
Two-Descent on the Jacobians of Hyperelliptic
Curves

Jaclyn Lang
Churchill College

I declare that this essay is work done as part of the Part III Examination. I have read and un-
derstood the Statement of Plagiarism for Part III and Graduate Courses issued by the Faculty of
Mathematics, and have abided by it. This essay is the result of my own work and, except where
explicitly stated otherwise, only includes material undertaken since the publication of the list of
essay titles, and includes nothing which was performed in collaboration. No part of this essay has
been submitted, or is concurrently being submitted, for any degree, diploma or similar qualification
at any university or similar institution.

Signed:
Date:

Home address: 1905 Lochmore Drive, Longmont, CO 80504, USA

Two Descent on the Jacobians of Hyperelliptic Curves

Acknowledgements
I would like to thank Dr. Tom Fisher for setting this essay and for advising me in writing it. I would
also like to thank Dr. Tim Dokchitser, Alex Bartel, James Bridgewater, and Jennifer Redmond for
helpful conversations and advice regarding this essay.

1 Introduction
Throughout this paper, C will be a curve defined over a field K. The field K will often be the
rational numbers or a number field, but we will also use curves defined over algebraically closed
fields, extensions of the p-adics, and finite fields. When appropriate, OK denotes the ring of
integers of K. We will use K to denote a fixed algebraic closure of the field K. Whenever
M is a Gal(K/K)-module, we will write H i(K,M) instead of H i(Gal(K/K),M) for the i-th
cohomology group of M .

Recall that the curve C defined over K has the group Pic(C) associated to it, where Pic(C) is
the divisors of C modulo linear equivalence. The subgroup of Pic(C) of divisors of degree zero is
denoted Pic0(C). There is a well defined action of Gal(K/K) on Pic0(C) that will be described in
section 2. This leads to

Definition 1. The Jacobian of a curve C is the group Pic0(C). If C is defined over a field K, we
will let J(K) denote the Gal(K/K)-invariant elements of J . We call elements of J(K)K-rational
elements.

The Jacobian of a curve is not only a group, but has the structure of a variety. However, we
shall be concerned with the arithmetic of the Jacobian in this essay and hence we are primarily
interested in the group structure of the Jacobian.

The Mordell-Weil theorem states that for any curve C defined over a number field K, the K-
rational elements of the Jacobian, J(K), form a finitely generated abelian group. The proof of this
fact is in two parts. First, one proves that J(K)/2J(K) is a finite group, a fact known as the weak
Mordell-Weil theorem. One then applies the theory of heights to the generators of J(K)/2J(K),
of which there are only a finite number, to conclude that J(K) must be finitely generated.

If the generators of J(K)/2J(K) are known, it is possible to recover generators for J(K). As
the torsion subgroup of J(K), denoted J(K)tors, is easy to compute it is then possible to determine
the free rank of J(K). Unfortunately, there is no known algorithm for finding generators for
J(K)/2J(K). The process of two descent is an algorithm for finding generators for a finite group
called the 2-Selmer group of J over K, denoted Sel2(J/K). As we will discuss in this essay, it is
known that there is an injective homomorphism

J(K)/2J(K) ↪→ Sel2(J/K),

and so two descent gives an upper bound on the size of J(K)/2J(K) and thus also an upper bound
for the rank of J(K). Given a particular example, one hopes to be able to find the same number of

1

independent points in J(K)/2J(K) as this upper bound and hence be able to calculate the rank of
J(K) exactly.

This essay will focus on the process of two descent. We will prove why the algorithm gives the
claimed bound on the rank, calculate some explicit examples for elliptic curves and hyperelliptic
curves of genus two, and discuss results about two descent on hyperelliptic curves of arbitrary
genus.

Before proceeding to the results about two descent, we prove a theorem from Kummer theory
that will be useful in what follows. Moreover, the structure of the proof of Theorem 1 is similar to
that used to construct the injection J(K)/2J(K) ↪→ Sel2(J/K) that is central to two descent.

Theorem 1. [9, p. 199] For any field K, let K× denote the multiplicative group K \ {0}, let
K×2 = {x2|x ∈ K×} and let µ2(K) be the second roots of unity in K. Then

K×/K×2 ∼= H1(K,µ2(K)).

Proof. Let s : K
× → K

×
be the squaring map s(x) = x2. As K is algebraically closed, s is

surjective and we have the short exact sequence

1 −→ µ2(K) −→ K
× s−→ K

× −→ 1.

This yields the standard long exact sequence in Galois cohomology

1 −→ H0(K,µ2(K)) −→ H0(K,K
×

)
s−→ H0(K,K

×
)

δ−→ H1(K,µ2(K)) −→ H1(K,K
×

).

Recall that the zeroth homology is defined to be the Gal(K/K)-invariant elements of the module.
In particular, H0(K,K

×
) = K×. Using exactness and the first isomorphism theorem we note that

ker
(
H1(K,µ2(K))→ H1(K,K

×
)
)

= Im
(
K×

δ−→ H1(K,µ2(K))
)

∼= K×/ ker
(
K×

δ−→ H1(K,µ2(K))
)

= K×/ Im(s|K×)

= K×/K×2.

Hence, from the long exact sequence we extract the short exact sequence

1 −→ K×/K×2 δ−→ H1(K,µ2(K)) −→ H1(K,K
×

).

Now, Hilbert’s Theorem 90 states thatH1(K,K
×

) = 0 [9, p. 335]. Thus,K×/K×2 ∼= H1(K,µ2(K))
as claimed.

Note that the isomorphism found in the proof of Theorem 1 is the connecting homomorphism
arising from the Snake Lemma in the construction of the long exact sequence. It is given by

δ : K×/K×2 → H1(K,µ2(K))

x 7→ ξx,

where ξx(σ) = σ(
√
x)√
x

for all σ ∈ Gal(K/K). We will map frequent use of this map and its inverse
throughout the paper.

2

2 Theory of descent
The theory of descent on Jacobians of hyperelliptic curves can be done most generally via Galois
cohomology. In this section we give the proof of descent via Galois cohomology in the greatest
generality we will require in this paper. Further sections explore how these results can be inter-
preted and explicitly calculated depending on the genus of the curve and the degree of the defining
polynomial.

Let K be a field of characteristic zero and C the non-singular model of the curve defined over
K by

C : y2 = f(x) =
d∏
i=1

(x− αi),

where the αi ∈ K are distinct. Let J [2] denote the 2-torsion subgroup of J(K).
Recall that elements of J(K) are linear equivalence classes of divisors on C. There is an action

of Gal(K/K) on J(K) defined as follows. Let σ ∈ Gal(K/K) and D =
∑n

i=1(Pi), where
Pi ∈ C(K). Then

Dσ =
n∑
i=1

(Pi
σ),

where σ acts coordinate-wise on points Pi of C. This action is well-defined since if D = D′ in
J(K) there is a rational function g ∈ K(C) such that D − D′ = div(g). As σ is a nonzero field
homomorphism, it follows that Dσ − D′σ = div(σ(g)), where σ(g) indicates σ applied to all
coefficients of g. This is the action referred to in Definition 1. Note that it is not necessary for
every point of a divisor to be defined over K in order for the divisor to be K-rational. It is simply
necessary that for every point P appearing in the divisor, all Galois conjugates of P also appear in
the divisor with the same multiplicity as that of P .

In order to find the desired injection J(K)/2J(K) ↪→ Sel2(J/K) we begin with the multiplication-
by-two map [2] : J(K) → J(K), where [2](P) = P + P and + is the group operation in
J(K) = Pic0(C). The kernel of [2] is J [2] and [2] is surjective since we are working over the
algebraically closed field K. Thus, we obtain an exact sequence

0 −→ J [2] −→ J(K)
[2]−→ J(K) −→ 0

which is analogous to that which began the proof of Theorem 1 (although these groups are additive
rather than multiplicative). Proceeding as in the proof of Theorem 1, we take Galois cohomology
to get the long exact sequence

0 −→ H0(K, J [2]) −→ H0(K, J(K))
[2]−→ H0(K, J(K))

κ−→ H1(K, J [2]) −→ H1(K, J(K)).

As before, we may extract the exact sequence

0 −→ J(K)/2J(K)
κ−→ H1(K, J [2]) −→ H1(K, J(K)).

3

However unlike in the proof of Theorem 1, H1(K, J(K)) is not necessarily zero. The map κ :
J(K)/2J(K) ↪→ H1(K, J [2]) is the connecting homomorphism given by

κ : J(K)/2J(K)→ H1(K, J [2])

P 7→ ξP ,

where ξP (σ) = Qσ −Q for all σ ∈ Gal(K/K), where Q ∈ J(K) such that 2Q = P .
Now let K be a number field and p a (possibly infinite) prime of K. Let Kp be the comple-

tion of K with respect to the standard normalized absolute value associated to p. The inclusion
K ↪→ Kp induces natural maps ip : J(K)/2J(K) → J(Kp)/2J(Kp) and βp : H1(K, J [2]) →
H1(Kp, J(Kp)[2]). Applying the above process to each Kp gives a homomorphism κp, and so we
have the following commutative diagram.

J(K)/2J(K) κ //

Q
p ip

��

H1(K, J [2])

Q
p βp

��∏
p J(Kp)/2J(Kp)

Q
p κp

//
∏

pH
1(K, J(Kp)[2])

(1)

Our goal is to understand the image of κ. By the commutativity of (1), it follows that Imκ is
contained in the preimage under βp of Imκp for all p. Thus, we define

Definition 2. The 2-Selmer group of J(K) is

Sel2(J/K) =
⋂
p

βp
−1(Imκp).

It is important to note that although Imκ ⊆ Sel2(J/K), there may not be equality. This is
because the local-global principle, or Hasse principle, fails in general for curves of genus greater
than zero. That is, analyzing the Jacobian J(Kp) over all completions Kp of K does not nec-
essarily give enough information to understand the rational points J(K) completely. The failure
of the Hasse principal for a particular Jacobian is measured in part by the size of the quotient
Sel2(J/K)/(Imκ). This group is

Definition 3. The 2-part of the Tate-Shafarevich group of J is denoted X2(J/K) and is defined
such that the sequence

0 −→ J(K)/2J(K)
κ−→ Sel2(J/K) −→X2(J/K)→ 1

is exact.

When X2(J/K) is trivial, two descent gives an algorithm to find the rank of J(K). The
examples in this paper will all have trivial X2. Unfortunately, relatively little is known about the
group X2 in general and it is often difficult to prove that a discrepancy between the number of
known generators for J(K) and the upper bound found through two descent is due to nontrivial
elements of X2.

4

3 Two descent for elliptic curves
We will now examine the case of two descent on an elliptic curve. We begin by analyzing the
groups and maps in diagram (1) in more detail with the goal of being able to compute them for
specific elliptic curves. In addition to being used in the examples, this analysis provides motivation
for the more general analysis of diagram (1) over higher genus curves in section 4. After the
analysis we then proceed to an example of two descent on an elliptic curve in which we successfully
calculate the rank.

Let K be a field of characteristic zero and E the elliptic curve defined by

y2 = f(x) = (x− α)(x− β)(x− γ),

where α, β, γ ∈ K are distinct. The assumption that all of the roots of f lie in K can be relaxed.
We deal with this in the general case in section 4. Denote by O the point at infinity; that is, the
point [0 : 1 : 0] on the projective curve zy2 = (x − zα)(x − zβ)(x − zγ). Let E[2] denote the
2-torsion subgroup of E, so

E[2] = {O, (α, 0), (β, 0), (γ, 0)}.

Note that in the case of elliptic curves, the points of E represent the Jacobian so we shall use the
notation E(K) rather than J(K).

