y> Rd_l + F(Zﬁ—nov ﬂw/\/?? X [_hv h])
in the outer case.

The method of proof essentially adapts and optimizes the approach of [PS17, Section 6] in
an analogous way to the optimization of [AS21, Appendix C] for Coulomb gases. A thorough
discussion can be found in [Ser24, Chapter 7]. The approach to outer screening is a novel
adaptation for the Riesz gas. We will present the proof in Section 9.

Remark 5.8. It will be important to screen fields defined at heights R’ > R in the proof of
almost additivity in Section 7. We can start with a field Vw defined in Qg x [—R', R for
any R’ > R and apply the screening procedure to its restriction to Qr X [—R, R] to obtain a
screened field in Qr < [—R, R]. Notice then that by appending an electric field that is uniformly
zero for |y| > R and using Lemma 5.1 above, we can replace F(Ys, fi, Qr X [ R, R]) in (5.43)
with F(Ys, i, Qr x [-R', R']) for any R’ > R. This yields

1
/ |V
2¢ds JQrx[-R R

S F(Yﬁn&'a QR X [_R7 R]) -

F(Yﬁ> ,aa QR X [_Rla R,D -

1
/ [V,
2Cds JQrx|-R,R]

from which it follows that the screening result above allows us to screen in Qr X [—R', R'] for
any R' > R with the same errors as in (5.43)-(5.44).

6. MAIN BOOTSTRAP

In this section we prove the main probabilistic control on local energies, following a boot-
strap on scales. The argument is a generalization of [Pei24] to the higher dimensional Riesz
case, which was in turn a generalization of [AS21] to the 1d-log case. See also [Ser24, Chapters
7-8] for a thorough description of the method.

We are going to prove local laws in blown-up scale. In order to prove Theorem 1, we need
to prove them for A = R4t and p equal to the blown-up of the equilibrium measure jy .
For the proof of the almost additivity of the energy in the next section, we will also need to
have proven the local laws in cubes. This is why we continue to work with a generic density
p and set A in the setup of Section 5.1.1, and a general probability law Qg  as in (5.18). In
the case of a cube, the local laws will be valid up to the boundary. In the case of the whole
space, the local laws are valid only in the bulk, i.e. on cubes separated from the set where

d (ﬂf))
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w is small by a fixed positive distance in original scale. For that reason, we let, in the case
where A = R+,

(6.1) 3 = {z € RY, dist(, { = 0}) > eN'/9},

and assume that x> m > 0 on 3'. Note that by assumption (1.24) we know that sy is
bounded below at distance ¢ from 0, so iy, satisfies this condition. In the case where A is
a hypercube of projection onto R? equal to U, we just let S = U. All the constants in the
local laws will depend on m, hence on ¢.

We wish to prove that there exists constants C1, (5 independent of the scale and of 3, Cg
independent of 3 when 8 > 1, such that, u being defined in (5.7), for all L > pg and any cube
O C 3, there exists an event Gy, such that

(6.2) VXy €Gr, FIXERE(X N 5 A) + 2Co#1n, < CsLe

where Cy is the constant in (5.16), with the event Gy, satisfying Qg g (Gf) < Cre~C2hL7,

As in [Leb17], [AS21] and [Pei24, Theorem 1], this is achieved by an induction on the scale.
To do so, we consider a cube [y, (z) C ¥’ (later we will drop the z from the notation). Then
O.(z) C 3. We then consider 27%+¢ = L, and assume that there exists an event Goy with
Qp,u(G5;) < C’le*Cﬁ@L)d such that for every 1 < k < k,

(6.3) VXy € Gop,  FReenX2E2L(Xy i A) + 200410, < C(2°L)°
Note that for k& > k, this is also automatically satisfied thanks to (3.26) (for a constant
depending on ¢).

In view of (5.16), this implies in particular

d
(6.4) VXy € Gor,V1 <k, /D ||V |? < 4y «Cp (ZkL)

2kL><[—2kL,2kL]
k d
and  Cogtln,,, <Cs (2°L)".

We then wish to prove that there exists an event Gr, such that Qg x(Gf) < C’le_CQBLd and
such that for all Xy € Gz, (6.3) holds for k = 0 as long as L > pg, with the same constants
Cy,Co,C. This easily suffices to imply that (6.2) holds for any cube Oy C 3 as long as
L > pg. Note that in order to prove that (6.3) holds for £ = 0, it suffices to show it over a
hyperrectangle ()7, such that Oy C @ C O 7y which will allow us to choose @, such that

u(Qr) is an integer.

Proposition 6.1. Let the setup be as in Section 5.1.1 with A equal to R4 or a hypercube
of height H, Qg i (U, 11,¢) as in (5.18) and u as in (5.7). Suppose that there exists an event
Gar, such that (6.4) holds. Then, there is a scale pg > 0 (depending only on ), C > 0, with
4 < pg Sp 1 such that if L > pg, the following holds.

(6.5) VXy €Gr, FUXIEBE(Xy p A) 4+ 2Co#1n, < CgLe
with
(6.6) Qa4 (U, 1, 0)(Gor \ Gr) < e P

with C > 0 depending only on d,s,m, e, ||p||r and Cz > 1 also possibly depending on 3 when
p<1.
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Once this proposition is proved, Theorem 1 follows by a bootstrap on the scale starting from
(3.6) and by using (5.16) in the same way as the proof of [Pei24, Theorem 3.1] from [Pei24,
Proposition 3.2]. One starts at the macroscopic scale in 3 , where one has the local law
outside of an exponentially small event by (3.6), and applies Proposition 6.1 iteratively down
to scale L. At each application at scale 2¥L, we lose an event of probability no more than
e_CfBZde, so the local law at scale L holds off of an event of size at most

i 6—CB2"’L" < Cle—CgﬂLd7
k=0
for some constants C7 and C9 independent of scale L.

The key technical tool that we use in the proof of Proposition 6.1 is the screening procedure
Proposition 5.7, which allows us to localize our rather nonlocal next order energy and exhibit
an almost additivity on scales. In order to successfully employ this procedure, we will need
to guarantee that the errors generated when we screen are sufficiently small.

6.1. Control of Screening Errors. The first result we will need is on the rate of decay of
the electric field away from the subspace RY, which allows to control the e terms (as in (5.32))
in the screening estimates, a question which is absent in the Coulomb case. This is done by
viewing the electric field as a fluctuation and using as an input the local law at scales 2FL
(6.4). In the sequel we let sy = max(s,0).

Proposition 6.2 (Decay estimate - control of the e term). Let A be R or a hyperrectangle
as above. Let L be such that L =2 %+¢, with O, C ¥ in the case A = RI*TT,

(1) Let Gop, be the event that (6.4) holds. Then, for any € > 0 and K > 1 large enough so
that

L

< (TR NG
there exists 4 < pg Sp 1 and a constant C > 0 dependent only on K and € such that
if L > C(B~'log %)é and h = L/ K, there is an event G C Gar, such that

(6.7 [ VP st o,
O x{%h}
with

(6.8) Qa.11(U, 11, O)(Gar \ G) < e~CBL".

(2) Let Gy, be the event that (6.4) holds for 2L = pg. Then, there exists a constant C' > 0
such that given M > 1, if L > h > pg, there is an event G C Gy, such that

(6.9) [ IVl s ML on g,
DQLX{:E]'L}
with

d(d—s; —2)

(6.10) Qs (U, 1, )G \G) < M2 L2 e M,

Proof. Let us first consider the case A = R4*!. In that case, u given by (5.7) is, up to an

additive constant, equal to gx (Z;Vﬂ Oy — u). By symmetry in y, it suffices to prove the result
J

at height +h. For notational ease we will let F be a shorthand for Vu. The main idea rests on
the observation that the components of E;, 1 <1i < d+1, at a point (@, h) = (a1, a2,...,aq,h)
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with h > 0, are fluctuations of smooth linear statistics. Namely, denoting 33; for the points
of the configuration (at the blown-up scale) and spelling out Vg, we have

(6.11) Ei(a,h):/R Kl (@ <Z(5,— ) = Fluct, (xfz) (Nz))

where

—(a——vc)+2 if1<i<d

i _ z—al?4+-h2)72"
(6.12) Kiam (@) = % ifi=d+1
(ja—af2+12) 5 '

With this observation, the main idea is as follows:
e Place P points on Oyy, x {h}; estimate E(z) = E(zp) + (E(z) — E(zp))
e Estimate E(z,) in probability using Theorem 2 and the local laws.
e Use elliptic regularity and the local laws to control VreE and thus E(z) — E(z).

Step 1: Setup. We split Uy, into P equally sized subrectangles I, of sidelength comparable
to LP~1/4 and let zp = (@p, h) denote the center of the subcube I,. On each subcube I,,, we

estimate
d+1
/ Bl <2y ( / Ei(2) — Ei(z)? + / \Ei<zp>|2)
I,x{h} Ip><{h} Ip,x{h}
2 2 Ld ™
SIVaEBngyemy [ 12—z + T Y |Ei)
Ipx{h} i=1
Ld+2 Ld
(6.13) < S ot | VRa B |70 (I, x{h}) ?IE(Zp)IZ-

where Vg4 denotes gradient in RY. We now estimate each term separately.

Step 2. Control of |E(z,)|?. This is done via estimates on fluctuations of linear statistics
associated to the functions /{Z@h). The main difference between our approach here and that
of [Pei24, Proposition 3.3] is that we use Theorem 2 for a rescaled test function directly,
instead of running transport estimates for the functions ‘. Even though these test functions
are not literally rescaled versions of a compactly supported test function, we can treat them
as such after a dyadic splitting.

Without loss of generality, let @ = 0; we also focus on ¢ = d + 1, since the computation
for ¢ < d is analogous and produces the same result. Let x be the space variable at the
non-blown-up scale. Notice that

1 _h2+s 1 le/d
ey (v = L (),
’ 1 2 1 2

(ot i2) = ((adep 1)

where ¢( is a smooth scale-independent function. Let x; be a partition of unity associated
to dyadic annuli B(0,25%2)\ B(0,2%72) (as in Section 3). We may choose k, such that 2¥+¢ is
bounded below by ¢ > 0 and B(0,2%¢) does not intersect any other connected component of
supp g (if there is more than one) than that of 0.
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We may then write ¢g = EZ*: o(xxp0) + @1, with xxpo a function supported in a dyadic
annulus and ||¢1||pe is bounded by O((hN~Y4)5¥2). Computing directly shows as well that

(Lo )

The function (2¥)5+2x i satisfies (1.38) at scale 2€¢ for some constant M > 0. We may thus
apply Theorem 2 to it. For the proof of item (1) of the proposition, we use the local laws
at scales 2L to have a control at scale 28pN—1/d = 2’“%N*1/d, we thus obtain the bound

stated in Theorem 2 : for 74(2%h)*~9 small enough,
(6.14)

p ky\s+2 N1/
logEp, , |exp TkmFIUCtu (2°)°"*(xkpo) W 1g,,

d—s

Sp (17l + [mel?) (2" R)?

where the constant depends on K. Applying to 7, = 7(2¥h)975, we find that if 7 is small
enough,

B . (okpydesiokyst2 N
logEp, , |exp 1+57'k(2 h)®72(2%)* “Fluct, | (xx%o0) - g,

Sp (FR(2R)° + 72(2FR)2).

For any A\, Markov’s inequality yields

.N1/d
(6.15) Pnpg <{Fluctu ((ngpo) ( . )) > )\} ﬂg2L>

=200k py2d—sy _ = B dsks+2>
2%h - 2kp, 2 A
exp (Cat 2 — o ()
hence, choosing 7, = e—ﬁ (2kh)® 7 and \ = 2¢ lJr5(2’“h)d+5( 2F)75=2 e find that as soon as €

is small enough and h is large enough (dependlng on K and the other constants), in Gor, it
holds that

.Nv1/d ds
(6.16) Fluct,, <(Xk¢0) < N; )) <9 1;5 (2kh) 48 (2F) =2

except on an event of probability < exp(—3e?(2¥h)9). Using Proposition 3.5 at macroscopic
scale and with 7 = 1, we also have

.N1/d 2 s
(6.17) Fluct,, (gol < W )) <s (hN—l/d)S+ N3t

Taking a union bound on all these events, summing and using that s > d — 2, we obtain that
except for an event of probability < exp(—C’Be?h?), we have

ks .
6.18) Fluct, (ki ) <gh 175 [ en T S (26)F 2 4 (hN-1/d +2 ik
AN R B

k=0
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2
The second term can be absorbed into the first, since h < eTFs-a N1/4 and d —s—4 < 0, hence

hN S < M5 = e T
Hence, we conclude that
(6.19) B (2p)* S5 n47572,

except on an event of probability < exp(—Cfe2h?). For the proof of item (2) of the proposition
where h and L are no longer comparable, we run the same argument, using that local laws
g p g g
hold on scale h directly, except that after (6.15), we choose
T = = (28 VM (28) 795, A = e LB (2k)s /M (28h) 3 (2F) 572 if s < 0
i = g;(25)°M(2Fh) ¢, A = 288 (2k)# (2k )3 (2k)—s—2 if s > 0.

This yields that in Gy, except with probability exp(—(2¥)°M), we have
%

N1/ VM(2Fh)3 (2F) 72 ifs <0
FthtM ((XkSOO) (h)) Sﬂ {(Qkh)s(Qk)—s—Q-‘ra if s > 0.

Taking a union bound over these events and summing over k in the same manner as above,
we conclude that, choosing € > 0 small enough,

h173VM ifs<0 .
6.20 E(z)| < < SRR
where (-); denotes the positive part.
Step 3. Bound on |VJE|. Let us start with the case of item (1). We observe that, if
K >2,2h < L, hence in Oy, x [h/2,2h], if O C ¥/, the bound

/ "B <s
Oy x[h/2,2h]

is verified from (6.2) in Goy,, with a constant depending on K. In addition, Ve F satisfies
—div (Jy|"VgeE) =0 in Of x [h/2,2h].
Elliptic regularity estimates then yield that x being the center of [y,

1 hd
(6.21) VeaE(z,h))? < / Yy |E)? <g e Sp TS
’ R ( ’ B h2+d+14+y th[h/272h]’ ‘ ’ ’ B h3+d+y B

using d — 1 + v = s. For the proof of item (2), we use that the local laws hold down to scale
h hence all the estimates above hold directly on Oy x [—h/2,2h] and obtain the same result.