Now, the map defined in the previous section κ : E(K)/2E(K) → H1(K,E[2]) gives an
injection of E(K)/2E(K) into an infinite group. We will now analyze the group H1(K,E[2])
with the goal of understanding Imκ. Recall that E[2] ∼= Z/2Z⊕ Z/2Z. This isomorphism can be
seen via the Weil pairing, e2. Namely, let e be the map defined by

e : E[2]→ µ2(K)× µ2(K)

P 7→ (e2(P, (α, 0)), e2(P, (β, 0))).

The fact that e2 is non-degenerate and bilinear ensures that e is an isomorphism. Thus we have

Lemma 2. With notation as above, there is a monomorphism

H1(K,E[2]) ↪→ K×/K×2 ×K×/K×2.

Proof. The map e induces an isomorphism

ê : H1(K,E[2])→ H1(K,µ2(K)× µ2(K))

ξ 7→ e ◦ ξ.

Further, we have an injection

f : H1(K,µ2(K)× µ2(K)) ↪→ H1(K,µ2(K))×H1(K,µ2(K))

(σ 7→ (x, y)) 7→ (σ 7→ x, σ 7→ y).

5

Composing these maps with the isomorphism δ found in Theorem 1, we obtain an injection

H1(K,E[2])
ê−→ H1(K,µ2(K)× µ2(K))

f−→ H1(K,µ2(K))×H1(K,µ2(K))

δ−1×δ−1

−−−−−→ K×/K×2 ×K×/K×2,

as desired.

By composing κ with the isomorphism in Lemma 2 we have an injection λ : E(K)/2E(K) ↪→
K×/K×2 ×K×/K×2. It will be useful to have an explicit description of this map, so we have

Theorem 3. There is an injective homomorphism

λ : E(K)/2E(K) ↪→ K×/K×2 ×K×/K×2

P 7→


(x− α, x− β) P = (x, y), x 6= α, x 6= β

((α− β)(α− γ), α− β) P = (α, 0)

(β − α, (β − α)(β − γ)) P = (β, 0)

(1, 1) P = O.

Proof. We wish to see that λ is the composition

E(K)/2E(K)
κ−→ H1(K,E[2])

ê−→ H1(K,µ2(K)× µ2(K))
f−→ H1(K,µ2(K))×H1(K,µ2(K))

δ−1×δ−1

−−−−−→ K×/K×2 ×K×/K×2.

Let P ∈ E(K)/2E(K) and Q ∈ E(K) such that 2Q = P . The case P = O is clear, so let
P = (x1, y1). Let σ ∈ Gal(K/K). By definition of the above maps we have,

f ◦ ê ◦ κ(P)(σ) = (e2(Q
σ −Q, (α, 0)), e2(Q

σ −Q, (β, 0))) .

We will show that when P 6= (α, 0), e2(Qσ − Q, (α, 0)) = σ(
√
x1−α)√
x1−α = δ(x1 − α)(σ). It then

follows for any P other than (α, 0), (β, 0),O that we have

(δ−1 × δ−1) ◦ f ◦ ê ◦ κ(P)(σ) = (δ−1 × δ−1) (e2(Q
σ −Q, (α, 0)), e2(Q

σ −Q, (β, 0)))

= (δ−1 × δ−1)

(
σ(
√
x1 − α)√
x1 − α

,
σ(
√
x1 − β)√
x1 − β

)
= (x− α, x− β) = λ(P),

as desired.
Recall that for S, T ∈ E[2], the Weil pairing is defined by

e2(S, T) =
fT (S)

fS(T)
,

6

where fT , fS ∈ K(E) have disjoint support and div fT = 2T and div fS = 2S. In our case, let
S = (Qσ)−(Q) and T = ((α, 0))−(O). We may take fT = X−α since div(X−α) = 2((α, 0))−
2(O) = 2T . Since 2Q = P in E(K) there is a function g ∈ K(E) such that div g = 2(Q)− (P).
Then for any σ ∈ Gal(K/K) we have div(gσ) = 2(Qσ)− (P σ) = 2(Qσ)− (P) since P ∈ E(K).
Therefore we may take fS = gσ/g since div(gσ/g) = 2(Qσ)−(P)−2(Q)+(P) = 2(Qσ)−2(Q).
As P 6= O it follows that Q and Qσ are not O or (α, 0). Thus,

e2(Q
σ −Q, (α, 0)) =

fT (S)

fS(T)
=

(X − α)(Qσ −Q)

(gσ/g)((α, 0)−O)

=

(
(X − α)(Qσ)

gσ((α, 0)−O)

)(
(X − α)(Q)

g((α, 0)−O)

)−1

=

(
(X − α)(Q)

g((α, 0)−O)

)σ (
(X − α)(Q)

g((α, 0)−O)

)−1

.

We shall show that (X−α)(Q)/g((α, 0)−O) is a square root of x1−α = (X−α)(P). Using
Weil reciprocity we have(

(X − α)(Q)

g((α, 0)−O)

)2

=
(X − α)(2Q)

g(2(α, 0)− 2O)
=

(X − α)(2Q)

g(div(X − α))
=

(X − α)(2Q)

(X − α)(div(g))

=
(X − α)(2Q)

(X − α)(2Q− P)
= (X − α)(P),

as desired.
It remains to check the point (α, 0). Since (α, 0) = (β, 0) + (γ, 0) we have

f ◦ ê ◦ κ((α, 0))(σ) = f ◦ ê ◦ κ((β, 0))(σ)f ◦ ê ◦ κ((γ, 0))(σ)

=

(
σ(
√
β − α)√
β − α

σ(
√
γ − α)√
γ − α

,
σ(
√
α− β)√
α− β

)
=

(
σ(
√

(α− β)(α− γ))√
(α− β)(α− γ)

,
σ(
√
α− β)√
α− β

)
.

This completes the proof.

Now let K be a number field. For each prime p of K, the inclusion K ↪→ Kp induces a natural
map jp : K×/K×2 → Kp

×/Kp
×2. Applying Theorem 3 to each Kp gives a homomorphism λp.

Let λ be the map of Theorem 3 applied to K. We have the following commutative diagram.

E(K)/2E(K) λ //

Q
p ip

��

K×/K×2 ×K×/K×2

Q
p jp

��∏
pE(Kp)/2E(Kp)

Q
p λp

//
∏

pKp
×/Kp

×2 ×Kp
×/Kp

×2

(2)

7

This is just the diagram (1) with the first cohomology groups on the right replaced with the multi-
plicative group of the field modulo squares and the morphisms adjusted accordingly using Lemma
2. These groups are more concrete than the cohomology groups and will facilitate our analysis of
Imλ. In this setting we have

Sel2(E/K) =
⋂
p

jp
−1(Imλp).

This is an isomorphic copy of the group given in Definition 2, but we will use the same notation.
This will not cause confusion as we will not need to work with the cohomological definition for
the remainder of this section.

The idea of two descent is to find Imλp for all p and pull these sets back toK×/K×2×K×/K×2

via the maps jp. The intersection of these pullbacks is Sel2(E/K). In order to make this procedure
practicable with a given elliptic curve, it is necessary to reduce the number of primes p that must
be considered to a finite set. To this effect, we have

Proposition 4. Let S be the set of all primes where E has bad reduction together with primes lying
above 2 and the infinite primes of K. If p 6∈ S then jp−1(Imλp) = ker jp. In particular,

Sel2(E/K) ⊆
⋂
p∈S

jp
−1(Imλp).

Proof. Let p be a prime ofK, and let k be the residue field ofKp of size q. We begin by defining the
maximal unramified extension of the completion Kp and establishing some of its basic properties.
Recall that for every positive integer n there is a unique unramified extension of Kp of degree n
given by Kp(ζqn−1), where ζqn−1 is a primitive (qn − 1)-th root of unity in Kp. The residue field
of this degree n extension is the unique degree n extension of k. Let Kp

nr be the compositium in
Kp of all such extensions of Kp. That is,

Kp
nr =

〈 ⋃
n∈Z+

Kp(ζqn−1)

〉
.

Next we define the unique valuation v on Kp
nr extending the valuation vp on Kp. Note that any

x ∈ Kp
nr is an element of some finite compositum

Lx = Kp(ζqn1−1) · · ·Kp(ζqnr−1),

which is unramified since each individual field is unramified. There is a unique extension vLx of
vp to Lx and we define v(x) = vLx(x). This is well defined by the uniqueness of extensions of
valuations. Recall that if L/Kp is unramified then the unique extension of the valuation vp to L is
equal to vp on elements of Kp. Thus, for all elements x ∈ Kp it follows that v(x) = vp(x).

Finally, we note that the residue field of Kp
nr is k. This follows from the fact that the residue

field of Kp
nr must contain the residue field of each subfield of Kp

nr. As Kp(ζqn−1) ⊆ Kp
nr for all

n and has residue field Fqn , we must have k as the residue field of Kp
nr.

8

We will use the following standard notation in the remainder of the proof. For a field L/Kp

with residue field `, let Ẽ(`) be the points on the elliptic curve E with coordinates in `, where
the defining coefficients for E are viewed in ` via the natural map L → `. Let Ens(`) be all of
the non-singular points of Ẽ(`). Let E0(L) be the points of E(L) that map to non-singular points
under the reduction map E(L)→ Ẽ(`), and let E1(L) be the kernel of the reduction map.

Now let p be a prime of K not in S. Letting Kp
nr be L of the last paragraph and recalling that

p 6∈ S means that E has good reduction modulo p, we see that Ens(k) = Ẽ(k) and E0(Kp
nr) =

E(Kp
nr). Therefore, the reduction map induces the exact sequence in the rows of the following

commutative diagram.

0 // E1(Kp
nr) //

[2]
��

E(Kp
nr) //

[2]
��

Ẽ(k) //

[2]
��

0

0 // E1(Kp
nr) // E(Kp

nr) // Ẽ(k) // 0

By applying the Snake Lemma to the above diagram we may extract the exact sequence

E1(Kp
nr)/2E1(Kp

nr)→ E(Kp
nr)/2E(Kp

nr)→ Ẽ(k)/2Ẽ(k).

As k is an algebraically closed field, the nonzero morphism [2] : Ẽ(k) → Ẽ(k) is surjective and
hence Ẽ(k)/2Ẽ(k) = 0. Also, recall that E1(Kp

nr) is a formal group and as p 6∈ S and hence
2 ∈ OKp

×, it follows that [2] is an isomorphism on E1(Kp
nr). Thus, E1(Kp

nr)/2E1(Kp
nr) = 0

and by exactness we must have E(Kp
nr)/2E(Kp

nr) = 0.
Therefore Imλp = 0 and jp−1(Imλp) = ker jp = K×/K×2 ∩Kp

×2, as claimed.

Proposition 4 allows us to consider only a finite set of primes when trying to understand Imλ
inside K×/K×2 ×K×/K×2. The proof shows that we will not obtain any new information about
Imλ by considering primes outside of S. This will be useful in the example in section 3.2.

3.1 Local Analysis
In this section we briefly discuss the size of J(Kp)/2J(Kp), where K is a number field, p is a
prime of K and J is the Jacobian of a hyperelliptic curve of genus one or two. This information is
crucial in the examples of two descent that follow as it allows us to compute Imλp. One we have
these groups we can take preimages under the maps jp to compute the 2-Selmer group.

Recall from the theory of elliptic curves that J(Kp) contains a subgroup H such that H ∼=
(p,+) and the index [J(Kp) : H] is finite. There is an analogous result for Jacobians of hyperel-
liptic curves of genus two. In this case, there is a subgroup H of J(Kp) of finite index such that
H ∼= (p×p,+) [3, p. 71]. The proof is analogous to that for elliptic curves and relies on the theory
of formal groups. Using this fact we have

Proposition 5. [3, p. 72] Let K be a number field, p a prime of K, and J the Jacobian of a
hyperelliptic curve defined over K of genus one or two. Then

#J(Kp)/2J(Kp) = (#J(Kp)[2])(#p/2p)g.

9

Proof. Let H be the subgroup of J(Kp) of finite index described prior to the statement of the
proposition. Applying the Snake Lemma to the diagram

0 //H //

[2]

��

J(Kp) //

[2]
��

J(Kp)/H //

[2]
��

0

0 //H // J(Kp) // J(Kp)/H // 0

yields the long exact sequence

0→ H[2]→ J(Kp)[2]→ (J(Kp)/H)[2]→ H/2H
→ J(Kp)/2J(Kp)→ (J(Kp)/H)/2(J(Kp)/H)→ 0.

As H is isomorphic to either (p,+) or (p × p,+), there are no elements of order two in H, so
H[2] = 0. Note that if π : J(Kp)→ J(Kp)/H is the natural projection map, then (J(Kp)/H)[2] =
π(J(Kp)[2]). If P ∈ J(Kp)[2] and π(P) = 0 then P = 0 since P is a torsion element and H is
torsion free. Therefore π(J(Kp)[2]) ∼= J(Kp)[2]. Hence we may extract the exact sequence

0→ H/2H → J(Kp)/2J(Kp)→ (J(Kp)/H)/2(J(Kp)/H)→ 0.

As all of these groups are finite we have

#J(Kp)/2J(Kp) = (#H/2H)(#(J(Kp)/H)/2(J(Kp)/H)). (3)

We also have the exact sequence

0 −→ (J(Kp)/H)[2] −→ J(Kp)/H
[2]−→ J(Kp)/H −→ (J(Kp)/H)/2(J(Kp)/H) −→ 0

from which we conclude that

(#(J(Kp)/H)[2])(#J(Kp)/H) = (#J(Kp)/H)(#(J(Kp)/H)/2(J(Kp)/H)).

Since [J(Kp) : H] is finite and (J(Kp)/H)[2] ∼= J(Kp)[2] we have

#(J(Kp)/H)/2(J(Kp)/H) = #J(Kp)[2].

Therefore (3) becomes

#J(Kp)/2J(Kp) = (#H/2H)(#J(Kp)[2]).

If g = 1 then H ∼= p and #H/2H = #p/2p. If g = 2 then H ∼= p × p and #H/2H =
#(p× p)/2(p× p) = #(p/2p)2. In either case we have proved the claim.

10

We now address the case Kp = R. Recall that for curves of genus one and two, #J(R)/2J(R)
counts the number of connected components on the graph of C. For example, an elliptic curve with
three zeros has two connected components over R and in this case #E(R)/2E(R) = 2. On the
other hand, an elliptic curve with one real root has one connected component over R and in this
case #E(R)/2E(R) = 1. This generalizes to hyperelliptic curves of genus two. In fact, we may
express this in terms of J(R)[2] since the number of real zeros of f(x) determines both the number
of components and J(R)[2]. More precisely we have

#J(R)/2J(R) = #J(R)[2]/(2g), (4)

where g = 1 or g = 2 is the genus of C [3, p. 74].

3.2 Example of Two Descent
It is convenient to use SAGE to perform various computations in this example. All of the programs
referred to in the essay can be found in the appendix together with a brief description of their input
and output and how they work. SAGE programs are in bold print.

We start with a straightforward example where all of the roots of the cubic equation are in Q,
followed by some comments about how the algorithm generalizes to number fields.

Example 1.

Let E be the elliptic curve defined by

E : y2 = f(x) = (x− 2)(x− 8)(x− 1).

The discriminant of E is ∆E = 28224 = 26 · 32 · 72. We will show that E has rank 1.
First we find the torsion subgroup E(Q)tors. Note that E[2] ⊆ E(Q)tors as all of the roots of f

are in Q. To see that E[2] = E(Q)tors, recall that E(Q)tors ↪→ E(Fp) for any p - ∆E . Using the
SAGE function points_in we see that #E(F5) = 8 and #E(F13) = 20. As #E(Q)tors divides
both 8 and 20, it follows that #E(Q)tors ≤ 4. Thus, E[2] = E(Q)tors, as claimed. We may take
generators of E(Q)tors to be T1 = (2, 0) and T2 = (8, 0).

A search for rational points on E yields P = (10, 12) which must be of infinite order since
P 6∈ E[2]. Thus P, T1, T2 are represent independent elements in E(Q)/2E(Q). Now, the map
λ : E(Q)/2E(Q)→ Q×/Q×2 ×Q×/Q×2 of Theorem 3 is given by

Q 7→


(x− 2, x− 8) Q = (x, y), x 6= 2, 8

((2− 8)(2− 1), 2− 8) = (−6,−6) Q = (2, 0)

(8− 2, (8− 2)(8− 1)) = (6, 42) Q = (8, 0)

(1, 1) Q = O.

11

Thus λ acts on the independent points P, T1, T2 as follows:

P 7→ (8, 2) = (2, 2)

T1 7→ (−6,−6)

T2 7→ (6, 42).

Let H be the subgroup generated by (2, 2), (−6,−6), (6, 42) in Q×/Q×2 × Q×/Q×2. We shall
show that Sel2(E/Q) = H . By Proposition 4, it follows that Sel2(E/Q) ⊆ Q(S) × Q(S), where
Q(S) is the subgroup of Q×/Q×2 generated by −1 and the primes dividing ∆E . In this case,

Q(S) = {±1,±2,±3,±6,±7,±14,±21,±42}.

For notational convenience we will write Q(S)2 for Q(S)×Q(S).
First consider the prime p =∞, so Qp = R. Now, R×/R×2 = {±1}. By formula (4) in section

3.1 we know that #E(R)/2E(R) = #E(R)[2]/2 = 4/2 = 2. As λ∞(T1) = (−1,−1) it follows
that Im(λ∞) = 〈T1〉. Therefore,

j∞
−1(Im(λ∞)) = 〈ker j∞, λ(T1)〉.

As we know that Sel2(E/Q) ⊆ Q(S)2 we may consider only those elements of ker j∞ also in
Q(S)2. Therefore,

j∞
−1(Im(λ∞)) = 〈(2, 1), (1, 2), (1, 3), (3, 1), (1, 7), (7, 1), (−6,−6)〉.

Note that this restriction on Sel2(E/Q) has eliminated half of the elements of Q(S)2, namely all
those where the coordinates have different signs.

Next we consider the prime p = 3. Recall that for all p 6= 2, the group Qp
×/Qp

×2 has four
elements. We claim that Q3

×/Q3
×2 = {±1,±3}. This can be seen by noting that x2 + 1 is

irreducible modulo 3 and x2 ± 3 are both irreducible modulo 9. Therefore −1,±3 6∈ Q3
×2. As

−1 · 3 = −3 6= 1 it follows that −1, 3,−3 are independent modulo squares in Q3
×.

We will need to know the representative of Q3
×/Q3

×2 corresponding to each element of Q(S).
We use Hensel’s Lemma to show that −2, 7 ∈ Q3

×2. Note that x2 + 2 has the root x ≡ 1 (mod 3)
and 2 ·1 6≡ 0 (mod 3), so by Hensel’s Lemma−2 ∈ Q3

×2. As x2−7 ≡ x2 +2 (mod 3) it follows
from the argument in the previous sentence that 7 ∈ Q3

×2. Using these facts we have

1 ≡ −2, 7,−14 (mod Q3
×2)

−1 ≡ 2,−7, 14 (mod Q3
×2)

3 ≡ −6, 21,−42 (mod Q3
×2)

−3 ≡ 6,−21, 42 (mod Q3
×2).

By Theorem 5 we know that #E(Q3)/2E(Q3) = #E(Q3)[2] = 4. As λ3(P) = (−1,−1) and
λ3(T1) = (3, 3) it follows that E(Q3)/2E(Q3) = 〈P, T1〉. Therefore,

j3
−1(Im(λ3)) = 〈(−2, 1), (1,−2), (7, 1), (1, 7), (−1,−1), (3, 3)〉,

12

where (−2, 1), (1,−2), (7, 1), (1, 7) generate the part of ker j3 that is contained in Q(S)2.
Finally, we consider the prime p = 7. (As we will see, it is sufficient in this example to consider

only the primes∞, 3, 7 and not 2.) Again, we know Q7
×/Q7

×2 has four elements. We claim that
Q7
×/Q7

×2 = {±1,±7}. We proceed as above. The polynomials x2 + 1 and x2± 7 are irreducible
modulo 7 and 49, respectively, so −1,±7 6∈ Q7

×2. As −1 · 7 = −7, it follows that −1, 7,−7 are
independent modulo squares in Q7

×.
Note that x2 − 2 has the root x ≡ 3 (mod 7) and 2 · 3 6≡ 0 (mod 7), so by Hensel’s Lemma

2 ∈ Q7
×2. Similarly, x2 + 3 has the root x ≡ 2 (mod 7) and 2 · 2 6≡ 0 (mod 7), so −3 ∈ Q7

×2.
Using these facts we find the following representatives in Q7

×/Q7
×2 for elements of Q(S):

1 ≡ 2,−3,−6 (mod Q7
×2)

−1 ≡ −2, 3, 6 (mod Q7
×2)

7 ≡ 14,−21,−42 (mod Q7
×2)

−7 ≡ −14, 21, 42 (mod Q7
×2).

By Theorem 5 we know that #E(Q7)/2E(Q7) = #E(Q7)[2] = 4. As λ7(P) = (1, 1) =
λ7(T1) and λ7(T2) = (−1,−7) we need to find another generator for Im(λ7). Note that 22−f(4) ≡
0 (mod 7) and 2·2 6≡ 0 (mod 7). By Hensel’s Lemma there is a γ ∈ Q7 such that (4, γ) ∈ E(Q7).
Now λ7((4, γ)) = (1,−1) is independent from λ7(T2). Therefore Im(λ7) = 〈(1,−1), (−1,−7)〉.
Taking the preimage under j7 yields

j7
−1(Im(λ7)) = 〈(1, 2), (2, 1), (1,−3), (−3, 1), (1,−1), (−1,−7)〉,

where (1, 2), (2, 1), (1,−3), (−3, 1) generate the part of ker j7 contained in Q(S)2.
Now the group Sel2(E/Q) is contained in⋂

p∈{3,7,∞}

jp
−1(Im(λp)) =〈(2, 1), (1, 2), (1, 3), (3, 1), (1, 7), (7, 1), (−6,−6)〉

∩ 〈(−2, 1), (1,−2), (7, 1), (1, 7), (−6,−6), (2, 2)〉
∩ 〈(1, 2), (2, 1), (1,−3), (−3, 1), (1,−1), (6, 42)〉.

Using the SAGE functions cp_span, multi_intersect, and same_set we see that this intersection
is in fact equal to H . It follows that E(Q)/2E(Q) = 〈P, T1, T2〉. As the Ti are torsion points, we
have shown that the elliptic curve E has rank 1.

Notice that an important part of the two descent process was computing the finite group Q(S) ⊆
Q×/Q×2. We will now discuss how this set K(S) can be found for any number field K. Note that
if K is the field of fractions of a principal ideal domain R, then K×/K×2 ∼= R×/R×2 ⊕⊕pZ/2Z,
where p ranges over prime ideals inR andR× denotes the units inR. This is because every element
α ∈ K can be written as α = u · p1

e1 · · · prer where u ∈ R×, ei ∈ Z, and pi are primes in R. Then
viewing α in K×/K×2 we see that u ∈ R×/R×2 and ei = 0 or 1, giving the desired isomorphism.