Step 4: Conclusion in the case of the whole space. For item (1), inserting (6.21)
and (6.19) into (6.13), and recalling that d + v = s + 1, taking a union bound over the bad

—CBLY

events, we obtain that except with probability < Pe , we have, using vy +d —s =1,

P1+% P

d

Ld+2 Ld Ldfl
/ ‘y|'y|E|2 5,3 PhY hd—s—4 + 7€2hd—s—2 55 . + EQLd_l.
O x{h} P

Choosing P = e_%, we obtain the desired result since log P can be absorbed into O(SL9)
when L is larger than a constant times (37! log %)%
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For item (2), we obtain instead, inserting (6.21) and (6.20) into (6.13),

Ld+2 Ld
/ lyI"1EI* <p PR ChdTs4 4 N pmax(=250)-2
O x{h} P1+H P

d+2
(6.22) <p L2 + MLApsd7 19+ )
Pip3

Taking P = M 7%thd(d 7+ & to equate the last two terms yields the result. We have thus
concluded the proof in the case where A = R9+1,

Step 5. The case where A is a hypercube. First, let us justify that Theorem 2
holds as well for the Neumann energy setup as follows: let U be a hyperrectangle in RY of
sidelengths in [¢/2, 2¢] at the original scale, yu a density bounded below in U with Nu(U) =n
integer, Fy defined as in (5.8), except at the original scale, and the associated Gibbs measure
Qn g m (U, 1) and partition function Ky g (U, 1) (we can assume that ¢ = 0) as in (5.18)

and (5.17) but in original scale. Let ¢ be a test function in U satisfying g—i = 0. While our
analysis in Sections 2-4 is based on an analysis via transport before applying the splitting
formula Lemma 3.1, we can conduct a similar analysis post splitting as in [LS18, Sections
3-4], finding that the expansion of next-order partition functions is governed by terms 73 and
T5. More precisely, we can write analogously to Lemma 2.1 that

Equy 5.1 Un) {exp (—ﬁtlegFluctu(ap)) 1g]

1 / s
=———— [ exp(—BN d(tNFluct,(¢) + FnN(Xn, 1, U x [-H, H])) ) dXn
Kng,u (U, 1) Jg ( g | | )
We can use (5.23) to observe, by “completing the square" that if v solves
(6.23) /Gu(x,y)dV(y) = ¢(z)
U

then
(6.24) Equ , 4w {exp (—ﬁtlegFluctu(QOD 1g]

= exp (—§N2—Zt2 /U2 GU(x,y)du(m)dy(y)) K1 (U, 11 + tv)

Kn,g,m (U, 1)

To solve (6.23), we may reflect and periodize ¢ across the faces of the hyperrectangle U, in such
a way that ¢ remains continuous and V¢ as well (thanks to the assumption V-7 = 0 on 9U).
Call P the reflected and periodized function, then we can check that v = %(—A)“((pper)

Cd

computed over RY solves (6.23) in U, where the fractional Laplacian of a periodic function is
defined via the Fourier series representation as in [RS15]. We can then analyze (6.24) as in
the case of the full space by using the transport map

div(yp) =v inU
Y-1=0 on OU.
for which estimates as a function of ¢ are easy to obtain, in fact more easily than in the

full space case treated in Section 2. Starting from (6.24), we may then obtain the analogue
of Theorem 2 for . Spelling out VG we obtain an expression for the electric field in the



LOCAL LAWS AND FLUCTUATIONS FOR SUPER-COULOMBIC RIESZ GASES 81

Neumann case analogous to (6.11), which expresses it as the fluctuation of a function in the
class of the ¢’s just analyzed and we can complete the proof in the same way.
O

This estimate allows us to better understand the screening errors in Proposition 5.7, and
show that the initial and screened fields are comparable.

Corollary 6.3. Let A be R4t or a hyperrectangle as above. Let OL(z) be as above, i.e. such

that Oy, ; = 0. C X in the case A = R, Let Q = QN A with Qr a hyperrectangle such

that O, NACQrNACOs;, NA, and fﬂ,u is an integer. Let X, = Xnl|q and let Y5 be as
2

in Proposition 5.7, and recall the definitions of G;nﬁ and GZ’,‘,EL from (5.37). We next make the
choice
(6.25) " C’ﬂeLd;l L m case (1) below
CgMLEhs+ in case (2) below,
for the Cg implicitly appearing in (6.7), resp. (6.9).
(1) Let Gor, be the event m (6.4). Let € > 0. There exists K,K; > 1 such that for

h=L/K,h> pg, = ;s and for G C Gar, as in part (1) of Proposition 6.2, we have
for all configurations XN ng,

(6.26) F(Ya, fi 2 x [<L, L]) — G (X,,, @ x <L, I]) <
Z g T — Zj) +F (Zﬁfnovﬁa-/\/’n X [7h7h’]) + |TL - ﬁ| + C,BELda

(3,9)€J
and
(6.27)  F(Ya, i, (2 x [-L, L])°) — GeXt(XN ns (@ x [=L, L)) <
N gl@i — 2) + F(Zicne, i, Ny X [~ L, L]) + |[n — fi| + CeL?.
(i,5)€J

(2) Let Gy, be as in item (2) of Proposition 6.2. Let M > 1, L > h > pg, and G C G, as
in item (2) of Proposition 0.2. Suppose that
ML2hs+s+f2d 1-d
(6.28) C’gT sufficiently small, CghLi= sufficiently large if s >d — 1.
Then, for all configurations in G,

(6.29) F(Ya, 1,2 x [~L,L]) — G (X, @ x [-L, L)) S Y g(zi — 2j) + |n — a1+
(i,9)eJ

h? L?
F(Zs—ne, fi, Ny X [=h, h]) + (2 + 0+ h’?) L 4+ Oy <g - L) MLAps+—d-1
and

(6.30) F(Ya, i, (2 x [—-L,L)°) — GeXt(XN ny (2 %] ) < g(z; — zj) + |n — 0|+

~

(4,9

YeJ
- h2 ~ _ d—1 L L? dypsy—d—1
F(Za—ne: . Ny x [=h,h)) + | = +L+h77 | L +Cs———= | = + L | MLK®* .
14 min(h, ) \ ¢
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Proof. We will apply Proposition 5.7, and control the error terms using Proposition 6.2. Let
us focus on the proof for the inner screening, since the outer case is analogous. Let w be any
potential associated to Q as in (5.28) with

1 1

[y [Vwr|* < Y[V
2 2
Cd,s JOx[-L,L] Cds JOx[-L,L]

/ |Vw|? < a.
Qx{xh}

At least one such potential exists, namely the true potential u given in (5.7).
Step 1: Screenability. Let us comment on screenability in the general case (2) first. For
s < d — 1 we verify screenability on S’(X,,,w, h), obtaining, for h large enough

hl—l—’y Cﬁhd+1+'y

xRS S'"(Xp,w,h) < T <h"<c

on Gy, since s < d — 1 implies that v < 0 and h > 1. If s > d — 1, we instead need to verify
screenability with S(X,,,w,h). By a covering argument we have

L d—1
(6.31) S(X,,w,h) < <h) Csh? < CghLo™?
and obtain
hlJr’y d—1 Ldfl
raraCohLl? ™! = Cao—

which can be made < ¢ so long as h > L%, yielding the additional condition on h. Coupling
these estimates with Proposition 6.2 yields the second item in (6.28).

For item (1), we specialize to h = % and the announced a. We also set ¢ = % and { = K%,
with K > K to be determined. Using the bound (6.7), we see that the first item of (5.36)
becomes

LR eKPLTTY
a2~ P gvpe = °©

which holds on the event G of Proposition 6.2 for appropriate choice of constants since v < 1.
For item (2), we instead find using (6.9) that the first item in (5.36) becomes

hA/MLd hS+ —d-1 ML2h5+s+—2d

- <
B [d—2p2 02 =¢

using v = s+ 1 — d, which is the first item in (6.28).
Step 2: Screening. We now apply and control the errors in Proposition 5.7. Let us start
with the general case (2). First, we have

h2
S(Xn,w, h) < C7Ld*1

S
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using the covering argument from the screenability computation in Step 1. Substituting in
the bound from Proposition 6.2 yields

F(Ymﬂ,m[—L,Ln—(Q; ( L oV —cdzgm)) Dyl f?i<x—zi>du<x>>
s RX|— =1 =1

Z g Ty — Zzj +F( n— no,ﬂ,Nn X [_hah})+|n_ﬁ‘
(J)EJ

h? L?
+ (Z +0+ h‘7> L9714 ¢y (2 + L) MLAps+=471,

Since the right hand side is uniform for any w associated to € as in (5.28) with the requisite
decay, we obtain the result by inserting the definition of mn(Xn, Q).
In case (1), the screening errors in the previous computation then take the form

h? - L?
Cs (2 +0+ h7> L4t 4 (E + L) e(Xp,w, h)
K 1
<Cy (1 + ) L4+ KLY 4 Cge (KE+1) L9

K2 K

where we have inserted the control on e(X,,, w, h) with the local laws parameters from Propo-
sition 6.2. By choosing K and K; appropriately and redefining ¢ from Proposition 6.2, we
have that this is <p eLd as desired, since |y| < 1. A similar computation holds for the error
terms in the outer screening. O

6.2. Analysis of Exponential Moments. To get control on the level of exponential mo-
ments, we need a sufficient volume of configurations for which we can screen. This is given
by the following.

Proposition 6.4. Keep the same assumptions and cases as in Corollary 6.5. Let G denote
the good event of Corollary 6.3, and let a be as in (6.25). Let n < N, and define

(6.32) Go =1{X, € Q": X,, = Xnl|q for some Xy € G}
(6.33) Gae = {Xn_n € (QC)N_” : XN_n = Xn|qc for some Xy € G}

Then, we have

n”/g exp{ BGmn( X, i, 2 X [—L,L])} dp®™(Xp) < Kg.n(2, 11, ¢) exp(Bee + €y)
and
(N —ny"¥ /g exp { =BG (Xnn, 1, (2 x [~ L, LD")} dp®N (XN )

eXt (Q Hy C) exp(ﬁse + 61})7
where p denotes the confinement measure dp(x) = e=$@) dx, e, denotes the energy error

i —n| + CgeL? + 09 + % in case (1)
R (R (% + 04+ h7) L8714 Cp (B + L) ML= ~3-1 in case (2)
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in the inner screening, and

8 —n| + CpeLld + 19 + % in case (1)
co=dIa—n|+ 04 ALy (B2 F g o) L1
CB min%h ) (LT: + L) MLAps+—47! in case (2)

in the outer screening, and €, denotes the volume error, with estimate

- Csl 1 —n\ 1
sngﬁd—i—log’B+(ﬁ—n—a)loga+<ﬁ—n—a—)log<1+n n)—i—logy_l,
n of 2 Q 2 n

. . ~ _ d
where o, o/ are integers satisfying a, o’ <09 and o — of| < LI7TRIHY + L7.

Proof. We focus on the integral over Gg (inner screening), since the argument for the integral
over Gae is an analogous application of Corollary 6.3. Much of the proof is as in [Pei24,
Proposition 3.5] and [AS21, Proposition 4.2], with the screening and combinatorial accounting
updated as in [Ser24, Proposition 8.2].

Each configuration X, € Gq is screenable by assumption, and screening produces a set
O(X,,) of the form Q; N A. We partition Gg into a disjoint union UiE based on what ¢ is in
terms of the 7 thickness of the point-free layer, i.e.

E={Xn€Gq:0(X,)=Qs, t€[R—20+kn,R—20+ (k+1)n]}

All but O (%) of the sets are empty. For each configuration in one of the nonempty &, X,
yields a number of points n — ne of points that are removed. There are (n%) ways of doing
this, and each deletion corresponds to a volume of configurations no larger than p(N )"~ "0,
Then we insert n — no new points, but the resulting configurations are equivalent up to a
permutation of indices; this leads to an overcounting of factor (nI;) Furthermore, there is no
issue with a lack of injectivity here. Any two configurations in & must have 0O at distance
no more than 7 from each other, and so it is impossible to place new points within the O of
the other configuration. Hence, the same new configuration Y5 cannot be produced from two
separate configurations in the same &.
Coupling this with the error estimate of Corollary 6.3, we find

"KL (2, 1, C) > m&éﬂ exp (=8 (G (X, @ x [-L, L)) + . ))

/ _exp|—=pBC Z g(zi — 2zj) + F(Za—ngp, 1, Ny X [—h, h]) dZa—nodp®™"(Xp),
Ay € (.)€
where we have replaced p(N') with the Lebesgue measure in the bulk and have grouped the
error estimate from Corollary 6.3 into
i — n| + CgeLd in case (1)
G NP (% 42+ h77) L9 4 Cp (B + L) MLERs+=471 in case (2)

with a as in (6.25). Notice that this computation is valid for outer screening as well with
appropriately modified screening errors, since we only modify the configuration in the bulk.
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We will now make use of Jensen’s inequality coupled with a tilt as in the proof of Proposi-
tion 5.4. The argument is exactly as in [AS21, Proposition 4.2] and [Pei24, Proposition 3.5].
Integrating against fi instead of Lebesgue measure, we can rewrite the interior integral as

I'= /jvn—no eXp< ( Z g - ZJ + F(Zﬁ*novﬂa'/\/’n X [_hah]))

n (i,9)€J
e 7
S logmz@-)) A (Za o).

Applying Jensen’s inequality, we then have
I > ji(N,)" ™ exp(A+ B+ C)

with
A=yt [ =60 Y o - 2) dilfE (Zoono)
Ny (i.4)€J
B = i(N,)ro ™" /N wngy ~BCF(Znng fis Ny [=h, 1)) il " (Za-no)
n
C—ﬁ(/\fn>"on/nn - Z log fi(z:) diif5 " (Zi-no)-
Nn © =1

Recall that i(N;) =0 —ne. B is dealt with immediately by Proposition 5.4, and A and C
are dealt with as in [AS21, Proposition 4.2] and [Pei24, Proposition 3.5], namely

_ d—1 )
AZ—B#%ZWZ, c>

where we have used S(X,,w, h) < CghL9~! (see (6.31)) to control #Iy < w
Applying a mean value argument, we then find that for some X? we have

VKO0, 0) 2 G [ e (<BGIHX 2 x [, ) — CBec) dp(X,)

. (ﬁXO))(ﬁ ol 4 CghLo™! 7d

Rearranging and absorbing /4 + Gl into the definition of e, yields
[ exp(-AGIR (X ¢ [ L. L) ™" (X) < 551 (82 1. ) exp (5 + 22)
Ga
with
|f—n| + CgeL? + 09 + Cid in case (1)
€e = ~ -
¢ |ﬁ—n|+€d—|—%+( +0+h “/)Ld L+ Cp ( —|—L> MLIps+=9=1 in case (2)

where we have inserted the definition of a from (6.25) and

I(n — n—no
gy = Ol + log — ot + log ni(n — no)!|N]
n nl(n —ne)l(n — np)* "o
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We need now to make sure the volume error is not too big. Computing directly with Stirling’s
formula as in [AS21, Proposition 4.2] we find

1 A
0,1 log n(n —ne)

_ cl
gy = Ol +1log — +nlogn —iilogh — (n — ne)lo 7
gn g gn — ( o) g WI T r—

Pulling out the nlogn — nlogn from ¢,, we now have
[ exp(- AGIR(X  x [2h 20) dp*"(X) < 1K1 (@ C)exp (AC=, + =)
Ga

with e, unchanged and
—no | 1 1 n(nh —ne)
V] n(n —no)
Let o = i(N) and o = |N|. Then, observe that n —np = a+n —n since &« = 1 — np and
so we can write

Ev:C’gd—i—logC;%—(n—no)logn

CE a+n—n 1 no
gy = O + log 2= —-n—a)log— + ~log———
C1¢ + log " +(@m—n—a)log a +20gﬁ(a+n—ﬁ)

n—i

n)_i_l1 n
707
B gﬁ7

_ 1 1
:Cﬂd—i-logcg+(ﬁ—n—a)log§/+(ﬁ—n—a—2>log<1+

as desired.
O

Remark 6.5. The error contributions over Q0 where n points fall and Q¢ where N —n point
fall add up to a well-bounded error. To be precise, if a,a’ and v,y are two pairs as in
Proposition 6.4, we have

1 —n 1
(n—n—a)logoi—i—(n—n—a—)log<1+nn>—|—logqj
« o 2 n
1 —n 1 -
+(ﬁ—n—'y)log+(ﬁ—n—'y—)log( n n)—&—log?,ﬁﬁ".
! 2 2 n

Proof. The proof is exactly as in [Ser24, Remark 8.4] and [Pei24, Remark 3.8]. O

6.3. Conclusion. We now have all of the tools to complete the proof of Proposition 6.1. We
specialize to Case 1 of the previous results, focusing on the local laws bootstrap. Coupling
Proposition 6.4 with Remark 6.5 and a subadditivity argument yields first the following
control on the level of exponential moments.