13

Returning to the case where K is a number field, if OK is a principal ideal domain then we may
take R to be OK and K(S) is the subgroup corresponding to OK×/OK×2 ⊕ ⊕p∈SZ/2Z under
the above isomorphism. The case where OK is not a principal ideal domain, that is when K has
non-trivial class group, is more complicated. For this case we have

Proposition 6. [6, p. 127] Let K be a number field. Then there is a principal ideal domain R such
that OK ⊆ R ⊆ K and R× is finitely generated.

Proof. Let h be the class number of K and I1, . . . , Ih ideals in OK that represent the elements of
the class group ofK. Let I1 represent the class of principal ideals. For each j, fix a nonzero uj ∈ Ij
and define u = u1 · · ·uh. Note that u ∈ Ij for all j. Let T = {un : n ∈ Z, n ≥ 0}. As 0 6∈ T, 1 ∈ T
and T is multiplicatively closed, the localization T−1OK is a ring and OK ⊆ T−1OK ⊆ K. Let
R = T−1OK .

To see that R is a principal ideal domain, let J be an ideal in R. Then J = T−1I for some
ideal I of OK . Let Ij be the representative of the ideal class of I in the class group of K. We may
write I = α−1βIj for some non-zero α, β ∈ OK . Since u ∈ Ij , we have α−1βu ∈ I and hence
(α−1βu)/u ∈ T−1I . To see that (α−1βu)/u generates T−1I , let a/um ∈ T−1I with a ∈ I and
m ≥ 0. Then a = α−1βb for some b ∈ Ij since I = α−1βIj . Thus, a/um = (b/um)((α−1βu)/u) ∈
〈(α−1βu)/u〉. Therefore J is principal generated by (α−1βu)/u. As J was an arbitrary ideal of
R, we have shown that R is a principal ideal domain.

It remains to show that R× is finitely generated. AsOK is a Dedekind domain we can uniquely
factor 〈u〉 = p1

k1 · · · pnkn , where the pi are distinct prime ideals in OK and ki ∈ Z+. As h is the
class number of K, we know that pi

h is principal. For each 1 ≤ i ≤ n fix γi ∈ OK such that
pi
h = 〈γi〉. For each 1 ≤ j ≤ n, fix some 0 ≤ rj ≤ h − 1 and consider the ideal p1

r1 · · · pnrn . If
this ideal is principal, let δr1,...,rn ∈ OK be a generator. Otherwise, set δr1,...,rn = 1. Finally, recall
that by Dirichlet’s unit theorem OK× is finitely generated. Let g1, . . . , gm be generators for OK×.
Let G = {g1, . . . , gm, γi, δr1,...,rn : 1 ≤ i ≤ n, 0 ≤ rj ≤ h − 1} and note that G is a finite set. We
claim that R× is generated by G.

To prove the claim, let a/us ∈ R× with a ∈ OK and s ≥ 0. Write (a/us)−1 = b/ut for some
b ∈ OK and t ≥ 0. Since 1 = (a/us)(b/ut) and there are no zero divisors inR, we have ab = us+t.
Let r = s+ t ≥ 0. Factoring the ideal 〈ab〉 yields

〈ab〉 = 〈u〉r = p1
k1r · · · pnknr.

By unique factorization of ideals in OK it follows that 〈a〉 = p1
`1 · · · pn`n , where 0 ≤ `i ≤ kir for

each 1 ≤ i ≤ n. Using the division algorithm for each i, write `i = qih+ ri with 0 ≤ ri ≤ h− 1.
Then we have

〈a〉 =
n∏
i=1

pi
`i =

n∏
i=1

pi
qih+ri =

n∏
i=1

〈γi〉qipiri = 〈γ1
q1 · · · γnqn〉p1

r1 · · · pnrn . (5)

As the left hand side of (5) is principal, it follows that p1
r1 · · · pnrn is principal. Therefore we may

write a = εδr1,...,rnγ1
q1 · · · γnqn for some ε ∈ OK×. Hence, a ∈ 〈G〉. By a similar argument u can

14

be written in terms of elements of G. As (a/us) ∈ R× was arbitrary, it follows that R× = 〈G〉, as
claimed.

As the proof of Proposition 6 is constructive, we can use it to construct the set K(S) that is
needed for two descent. However, as this computation requires knowledge of the unit group and
class group of the number field K, it quickly becomes unwieldy. We demonstrate how to find
K(S) with an example of a real quadratic field.

Example 2.

Let K = Q(
√

10) and suppose the set S consists of primes lying above 2 and 7. Using SAGE,
we find thatK has class number two. Let p = 〈2,

√
10〉 and note that p2 = 〈2〉. This can be verified

using the Kummer-Dedekind theorem, which also implies that p is a prime ideal. Using SAGE we
can check that p is not principal. Hence, in the notation of the proof of Proposition 6 we have
I1 = OK and I2 = p. Furthermore, we may take u1 = 1 and u2 = 2 so that u = u1u2 = 2. Then
γ1 = 2 and there are only two δr1 both of which are 1. Using SAGE we find that a fundamental
unit in K is 3 +

√
10 and so the set G of generators for R× is {−1, 3 +

√
10, 2}.

Using the Kummer-Dedekind theorem, we see that 7 is inert in OK , so 7 generates a prime
ideal in R. As 2 is a unit in R, we do not have to consider any other primes in R. Hence, in this
case the group K(S) is

K(S) = {1,−1, 3 +
√

10,−3−
√

10, 2,−2, 6 + 2
√

10,−6− 2
√

10, 7,−7,

21 + 7
√

10,−21− 7
√

10, 14,−14, 42 + 14
√

10,−42− 14
√

10}.

4 Two descent on the Jacobians of higher genus hyperelliptic
curves

In this section we focus on results proved by E.F. Schaefer about two descent on the Jacobians of
hyperelliptic curves [8]. We follow his proof closely. First we establish some notation. Let J be
the Jacobian of the curve

C : y2 = f(x) =
d∏
i=1

(x− αi),

where the αi are distinct and f is defined over a field K of characteristic zero. The roots αi need
not be in K. Assume that the degree d of f is odd. Define the K-algebra

L = K[T]/〈f(T)〉

and let
L = K[T]/〈f(T)〉.

15

Note thatL ∼= ⊕di=1K via the map T 7→ (α1, . . . , αd). We shall often make use of this identification
by writing elements of L as ordered d-tuples of elements of K. Let µ2(L) be all elements of L×

of order dividing two. That is, µ2(L) consists of d-tuples where all coordinates are 1 or −1. For a
prime p of K, define Lp = Kp[T]/f(T).

There is an action of Gal(K/K) on L given by
∑n

i=0 aix
i 7→

∑n
i=0 σ(ai)x

i for all σ ∈
Gal(K/K) and ai ∈ K. This is well defined since f is defined over K. Under the isomorphism
L ∼= ⊕di=1K this action becomes

σ (x1, . . . , xd) =
(
σ
(
xσ−1(1)

)
, . . . , σ

(
xσ−1(d)

))
,

where σ−1(i) = j when σ−1(αi) = αj . Thus, elements of Gal(K/K) act on L in two ways; they
act in the natural way on the coordinates xi ∈ K and they also permute the coordinates.

It will be useful to identify L with the Gal(K/K)-invariants of L. To see why this is possible,
note that as f is defined over K there is a well defined injection ι : L ↪→ L. Clearly any element
in Im ι is Gal(K/K)-invariant. Now let g(x) ∈ L be Gal(K/K)-invariant. Without loss of
generality we may assume deg g < d. Then for all σ ∈ Gal(K/K) we have

g(x)− σg(x) = kσ(x)f(x)

for some kσ(x) ∈ K[x]. But deg(g(x)− σg(x)) < deg g < d, so kσ(x) = 0 and g(x) = σg(x) for
all σ ∈ Gal(K/K). Thus g(x) ∈ Im ι, as desired. Hence we may identify L with the Gal(K/K)-
invariants of L.

The idea of this section is to obtain a commutative diagram similar to (1) that retains all of
the information needed for two descent, but that contains groups that are easier to calculate than
H1(K, J [2]). In particular, we will find maps that make the following diagram commute.

H1(K, J [2])

��

**TTTTTTTTTTTTTT

J(K)/2J(K)

κ
44iiiiiiiiiiiiii

X−T
//

��

L×/L×2

��

∏
pH

1(Kp, J(Kp)[2])

))SSSSSSSSSSSS

∏
p J(Kp)/2J(Kp)

Q
p κp

44jjjjjjjjjjjjjj

X−T
//
∏

p Lp
×/Lp

×2

(6)

All of the downward arrows are induced by the inclusion map K ↪→ Kp. Notice that the back
left face of the diagram is precisely diagram (1) and the front face is analogous to diagram (2)
for elliptic curves. As was demonstrated in the example in section 3.2, it is relatively easy to do
computations with L×/L×2 and Lp

×/Lp
×2 compared with the first Galois cohomology groups.

We now define the maps that are used to fill in the above diagram. There is an isomorphism δ :
L×/L×2 → H1(K,µ2(L)) given by δ(x)(σ) = σ(

√
x)/
√
x [8]. This comes from the connecting

16

homomorphism that arises when taking the Galois cohomology of the short exact sequence arising
from the squaring map on L

×
:

1→ µ2(L)→ L
× → L

× → 1.

Let k : L×/L×2 → H1(K,µ2(L)) be the inverse of δ. It is k that we will make frequent use of,
although it is easier to dirictly compute δ.

Note that the construction of the Weil pairing for elliptic curves is defined on Pic0(C) and does
not require any special properties of elliptic curves. Hence, we have an analogous pairing on J [2]
for any hyperelliptic curve, which we will denote e2, with all of the desired properties. That is, e2
is bilinear, alternating, non-degenerate, adjoint and Gal(K/K)-equivariant. Using this pairing we
define the homomorphism

ŵ : J [2]→ µ2(L)

Q 7→ (e2(Q, (α1, 0)), . . . , e2(Q, (αd, 0))).

This induces a map on cohomology groups

w : H1(K, J(K)[2])→ H1(K,µ2(L))

(ξ : σ 7→ Q) 7→ (ξ : σ 7→ ŵ(Q)).

Finally, recall that we have the map κ : J(K)/2J(K) → H1(K, J [2]) given in section 2
defined by κ(P)(σ) = Qσ − Q for all σ ∈ Gal(K/K), where Q ∈ J(K) such that P = 2Q.
Having defined the necessary maps, we will now return to diagram (6).

Before we show that diagram (6) commutes, it is necessary to make sure that the map X − T :
J(K) → L×/L×2 is well defined. As X − T is only naturally defined on non-Weierstrass points,
we will show that every element of J(K) can be represented as a divisor without any Weierstrass
points and then check that X − T agrees on any two linearly equivalent divisors that have do not
contain Weierstrass points. In order to prove that every element of J(K) can be represented as a
divisor without Weierstrass points, we need the following simplifying lemma.

Lemma 7. Let D be a divisor of degree zero defined over K; that is, D is Gal(K/K)-invariant.
Then D can be written as a sum and difference of divisors of the form

r∑
i=1

(Qσi)− r(∞),

where the set {Qσi : 1 ≤ i ≤ r} is a complete set of the Gal(K/K)-conjugates of Q.

Proof. Let D be a divisor of degree zero defined over K. Then we may write

D =
n∑
i=1

(Pi)−
n∑
i=0

(Qi)

17

for some n ≥ 0. We proceed by induction on n. The base case n = 0 is trivial and when n = 1 it
follows that P1 and Q1 must be defined over K giving

D = ((P1)− (∞))− ((Q1)− (∞)).