Proposition 6.6. Keep the same assumptions as in Corollary 6.5 and above results, and
let G denote the good event from Corollary 6.3. Denote by G™ the configurations in G who
have n points in Q. Let u be as in (5.7). Then, if Cg is chosen large enough depending on

d757 HILLHLOO‘)E (and/B fOT/B S 1)7

5

Ks » (,1,0) Cs . 4
<O K exp (ﬁL +Cﬁ!ﬁ—n!>
K,z (11, ) 8
for some constant C dependent only on the upper and lower bounds of .
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Proof. We recall that 2 = @Qr, N A and we denote 0, = Q x [-L,L] and Q7 = Q; ,;NA
where (); _,; is the hyperectangle with same center as Q.

The proof relies on the following superadditivity computation based on (5.15), using also
(5.16) and (5.40) (here we drop the u dependence in the notation for F).

T (X, A) — BF(X,A) < SF2(Xy, A) = % (X, A) — BFN (X, A)

=

CF (X, ) — S (X, ) — SF (X, A) — BENE (X, A)

< _gFQL\QL(XN,A) - §Fm (Xn, A) — BFMNE (X, A)

<

2
< —gG;m% (Xnla, ) — 562),(% (XN, A\QL) + g(fon

< —BFQL (Xn, A) — BN (X v A) + gC’on

with a = CﬁeLd_l as in (6.25). We can then compute using Proposition 6.4 exactly as
in [Pei24, Proposition 3.7]

IB [}
Eqgs h(Um0) (eXP <2FQL(‘7A)> 1gn>

1 N 3 . 8
_ 7 cmn Xn,Q 70 d @n Xn
<U7“’C)<”>/mmgne)(p( g Gy (K 0) 3 0”) P (X )
x/ exp (5GextL (XNn,Qi)> dp®N_n(XN7n)
()N =nnge* o
()

n N—n c B
< NNKIB (U,,LL, C)n (N - n) Kg’L/K (Qa Ky 0) KB,L/K(Q ) s 0) exXp <B56 +&v+ 200n>

L
K

<
= NN
NYK,

L
'K

where €. and ¢, denote the energy and volume errors

< < Csl
ge = O(Cgel® + % + i — n)) 5U:C£d+log%,

where we have dropped the L7d error because it is controlled by the remaining terms. The

superadditivity of the Neumann partition functions (5.21) then yields

ﬁ o
E@B%(U,u,c) (eXP <2FQL('3A)> 1Qn)

Stirling’s formula yields

E BFSO)L A1 < Kg%
Q) | eXP  5F (5 A) | 1gn ~ K, ()
K
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We then write Con < Con + Cp|n — 0|, and assume (without loss of generality) that Cg >

8|| || o= Co, which ensures that Con < %Ld. Choosing n = GHﬁ%’ € small enough in Propo-
sition 6.2 and K, defining ¢ = I% large enough in Corollary 6.3 makes ¢, small enough and
we obtain the result. g

6.3.1. Proof of Proposition 6.1. We establish that

(6.34) Eqs pn0) (exp (g (FQL(.7 A) + QCO#IQ)) 1g> < exp (CBiLd) .

To prove this, we sum the control in Proposition 6.6 over all possible n. First, we can
restrict the number of n needed to consider by using discrepancy estimates. Namely, using
Proposition 3.5 coupled with Theorem 1 at the length scale 2L yields that either |n—n| < L9~1
or d+s 2d{+s

_ 1/2 p dts ,1/3  2d+s 1/2 ; 2d4s
[ —n| < Kmax (€/°L,¢}°L5") < Key/?L™5",

for some K > 0, since s < d. Thus,

S By, (e (5 (FUC8) + 2008 00) ) 160 )

2d+
li—n|<KCY?L™3"

B

L (Qalu7 C) C
< % 8 rd _ 1/2 2d+5>)
hS E K. L (@00 exp(ﬁ(SL —}—C’on—i—CC'OKCB L3 .
2d+s B K
|r‘1—n|SKC/13/2L 3 K

Using Proposition 5.4, we can control the ratio of partition functions uniformly by eCA+ALY,

The remaining error terms are bounded at strictly smaller order. Making Cg larger (but still
scale independent and f-independent for 5 > 1) if necessary, in particular Cs > 1, we find
(6.34). A Chernoff bound immediately implies

(6:35) Pwg ({F(,A) + 2Co#10 > CsL} N G)
< e_gcaLdEPNﬁ (exp <§ (FQL(,’A) +200#IQ> 1g>) < e—gc,eLd < e—ng’

with G1, = G asin (6.8). Coupling this with the bound in (6.8) and absorbing one constant into
the other establishes Proposition 6.1, and as discussed after the statement of that proposition
Theorem 1.

7. EXPANSION OF THE NEXT ORDER PARTITION FUNCTIONS

The goal of this section is to leverage the local laws of Theorem 1 to establish a quan-
titative approximation of the local Neumann partition functions (5.17) in the form (4.24).
This approximation is crucial in the approach in Section 4 to improve the error estimates in
Theorem 2 and obtain the CLT, Theorem 3.

7.1. Almost Additivity of the Next-Order Partition Functions. We start with an
almost additivity that generalizes the result for the Coulomb gas from [Ser24, Proposition
8.10] to nonCoulomb Riesz gases. The proof is similar in spirit, using the updated terminology
and local laws for the Riesz gas alongside of the Riesz screening procedure Proposition 5.7.
We recall the definitions of partition functions in (5.17) and (5.19).
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Proposition 7.1. Assumed > 1 ands € (d —2,d). Let U C RY be a bounded, open set with
piecewise C1 boundary, and suppose as well that u is bounded above and below in U. Assume
that Theorem 1 holds for p down to a minimal order one lengthscale pg.

Assume that U C 3 can be written as a disjoint union of p hyperrectangles Q; with side-
lengths in [L,2L] with L > pg such that u(Q;) = N; integer. Let hy, ..., hy, € [L,R]. Then,
for any event G there is some constant C' > 0, depending only on d and u such that

p
ex C g 7
(1) [logKF (RY, 11, ) — <logK5}:gU<U ,u,<>+§jlogr<ﬁ%i(@i,u,c>) Sp RE(L)
=1

where Gq denotes the set of configurations in ) that are restrictions of a configuration in G
and the error rate &(L) = o(1) is given by

_1+# .
L = v Jog L ifd<bors<d-1

L @-D+d-s) log . otherwise.

Additionally, we have

p
log Kg r(U, 11, ¢) — Zlog Kan, (Qis 11, Q)| Sp Rdg(L)-
i=1

(7.3)

As we will see below, a key ingredient in optimizing the error rate R is that we have local
laws valid down to the microscale, which will allow us to make use of Remark 5.8 to screen
at smaller heights than we were able to in the proof of Theorem 1.

Proof. We give the proof for G = RV, it is a straightforward modification to extend to
general G. As in the proof of [Ser24, Proposition 8.10], it suffices to prove upper bounds since
the corresponding lower bounds follow from the superadditivity result (5.21) and Stirling’s
formula; shrinking the heights from h to h; is a consequence of the same argument as in the
proof of (5.20). Namely, we can decrease h by appending a zero electric field for |y| > h; in
the extended dimension to the electric field defining F(Xn|q,, 1, Qi X [—hi, h;]) and applying
Lemma 5.1.

The key input is that we now have local laws down to the minimal length scale in S

Step 1: restricting to a good event. Let N denote the number of points in U, n; be
the number of points in Q;, and n; = u(Q;). We also set

Q, = {z € Q; : dist(z,00Q;) <r}

for r to be determined, and

(74) G— {XN e (RN - |n; — fs] < € Vi, sup P V2 < Car,

‘ /@mr(m)x[—r,r]
e(Xn,u,r) < CBMLdT(s)+_d_1}

with €,, M, K and r to be determined and u the potential (5.7) for A = R+1,

The supremum condition is satisfied by O (%) applications of the local law Theorem 1,

each whose complement has probability bounded by exp (—C’ ﬁrd). The control on e(X,,, w, )
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follows from Proposition 6.2 on a further restricted event for an appropriate Cg; applying

d
Proposition 6.2, and using from Theorem 1 that Py 5(G¢) < (%) e P we find

LN\ o d, 52 oM ¢
IP’Nﬁ(QC) < (T‘) e T+ M~ L h B +ZPN,B(‘W —I_LL" > 6)
i=1
redefining C'.
Let’s next analyze the event with bad dlscrepancy Applying the discrepancy estimate
(3.29)—(3.30), covering Qs \ Q, where Q@ = @Q; by L 9 balls of size R > ps, and using

Theorem 1 at scale R one finds for each ¢ that

R
(7.5) Ing — 1| S L4+ (L =

off of an event of size

Li71g
L0 -op

Prg(ini — il > €) § 5

Hence we find

1A d(s+7<df2> L4-15 ’
(7.6) Py 5(G) < (r> e O L[4 —CM 4 op PTG —OR

again redefining C. The third term in (7.6) will be smaller than 1 as soon as we take
MY > log L for large enough constant; comparing the terms in the discrepancy bound (7.5)

then and optimizing leads to taking § = ﬂ, and

(7.7) I — | < L5 loga L o= e

We will optimize the remaining parameters in the above in such a way that the probability
in (7.6) is no more than 3.
Step 2: superadditivity and screening. First, we write

N[ e (B8 (X B ) N = K (B 1) B ) < $ K00 (R4 1,)

where we are again using p(x) dx as notation for the measure e~ P¢=) dx, under the assumption
that we have tuned the parameters in (7.6) to guarantee Py (G%) < 3.
Then, via the superadditivity (5.15) and (5.40),

NQNKQOO (Rd,u, g) < /gexp (—6F (XN,M,Rd“)) dp®N

< ) ( N )H eXp( (-, Qi x [— hiyhi])) dp®"(Xn)

niy, nNa,..
Ins —ii|<e, 1, 72,
Zni:N

e (<AGES (U x (R RI))) d™ " (n-).

where b denotes the expression CgM Ldrs+=4=1 controlling e(X,,u,r) and we have replaced
Q: x [-L, L] in the equation above with any h; € [L, R] using Remark 5.8.
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We next replace the energies G in the exponents with the corresponding Neumann ener-
gies (5.8) using the screening on the level of partition functions, Proposition 6.4. Applying
Remark 6.5, we obtain

(7.8)

d p N N p _

K,B,oo (R y Iy C) < 2H KB,M(Q%M?C)K%T;{(UCML? C) Z (— — — )N_ Hﬁ?l
=1 [n; —1i;| <e, s 12,05 Tp i=1

(V]

. _ 2
e e L B e O A B
min(r, ¢) \ ¢

d—
using r < L, provided (6.28) holds and, ifs >d —1, r > Lﬁ. An application of Stirling’s

formula yields
N - N
e Al | e e
ni, N2,...,0y i=1 i=1 14

and so the summands are controlled by Cep.

Step 3: error optimization. We now need to optimize the choice of r, with competing
terms that prefer r smaller or larger. Observe that we want to take M > 1 as small as possible
while keeping the estimate in (7.6) small.

Notice that (7.6) can be made smaller than 3 for any r at order LV and M > log L . So,
we may as well optimize

~

7,2

_ _ 2
(7.9) L&MW logm L+ @4 (S 4 0+ L8 + Cﬁ% L7 prpdpse—et
14 min(r,£) \ ¢

in (7.8) using (7.7) subject to
L? od d-1
(7.10) Cﬁg—zMrs+S+— <c, r>> L7 ifs>d -1,

where we have dropped L in the parenthesis in (7.9) because ¢ < L implies the L2 perm s

~ N f2d—1
dominant. Comparing the optimization problems for £ < r and r </, one sees in either case
that the optimum choice is as the parameters approach r. So, we select £ = £ = r, and choose
M = Clog L for C large enough. Making the simplification ¢ = r, we see that we need to

optimize (absorbing some terms)

(711) LdilJrH—TA/ logi L+ TLdfl + Ld+3rs+fd73M
subject to

d—
(7.12) CgML2rS+S+_2d_2 <c, S Lﬁ ifs>d_1,

where we have absorbed the error term ¢1~9r=7Ld=1 = —S1d-1 into 191 since s > —1.
Balancing the second and third terms in (7.11) requires

(7.13) patd=se — prt
The first term in (7.11) is always smaller with this choice of r, since 1% = # and
4 s+2—-d

12 2—d)(d— 4
d—|—4—s+> 3 — 12> (s+ )(d —sy +4)
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which follows from s € (d — 2,d). Notice also that this choice of r satisfies (7.12). Indeed, for
the first condition we observe that, with v = s+ 1 — d and this choice of r,

CpML2ps+s+=24-2 CsML?*  Cprs@=2)

T pdtdesypd—2-s L2 <1

since r < L and s > d —2. For the second condition, since M = C'log L it is sufficient to check
that @ > j_;}y (sinces>d—1 = s>0 = s; =s). Indeed, since v = s+ 1 —d this
is true if and only if
4 d—1
44(d—s) ~(d=1)+(d—s)
which is true for d < 5 because for a > 0, the quantity -=

T+a
d—1
instead need to take then r = C' L= log L.
We conclude that

p
(7.14) Koo (R 11,C) < Cep [T Kan (Qis 11, OKER(US, 1, ) exp (C5LIE(L))
=1

is increasing in . For d > 5, we

where & (L) is as in (7.2). Taking logarithms yields the result.

The proof of (7.3) is the same using the local laws for the measure associated to Kg r(U, p, ¢)
U

The goal is now to use this to derive a precise asymptotic expansion of local partition
functions. First, we prove the analogue of [AS21, Proposition 6.2] at constant density. It is
largely a corollary of the previous proposition.

Lemma 7.2. Assumed > 1 ands € (d—2,d). Then, there exists a function fqs: (0,00) = R
and a constant C' > 0 depending only on d such that if LY € Z we have

log K@L(DL,LO) —I—fd7s(6)‘ 55 éa(L),

(7.15) 30|

with & as in (7.2).

Proof. The proof is exactly as in [AS21, Proposition 6.2] using Proposition 7.1, with our new
error term. One first uses superadditivity (5.20) of the partition function to derive

1 log N\ , 2¢
—logKg o1, (O2r,,1,0) 20( 8 ) + —logKp 1 (O, 1,0)
B B B
and so, setting ¢(L) := logKﬁ’/@fw one has
log L
2L) > ¢(L) + O .
600 = 9(1) +0 ()

Iterating the previous estimate, we find

>, logL

where ¢(00) is defined by limsup; _, ., ¢(L), which simplifying yields

o(L) < 000 +0 (57 )
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as in [AS21]. On the other hand, using Proposition 7.1 we can write
¢(2L) < ¢(L) + Cp& (L)

which we can sum to find ¢(co) < ¢(L) + Cpé&(L). Defining fqs(5) := —¢(o0) yields the
result. O

This Lemma allows us to compute the next-order partition function for other constant
1
densities as well; indeed, by scaling and setting Q) = mdQr, we find

/
log Kﬂ OO(QLam7O) 1+§10g Kﬁmﬁ OO(QLalaO) m 1
| - E — —logm + — (mlogm)le
B|QL| IBmH|Q’L’ B 2d( ) s=0

(7.16) = —mtafy (ﬁmi) - %logm + %(log m)ls=o + O (&(L))

In what follows, we will need the assumption (1.45).

7.2. Comparison of Partition Functions by Transport. We would now like to leverage
the formula (7.16) to obtain expansions for inhomogeneous densities p. In this section we
return to normal coordinates, since the expansions we will derive will be leveraged to obtain
results about fluctuations of linear statistics stated in usual coordinates. Just as in [Ser24,
Chapter 9], (5.17) has the counterpart at the usual scale

N
(7.17) Knge(U, 1, Q) = /N exp <—BN_‘S’ (FN(XNa/%U x [, 1)) +NZC(~’W)>> dXn
U i=1
where Fx(Xn, 1, U x [—¢,/]) and N¢ are analogous to F (Xj\,,,u’, UNi# x [—KN%,EN%D and
¢’ as in Section 5.1. A superscript G in (7.17) will indicate a restriction of the integral to
some good event G C UN. As in (3.2), when U = RY and h = oo we abbreviate (7.17) by

Kn,g. We also define a Gibbs measure associated to this next-order partition function by
(7.18)

1
dQnge(U, 1, Q) := KU, 0)

If 11 is sufficiently smooth then it cannot vary too much in a small cube of sidelengths £ < 1.
In particular then, we should be able to compare Ky 5 ¢(Q¢, it, (v) to that previously obtained

N
exp <ﬁN_csl <FN(XN,H,U x [—£,4]) +NZC($Z)>> dXn.

=1

for constant densities, more precisely Ky g/ (Qg, er 1, C). We will make this comparison

explicit by a transport as in [Ser24, Chapter 9]. First, let us recall some information about
transporting Neumann energies in cubes from [Ser24]. Let 1; : RY — RY be a Lipschitz vector
field depending continuously on a parameter ¢ € [0,1]. Let us define the flow ®; : R — R¢
to be the solution to

dd,
) {dt@) — Gi(®:(2))

Oy (z) = x.

This flow is well-defined for ¢ € [0, 1] by standard ODE theory. Moreover, it is standard to
check that if y is a probability density then the push-forward
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solves

In [Ser24], the following lemma is shown.

Lemma 7.3. Let g and py be two probability densities on R and let s = (1 — 8)po + g1
be their linear interpolant. Assume that for s € [0,1], ¥s is a Lipschitz vector field on RY,
depending continuously on s, and satisfying

(7.22) —div (Ysp1s) = p1 — pio-
Then defining ®s as in (7.19), we have that ps = PsFHup.

Lemma 7.4. Assume (N > ps, and let Q¢ be a hyperrectangle of sidelengths in (¢,2¢).
Let pg, 1 be two Lipschitz densities bounded above and below by positive constants in Qy, a
hyperrectangle of sidelengths in [¢,20] with Npuo(Qe) = Npi(Qe) = 1 an integer. Let h > 0
and let G denote an event on which the local laws hold for Qn g n(Qy, fs,0). Then

(723) ‘ log K]g\[,ﬁ,h(Qb M1, 0) — log KN”B,h(Qﬁv Ho, 0) + N(Enth (:ul) - EntQé (MO))|
S (14 BINE ((poler + I — polen)|m — poler + Ll — polen )

where C' depends only on d and a lower bound for po and pi, and where Entg, (1) is the
entropy restricted to Qy, i.e. fQ/ wlog .

Proof. Since we are working with the Neumann energy in a cube, we need to find a transport
that preserves the cube and solves (7.22). For that we let ¢ solve

{ —Ap =1 —po in Qy

7.24
(7.24) 92 =9 on 9Q,.

By elliptic regularity and scaling we have

pler < CClun — poler,  leler < Clpr — ol
Define, for 0 < s < 1, the linear interpolant ps = (1 — $)up + su1. Setting

\Y%
7;[)8 = S07
Us

we thus have —div (¢Ysps) = p1 — po ie. (7.22) is satisfied, thus p; = ®1#uo. Moreover, by
simple estimates
|90|02>
o>

< C (€ (lpoler + |m = polen) i = poler + lp = polen )

s

2
wmﬂmm+\
Loo

W%>¢mﬂsc<

|-
s
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where C' depends only on d and a lower bound for pp and ;. Computing as in (3.32), we
have

log K, 5.4(Qe, 11,0) — log K 5 n(Qe, 10, 0) + N (Entg, (11) — Entg, (o))

=10gEqy 4 1 (Qeym0,0) eXp(-ﬁNz (FN (®1(XN), 1, Qe X [=h, h]) — FN (XN, pto, Q¢ X [=h, h]))

+ Fluct,, (log det D(;Sl)) 1g.

The first term in the exponent is given by (cf. (3.36))

1
BN~ / AL(Dy(X ), s, 0 0 DT Y)ds
0

which we can control using Proposition 3.8 and the local laws on G coupled with Proposi-
tion 3.11 by

1
ONTE [ M@)o 71| ds S5 ANE o
0
The second term is similarly well-controlled; (3.31) and the local laws yield

|Fluct,, (log det Déy1)| Sp N9 .
With (7.25) we deduce the result. O

We now are able to write an expansion of the next-order partition functions as in (4.24).

7.3. Relative Expansion of Next-Order Partition Functions. The idea for obtaining
(4.24) is based on tools from [Ser23], with the added difficulty that the transport (2.16) is
nonlocal. We will use the almost additivity Proposition 7.1 to split the consideration between
U = Qr for some R > / to be determined and Q%, applied to Q; with sidelengths in [r, 2r]. We
will compare Ky ,,(Q;, i1, ¢) to that of Ky g,(Qi, 11, ¢) in Lemma 7.2 using Lemma 7.4, and
optimize over the choice of r to improve our error bounds. Our analysis of Kf,’\’ffﬁ’ r(Qr, 1, Q)
will rely on the decay of (2.16) away from Q.

Proposition 7.5 (Comparison of Partition Functions). Assumes € (d—2,d) and that (N3 >
pp. Assume suppy C O, C O C X. Let ¢ be given by Proposition 2.2, and py := (Id +
t)#uy . Let Gy be the event of Theorem 2, and set

1— —2 ifd<5ors<d-—1
(7.26) = Ardosy o
~ @D1[d—=s) otherunse.

Then, for all [t|¢>~9 is small enough, we have

log K 5 o (RY, 1, Cv 0 @) — log Ky 5,00 (R, o, v ) + N (Ent(j1,) — Ent(1o))
= Z(B, ) — Z(B, o) + Op((1+ B)NLRy)
with

S S N
(7.27) Z(B,p) = —Nﬂ/u”dfd,s(ﬁud) +2(;815_o/u10gu
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and
d7

(7.28) R, = max <(|t|€5d)2dd—s (¢ ((N%E)ﬁ))m : ]t]55d>
where & is as in (7.2) and € is as in (1.27).

Together with (7.30) this will provide (4.24).

Proof. Before we start, we replace log Ky 5 00 (Rd, 1405 CV) with log K]g\fﬁ . (Rd, 1405 CV)S since

the difference between the two is just log Pn g(Gr) = log(1 + O(e=OPNEY) = O(e=CBNEY g0
exponentially small, we will be able to absorb it into the error terms we generate below.

If ¢ is large enough, we just use simple additivity at some scale R. Otherwise, it is better
to include @)y into some larger cube Q) with R to be determined.

Step 1: Cutoff via Almost Additivity. Since suppy C S, we may include supp ¢ in
a hyperrectangle Qg at distance > ¢ > 0 from 03, and such that puy(Qgr) is an integer, for
some R < e.

First, we apply almost additivity (Proposition 7.1) on U; = Qg and Us = ®,(QRr). Note
that if £/5=9 is sufficiently small, |®; — I| < t||¢)||r is small as well, and thus both Uy and Us
are at distance > € from 0%, hence sets where py and p; are bounded below and (v, (y o @y
vanish, and local laws hold.

We will partition U; and Us into sets @; with sidelengths in [r, 2r] with r to be optimized;
this yields

(7.29) log K%e,ﬁ,oo (Rd, e, Cy o <I>;1) — log KC](,"BQO (Rd,,uo, CV) =
P
9,00, 9q; 1
3 (1og Kar g (®4(Qi), g, 0) — log K375 (Qi, o, 0)) + NRYOg (£(rN4))
i=1
ext,Gg Q%) _ ext,ch
+ log KN”B,Rt " ((I)t(Q%)7 Ht, CV © q)t 1) - log KN”B,RR (Qﬁ? Mo, CV)

where & is as in (7.2) and Gq denotes the set of configurations in €2 that are restrictions of a
configuration in Gy.

Since py = (I + t)#ug, a computation based on (4.28) and (2.17) yields that if /59 is
small enough,

s 1 _

(7.:30) lualien S 1elllelles S 00 pmgmg = €7

Step 2: Comparison of Local Partition Functions. We next analyze

p Go.
> log Kis, (Qis 11, 0)
=1

with p either pg or pu; above. The idea is reduce to Lemma 7.2 using Lemma 7.4. Using the
scaling identity from (7.16) we find for each i that

Go.
1Og KNQ,?Z?,T (Qu K, 0) + NEnth (:LL)
s s 1 ,B _
— [ =1+ —=) _ - = - ~
= —[N|Qi| (u I fds (/Bﬂzd) QdNIOgM150> + (QdHIOgN) 1s—o
+ (14 BNT05 (rllpller +72|ulEatemo + & (rNT) )
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with n = N fQU w, and fz; = JCQ» i. Running the same computation as in the proof of [Ser23,
Lemma 6.1] to replace p with 7z using (1.45), and summing over i, we obtain

(7.31)

p
Ga, p
> lox K3, (Quun0)+ NEntg (1) = =8N [ 143 fus (9153) = 5N 1uma | o
=1

4 (108N ) Lomg + (1 HNROO; (rlullcr + oo + 6 (rN'))

with & as in (7.2). Requiring r{|pl|cr S 1, equivalently r» < £ in view of (7.30), to absorb
some errors, we need to optimize g(rN%) + 7||pe|lcr over choices of r < £. Letting —x with

k > 0 denote the exponent on L in (7.2), we see that the right choice of r is
" _ 1
r=N_ d&+D HMHC{"“.

With this choice, we have 7||u||c1 < 1 thanks to the fact that £ > ps N~V and [|ufcon < €71
Thus, the above optimization is the correct one, moreover r < ¢, and up to multiplying r by a
constant, we have r < £ < R, hence the partitioning of (i into size r hyperrectangles makes
sense (at least provided R// is large enough). If R/r is large enough, we use [Ser24, Lemma
5.13] to partitioning Qg into hyperrectangles of size comparable to r and with quantized
p-mass, i.e. Nu(Q;) integer. If R/r is not, then we do not partition further Qg. In all cases
this yields

(7.32

s s B
Zlog KNﬁr (Qi, 11, 0) + NEntq, (1) = —BN/ p'te fas (ﬂud) = 5qV1ls=0 [ plogp
U U

—|—<2ﬁdnlogN> s=0 + Og ((1+5)NR°'@@ ((N%HMHE})%“))

Step 3: External estimate. We turn to estimating

t.00,(Q¢,) _ ext G,
lo gKNﬁRt f <(I)t(QCR)’Mt7CV © (I>t 1) log KNﬁR (QT?MO?CV)

n (7.29). By the same computation as in (3.32) we obtain

xt.98,(Q5) c _
log KN”&Rt " (‘I)t(QR)y‘I)t#MV;CV o, ) log KNB R (QRHUV,CV)

+ N (Enta, g (®i#uv) — Entgs () )

)exp(mv—é (Fa (@e(Xn), @it (v g, (@(QR) x [~ R, R])°))

= 10 ]E ext,G
SRR (g v v

—Fn (XN, 1vs, (Qr x [-R, R])C) + Fluct,,, (log det D¢t>>

The first term in the exponent is equal by (3.36) to

t
[ A (X0, Bt 007 s
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which we can control, using the local laws and modifying the proof of Corollary 3.12, by

t
_ 1
/0 M@0, Dutlpgy) v 0 071) ds S5 NIl Y e

k’ZlogQ%
AN d prs—d
SN lollcrt* () %o N Iolloat B~

The second term is similarly well-controlled; (3.31) and (2.17) yield also

d k
|Flucty,, (log det Dér)| < [tlll¢ollos D ﬁ Sp [N lollos e R,

Lk p\2d—s
kZlogz% (2 ﬁ)

We thus have the estimate

(7.33)
eXt,ch (QS) _ ext,ch _
log Ky g " (Pe(QR) 1o Cv o @yt ) —log Ky 5 1™ (@ 10, Gv) Sp [N [pollcs R,

Step 4: Conclusion. We apply (7.32) to u; and to py, use that ||u| o1 < €71, insert into
(7.29) and add the bounds of the previous step to obtain

log K5 oo (R, 11, v 0 &) = log Ky e (RY, 10, v ) + N (Ent(pur) — Ent(py)) =
143 s N 142 s Nfj

N [l fasud )+ 5 1 [ ulognet NG [ fac(Bud) - Gy 1eno [ v logy

Qr Qr Qr Qr

1
+ 05 ([N pollcst/R=) + 05 (1 + BN RS (N70)7T) ).

We can insert the remaining integral over Q% into the above as well as in the computation in
(4.26). In particular, one has

1+2 s N
\—Nﬁ Wi gy iy + Y /Q i log
R

o, 2d

s s N _

#NG [t fa0d) - S ten0 [ wvlogi| S5 N8 [ 1HIDU] S5 NGRS
QR QR QR

using (2.17). Incorporating this into the error terms we find

log K 5 oo (RY, 1, (v 0 071) = log K g o (R, 10, Gy ) + N (Brt(jur) — Bnt(ay))
1

= Z(B, 1) — Z(B, o) + Op (It\NllwollcwdRs’d) + 0 ((1 + B)NRE ((N%g)m)) :

We now have to optimize the sum of the errors over R < e. Equating the two terms leads to
the choice

R = min <(|t|€d)2dls (¢ ((N%E)ﬁ))_ﬁ ,5>

d d—
and an error rate max((|t|€5*d)m<§’ﬁ, |t|es~9).
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8. FRACTIONAL HARMONIC EXTENSION

In this section we state and prove existence and regularity of the fractional harmonic
extension, i.e. the solution ¢> to

o (Fre.