Assume the claim holds for all k < n. Note that it suffices to show that any sum of the form∑n
i=0(Pi)− n(∞) can be written in the desired form, for then applying this to

∑n
i=0(Pi)− n(∞)

and
∑n

i=0(Qi)− n(∞) yields the result.
Consider the Gal(K/K)-orbit of P1 which is {P1

σ : σ ∈ Gal(K/K)}. As D is defined over
K, this orbit must consist of a subset of {Pi : 1 ≤ i ≤ n}. Without loss of generality, assume the
orbit is {Pi : 1 ≤ i ≤ r} for some r ≤ n. Thus we have

n∑
i=1

(Pi)− n(∞) =
r∑
i=1

(P1
σi)− r(∞) +

n∑
i=r+1

(Pi)− (n− r)(∞),

where the σi ∈ Gal(K/K) such that P1
σi = Pi for 1 ≤ i ≤ r. If r = d, we have written the sum

in the desired form. If r < d, then the sum
∑d

i=r+1(Pi)− (n− r)(∞) can be written in the desired
form by induction. Thus, in either case the claim is proved.

With this way of writing elements of J(K) we can now prove

Proposition 8. [8] Every element of J(K) can be represented by a divisor of degree zero that is
disjoint from the Weierstrass points.

Proof. By Lemma 7 it suffices to show that any divisor of the form D =
∑r

i=1(Q
σi) − r(∞) is

linearly equivalent to a divisor of without any Weierstrass points, where the σi ∈ Gal(K/K) such
that Qσ1 , . . . , Qσr is a complete list of the Gal(K/K)-conjugates of Q.

First consider the case where Q is not a Weierstrass point, so Q = (x1, y1) with y1 6= 0. Let
x1, . . . , xd be the zeros of y1

2 = f(x), and let Qj = (xj, y1). Also, let R1 = (x1,−y1). As d is
odd, we may write d = 2g + 1 for some non-negative integer g. (In fact, g is the genus of C, but
we will not need this fact.) Then we have

div

(
r∏
i=1

(X − σi(x1))
g

Y − σi(y1)

)
=

r∑
i=1

g div(X − σi(x1))− div(Y − σi(y1))

=
r∑
i=1

g((σi(Q)) + (σi(R1))− 2(∞))−

(
d∑
j=1

(σi(Q))− d(∞)

)

= r(∞) + g
r∑
i=1

(σi(R1)) + g
r∑
i=1

(σi(Q1))−
d∑
j=1

r∑
i=1

(σi(Qj)).

Adding D to the above yields that D is linearly equivalent to

D + div

(
r∏
i=1

(X − σi(x1))
g

Y − σi(y1)

)
= g

r∑
i=1

(σi(R1)) + g

r∑
i=1

(σi(Q1))−
d∑
j=2

r∑
i=1

(σi(Qj)). (7)

18

Now suppose that Q is a Weierstrass point and without loss of generality say Q = (α1, 0).
Then the conjugates of Q are other Weierstrass points. If all of the other Weierstrass points are
conjugates of Q then letting σi ∈ Gal(K/K) such that Qσi = (αi, 0) = Qi we have

D =
d∑
i=1

(Qi)− d(∞) =
d∑
i=1

(Qσi)− d(∞) = div(Y).

Thus, D is linearly equivalent to the divisor of any K-rational function. In particular, we may
take the zero divisor to represent the linear equivalence class of D, which is certainly disjoint
from the Weierstrass points. Thus we will assume that Q1, . . . , Qr are the conjugates of Q, with
Qi = (αi, 0) and r < d.

Furthermore, we may assume that r < d/2 as follows. Let g(X, Y) =
Qd
i=r+1(X−αi)

Y
, so

div(g) =
d∑

i=r+1

div(X − αi)− div(Y) =
d∑

i=r+1

(2((αi, 0))− 2(∞))−
d∑
i=1

((αi, 0)) + d(∞)

= −
r∑
i=1

((αi, 0)) +
d∑

i=r+1

((αi, 0)) + (d− 2r)(∞).

Adding div(g) to D, we see that D is linearly equivalent to

div(g) +D = −
r∑
i=1

((αi, 0)) +
d∑

i=r+1

((αi, 0)) + (d− 2r)(∞) +
r∑
i=1

((αi, 0))− r(∞)

=
d∑

i=r+1

((αi, 0))− (d− r)(∞).

Thus, by possibly replacing D with D + div(g) we may assume that r < d/2.
Let f(X, Y) = Y −

∏r
i=1(X − αi). Notice that if f(x, y) = 0 then y =

∏r
i=1(x− αi). Thus,∏d

i=1(x− αi) = y2 =
∏r

i=1(x− αi)2 and so

0 =
d∏
i=1

(x− αi)−
r∏
i=1

(x− αi)2 =
r∏
i=1

(x− αi)

[
d∏

i=r+1

(x− αi)−
r∏
i=1

(x− αi)

]
.

For r + 1 ≤ i ≤ d, let Pi = (xi, yi) be the points on C such that xj is a zero of
∏d

i=r+1(x− αi)−∏r
i=1(x− αi) and yj =

∏r
i=1(xj − αi) 6= 0. Then

div(f) =
r∑
i=1

(Qi) +
d∑

i=r+1

(Pi)− d(∞).

19

Now let h =
∏d

i=r+1(X − xi). Then

div(h) =
d∑

i=r+1

((Pi) + (Ri))− 2(d− r)(∞),

where Ri = (x1,−yi). We have that D is linearly equivalent to

D + div(h)− div(f)

=
r∑
i=1

(Qi)− r(∞) +
d∑

i=r+1

((Pi) + (Ri))− 2(d− r)(∞)−
r∑
i=1

(Qi)−
d∑

i=r+1

(Pi) + d(∞)

=
d∑

i=r+1

(Ri)− (d− r)(∞).

As yi 6= 0 for r + 1 ≤ i ≤ d, it follows that the Ri are not Weierstrass points. Therefore, D
is linearly equivalent to D + div(g) − div(f) which does not contain any Weierstrass points, as
desired.

Having established that every linear equivalence class of J(K) contains a divisor of degree
zero that does not contain any Weierstrass points, we need only show that the function X − T :
J(K)→ L×/L×2 respects linear equivalence on such divisors.

Proposition 9. [8] If D1 = D2 in J(K) and D1, D2 do not contain any Weierstrass points, then
(X − T)(D1) ≡ (X − T)(D2) (mod L×2).

Proof. LetD1, D2 be linearly equivalent divisors of degree zero defined overK, neither containing
any Weierstrass points. Then there is a function h defined over K such that div(h) = D1 − D2.
Recall that div(X−T) =

∑d
i=1 2((αi, 0))−2d(∞) since T 7→ (α1, . . . , αd) under the isomorphism

L ∼= ⊕di=1K. As div(h) does not contain any Weierstrass points by assumption and div(X − T) is
made up entirely of Weierstrass points, we may apply Weil reciprocity to calculate

(X − T)(D1 −D2) = (X − T)(div(h)) = h(div(X − T))

= h

(
d∑
i=1

2((αi, 0))− 2d(∞)

)
=

(
h

(
d∑
i=1

((αi, 0))− d(∞)

))2

.

As h is defined over K and
∑d

i=1((αi, 0))− d(∞) is Gal(K/K)-invariant, it follows that

h

(
d∑
i=1

((αi, 0))− d(∞)

)
∈ L×.

Thus, (X − T)(D1) ≡ (X − T)(D2) (mod L×2), as desired.

20

We are now ready to prove the commutativity of diagram (6). In particular, we have

Theorem 10. [8] The functionsX−T : J(K)/2J(K)→ L×/L×2 and k◦w◦κ : J(K)/2J(K)→
L×/L×2 are equal.

Proof. Let P ∈ J(K). By Proposition 8 we may take a degree zero divisor representing P that
does not contain any Weierstrass points. Let Q ∈ J(K) such that 2Q = P . As Proposition 8
applies to any field of characteristic zero, we may similarly take Q not containing any Weierstrass
points.

By definition of κ,
κ(P) = (ξ : σ 7→ Qσ −Q).

By definition of w we have

w◦κ(P) = (ξ : σ 7→ ŵ(Qσ−Q)) = (ξ : σ 7→ (e2(Q
σ−Q, (α1, 0)−∞), . . . , e2(Q

σ−Q, (αd, 0)−∞))),

so we need to compute e2(Qσ − Q, (αi, 0) −∞). This part of the proof is similar to the proof of
Theorem 3. We need functions with divisors 2(Qσ) − 2(Q) and 2((αi, 0)) − 2(∞). As 2Q = P
there is a function g such that div(g) = 2(Q) − (P). Applying any σ ∈ Gal(K/K) we find that
div(gσ) = 2(Qσ)− (P σ) = 2(Qσ)− (P) since P is defined over K. Therefore,

div(gσ/g) = 2(Qσ)− (P)− 2(Q) + (P) = 2(Qσ)− 2(Q).

Also, div(X − αi) = 2((αi, 0))− 2(∞). Thus we have

e2(Q
σ −Q, (αi, 0)−∞) =

(X − αi)(Qσ −Q)
gσ

g
((αi, 0)−∞)

=

(
(X − αi)(Qσ)

(X − αi)(Q)

)(
g((αi, 0)−∞)

gσ((αi, 0)−∞)

)
=

(
(X − αi)(Q)

g((αi, 0)−∞)

)σ (
(X − αi)(Q)

g((αi, 0)−∞)

)−1

.

Letting βi = (X−αi)(Q)/g((αi, 0)−∞) and β = (β1, . . . , βd) we use Weil reciprocity to calculate
that

β2 = (β1
2, . . . , βd

2) =

((
(X − α1)(Q)

g((α1, 0)−∞)

)2

, . . . ,

(
(X − αd)(Q)

g((αd, 0)−∞)

)2
)

=

(
(X − α1)(2Q)

g(2(α1, 0)− 2∞)
, . . . ,

(X − αd)(2Q)

g(2(αd, 0)− 2∞)

)
=

(X − T)(2Q)

(X − T)(div(g))

=
(X − T)(2Q)

(X − T)(2Q− P)

= δ((X − T)(P)).

21

Applying δ−1 = k to both sides and evaluating at any σ ∈ Gal(K/K) we find that

(X − T)(P)(σ) = k−1(β2)(σ) = σ(β)/β = w ◦ κ(P).

Therefore k ◦ w ◦ κ = X − T , as claimed.

In order to use this theory in explicit examples, we need to know how to compute the map
X − T . We will make use of this in the example of two descent on the Jacobian of a hyperelliptic
curve of genus two in section 5.2.

Proposition 11. LetD =
∑r

i=1(σi(Q))−r(∞), where σ1(Q), . . . , σr(Q) are all of the Gal(K/K)-
conjugates of Q. If Q is not a Weierstrass point then

(X − T)(D) =
r∏
i=1

(X(σi(Q))− T).

If Q is a Weierstrass point, say Q = (α1, 0) and σi(Q) = (αi, 0). Then

(X − T)(D) =
r∏
i=1

(αi − T) +
d∏

i=r+1

(αi − T).