(=A)*¥ =0 in X°.

for ¥ C RY, as well as provide estimates for it. We could not find a succinct statement
of the existence result for solutions of fractional elliptic problems in unbounded domains
in the literature, although it is certainly known. For completeness we offer its proof here.
Interior and boundary regularity for solutions of equations like (8.1) are well-studied, and
indeed the optimal regularity is understood to be C®, see [ROS14], [ROW24, Theorem 1.1]

and references therein. The regularity of di;‘;?ﬁ and its scaling properties then becomes an

interesting question, which we rely crucially on here.

Lemma 8.1. Let U be a neighborhood of ¥. Let 0 < o < 1 and let ¢ € H*(RY), where
H® is the Sobolev space defined via (1.12). Suppose that 0% is a C*' boundary. Then, there
exists a unique function > € H*(RY) solving (1.36). If (—A)*p € L®(RY) we also have the
boundary estimate

b
k. <AVl
dist(z, ¥)« S I(=2)%@l ez

52) |
Co(U\S)

for all o € (0,a). Furthermore, if supp e C Oy, for some cube Oy of size £ included in s,

then
¥ —

W N H‘P”Lwﬁd

(8.3) ‘
Co(U\%)

for all o € (0,a).
If in addition we assume that (—A)%p € CF(RY) and 9% is C**1, we also have

%
P < o «
diSt({L‘, E)a ~ H( A) QOHC("*O‘)(U\E)

(8.4) |
Co(U\E)

forall o € (a, k) and 0,0 £ a ¢ N. (8.3) holds as well in the mesoscopic interior case under
the assumption that 0% is C**1: no additional reqularity on the test function ¢ is needed.

The regularity assumptions on (—A)%p and 0¥ are so that we can apply the local regularity
results [ROS16, Theorem 1.2] and [ARO20a, Theorem 1.4].

Proof of Lemma 8.1. First, let us prove existence of ¢* in H*. The proof requires us to solve a
fractional Dirichlet problem on the unbounded domain €. Existence is standard, and follows
for instance the variational technique used on bounded domains in [RO16] (and [FKV15]
for more general equations). For completeness and to clarify that it applies to unbounded
domains in our situation, we sketch a proof here.

Let

(8.5) Aw) = ¢ /R L (0(0) = w2 = dad,
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where cq , is the constant associated to the fractional Laplace kernel in (1.10). Notice that
A(u) is an equivalent definition of [u]%m, where [u]za is as in (1.12) (see [DNPV12, Chapter
2] for a discussion of the kernel definition of fractional Sobolev spaces). Since d > 2 > 2a,
H* continuously imbeds into L? for all ¢ € {p, %} [DNPV12, Theorem 6.5]. A(u) is in fact
defined then for all u € H* and is equivalent to |ju]|% ...

Let us minimize A(u) over the set Hg = {u € H* : u = p on ¥}; first, A(u) is bounded
below on Hg, and there is at least one element of HJ for which A(u) is finite (namely ¢).

®> :
Thus, inf ;. A(u) exists and is finite. Now, consider a minimizing sequence u,, in HZ, with

w . .
Aup) = |lun||%. — infe A(u). H® is complete, so there is some u € H® such that u, — u

@
and
2 . 2 . .
Aw) = [l = Jim Jual3. = N Adun) = inf Aw)
7}

Furthermore, u € Hg: for any n and ¢ € C°(X) we have

[ (o= o] = [ (o = 0| < lw = w2 < o = wllze 22 =0
and so u = ¢ a.e. on ¥. It remains to see that u solves (1.36). Let ¢ € C2°(X°) be an
arbitrary test function. Then, u +ep € HS and since u is a minimizer of A we have
d d 1 2 cdva
0= IS‘EZOA(U +ep) = £‘5:0§ /R%(((u(l’) —u(2)) +e(p(x) — ¢(2))) m dxdz

- /R%(U(x) —u(z))(p(z) - @(z))pfi% duds.
So,

[ 0e) = et = = [ ulo) = ul)ele)

and thus by symmetry

/]R2d (u(z) — u(z))w(z)ﬁ% = /Rd o(z) (/Rd(u(x) - u(z))kii% dm) dz
Z/QQX—AWUZQ

Since ¢ € CZ°(X°€) was arbitrary, we conclude that (—A)%u = 0 a.e. in X¢ as desired, and we
set ng = U.
We now apply the regularity result of [ROS16, Theorem 1.2] to

i=¢"—p
solving
=0 in ¥
{(—A)O‘& = —(—A)% in X°
since ¥ has a C1! boundary and (—A)%p € L™ to conclude the boundary estimate (8.2).

Now, let us examine the case where ¢ = @ (<7%). Let

b
P~ —
=1

(8.6) T oe =
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which we have just seen is C7 regular, with C” norm controlled by [|(=A)%¢|[ o (7\5)- The

bound (8.3) then follows from a careful analysis of (8.2). The second term on the right hand
side can be carefully analyzed from the definition of the fractional Laplacian;

(67 C bl C 9
(~A)p(z) = PV, / () = 0(0) =Sz dy == / P0) =S dy S el

The second equation follows from x ¢ supp ¢, and the bounds in the integral come from the
fact that |x — y| is bounded from below at order 1 and ¢ is only supported on a set of size /.
This is (8.3).

For higher regularity, we use [ARO20a, Theorem 1.4]. There, if 0 € (a, k) (the k is because
0% is C**1 regular by assumption) is such that 0,0 4+ o ¢ N then, with f as in (8.6)

1 llgr@is) S 1)l oo sy + 10° = @l S 1(-A) @l gr-agsr)

where we have used [ROS16, Theorem 1.2] to control the L>° term. We have (—A)%p €
C7~%(%°) since we assume o < k and ¢ € C¥T*(RY); this yields (8.4).
Specializing now to the mesoscopic case, it is slightly easier to differentiate
o) — ¢(y) / —o(y)
A% =PV. | m————Sdy= | ————d
(=A)% / |z — y|a+2 7 |z — y[d+2a Y

since p(x) = 0 for € X¢. A computation shows that for m < k we have, for z € X¢, using
dist(supp ¢, 9%) > ¢ > 0,

&m(_ A\a lp(y)] d
(8.7) [VE(=A)%p(2)] g/z\x—y\d“a“” dy < el te.
Holder interpolation then yields the result (8.3). O

We will also need more precise information about the decay of ©> at infinity; this is given
by the following.

Lemma 8.2. Let ¢ be as in the assumptions of Proposition 2.17. For any m <k, if x € U€,
we have

m, 5 [(=2)%¢]| oo
(8.8) [vom o™ ()| S e

Additionally, if supp ¢ C EA], then we have for any m < k that, for x € U°€,

< N2l + ] oo
~ ’x‘s+m+2 '

(8.9) VO™ (@)

Proof. Without loss of generality, let us assume that z = 0 (thus 0 € X). Let us start with
the case ¢ = 1. Following the proof of Lemma A.8 with v = > — ¢, we may write
dist(z, %) ((—2)°p™ (@) = (~A)*p(x)) = Caco + o (dist(x, )"

in 3, where

¢ -y
(8.10) |co| < | . 3 < N(=A)%@ll Lo ()3
dist(z, 0%) Lo (\S)
the second inequality follows from (8.2). As a result, we may expand
« [e% QCO
(8.11) (—A)%"(x) = (—A)%p(z) +o(1)

+ dist(z, 0%)>
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in ¥. Now, the key is that, as discussed in (2.11), we can recover ¢ = g x (—A)%p™, i.e.

sy [ (FA)%7 ()

where (—A)%p*(y) is only supported in ¥. Taylor expanding the denominator to second
order, we find for x € X°,

TiYi 2
(8.12) 902(55) :/(_A)aﬁpz <$|5 Z| |SZ{FQ <|m|z|/5|+2>> dy
1

Z (6% 1 o
- or [ CAr) WY i [ w8075 w) a0 (e 1A wlol? dy).

Since the fractional Laplacian is a mean zero operator, the first term cancels. Furthermore,
for all 7 we have

/yz-(—A)asoz(y) dy = /(—A)ayﬁzJZ =0
via fractional integration by parts, where we have used the odd symmetry of y; to conclude
that (—A)%y; = 0. Integrating (8.11) over ¥ and using (8.10) to control ¢, it follows that

@] S o [P s 12Tl

The argument for the derivative is exactly analogous; passing the derivative through the
integral, we find for any multiindex v of length |y| =m

D) = [(ar@w (=) .

Taylor expanding D” (|ij|s) about x and using that

1 < 1
| |s ~ |x|s+m+2

yields the result via the same argument as above.
Next, consider the mesoscopic case { < 1. We may write the same expansion (8.11),
although we now have from (8.3) that

¥ —

_— < .
dist(z, 03) S Ellelle

(8.13) leo] < ‘
Leo(U\X)

We expand as in (8.12); the integral of the W term in (8.11) now yields
CaCo

1 gl
O<|$S+2/z dist(z, %) dy)‘()( af++?

using (8.13). The contribution from (—A)%p in (8.11) now yields
1 2
—A)* d
FEE /E 7 I(=A)%e(y)| dy

which we split into two contributions: those in [y; and those away. In Uy, we find

1 2 A 2 (- A) g1~
Tl M e
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Away from oy we seek to estimate the decay of (—A)%p. Since we are at distance > ¢ from

supp ¢, we can write
|( | < gdH(pHLm
o \x — y‘d+2a ~ |z — z|d+2e

since |z — y| 2 |x — 2| due to dist(x,supp ¢) 2 ¢. Thus,

1 Cllellgee [+t 2ol e
s+2 |y|2’(_A)a(p(y)’ dy S s+ 2 d+2a—2 dr S s+2 -
|z[s* Y\ oy ||+ ¢ Tt |z [+
Combining these estimates, we have

L[ (-0 pluee | E el
e [ PIAY el dy s DA T

Combining with the ¢, term contribution, we get the announced estimate for m = 0. A
similar argument as in the ¢ = 1 case recovers the analogous estimates for the behavior of
Ve Y as x| — +o00. Since s+ 2 >d and £ < 1, we conclude with the result.

O

We are now able to turn to our goal of finding controls on (—A)%p™ near ¥, quantitative
in . The L case is a direct consequence of Lemma A.8; for derivatives, we will need the
following.

Lemma 8.3. Let Q C RY, and let v € L®(RY) be a solution to

(=A)*v=f nQNDB;
v=20 in By \ €.

with 0 € 092, and suppose that 02 and are both C*. Then,

v
dist(z,00Q)™

i

VR (dist aQ)a(_A)av)HLm(BI/Z\Q) < C‘
C*k(By)

05|
dist(x, 0Q)>

where the constant depends on || f|| e .

Proof. The case k = 0 is Lemma A.8. Let us show the argument for k = 1; the result for
k > 1 follows by differentiating in the same manner.

Choose coordinates such that 77, the outward normal at 0 € 012, is the d-th coordinate vector
ed. Then, there is a function g(z) such that v(z) = g(x)(xq)§ in QN By by [ROS16, Theorem
1.2]; by our assumptions, g(z) is C*, and notice as well that it must decay like |2|~* at infinity
since v € L.

We first differentiate dist(z, 9Q2)*(—A)%v in the eq direction. Let x = —teq for some ¢ < 0
(so that € By \ ). Then, v(x) = 0 and so by definition, see (1.10), we have

dist(z, 8)* (—A)%v() :ta/ % dy = _ta/ i,
el w0 (SO 2+ (t+ p0)?) o

Factoring out ¢, we find with the substitution y = tu

. o o —t¢ g(y)ys g(tu)ug
dist(z, 0Q)(—A)%v(x) = td+2a/ (v)yd S dy = —/ 7‘ /(_ )|dj'_2a du
Ya>0 d—1 yl Yd\2 2 ug>0 1% U
Z =1 2 + (1 + 7)
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with 2/ = —eq. Differentiating in the eq direction amounts to differentiating in ¢, which yields

> Big(tu)uiud du

|$/ _ u|d+2a

Ogdist(x, 0Q)*(—=A)%(z) =

uq>0

S 1Dgllze<

|ufug
du| < ||D
/ud>0 |z — u|dt+2a u| S 1 Dgllze=

establishing the desired control. The same argument works for the normal derivative at other
values of = € 2N By by choosing coordinates with origin at a different 2 € 9€2.

The tangential derivatives are easier since we have chosen coordinates for which dist(x, 92)*
only varies with eq. Passing the derivative through the definition of the fractional Laplacian
yields

0; (dist(x, 0Q)*(—A)%v(x)) = dist(x, 0Q)*(—A)*Ov(x) = dist(x, 0Q)*(—A)*(0;g(x)(x4)%)-
Using the L™ control given by the proof of Lemma A.8 we find

|0i (dist(z, 09)* (= A)%v(2))| < [ Dyl Les
establishing the desired bound. O

We next state a result that controls the fractional Laplacian in terms of the derivatives of
a function.

Lemma 8.4. Assume ¢ is supported in some cube [J; of sidelength ¢ and (2.15) holds for
k> 2. Then

(8.14) 1(=2)%pl| e < ME>,

Proof. Using the integral definition of the fractional Laplacian (1.10), we need to compute
. Cd,
lim ) —plz+y —— dy.
L o (p(z) — ez +y)) oz

First consider x € [yy. For y € gy, Taylor expanding, we find that the integrand is given by

Cd,«

[ o (T b0 (07)) o

Cd,
/BM oo (1vPo (D%)) e dy

by spherical symmetry of the order y term. For |y| > 4¢ we estimate roughly,

¥/
< Jlglles / P2 g < o ea 20
0

Cd,a > —1—2« —2«a
(@) — ple +4) —2_ dy| < o]l / R P
/BM(O)C |y|d+2e a0

Assembling these results, we find that for x € gy,
(8.15) (=2) (@) S 72 ellce + € el oo S ME>2,

We next turn to the case = € Rd\D%. Since ¢ vanishes outside [y, we don’t need to use
the principal value in the definition of the fractional Laplacian, and instead have

Cd,a
—Ao‘gpx:—/ olx+y —— dy.
(=4 %le) a+yel, ( )\y!d”“
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We note that for x ¢ Oy, z + y € Oy implies that |y| > ¢. The integral is thus bounded by
¢l oo =2 < ME~2%, Combining with (8.15), the conclusion follows.
O

We can now state the scaling that we need for the behavior of the fractional Laplacian of
the fractional harmonic extension in 3.

Lemma 8.5. Let ¢ be as in the assumptions of Lemma 8.2. Let m < k. If suppy C Uy C )y
with £ < 1, then
(8.16)

[ellgaem®tsdifz € Oy
VO™ (dist(z, OX)(—A)%p>(x) )| < CF2((=A) Y| 1 + _
Ve (dist(z, 02)* (~A)*0() )| AT el + o e o ey O
Proof. Let us first consider m = 0. Note that by Lemma 8.1, we have
(8.17) p— " =dist(OR)f, | fllgo s S llellztd.