Proof. Throughout this proof we will use the same notation as in Proposition 8. By Proposition
9 it follows that we may compute (X − T)(D) by applying X − T to the right hand side of (7).
Recalling that X(Q) = X(R1) and Y (Q)2 = (X(Q1)− α1) · · · (X(Qd)− αd) and that the image
of X − T is only defined up to squares we have

(X − T)(D) = (X − T)

(
g

r∑
i=1

(σi(Q))−
d∑
j=2

r∑
i=1

(σi(Qj)) + g
r∑
i=1

(σi(R1))

)

=
r∏
i=1

(X(σi(Q))− T)g(X(σi(R1))− T)g∏d
j=2(X(σi(Qj))− T)

=
r∏
i=1

(X(σi(Q))− T)2g+1∏d
j=1(X(σi(Qj))− αj − (T − αj))

=
r∏
i=1

(X(σi(Q))− T)2g+1∏d
j=1(X(σi(Qj))− αj)−

∏d
j=1(T − αj)

=
r∏
i=1

(X(σi(Q))− T)2g+1

Y (σi(Q))2 − f(T)

=
r∏
i=1

(X(σi(Q))− T)

(
(X(σi(Qj))− T)g

Y (σi(Q))

)2

=
r∏
i=1

X(σi(Q))− T,

22

as claimed.
For the case when Q is a Weierstrass point, recall that in the proof of Proposition 8 we showed

that D is linearly equivalent to
d∑

i=r+1

(Ri)− (d− r)(∞),

were Ri = (xi, yi) such that the xi are the roots of the polynomial
d∏

i=r+1

(X − αi)−
r∏
i=1

(X − αi)

and yj =
∏r

i=1 xj−αi. SinceX−T respects linear equivalence we have may compute (X−T)(D)

by computing (X − T)
(∑d

i=r+1(Ri)− (d− r)(∞)
)

. Note that

d∏
i=r+1

(T − xi) =
d∏

i=r+1

(T − αi)−
r∏
i=1

(T − αi)

since both are monic degree (d− r) polynomials with roots xr+1, . . . , xd. Using this together with
the fact that d is odd and the result when Q is not a Weierstrass point we have

(X − T)(D) = (X − T)

(
d∑

i=r+1

(Ri)− (d− r)(∞)

)
=

d∏
i=r+1

(X(Ri)− T)

= (−1)d−r
d∏

i=r+1

(T −X(Ri)) = (−1)d−r

(
d∏

i=r+1

(T − αi)−
r∏
i=1

(T − αi)

)

= (−1)d−r

(
(−1)d−r

d∏
i=r+1

(αi − T) + (−1)r+1

r∏
i=1

(αi − T)

)

=
d∏

i=r+1

(αi − T) +
r∏
i=1

(αi − T),

as claimed.

Having shown that diagram (6) commutes, we would like to analyze the image of X − T
instead of the image of κ. As k ◦ w is an injection, we will not lose any information by making
this translation. In order to analyze the image of X − T , it will be useful to have a description of
Im(k ◦ w) in L×/L×2. In particular, we have

Proposition 12. Let N : L → K be the norm map given by N(x1, . . . , xd) = x1 · · ·xd. Although
it is an abuse of notation, we will also use N to denote any maps induced by N . This should not
cause confusion. Then

Im(k ◦ w) = ker(N : L×/L×2 → K×/K×2).

23

Proof. We begin by showing that

0 −→ J [2]
w−→ µ2(L)

N−→ µ2(K) −→ 1

is a short exact sequence of Gal(K/K)-modules. To see thatw andN commute with the Gal(K/K)-
action on each of the modules, let σ ∈ Gal(K/K). Then for any Q ∈ J [2], using the definition of
the Gal(K/K)-action on µ2(L) and the fact that e2 maps into ±1 which are fixed by all elements
of Gal(K/K), we have

σ(w(Q)) = σ (e2(Q, (α1, 0)−∞), . . . , e2(Q, (αd, 0)−∞))

=
(
e2(Q, (σ

−1(α1), 0)−∞), . . . , e2(Q, (σ
−1(αd), 0)−∞)

)
=
(
e2(Q

σ, (α1, 0)−∞)σ
−1

, . . . , e2(Q
σ, (α2, 0)−∞)σ

−1
)

= (e2(Q
σ, (α1, 0)−∞), . . . , e2(Q

σ, (α2, 0)−∞))

= w(Qσ).

Also, for any (x1, . . . , xd) ∈ µ2(L) with xi ∈ {±1} we have

σ(N(x1, . . . , xd)) = σ(x1 · · ·xd) = x1 · · ·xd = xσ−1(1) · · ·xσ−1(d)

= N(xσ−1(1), . . . , xσ−1(d)) = N(σ(x1, . . . , xd)),

where σ−1(j) = i when σ−1(αj) = αi. Thus, w and N are maps of Gal(K/K)-modules.
We now show that the sequence is exact. For exactness at J [2], suppose Q ∈ J [2] such that

w(Q) = (1, . . . , 1). Then

(1, . . . , 1) = w(Q) = (e2(Q, (α1, 0)−∞), . . . , e2(Q, (αd, 0)−∞)),

so e2(Q, (αi, 0)−∞) = 1 for all 1 ≤ i ≤ d. As {(αi, 0)−∞ : 1 ≤ i ≤ d− 1} is a basis for J [2]
and e2 is bilinear, it follows that e2(Q,P) = 1 for all P ∈ J [2]. By the non-degeneracy of e2, it
follows that Q = O and so w is injective. Thus, the sequence is exact at J [2].

Note that N(−1, . . . ,−1) = (−1)d = −1 since d is odd. Therefore N : µ2(L) → µ2(K) =
{±1} is surjective and the sequence is exact at µ2(K).

Next we show that Imw ⊆ kerN . Let Q ∈ J [2]. Then using the fact that (αd, 0) − ∞ =∑d−1
i=1 (αi, 0)− (d− 1)∞ in J(K) and the bilinearity of e2 we have

N(w(Q)) = N (e2(Q, (α1, 0)−∞), . . . , e2(Q, (αd, 0)−∞))

= N

(
e2(Q, (α1, 0)−∞), . . . , e2(Q, (αd−1, 0)−∞), e2

(
Q,

d−1∑
i=1

(αi, 0)− (d− 1)∞

))

= N

(
e2(Q, (α1, 0)−∞), . . . , e2(Q, (αd−1, 0)−∞),

d−1∏
i=1

e2(Q, (αi, 0)− (d− 1)∞)

)

=
d−1∏
i=1

e2(Q, (αi, 0)−∞)2 =
d−1∏
i=1

e2(Q, 2(αi, 0)− 2∞) =
d−1∏
i=1

e2(Q,O) = 1.

24

Hence, Imw ⊆ kerN .
To prove exactness at µ2(L), we use the fact that all of the groups are F2-vector spaces. Using

the first isomorphism theorem and the fact thatN : µ2(L)→ µ2(K) is surjective we have µ2(K) ∼=
µ2(L)/ kerN . Taking F2-dimensions, it follows that

dimF2 kerN = dimF2 µ2(L)− dimF2 µ2(K) = d− 1.

As Imw ⊆ kerN and dimF2 Imw = dimF2 J [2] = d − 1 = dimF2 kerN , it follows that Imw =
kerN , as desired. Thus, we have the required short exact sequence of Gal(K/K)-modules.

Now we obtain the standard long exact sequence in cohomology. Namely,

0 −→ H0(K, J [2])
w−→ H0(K,µ2(L))

N−→ H0(K,µ2(K))

δ−→ H1(K, J [2])
w−→ H1(K,µ2(L))

N−→ H1(K,µ2(K)).

Note that (−1, . . . ,−1) ∈ H0(K,µ2(L)) and N(−1, . . . ,−1) = (−1)d = −1 since d is odd.
ThereforeN is surjective. By exactness atH0(K,µ2(K)) we have ker δ = ImN = H0(K,µ2(K))
and so δ is the zero map. Hence we map extract the exact sequence

0 −→ H1(K, J [2])
w−→ H1(K,µ2(L))

N−→ H1(K,µ2(K)). (8)

Now, we have the isomorphisms from Kummer theory given by

δK : K×/K×2 → H1(K,µ2(K))

x 7→ (ξ : σ 7→ σ(
√
x)/
√
x)

and

δL : L×/L×2 → H1(K,µ2(L))

(x1, . . . , xd) 7→
(
ξ : σ 7→

(
σ(
√
x1)√
x1

, . . . ,
σ(
√
xd)√
xd

))
.

It is easy to check that the diagram

L×/L×2 δL //

N
��

H1(K,µ2(L))

N
��

K×/K×2 δK// H1(K,µ2(K))

(9)

commutes. Namely, let (x1, . . . , xd) ∈ L×/L×2. Then for any σ ∈ Gal(K/K) we have

N ◦ δL(x1, . . . , xd)(σ) =
σ(
√
x1)√
x1

· · ·
σ(
√
xd)√
xd

=
σ(
√
x1 · · ·xd)√
x1 · · ·xd

= δK ◦N(x1, . . . , xd)(σ).

25

Let kK = δK
−1 and note that δL−1 = k. Putting the above commutative square (9) together

with the exact sequence (8) we obtain the following commutative diagram with exact top row.

0 // H1(K, J(K)[2])
w // H1(K,µ2(L))

N //

k

��

H1(K,µ2(K))

kK

��
L×/L×2 N // K×/K×2

This allows us to calculate

Im k ◦ w = k(kerN : H1(K,µ2(L))→ H1(K,µ2(K))) = ker(N : L×/L×2 → K×/K×2),

which proves the proposition.

We will now describe the algorithm of two descent which we follow closely in all of the ex-
amples in this essay. Let C, J,K, L be as above. We can write L ∼= ⊕ci=1Li, where c is the
number of irreducible factors of f over K and each Li is the corresponding field obtained by
taking the quotient of K[T] by the i-th irreducible factor of f . We will often make use of this
identification and talk about coordinates in the image of the X − T map. Let λ denote the map
X − T : J(K)/2J(K)→ L×/L×2. For a prime p of Li, let jip : Li

×/Li
×2 → Lip

×/Lip
×2 be the

map induced by the inclusion Li ↪→ Lip. Let jp : L×/L×2 → Lp
×/Lp

×2 be the map induced by
L ↪→ Lp, which is the Cartesian product of the jip maps.

The first step is to understand J(K)tors. The 2-torsion is easy to find as it comes from the
Weierstrass points on C. Other torsion elements may be found through a search. To confirm that
all torsion points have been found we find J(OK/pOK) for a prime p of K, where C has good
reduction at p. As #J(K)tors | #J(OK/pOK) for all such p, a few such calculations usually
confirm the size of J(K)tors.

Next we look for other K-rational points on C. This can be done by a short computer search.
Let H be the subgroup generated by the known points of J(K), both those found by the search
and J(K)tors. Let G be a generating set for H . As J(K) is known to be finitely generated and
H ≤ J(K), it follows that G may be taken to be finite. For ease of calculation, G should be taken
to be as small as possible.

Recall that we want to understand Imλ, so we calculate λ(H) ≤ Imλ. To do this, let S be
the set of primes of K where C has bad reduction together with the primes over 2 and the infinite
primes. For each 1 ≤ i ≤ c we wish to construct a finite subgroup Li(S) ⊆ Li

×/Li
×2 such that

the i-th coordinate of all elements of Imλ will be in Li(S). This is the procedure discussed at the
end of section 3.2, where we consider all primes of Li lying over those in S. Recall that this makes
use of Proposition 6 and uses information about the class group and unit group of Li.

We can now calculate λ(H) by taking λ(P) = (X − T)(P) for each P ∈ G. Note that in the
special case where the roots αi of f are all in K, λ(P) = (x − α1, . . . x − αd) for P = (x, y) not
a Weierstrass point. This is because L ∼= ⊕di=1K via T 7→ (α1, . . . , αd). In this situation we may

26

drop the last coordinate as it is determined by the first d− 1 since all coordinates must multiply to
a square in K. Each x− αi ∈ K(S) and λ(H) = 〈λ(P) : P ∈ G〉.