Next, we argue similarly as in the proof of Lemma 8.4. First, take x € [Jy. Using the
integral definition of the fractional Laplacian (1.10), we need to compute

lim () - (z+y ﬁdy.
0 /B, 0y <s0 () =7 )) |y|d+2e

For |y| < 4¢, ¢® = ¢ in the domain of integration. Taylor expanding, we find that the
integrand is given by

/Bu(m\Bn(o) (-ve-y+luPo (D)) ,y‘cffga dy‘

Cd,
/BM a0 (P2) (e

by spherical symmetry of the order y term. For |y| > 4¢ we estimate roughly. First,

>
. 5 Cds Cd,s Csp” (T +y)
P (@) - P+ y)) e ay A e M e
/B4e(0)c ( ) |y|d+2 Bao(0)e 1y]9H2 Bu(ye  |y[dt?

using @™ (x) = ¢(x) for & € Oy. The first term directly yields

Cd,s > 12a —2a
I/ S | S lelum [ 77 dr S el
Ba(0)e lyd+2e ¢
On the other hand, using (8.17), for z +y € U, we have
%z +9)| S Mt
since for y € By (0)¢, p(z +y) = 0. Using (8.9) for z +y ¢ U, we obtain

YA
< llolles /0 72 g < o eal® 20

< |p(z)| dy|+

()

o0
< Il e / P2 gy
?

b Cd.s
(@ +Y) —gen
/BM(O)C [y|d+2
+ (el + BN A i) [0

S (E el + E2)(=A) %] 1< )
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where we used that 2 = d — s. Assembling these results, we find that for x € Oy,
(8.18) |(=2)°¢%(@)| S = gllc2 + £ Il oo + €2 (—2) ] 1.

We next turn to the case z € X\[g. Since ¢ (x) = 0, we don’t need to use the principal
value in the definition of the fractional Laplacian, and instead have

« C S
(~A)P % () = / o+ o) o dy

We split this integral into three parts: o +y € £, x +y € X°NU and z +y € RI\U. For
x4y € X, since o”(x +y) = p(x + y) vanishes unless = + y € Qy, we have
d
b Cd,s 14
- 0~ (@ +Y) igraa WS el g5z
/xﬂ,ez [y|d+2e |z — z|d+2e

For z +y € £¢NU, notice that we have |y| > dist(x,0%) and |y| > dist(z + y,0%). Since
¢ =0 in X¢ using (8.17), we have

) Cd,s . a Cds
- ¢ (T +Y) T gee W= — / f(z + y)dist(z + y, 9%) o Y
/JJ+yEECﬂU |y[d+2e zHyenenU |y|d+2e
o0

ly|* i . _
Sﬁ“HsoHLW/ sy S Ol e r 17 S || Lo dist(w, 0%) 70
z+yeEneNU |y dist(z,0%)

Finally, if x + y € U¢, this implies that |y| is bounded below by some positive ¢ > 0. Using
(8.9), we then find

Cd,s o 1 1
- / P () 22 dy < (2 (=AY o+ gl 1) / dy
z+yeUc |y|

ciyeve [Y[247s |z 4 y[s+2

o0
< (=) +4d\|<p||Loo)/ rm9 0 dr S (E2) (= 2) | e + |l o).

£

This yields

(-8)°¢"(@)] 5 el <|x|

I . _

— + (Adist(z, 0%) a) + (02| (= A) || oo + ||| Loe)
in this case.

In view of (8.18), this concludes the proof of (8.16) for m = 0.

Now, let us turn to derivatives, i.e. m > 1. The same argument as above works for the
estimate inside of (yy. For the decay, we start with x € 3; there, dist(z,0%)* and its

derivatives are bounded so we need only consider (—A)%p”. It is again easier to use the
definition
b b b
n_ e (@) - y) , [ —¢~(y)
(=A)%™ = P'V'/ |z — y|d+2a dy = |z — y|dt2a dy

since p=(z) = 0 for € 3\ Oy. A computation shows that for any mutiindex v with
|7| = m < k we have

b
a = ()]
‘DV(—A) ¥ ‘g/lx_y’dwajtm
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We again split this integral into three parts: y € ¥, y € U \ X, and y € U¢. For y € X, since

> = ¢ there we have

1 o) el L

b

0| vz 0 S el | vs

/yEZ ‘ ‘ |z — y|d+2atm ow v — z|d+2a+m |z — z|d+2atm

since the integral is only defined for y € supp (¢), which forces |z —y| 2 |z —z|. Fory € U\ X,
we have using (8.17) that

b)) Cd,s . a 1
Sy =gy = / )| dist(y,08)* s dy
/yEU\Z‘ ’ |y|d+2a+m yeU\n |y‘d+2a+m
< gl W <l [ e < e e dist(, 95) 0
~ o yer\x |yldt2atm Yot dist(zBZ)r ~ 7P R

since y needs to be order dist(xz,0%)* for z +y € X¢ Since we are inside of the bulk,
dist(z,0%) ~ 1 and thus the integral contribution y € ¥ dominates. Finally, if y € U€, this
implies that |y| is bounded below by some positive € > 0. Using (8.9), we then find

1 1
|y[2d—s+m [y[s+2 Y

Cd,s d+2 o d
1wy < (P (— D)l e + Cllol ) /
/VyEUC ‘y|d+2a+m z+yeUe

oo
S (EP2)(=2) %l + deSOHLw)/ rmd T SO (=A) %l e + ] e,
15
and again the contribution from y € ¥ dominates, yielding the required decay bound.
Finally, let us establish the desired control in ¥\ . We apply Lemma 8.3 to v = ¢* with
f =0 to obtain

\v®m (dist(x, az)a(—A)ang(x))\ < dist((xp,ZaE)a :

cm(U)
which, by (8.3) is controlled by £4|¢||z. This establishes the result.

Finally, we establish the formula for the limit variance in the mesoscopic case.

Lemma 8.6. Assume that supp ¢ C S and © = po(2) for some fized function pg. Asl — 0
we have

(8.19) 0712 ams = ol gos-
H™2 H™2

and

(8.20) 6—5/2(—A)%2(1ogw) — 0.

Proof. Let us start with (8.19); we will use the equivalent characterization of the homogeneous
Sobolev norm from the proof of Lemma 8.1, namely

1 Cd
21 2 == _ 2_ "da
(821) Jul? e = 5 [, (0(0) = )P0

using 2a = d —s. Notice that for ¢ = g (),

() = 2 (A ) ()
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X—z

and hence ©*(-) = ¢, © (2) . We will separate

o) oo =N+ I

where

EZZ ez Ezz y—2z 2
canl (‘Po (=)~ (4 ))
I = dxdy,
2 SxE

2

Caal™s (¢"@) - ")

Iy i = —— T dxdy.
2 (Ex3)e [z — y

Notice that via a change of variables we may write

X—=z X—z y—=z 2
7 (x—z) _ 7 —
. Ca.al™ (‘Po (%) — @0 ( 7 > o
=7 |z — y[2ds ray
X% r—y
Z—z D-z 2
£ _ £
_ Cda <<p0 (W) = o (w)) _ Cda (0o (1) — o (w))”
= —= o dudw = —— 54 dudw
2 EZZXE;Z |u—’u)| —-s 2 E;zxxfz |u—w| —S

and so the difference £75||o*||2 4_. — [l0l|? 4. is merely
H 2 H 2

2
R ol 1, o (0 (1) = o ()
(22) IR s — ol e = o 2‘42wzzy W=l duu.

Notice that the same change of variables implies
2

7
%o L d—s
H™2

P =

X—z . d—s
Since ¢, ¢ is defined as the function coinciding with ¢y on EZZ and minimizing H 2 norm,

it follows that

2
2
@) < 0.
.d;s H 0” -dgs = O

£

%o

d—s
2

e o = llool? oo = ‘
H H™2

It is thus sufficient in (8.22) to show that

Cd,a (0 (u) — o (w))? wdw
/(szzz)c dud

—0
2 |u — w|2d=s

since Is > 0. Notice that since 2 supp ¢g C EZZ , We may rewrite it via symmetry as
2 o) d—1
¢o(u) 2 r
—Cd,a/ 5o Ju— w]2 dudw| < |l¢ol|7 0 N 5q— drdu
(supppo)x (E72)° U — W supp o J dist (supp po,0(=2))
d

Y—z

.
< llpol| 7 dist (Supp %0,0 ( 7 )) < lgol|3ec @™ =0

and we conclude the result.
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Now for (8.20) it is easier to use the equivalent characterization of the mean from the proof
of (4.2), namely

E/ azlog,uv)—cdsé /dlvz/f,uv—cdsé /le’(/J

where v is the transport map defined by (2.16). Integrating by parts and using that ¥uy =0
on 0%,

Cd,sfs/(diV¢)MV = —Cd,sﬁs/ Y- Vpy.
) by
In the bulk, we use that Vuy is bounded below and (2.17) to bound

_ _ leolles s ol
—cd,€5/¢~Vuv’S€s/ —— +{ T i
S $ =9 pd—s—1 E\D% |$—Z‘2d s—1

1 d—1
_ T
S thgollcs + € leolles | s dr S lgallos = 0.

Outside of 3, we use that Vyuy decays like dist(x, %)~ coupled with (2.17) for |z — z| at
order one to see that

—cdsl° | Y-Vuy
oS

<o / lollosCdist(z, 08)® < [lgollost®™ = 0.
D\S

since dist(z, 0¥)~“ is an integrable singularity. Coupling the estimates in $and & \ )y yields
(8.20).
O

9. PROOF OF THE SCREENING RESULT - PROPOSITION 5.7

We focus on the proof of outer screening; we will discuss the main idea of inner screening
and what computational changes are necessary at the end of this section. From this point on,
we denote F, = Vw, to emphasize that we are considering the electric field.

9.1. The Setup. The first part of the proof consists of using the energy bounds to find a good
boundary outside of which to construct the screened configuration. We have two separate
cases, depending on which screenability condition is satisfied.

If the first condition is satisfied in the minimum in (5.36), then using a mean value argument
as in [PS17, Section 6.2, Step 1] and [AS21, Section C.1], we can finda T € [R—20+2, R—{—2]
such that

XT'L? 7h
(9.1) P B < S ) gy

/(QT+2\QT2) X[—h,h]

9.2) / B2 < M
6QT><[7h,h]

where Qr C Qr and Qr € Qr (i.e. in particular u(Qr) is integer). We then take I' := 0Qr,
which in one dimension is simply two points on the axis.

Otherwise, the second condition is satisfied in (5.36). Then, via a mean-value argument
analogous to [Ser24, Appendix A], we can find some t € [R — 20, R — £ — (] such that

|y”y‘EA 2 S(Xn7~w7h)£.

/
(Qe+6\Qt)x[—h,h]
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We then apply a mean-value argument in the strip Q¢ \ Q¢ and find a piecewise affine
boundary I' in Q14 \ Q¢ with faces parallel to those of Qg and sidelengths of order ¢ such
that

S(Xpn,w,h)

03) [ pbiEpE < cEmnl
T'x[—h,h] 14

/ Y[ Ef2 < CS' (X, w, h)
z J(TNOg(x))x[—h,h]

and

S(Xp,w,h)

where I'y denotes the 1-neighborhood of I'. In both cases we let M = S and in the
latter case My = CS'(Xp, w, h).
I" encloses a set O, in which we will keep X,, and the associated electric field £ unchanged.

The modifications to the electric field will take place in the set N := Q \ O. We let
(9.4) N, = {z € N : dist(z,T') > n}

/ Wl"E? < C
L1 x[~h,h]
Xn7w7h)
7

and keep N\, as a buffer region where we will refrain from placing points. We also let MJF
and M, be averaged electric fluxes on the top and bottom of our hyperrectangular region:

h="
(9.5) My = —— ly|VE, - i,
O N Joxn
(9.6) My = B, -t
. = y| by - m,
O IV Joxi—n
and set
(9.7) Mo = "M + h"M, .

With this region in tow, we partition our space (as in [PS17, Section 6.2, Step 2]) into the
following subregions, and solve elliptic problems in each:
(1) Do := O x [—h,h]
(2) Dy :=N X [—h,h]
(3) Dy :=(Qr x [-max(R, H),max(R, H)]) \ (Do U Dp).
where H is the height of A € R4*! in the case where we are proving local laws in A. We
partition Qg \ O into regions Hj with piecewise affine boundary and sidelengths at scale ¢,

in {%,EC] Let Hj, denote the cells Hy, x [—h, h], and set
(9.8) H]!:={z € Hy, : dist(z,T) > n}

with ¢ > 2.

Observe that the delineation of our points into old and new sets might intersect some of
the “smeared" points; these smeared regions will have to be modified appropriately. We let
Iy denote the set of charges that are smeared by the boundary T, i.e.

I(‘) = {’L : B(.%Z, Fi) Nnr 7é @}

(9.9) S Cd’s/~ 3 500
H,

kicly
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to be the amount of smear in a region Hj,. We let np denote the number of smeared charges
and the number of charges we want wholly unchanged in O, i.e.

no = #Ilg + #({Z 1x; € O} \ Ip).
The goal will be to place n — np sampled points in N := Qg \ O, where 01 = u(Qpr), while
leaving a point-free zone of n-thickness. For each k, choose constants my such that

(9.10) casmil HI| = / YI7E, - 7 + Mol Hil — me + cas / dp
ODoNOH}, Hk\HZ

If my is small enough, namely |my| < %m (where m is a lower bound for ), then we can
guarantee [, p+my|Hf | € N.

Define
= Mldist(z,F)ZT] + kang
k
On the other hand, we have immediately from the divergence theorem and (5.29)

1 1

/ ]yPEr~ﬁ:/ dp —no + an
Cd,s 0Dy O Cd,s X

Hence, by definition (9.10),
ﬂ(N) = ﬂ(Nn) = N(Nn) + ka‘H]Z‘
k

— 1 1
— 5 u(0) ~ NN + - [ B
Cd,s JODo\(Ox{~h,h})
M,
+ 20 E |Hy| — — g g + N \NG)
Cd,s k d;s k

=n-—ne.

With all of these quantities defined, we are in a position to construct a new screened field
outside of Dy.

9.2. Defining the Electric Field. We define the screened electric field in each of the dif-
ferent subregions.
First we have E7, which completes the smeared charges, defined by

Ey = 15 Vhyy,
k
where iy j, solves

—div (Jy["Vhig) = cas Xier, 087 in Hy

8}11,}9 _ i
it =0 on @Hy \ dDy
1,k __ N
= = — on F;
on ka ly|Y ks

where F}, is the face of 9Hj, touching 0Dy, if it exists. This is solvable by (9.9).
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FE» balances the top region, D and is defined by
Ey:= 1p Vhyy,
k
where hg ), solves

—div ([y["hox) = cas(melyn — plygn)ope  in Hy,

agiik = —M on Hy x {h}

oh _

o = — Mg on Hy x {—h} ]
agi{k = 9k on the rest of 0Hy,

where g, = 0 if H doesn’t touch I', and g, = —E, -1 + I"W otherwise, with 7 throughout
Fi

the outward normal from Dg. This is solvable by (9.10).
E3 gives us the sampled configuration Zg_,,, in A, and is defined by

E3 =Vh3lp,,

where h3 solves the Neumann problem

—div (|y]"Vhs) = cas (S521€ 0, = fidpe) i Ny x [—h, A
9hs = () on 9 (N x [~h,h]).

Finally, F4 gives us the screened electric field in Dy and is defined by
Ey := Vhy,
where hy4 solves
{—div (Jy|"Vhy) =0 in Dy
% =—0¢ on dDq,
where
¢ = 1op,noDo E - Tt — Lop,ropyniy>01 Mo — Lo, ropyniy<or Mg -

Now, set 5" := (Ey + E2 + E3)1p, + E4lp, + E;lp, and add back in the truncations, by
setting

B = B ) V(o — i),
=1

where y; correspond to the points (in RY) of the new configuration Yz = ({X,}NO)U Zs_p,,
and T are the (possibly changed) minimal distances, blown up versions of (5.6) for the new
configuration Y. Due to the Neumann condition, no divergence is created across boundaries
when we set 5" to vanish outside of our region. By definition, we have

—div(|y]"B*") = cas( D 8y, — p0za) in Qp x [~R, B
1€Yh
EST . =0 on d(Qr x [~R, R)).
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9.3. Estimating Constants. Instead of estimating Mgr and M, using Cauchy-Schwarz
immediately as in [PS17], we instead carry these constants through our calculations. This
will allow us to be as precise as possible in our estimates of My. As we discussed above, the
screening process requires that |my| < . It will be convenient in the proof of the local laws

“E[‘ HLOC(N ) < C < 1; in order to obtain this, we will actually need a bit
n

more than |my| < 3. So, we seek |mg| < 7.
First observe, using the bound (9.1) and the discrepancy estimates (3.28) applied on balls
B, of radius 1 (at blown-up scale) near I', we have
1
2
2)

and summing over a (choosing the O(#4=!) balls to form a finite covering of the desired
region), we find

to have a bound H

(9.11) ko S llplle + (/ ly|" s
HiNBq

d—
g < ||l pee @71 + €5 (min(M, My))z2.
We also have
2
ng = <Z nk,a) STy nf o S llellpe24? +€d_1/ || |
« a HiN[QT4+2\Qr—2]x[—h,h]

using (9.11), which yields

(9.12) S g SRV pl e + Mt

since the number of Hj intersecting I' is bounded by O (%). We will make use of this

estimate below. In the same way #Iy < M + R9~!. Hence, by definition (9.10), using the
above bounds, Cauchy-Schwarz and (9.3), we have

1 S ng n
lmy| < C (IHkI Do [y B - 71| + Mo + ’Hk\> + ZHMHL“’
0NOH

d—

1 1
sc(Mo+ed R R A +|m||Looe“>>+;’|m||Loo
ODoNOH},

=C (MO + 079V M\ [0Do N OH |1 + (min(M, M))24~*5 + Hmrme‘1>) + Il

< C(My+ =905 15 (min(M, Mp)?) + %\MHLW,

after absorbing some terms, using 7 < 1 and h > 1. To obtain that this is less than =,

squaring, rearranging and using the bounds on M we reduce to the sufficient conditions that

R min(M, My)
7d+1

C m
(9.13) Flullee <=0 MG+ <c

6 Y
for some fixed constant ¢ (depending on m), as long as ¢ is large enough, n < 1 and A > 1. The
first condition is satisfied trivially for large enough ¢ > 1. Inserting the definition of M and
My, this corresponds to the second part of the screenability condition (5.36). Furthermore,
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using Cauchy-Schwarz and the definition (5.32), we have
(9.14)

hY ? _ o] R
M)? "E-#i T Ve(Xn,w, h) S — == h T e( Xy, w, b

and the same for M, , hence

1
M < Twh”e(Xn,w, h).

Substituting this into the above yields the screenability condition (5.36).
Notice that this condition yields a nice L* bound
<3 __1
2

— m

Lee(H)) ™M — 73

|7
Loo(H]) "

Hﬂ—ﬂ
[

Since [ is defined separately on the Hj, we then also have

1
< -

Loy 2

p—
[

9.4. Estimating the screened field. We first estimate F7; the idea is to use an analog
of [Ser24, Lemma A.2]. An examination of the proof shows that the (#1)2a?~¢ term there is
obtained from applying the Coulomb version of [PS17, Lemma 6.4] to

S

on

—div (|jy|"Vv) = el 5 =0 on 0\ 0Dy
o on I,

with ¢ = f . We instead just apply [PS17, Lemma 6.4] to control this term; however,
Fy,

since Hj, has a helght of length h, an examination of the proof induces an aspect ratio % 7
Hence,

hn2 .
(9.15) /\WWMMPka Y g,
H Fk i€ H),

Using (3.22) we can bound the sum over all g(r;) in Dy by M + #1I5 < M + R9™! as seen
above, and so

1
/ " [Ewil> ShY i —+ M+ RS (ed—le—l + Kd‘lM) + M+ R4!

S (U +h7) (M4 R

h
/'m7~mHH/ [ ~ I,
P —h

using (9.12) and
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We next turn to Fy. which bounding similarly with [PS17, Lemma 6.4] yields

/ [ Eay
Dy

2 < Ly y["gkl? + (M2 + (M )R ed
¢ 0 0
k Fy
Rd-1¢
gd

2
< h/ B2+ RS ~+h ((MJ)?Wd + (M()—)?wd)
I'x[—h,h] & ka lyl

<hM + MR~ + R 4 IRITIATME

2
where we have borrowed from above the estimate on h )", ﬁ Since v < 1 and h > 1, we
F

may rewrite this as
/ ly|7|Egg)® < hM + RO 4 FRIRTME.
Dy

For E3, we obtain directly from the definition of F(Za_y,,, 1, Ny X [—h, h]) (see 5.8) and
the fact that f,, is uniformly bounded in L' for small 5 by (3.17) that

1 . n—no . -
/ Y[ Vhsil* < F(Zanes i, Ny X [=h, h]) +cas Y &(F;) + C(i — no).
2¢ds SN, x[—h,h] =1

Finally, to bound the top field E4, we use [PS17, Lemma 6.4] at scale R. This yields

/ B2 <R / "6l < RINh-"ME + R / [ Vwl?
Dy 0Dy O

T+1><{7h,h}
< RIRY'RTYME + Re(X,,w, h)

< RYKW™YME + Re(Xp, w, h)
using the definition of ¢; the multiplication by |N| comes from integrating the constants MJ
and M|, over where they are supported in the definition of ¢, namely N x {h} and N x {—h},

respectively. It remains to put it all together and obtain the requisite screening estimate. We
kept the original electric field fixed in Dy, so combining the above estimates allows us to write

/ B < / [ Ve
QrX[—R,R] Do

n—no
+ C(ﬁ - ’I’L(’)) +C <2Cd,sF(Zﬁno>ﬁaN77 X [_ha h]) + Cd,s Z ng)) :

i=1

24 ChM + CR™ + RIh™ 4 CRYR™ME + CRe(X,, w, h)

where we have used h < R to absorb /R h'=7MZ from F, into the lZRdh*VMg €rror
above. Using Lemma 5.1 we can replace the screened electric field with the gradient defining
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F(Ya, i, Qr x [-R, R]) , we find with a uniform bound on f,, in L! for small 7 that
F(Ya, i, Qr % [-R, R]) — (/Q [y V| — cq Zg(ri)>

LX[_R»R] i=1
1 o
> g(ti)
{ie{1,...,n}:z;¢ 0O}

1
/ Vs ? +
2¢d,s JA'x[-RR]
n—-noe

+C Y g(tj) + ChM + CR* + R W™ + CIRh MG + CRe(Xp, w, h)+
j=1

S_

CF(Zazne i, Ny X [—=h,h]) + C > g(x; — ;) + C|n — 1i| + C(1 — no).
0]
Using (9.14) we can rewrite the above bound as

F(Ys, 1, Qr x [-R, R]) — (/Q [y [V — cq Zg(?¢)>

RX [7R»R] =1

1 1 A n—ne .
vl WP\ E S DR (YR D1
Cdis JN'X[-R,R] (i€{1 .}z 2O} =1

2
+ChM + CR*™ + R 4+ C (i + R) e(Xn,w, h) + CF(Za—ne, fi, Ny X [=h, h])
+CZg ;) +Cln—1|+ C(n — no).

Next, we would like to control %Z{i€{17.”7n}:xi¢o} g(?i) - Tds fo[—R A ly["|Vw;|? by the
number of points not in O, but the possible blowup of g(¥;) presents an issue. We adjust the
truncation parameter and apply [Ser24, Lemma 4.13], but need to shrink O a tad in order

to guarantee that it does not intersect B(x;, 1) for all z; ¢ O. To do this, we simply observe
that Op_4 C O and write

1 R 1 1 .
D SR R SN 1 LU B DR
{ie{1,..n}:2;¢0} ds JNX[-R,R] {ie{1,..n}:2:¢0}
1 1
- PVl + o [ [y |Vaor|?
2¢d;s J(@R\Or—a)x[-R.R) 2¢d,s J(O\Or_4)x[~R,R]
1 1
S D S WPIVwl— Y )
2 et g0} 2¢ds J (@p\Or—a)x[-R.A] {i2,€0\Or_4}
1
to | P IVl + [ Gt da
2Cd,S (O\DT_4)><[—R,R] {4 Iz¢DT 4} Or\Or—4

<C(n—np)+CM,

where ¥; is defined to be % for x; ¢ O and is kept fixed otherwise. This allows us to cancel

all contributions of f and g for x; € O\ Op_4, and bound the remaining contributions
of f and g by C(n — no) since ¥; is bounded below for such i and f, is again controlled
uniformly in L' for small . We have bounded negative contributions of L? energy by zero,
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2 < CM. Finally, using Proposition 3.4 we can bound

1
and 5 - f(O\DT_L;)x[fR,R] Y[V

Z g<?]) S C (F(Zﬁ—nOaﬂaNn X [_h; h]) + I_l - no)
j=1

< O (F(Zanos i1 Ny % [=h, h]) + TRI1) |

controlling i — np = A(N) < FRY™! by our L control on i, completing the argument.

9.5. Outer Screening. Let us first comment on the changes to the setup that are required
for screening in (Qr x [~ R, R])¢. First, we choose our good boundary I' exterior to Qg. If
the first case of 5.36 is satisfied, we find T € [R + ¢ + 2, R 4+ 2¢ — 2] such that

S(Xp,w, h
M- B < SR

(Qr4+4\QTr—1)X[—h,h]F

(9.16) / W E? < M
8Qr x[—h,h]*

and again take I' = 0Q.
Otherwise, the second condition is satisfied in (5.36). Then, via a mean-value argument

analogous to [Ser24, Appendix A], we can find some t € [R + ¢+ ¢, R + 2{] such that

J i < ¢ 2K D
(Q\Qe—e)x[hih] -

We then apply a mean-value argument in the strip Q; \ Q¢—¢ and find a piecewise affine
boundary I' in Q¢ \ Q¢—¢ with faces parallel to those of Qr and sidelengths of order ¢ such
that

X
/ B < 02 Emwh)
I'x[—h,h] ¢

/ [
z  J(INOg(x)) x[—h,h]

2< 08 (X, w,h)

and

S Xna 7h
/ W12 < o2 En: 0 h)
L1 x[—h,h]
anw7h)

where I'; denotes the 1-neighborhood of I'. In both cases we let M = okl 7
latter case My = CS’(X,,, w, h).

We will leave the configuration unchanged in O = Q%, and only place new points in
N = Q% \ QF. We now partition space so that we only change the field near 9(Qr % [ R, R]).
Namely, we define

(1) Do := (Qr x [=(R+ h), (R + h)])*
(2) Dy =N x [—h, h]
(3) D1:= (0O x [-(R+h),(R+h)])\ (2 x [-R, R]U Dy).

and in the
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We partition N into cells H; with sidelengths at scale ¢, in {%,EC}, and let Hy denote the
rectangles Hy x [—h, h]. Then, we set

-

My = h? E-i
IV J0D1n{y>01\0(DoU(Qr x [~ R R])
h_'Y

My - E-7n

W epinty<omapau@exi-r.r)

and denote by My the sum h'VMOJr + hYM; . The sets and quantities N, H;g, ng, Iy, no, mi
and fi are then all defined analogously to the outer screening, as is the screenability condition.
FE1, Es, E3 and Fy4 are defined in exactly the same manner as in the outer screening. Setting
5= (E1 + By + E3)1p, + E41p, + E;lp, and adding back the truncations we have

5
n

ST . fcr + Z an ($ - yi),
i=1

where Y5 = ({X,} N O) U Zs_p,,, and T are the (possibly changed) minimal distances for
the new configuration Y. Due to the Neumann condition, no divergence is created across
boundaries when we set E5" to vanish outside of our region. By definition then, we have

—div(|y["E*) = cas (Cievi 0y =) in (Qr X [=R, R])*
ES =0 on O(Qr X [-R, R)).
Since the geometry of Dy is unchanged and the equations are the same as with outer screening,

all of the estimates on E1, Eo, F3 are the same. The sidelengths of D are not necessarily of
the same order, so the estimate on E4 needs to be multiplied by an aspect ratio of

Thus,

_ R _
min(h,f)’

R -
/ WPIESTE < [ P IVu? + OhM + s (BT + Re(Xow, 1)
(Qrx[~R,R)* Do min(h, 0)

n—-no
+CRY T4 R 4 C(R - no) + C <2Cd,sF(Znn07ﬂvN77 X [=h,h]) +cas Y g(?i)> :
=1

We find exactly as before then that

F(Ys, i, (Qr % [-R, R])°) — (/ ly|" | Vwr* - cq Zg(?i)>
(QRX[_RvR])C =1

1 9, 1 " d—1 d—17—
<5 WPVl 45 Y g+ C Y )+ CR 4+ RIAT

Cd,s JDpuD, (i€{l,..n}:z:¢0} =1

R R? .
+ChM + C————= | = + R | e(Xpn, w, h) + CF(Zane, fi, Ny X [=h, h]) + C Y g(xi — zj)
min(h,¢) \ ¢ i

+Cln — 1] + C(i — no).