We now move on to the local analysis. Fix a prime p ∈ S. For each 1 ≤ i ≤ c we must
determine a set of representatives for Lip

×/Lip
×2, which is always finite. We then determine where

Li(S) maps under Li×/Li×2 → Lip
×/Lip

×2. This can be done via sign considerations if Lip = R
or using Hensel’s Lemma for finite primes. With this information we can calculate Li(S)∩ ker jip
as well as

(∏c
i=1 jip

)
◦ λ(P) = λp(P) for all P ∈ G.

Recall that we have an injection λp : J(Kp)/2J(Kp) ↪→ ⊕ci=1Lip
×/Lip

×2, so #J(Kp)/2J(Kp) =
Imλp. Using Theorem 5 and formula (4) in section 3.1 we know #J(Kp)/2J(Kp), and we cal-
culated 〈λ(P) : P ∈ G〉 in the previous paragraph. If #〈λp(P) : P ∈ G〉 = #J(Kp)/2J(Kp),
then

jp
−1(Imλp) = 〈K(S) ∩ ker jp, λ(P) : P ∈ G〉.

Otherwise we must find more elements of Imλp. This can be done by searching for points
on C(Kp), using Hensel’s Lemma for example, and then constructing elements of J(Kp) that are
independent from those in G. The SAGE function find_new_gens performs this search for the
examples in this essay. Let Q1, . . . , Q` ∈ J(Kp) such that Imλp = 〈λp(Q1), . . . , λp(Q`), λp(P) :
P ∈ G〉. In this case we have

jp(Imλp) = 〈K(S) ∩ ker jp, jp
−1(λp(Q1)), . . . , jp

−1(λp(Q`)), λ(P) : P ∈ G〉.

We repeat the above analysis for all primes in S and then calculate⋂
p∈S

jp
−1(Imλp).

The hope is that this set will be equal to 〈λ(P) : P ∈ G〉 = λ(H). If so, then J(K)/2J(K) =
〈G〉 and the rank of J(K) is equal to the number of independent non-torsion elements of G. If
∩p∈Sjp

−1(Imλp) strictly contains λ(H), then we cannot compute the rank of J(K) exactly using
two descent.

5 Jacobians of hyperelliptic curves of genus two
In this section we investigate the case of Jacobians of hyperelliptic curves of genus two in detail.
First we describe a canonical way of representing elements of the Jacobian that is analogous to the
representation we have for elliptic curves. After establishing some facts about the two torsion and
the structure of K-rational elements of the Jacobian, we give an example of two descent on the
Jacobian of a hyperelliptic curve of genus two. This will make use of the general theorems that
were proved in section 4.

27

5.1 Elements of the Jacobian of a hyperelliptic curve of genus two
Much of the theory of elliptic curves is made easier by the fact that we can represent the Jacobian
of a curve as points on the curve with the group law being given by the secant-tangent construction.
This concrete description of the group is much easier than working with the abstract group Pic0(E)
of degree zero divisors modulo linear equivalence. Unfortunately, for higher genus curves such a
concrete description of the Jacobian becomes more difficult. This section is devoted to describing
jacobians of hyperelliptic curves of genus two in an analogous way to that of elliptic curves. This
will be useful for calculating the torsion subgroup of Jacobians of hyperelliptic curves of genus
two in the next section.

In general, the non-singular model of a hyperelliptic curve C of genus two is the solution set in
P4 of [3]

C :


Y 2 = f0X0

2 + f1X0X1 + f2X1
2 + f3X1X2 + f4X2

2 + f5X2X3 + f6X3
2

0 = X1X3 −X2
2

0 = X0X2 −X1
2

0 = X0X3 −X1X2.

(10)

Notice that by projecting to the X0 = 1 chart, this simplifies to

y2 =
6∑
i=0

fix
i,

where x is X1. It is often convenient to work in this chart where the point (x, y) corresponds to the
projective point [1 : x : x2 : x3 : y]. Of course, there are points that are not in this chart, namely
those where X0 = 0. Note that when X0 = 0 we also have X1 = X2 = 0 and (10) reduces to
Y 2 = f6X3

2. We must have X3 6= 0 (otherwise all of the projective coordinates would be zero),
so by scaling we may take X3 = 1. Thus, Y 2 = f6 and the only points not in the X0 = 1 chart are

∞+ = [0 : 0 : 0 : 1 :
√
f6] ∞− = [0 : 0 : 0 : 1 : −

√
f6].

If f6 = 0 there is only one point missing from the X0 = 1 chart, namely∞ = [0 : 0 : 0 : 1 : 0].
For notational convenience, we shall sometimes write ∞0 = ∞ when there is only one point at
infinity. If C is defined over a field K, the points at infinity should only be considered K-rational
if f6 is a square in K.

Recall that in the case of elliptic curves, the Riemann-Roch Theorem allows us to write each
element of Pic0(E) uniquely as (P)− (∞). Similarly, in the case of hyperelliptic curves of genus
two the Riemann-Roch Theorem allows us to write any nontrivial divisor D ∈ Pic0(C) uniquely
as

D = (P1) + (P2)− (∞ε)− (∞−ε),
where ε = 1 if f6 6= 0 and ε = 0 if f6 = 0 and P1, P2 are points on C such that D is not the divisor
of a function. In the case where D is the trivial divisor, it can be represented as the divisor of any

28

function. In particular, D = div(X − x1) for any point P = (x1, y1) ∈ C. Thus we may write we
may write

D = div(X − x1) = (P) + (P)− (∞ε)− (∞−ε),

where P = (x1,−y1) and ε is as above. We will use the shorthand notation {P,Q} to denote the
divisor class in Pic0(C) of (P) + (Q)− (∞ε)− (∞−ε). Thus, there is a bijective correspondence
between non-identity elements of the Jacobian J and the set of unordered pairs of points

{{P,Q} : P,Q ∈ C, P 6= Q}.

All pairs of points {P, P} represent the identity element of the Jacobian which will henceforth be
denoted by O.

Having established this correspondence, it is easy to see that for any points P,Q ∈ C,

{P,Q}+ {P ,Q} = {P, P}+ {Q,Q} = O +O = O,

so the inverse of {P,Q} is {P ,Q}. Hence, the 2-torsion elements of the Jacobian are those where
{P,Q} = {P ,Q}. Therefore,

J [2] = {{P,Q} : P = (α, 0), Q = (β, 0), α 6= β} ∪ {O}.

Now that we have a way to represent elements of J(K), we make a few remarks about the
K-rational elements J(K). This is used primarily in the SAGE program J(L,F) which calculates
J(Fp) for some prime p. Recall from Definition 1 that the K-rational points are elements that are
invariant under the Gal(K/K)-action. In the case of a curve of genus two, a K-rational element
is a pair {P,Q} ∈ J(K) with the property that {P,Q} = {P σ, Qσ} for all σ ∈ Gal(K/K).
Hence, either P,Q are both defined over K, in which case P σ = P and Qσ = Q, or P and Q are
conjugates. That is, there is some quadratic extension K(

√
α)/K such that P = (a + b

√
α, c +

d
√
α) and Q = (a − b

√
α, c − d

√
α). Then every σ ∈ Gal(K/K) restricts to an element of

Gal(K(
√
α)/K) and so sends

√
α to ±

√
α. Thus, in this case there are elements σ ∈ Gal(K/K)

such that P σ = Q and Qσ = P .

5.2 Example of two descent
We have now established everything that is needed to perform two descent on the Jacobians of
hyperelliptic curves of genus two. In this section we carry out such a calculation and find the rank
of the Jacobian of a genus two hyperelliptic curve. The method is similar to that used in Example
1 but makes use of the more general theorems proved in section 4.

Example 3.

Let C be the curve given by

C : y2 = f(x) = x(x− 3)(x− 4)(x− 6)(x− 7),

29

and let J be the Jacobian of C. We will show that J(Q) has rank zero. The discriminant of C
is ∆C = 1316818944 = 212 · 38 · 72. The rank of J(Q) was originally found using homoge-
neous spaces, but we exploit Theorem 5 to obtain the result [5], [3]. The advantage of avoiding
homogeneous spaces is that they become quite complicated for higher genus curves.

As all of the roots of f are in Q, it follows that all of the 2-torsion of J is rational. As #J [2] =
16, we have 16|#J(Q)tors. As with elliptic curves, we have J(Q)tors ↪→ J(Fp) for all primes p
not dividing ∆C . Using the SAGE function len(J(L,F)), we see that #J(F5) = 16, so we must
have J(Q)tors = J [2]. Thus,

J(Q)tors = 〈{(0, 0),∞}, {(3, 0),∞}, {(4, 0),∞}, {(6, 0),∞}〉.

For notational convenience we will write T1 = {(0, 0),∞}, T2 = {(3, 0),∞}, T3 = {(4, 0),∞}, T4 =
{(6, 0),∞}.

Since f splits over Q, the algebra Q[T]/f(T) ∼= ⊕5
i=1Q. As mentioned in section 4, the image

of the map λ : J(Q)/2J(Q)→ (Q×/Q×2)5 is determined by the first four coordinates since all five
coordinates must multiply to a square in Q×. Therefore, we will only use the first four coordinates
in the remainder of the example. Using Proposition 11 we find that the images of the Ti under λ
are

T1 7→ ((−3)(−4)(−6)(−7),−3,−4,−6) = (14,−3,−1,−6)

T2 7→ (3, (3)(−1)(−3)(−4),−1,−3) = (3,−1,−1,−3)

T3 7→ (4, 1, (4)(1)(−2)(−3),−2) = (1, 1, 6,−2)

T4 7→ (6, 3, 2, (6)(3)(2)(−1)) = (6, 3, 2,−1).

Let H = Imλ = 〈(14,−3,−1,−6), (3,−1,−1,−3), (1, 1, 6,−2), (6, 3, 2,−1)〉. We will show
that H = Sel2(J/Q). We have that Sel2(J/Q) ⊆ Q(S)4, where Q(S) is the subgroup of Q×/Q×2

generated by −1 and the prime divisors of ∆C . That is,

Q(S) = {±1,±2,±3,±6,±7,±14,±21,±42}.

First consider the prime p =∞, so Qp = R. Recall that R×/R×2 = {±1}. By Theorem 5 we
know that #J(R)/2J(R) = #J(R)[2]/22 = 16/4 = 4. As λ∞(T1) = λ∞(T2) = (1,−1,−1,−1)
and λ∞(T3) = λ∞(T4) = (1, 1, 1,−1), it follows that

J(R)/2J(R) = 〈T1, T3〉

and
Im(λ∞) = 〈(1,−1,−1,−1), (1, 1, 1,−1)〉.

Therefore,

j∞
−1(Im(λ∞)) =〈(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (3, 1, 1, 1), (1, 3, 1, 1),

(1, 1, 3, 1), (1, 1, 1, 3), (7, 1, 1, 1), (1, 7, 1, 1), (1, 1, 7, 1), (1, 1, 1, 7),

(14,−3,−1,−6), (1, 1, 6,−2)〉.

30

Next consider the prime p = 2. We know that Q×2 /Q×2
2 has eight elements, and we claim that

Q2
×/Q2

×2 = {±1,±2,±3,±6}.

As x2 + 1, x2 ± 2, x2 − 3, x2 ± 6 are irreducible modulo 4 and x2 + 3 is irreducible modulo 8, it
follows that −1,±2,±3,±6 /∈ Q2

×2. As {±1,±2,±3,±6} ∼= Z/2Z× Z/2Z× Z/2Z, it follows
that this set is a complete set of representatives for Q2

×/Q2
×2.