Next, we would like to control 3 doficfl,..n}aig0) 8(Fi) — %ds fDauDl ly|7|Vw;|? by the number
of points not in O, but the possible blowup of g(r;) again presents an issue. We adjust the
truncation parameter and apply [Ser24, Lemma 4.13], but again need to shrink O a tad in
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order to guarantee that it does not intersect B(;, 1) for all z; ¢ O. To do this, we simply
observe that [%.,, C O and write

1 . 1
: 60— 5o [ WPITuf
{ie{1,...n}:a;¢0} dis JDpUD;
1

. 1
-5 X s [yl |V
(BOg\O

2 {ie{1,...,n}:z; ¢ O} 2Cd,s T4 a)X[—h,h]

_1 1
- s\ ¥ |2
<3 > g(¥:) . /Da [y Vws

{ie{1,...,n}:z; ¢ 0O} 2 d;s

1
ne / ly [V 2
cd,S (DT+4)\N>< [—h,h}

1 5 1 .
<35 > g(Fi) — 5c / ly|? | Vwe|? — > g(fi)
{ie{l,...,n}ZI¢¢D%+4} d75 (DC \D +4)><[ h7h] {i;ziGO\D%+4}

ly|"[Vws|* + / —fi) (@ — ;) dp
2¢ds (Or4+4\N)x[=h,}h] {i: zzgil:c D744

< C(n—np)+ CM,

where ¥; is defined to be % for x; ¢ O and is kept fixed otherwise. This allows us to cancel
all contributions of f and g for x; € O\ %4, and bound the remaining contributions
of f and g by C(n — ne) since ¥; is bounded below for such ¢ and f, is again controlled
uniformly in L' for small . We have bounded negative contributions of L? energy by zero,
and 2Cd - f(DT+4\N)x[—h,h} |Vw,|? < CM. Finally, using Proposition 3.4 we can bound

n—ne

> &) < C(F(Zino, fis Ny x [=h, h]) + 1 — no)

j=1
< C (F(Zano fis Ny x [~h, ) + IR,

controlling i — np = A(N) < IR by our L control on i, completing the argument.
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APPENDIX A. SOME REMARKS ABOUT THE FRACTIONAL OBSTACLE PROBLEM - BY
XAVIER R0OsS-OTON

Let s € (0,1), and consider the operator

d
(A1) (A u(w) = e [ () =l +)
We want to study the obstacle problem
(A.2) min {(—-A)°u, u — ¢} =0 in B; CR"™

The function w is assumed to be bounded in R™. In some cases, we want to consider the global

problem, which for n > 2s is
(A3) min {(-A)°u, u — ¢} =0 in R"
’ u— 0 at oo.

When n = 2s = 1 the global problem becomes
min {V-Au, u -1} =0 in R
(A.4) u(z
—I(Eg)|m| — Kk at oo,
while when n =1 < 2s we have
min {(-A)’u, u—9} =0 in R
(A.5) u(z)

7—|x|1*23—>ﬁ at oo,

for some constant x > 0. Notice that in that case we need ¢ < —log |z| or ¢ < —|z|172% at
00.
Moreover, the constant « is the total mass of (—A)%u in R.

A.1. Known results. The optimal regularity of solutions was first established in [CSS08Db]
for ¢p € C*!, and these arguments were refined in [CDSS17b] in order to establish? the same
result under minimal assumptions on the obstacle .

Theorem 4 ( [CDSS17b]). Let o € CY5H(By) for some 6 > 0, and u be any viscosity
solution of (A.2). Then, u is C'** in By, with

lullgres(sy a) < C (19l cresssizy) + lull o)) -
The constant C depends only on n, s, and §.

The regularity of free boundaries was also established for the first time in [CSS08b] for ¢ €
C?! and under weaker assumptionson the obstacle in [CDSS17b, ROTLW?25]. Combining the
results in [CSS08b, CDSS17b] with those in [ROS17b] (see also [CROS17]) and in [FROS23],
we get the following. Here, the function d denotes the distance to the contact set {u = 0}.

Theorem 5 ( [CSS08b,CDSS17b,ROS17b, ROTLW25]). Let b be such that ¢ € C'+2519(By)
for some § > 0, and u be any solution of (A.2). Then, for every free boundary point o €
{u >} N By we have:

4There is actually an important detail that was omitted in [CDSS17b], and is the fact that one needs
to prove that blow-ups are convezr. This was not done in [CDSS17b], but it follows from the results in
[FRJ21,ROTLW25,CDV22].
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(i) either
(=) (2) = czod *(2) + OJz — 20| F5F9),
with ¢z, > 0.
(ii) or
(u =) (x) = O(|z — @[ 7).
Moreover, in case (i) the free boundary is C1 in a neighborhood of x.
Furthermore, we have

= )/ o sy < € (1A Tl + o))
The constants C' and o > 0 depend only on n, s, and §.

Notice that this gives a dichotomy between regular points (i), and degenerate/singular

points (ii). We have no information a priori on how many regular or singular points there
could be.
Notice also that at any regular point x, we have

im Y Y
C = 1m —_—
Lo Q3x—z0 dits’

while at degenerate/singular points this limit is zero.
Concerning the generic regularity of free boundaries, the best known results are those
in [FRRO21,FRTL23,CC24] and [CF25, KMO0O].

Theorem 6 ( [CC24]). Let s € (0,1) with n > 2s and 1 € C2(By). Let u; be the family of
solutions of (A.3) with vy =1 +1t, fort € (—1,1). Assume in addition n < 3.

Then, for almost every t, all points of the free boundary 0{u; > 0} are regular, in the sense
of (i) above.

On the other hand, we also have a nondegeneracy condition:
Proposition A.1 ( [BFRO18]). Let s € (0,1), n > 2s, and 1 € C27(R™) satisfying
A <0 in {¢ >0}
Let u be the global solution of (A.3). Then, for any free boundary point x, we have
[ — | B, (20) = 17 >0
for all r € (0,1). The constant c; might depend on u, but not on the point ..

Finally, the following result shows that without the sign assumption on A, such nonde-
generacy may fail at every free boundary point.

Proposition A.2 ( [FRRO21]). Let s € (0,1) and m € {1,2,3,...}. Given any bounded C*
domain Q C R™, there exists an obstacle 1p € C*°(R™) with ¥ — 0 at 0o, and a global solution
to the obstacle problem (A.3), such that the contact set is exactly {u =} = §, and moreover
at every free boundary point T, we have

(u—)(2) = cod™*(z) + O]z — 20| 1F%),

where d is the distance to ).
In particular, when m > 2, all free boundary points are of the type (ii) above.

Notice that, thanks to the results in [FRRO21], such type of degenerate solutions (m > 2)
are very rare, in the sense that generically we expect m = 1.
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A.2. Some new results: nondegeneracy. Our first goal is to prove some quantitative
nondegeneracy results for the global obstacle problem (A.3). More precisely, we want to get
uniform lower bounds for the constants ¢;, in Theorem 5(i).

Proposition A.3. Let s € (0,1), n > 2s, and ¥ > 0 satisfying

[l|pr =1,  suppy C B, [l (By@eyy <M, A <0 in {3 >0},

with v > s. Let u be global solution to (A.3), and assume that zo, € O{u > ¥} and that the
free boundary can be written as a Lipschitz graph in B,(x.), with Lipschitz constant bounded
by M.

Then, xo is a reqular point, and the constant in Theorem 5(i) satisfies

Cpy > 6 >0,
where § depends only onn, s, M, and p.

Remark A.4. Notice that the main two assumptions in this result are:

e The global assumption Ay < 0
e The local assumption on the geometry of the free boundary

Both assumptions are somewhat necessary, in the following sense. Without the first one we
may have solutions with smooth free boundaries, for which all points are degenerate (recall
Proposition A.2). Without the second one, we may still have solutions with degenerate points
(of order 2).

In case n < 2s we have the following analogue result.
Here, we denote I'(z) = —log|z| if s = §, and ['(z) = —[z|' "% if s > 3.

Proposition A.5. Let n = 1, s € [$3,1), v > s, and u be global solution to (A.4) or (A.5)
with v satisfying

u—1
H"/}HCQ+W([xo—p,wo+p])) < M, 1/// <0 for ‘:C| <M, Kl >p  for ’1‘| > M.

Assume that xo € 0{u > ¢} with u > ¢ in (xo,z0 + p) and u =1 in (vo — p, To).
Then, zo is a reqular point, and the constant in Theorem 5(i) satisfies
Cgy >0 >0,
where § depends only on s, M, and p.

To prove Propositions A.3 and A.5, we will first need the following.

Lemma A.6. Let s € (0,1), n > 1, and v as in Proposition A.3 or A.5. Let u be global
solution to (A.3) or (A.4) or (A.5). Then, for any free boundary point xo € B,5(2) we have

(A.6) [ = Y[l oo (B, (o)) = Caar? >0
for all r € (0,1), where cp; depends only onn, s, k, p, §, and M.

Proof. CASE 1. Assume first n > 2s.
As in [BFRO18], we consider w := (—=A)*u > 0 in R™. Since suppw C {u = 1}, then for
any x1 € {u >} N By4+1 we have

dz
—(=A 1-s —_ ns/ w('z) > / = / .
(—A) Pw(xy) = cp, o o1 = 220 2 c BMw cfl |w]
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Now, by classical estimates for Riesz potentials (see [Ste70]), it follows that

—A)Yul > n > _n__ > > 0,
/Rn Ay = el o, > el g > en

weak weak

where we used that u > ¢ > 0 and that ||¢| 1 = 1.
Since u is a global solution, we deduce

Au=—(=AY""SPw>cpyr >0 in {u>¢}N By

We now observe that at every free boundary point z, € B,/3(z) and for any r € (0, p/2)
we have u(x,) = ¥ (z,) and

Uwe) = (o +y)

0= (=A)u(@o) < (—A)"(xs) < Cr* [Pl (p, () + C [

Bi(zo)
Rearranging terms and using the assumptions on 1, we get
cllvllpr — Cr*7 < Or 2%y ().
Choosing a small » > 0 (depending only on n, s, p, and M), we deduce that
V(o) > epr >0

for some constant cps. Since x, was an arbitrary free boundary point, and by regularity of
1, it follows that there exists rp; > 0 such that

dist({¢ = 0} N B,/s(2), {u =9} N B,s(2)) > rar > 0.
Then, the proof of (A.6) finishes exactly as in [BFRO18, Proof of Lemma 3.1].

CASE 2. Assume now n = 1 < 2s. Then, w := (—=A)%u > 0 satisfies suppw C {u = ¥}, and
then for any =1 € {u > ¢} with |z;| <M +1

dz
—(=A)l—s =1 w(2) > / =ck > 0.
(=A) Pw(z1) = ¢, /R” oy — 2[1H2(1-5) = ¢ Bas w=ck

Hence,
u'=—(-A)'"Fw>ek >0 in {u>vyn{lz] < M+1}.
Thus, around such free boundary point z, € {|z| < M — p} we have v” > ¢k > 0 and " <0
in (x5 — p, o + p), and in particular (u — ¢)(xo £ 1) > ck > 0. O
We now prove the following.

Proof of Propositions A.3 and A.5. By Lemma A.6 and Theorem 5 above, it follows that x, is
a regular point, and the free boundary is a C1® graph in B2 (z,), for some oo > 0. Moreover,
thanks to [ARO20b, Theorem 1.2] this implies that the free boundary is a C?**7~% graph in
B,/4(x5), and a quick inspection of the proof shows that its C?*t7=% norm is bounded by a
constant depending only on n, s, v, M, and p. Then, by [ARO20b, Theorem 1.4] (applied to
the derivatives of u — 1)) we deduce that

‘ @‘(U—”L/f)’

ds
|u — ¢ — cpod"¥| < Oz — 20|17,

with C' depending only on n, s, M, and p.

<C

CH172(B,8(20))

and therefore
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Combining this with the nondegeneracy condition (A.6), we get

2 1+s _ _ 1+s 24y
enr® =o' < (=) —eqd® <ot
Hence, we deduce
eyt TS — Ot <y
Choosing r > 0 such that Cr? = %CM, the result follows. O

A.3. Some new results: behavior of (—A)°u near the free boundary. We next want
to prove a new result concerning the local behavior of (—A)®u near the free boundary.

Proposition A.7. Let v be such that 1) € C1t2519(By) for some § > 0, and u be any solution
of (A.2). Define

d(z) = dist(z,{u = 1}) and d_(z) := dist(z, {u > v¥})
Assume that zo € {u >} N By 3 is a regular free boundary point, i.e., we have
(u =) (x) = czod*(2) + Oz — 20| F5F9),

with ¢y, > 0, and the free boundary is CY* in a neighborhood of x..
Then, we have

(~A)*u(e) — ayead (@) < Cla— 2o/ i {u=1v} 0 By,
where ks := ¢s/(1 — 8) and ¢s is given by (A.7). The constant C' depends only on n, s, §, «,
|(=A)*VY| L, and the CY* norm of the free boundary in Bi/s.
We will first need the following result, similar to [FRRO24, Lemma 2.6].

Lemma A.8. Let s € (0,1), and Q C R" be any CY* domain, with 0 € 0. Let d(x) =
dist(xz, 0). Assume that f € L>®°(Q2N By) and v solves

(=A¥v = f in B NQ
v = 0 in B1 \ Q,

and let us define co as the unique constant such that
v(x) = cod®(z) + O(|z*T*) in Q.
Then,
[(=A)v(z) — Kscod™*(x)| < Cla|*d™*(x) in B\ Q,
where ¢s is given by (A.7) below, and C' depends only onn, s, Q, || f| L.
Proof. First, it follows from [FRRO24, Lemma 2.6] that for any e € S*~!
I'(1+s)
L(1-s)
Then, by [ROS17b], we know that v/d* € C*(QN By 5). Thus, if we define ¢, := (v/d*)(0)
we then have

(A7) (—A)*(xp)5 = Cs(xn)=° with 5= —

|(v/d*)(x) = co| < Cla|?,
and multiplying this by d°* we get
|v(z) — cod®(z)] < Clz|*F™ in Q.
Notice that such expansion also implies that
|v(2) = co(zn) | < Claf™,
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where we assume that v = e,, is the normal vector to 0f) at the origin.
Now, thanks to the previous expansion, and since v = 0 in Q° N By, we find that for
r = —te, € Q° with t > 0,

(=A)"v(x) = co(=A)(zn) 3 + O(t™"T) = Cscot " + O™,

where we used (A.7). Since this can be done not only at the origin but at every boundary
point z € QN By /3, we deduce that for every z = 2z —tv, € Q°N By y

(—A)’u(z) = Cseat™5 + Ot 5T9).
For each z € Q¢ we can choose z € 99 such that |z — z| = d(x), and then we deduce
(—A)su(z) = cse.d™5(z) + O(d™ 5T (z)).
Since ¢; = ¢o + O(]2]%) = ¢o + O(|x]%), we finally get
(=A)%u(x) = escod™(2) + O(|2]%) d™*(2),
as wanted. O

We can now give the:

Proof of Proposition A.7. We want to apply Lemma A.8 to the functions 0;(u — v). More
precisely, let x € {u = ¥} N B, /2, and let z be its closest free boundary point, and denote

x =2z —tov with v € S ! and t, > 0. Up to a rotation, we may assume v = e,. Then, it
follows from Lemma A.8 (applied to v = 9, (u — v)) that

[(—A)*v(z) — Eseoty ®| < CET7.
Moreover, the same holds for any point y in the segment joining x and z: if y = z — te,, with
t € [0, %], then
100 (=A)*(u— ) (2 — te,) — Cscot™°| < OO,
where we used the definition of v. Integrating in ¢, and using that —thanks to (A.2) and the
fact that (—A)%(u — v) is continuous—

(=A)*(u—=1)(2) =0,

we deduce B
(—A)(u =) (= — te) = ———cot! 7| < O
— s
The result follows by recalling that ¢ = d_(x) and the fact that = € {u = ¥} N By, was
arbitrary. O
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