We will let | · |p be the normalized absolute value corresponding to p. That is, for any x ∈ Q×,
|x|p = (1/p)vp(x), where vp(x) is the p-adic valuation of x. Now, |12 + 7|2 = 1/8 < 1/4 = |2 · 1|22

so −7 ∈ Q2
×2 by Hensel’s Lemma. Using this information we find that

1 ≡ −7 (mod Q2
×2)

−1 ≡ 7 (mod Q2
×2)

2 ≡ −14 (mod Q2
×2)

−2 ≡ 14 (mod Q2
×2)

3 ≡ −21 (mod Q2
×2)

−3 ≡ 21 (mod Q2
×2)

6 ≡ −42 (mod Q2
×2)

−6 ≡ 42 (mod Q2
×2).

Therefore it follows that λ2(T1) = (−2,−3,−1,−6), λ2(T2) = (3,−1,−1,−3), λ2(T3) =
(1, 1, 6,−2), λ2(T4) = (6, 3, 2,−1). As these four images generate a group of order 16 they are
independent. By Theorem 5 we know that #J(Q2)/2J(Q2) = #J(Q2)[2] · 22 = 16 · 4 = 64, so
we must find two additional generators for J(Q2)/2J(Q2).

Note that |42 − f(18)|2 = 1/28 < 1/26 = |2 · 4|22, so by Hensel’s Lemma there is an el-
ement γ ∈ Q2 such that (18, γ) ∈ C(Q2). Thus, P = {(18, γ),∞} ∈ J(Q2). Furthermore,
using the SAGE function cp_span we find that λ2(P) = (2,−1,−2, 3) is not in the span of
λ2(T1), λ2(T2), λ2(T3), λ2(T4). Similarly, |82− f(23)|2 = 1/29 < 1/28 = |2 · 8|22, so by Hensel’s
Lemma there is an element δ ∈ Q2 such that (23, δ) ∈ C(Q2). Thus, Q = {(23, δ),∞} ∈ J(Q2).
Furthermore, cp_span can be used to check that λ2(Q) = (−1,−3, 3, 1) is not in the span of the
elements found thus far. Therefore we have that

J(Q2)/2J(Q2) = 〈T1, T2, T3, T4, P,Q〉

and

Im(λ2) = 〈(−2,−3,−1,−6), (3,−1,−1,−3), (1, 1, 6,−2), (6, 3, 2,−1), (2,−1,−2, 3), (−1,−3, 3, 1)〉.

Therefore,

j2
−1(Im(λ2)) =〈(−7, 1, 1, 1), (1,−7, 1, 1), (1, 1,−7, 1), (1, 1, 1,−7), (14,−3,−1,−6),

(3,−1,−1,−3), (1, 1, 6,−2), (6, 3, 2,−1), (2,−1,−2, 3), (−1,−3, 3, 1)〉.

31

Finally we consider p = 7. Recall that in Example 1 we found that Q7/Q7
×2 = {±1,±7}.

We also found the representative modulo Q7
×2 for all elements of Q(S). Using this information,

it follows that under λ7

T1 7→ (7, 1,−1, 1)

T2 7→ (−1,−1,−1, 1)

T3 7→ (1, 1,−1,−1)

T4 7→ (−1,−1, 1,−1).

Now, λ7(T4) = λ7(T2)λ7(T3), but λ7(T1), λ7(T2), λ7(T3) are independent. By Theorem 5 we know
that #J(Q7)/2J(Q7) = #J(Q7)[2] = 16, so we need to find another generator for J(Q7)/2J(Q7).

Note that |212 − f(35)|7 = 1/73 < 1/72 = |2 · 21|72 so by Hensel’s Lemma there is an
element η ∈ Q7 such that (35, η) ∈ C(Q7). Therefore, R = {(35, η),∞} ∈ J(Q7). Furthermore,
λ7(R) = (−7, 1,−1, 1) which is not in the span of λ7(T1), λ7(T2), λ7(T3). It follows that

J(Q7)/2J(Q7) = 〈T1, T2, T3, R〉

and
Imλ7 = 〈(7, 1,−1, 1), (−1,−1,−1, 1), (1, 1,−1,−1), (−7, 1,−1, 1)〉.

Therefore,

j7
−1(Imλ7) =〈(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (−3, 1, 1, 1), (1,−3, 1, 1),

(1, 1,−3, 1), (1, 1, 1,−3), (14,−3,−1,−6), (3,−1,−1,−3), (1, 1, 6,−2), (−7, 1,−1, 1)〉.

Using the SAGE functions cp_span, multi_intersect, and same_set we find thatH ⊆ Sel2(J/Q) ⊆⋂
p=2,7,∞ jp

−1(Imλp) = H , so H = Sel2(J/Q). Therefore T1, T2, T3, T4 generate J(Q)/2J(Q)
and J(Q) has rank zero, as claimed.

6 Appendix: SAGE programs
This section contains the SAGE programs used to do many of the calculations for the examples
contained in this paper together with a brief description of how they work. They are listed in
alphabetical order by the name of the program. All functions are in bold text for easy reference.

conj
This function takes as input the quadratic extensionK of Fp for some prime p and an element
x ∈ K. If we choose a basis {1, α} for K/Fp and x = a + b · α, then this function returns
the conjugate of x, namely a− b · α.

32

def conj(x,K):
p=K.characteristic()
for i in GF(p):

if x-i*(K.gen()) in GF(p):
b=-i
a=x-i*(K.gen())

return a+b*(K.gen())

cp_multiplication
This function gives the group operation on the Cartesian product of some finite number of
copies of Q×/Q×2, say n copies. It takes as input two n-tuples a, b (in the form of lists) of
non-zero rational numbers and returns the n-tuple a · b, where each entry is taken modulo
Q×2. It calls the function square_free_part.

def cp_multiplication(a,b):
P=[]
for j in range(len(a)):

P.append(square_free_part(a[j]*b[j]))
return P

cp_product
This function allows one to multiply any (finite) number of elements of the Cartesian product
of Q×/Q×2 with itself n times. It takes as input a list of the n-tuples that are to be multiplied
and returns their product as an n-tuple with entries taken modulo Q×2. It calls the function
cp_multiplication.

def cp_product(list):
p=[]

for i in list[0]:
p.append(1)

for i in range(len(list)):
p=cp_multiplication(p,list[i])

return p

cp_span
This function takes as input a list of elements of the n copies of Q×/Q×2 and returns the
subgroup they generate in the Cartesian product of Q×/Q×2 with itself n times. It calls
the built in SAGE function combinations() as well as cp_product. As all elements of the
group n copies of Q×/Q×2 have order two, the group generated by some list of elements
is obtained by multiplying all possible combinations of the generators without multiplicity.
This function is used to calculate the full group jp

−1(Im(λp)) from the generators in the
examples.

33

def cp_span(gens):
L=[]
for i in range(len(gens)+1):

M=combinations(gens,i)
if M==[[]]:

for j in gens[0]:
M[0].append(1)

M=[M]
for j in M:

if cp_product(j) not in L:
L.append(cp_product(j))

return L

find_new_gens
This function takes as input a polynomial F , four roots of F called a1, a2, a3, a4, a prime p,
positive integers i and n, a list reps, and a list gen_knows. It is used to find further generators
of J(Qp)/2J(Qp) when the known rational elements are not sufficient. The list gen_knowns
consists of a list of the images of the known rational elements of J(Q) under the map κp. The
list reps consists of a complete list of representative elements of Qp

×/Qp
×2. The function

calculates the subgroup generated by the images under κp of the known rational points. It
then calls find_possibilities and calculates the images of the points in that list under κp. If
this image is not in the subgroup generated by the known rational points, it adds the new
possible generator to the list. It returns a list of elements of Imκp that are not in the span of
the image of the known rational points. Besides find_possibilities it also calls cp_span and
Q_p_mod_squares.

def find_new_gens(F,a1,a2,a3,a4,p,i,reps,n,gen_knowns):
known_elements=cp_span(gen_knowns)
new_gens=[]
for x in find_possibilities(F,p,i):

x=ZZ(x)
ex_bar=[Q_p_mod_squares(x-a1, p, reps, n),

Q_p_mod_squares(x-a2, p, reps, n),
Q_p_mod_squares(x-a3, p, reps, n),
Q_p_mod_squares(x-a4, p, reps, n)]

if not ex_bar in known_elements and not x in new_gens:
if 0 not in ex_bar:

new_gens.append(x)
return new_gens

find_possibilities
This function takes as input a polynomial F , a prime p, and a positive integer i. It returns a

34

list of x values such that there is a point (x, y) on the curve y2 = F (x) with x, y ∈ Qp. It
tests all of the integers in Z/piZ. It calls squares_mod_with_roots, squares_mod, and val
as well as the built in SAGE function Integers(x).

def find_possibilities(F,p,i):
possibilities=[]
for x in Integers(p^i):

if (F(x)%(p^i)) in squares_mod(p^i):
x=ZZ(x)
for y in squares_mod_with_roots(p^i):

if y[0]==(F(x)%(p^i)):
if y[1]^2-F(x)==0 and not x in possibilities:
if not y[1]==0:

possibilities.append(x)
if not y[1]^2-F(x)==0 and x not in possibilities:
if not y[1]==0:

if val(y[1]^2-F(x),p)>2*val(2*y[1],p):
possibilities.append(x)

return possibilities

intersect
This function takes as input two lists X, Y (representing mathematical sets) and returns their
set-wise intersection X ∩ Y as a list. Of course, it does not matter which order the lists X
and Y are given to the function.

def intersect(X,Y):
intersection=[]
for x in X:

if x in Y:
intersection.append(x)

return intersection

J(L,F)
This function takes as input the unique quadratic extension field L of Fp for some prime
p and a quintic polynomial F defining a hyperelliptic curve. It returns all of the elements
on J(Fp), represented as pairs of unordered points on the curve y2 = F (x). The identity
element is represented by the string ’O’ and the point at infinity on the curve is represented by
the string ’infty’. There are three main ’for’ loops in the program. The first finds all elements
of J(Fp) of the form {(x, y),∞} with x, y ∈ Fp. The second loop finds all elements of the
form {(x1, y1), (x2, y2)}, where xi, yi ∈ Fp. The third loop finds all elements that come from
the quadratic extension L that have not already been counted. That is, if L = Fp(α), it finds

35

all points of the form {(a+ b · α, c+ d · α), (a− b · α, c− d · α)} with b 6= 0. This function
calls conj, points_not_in_ground_field, and points_in. By taking len(J(L,F)), we get the
number of elements of J(Fp).

def J(L,F):
p=L.characteristic()
elements=[’O’]
for x in points_in(GF(p),F):

elements.append([x,’infty’])
for x in points_in(GF(p),F):

for y in points_in(GF(p),F):
if not x[0]==y[0] and [y,x] not in elements:

elements.append([x,y])
if x[0]==y[0] and not x[1]==-y[1]:

if not [y,x] in elements:
elements.append([x,y])

for x in points_not_in_ground_field(L,F):
for y in points_not_in_ground_field(L,F):

if not x[0]==conj(x[0],L):
if conj(x[0],L)==y[0] and conj(x[1],L)==y[1]:

if [y,x] not in elements:
elements.append([x,y])

return elements

multi_intersect
This function takes as input a list of lists, where each element in the big list represents a
mathematical set. It returns the set-wise intersection of all of the sets in the list as a list. It
calls intersect. Again, it does not matter the order the sets are put into the big list. This is
used for determining ∩pjp−1(Imλp) in the examples after each individual jp−1(Imλp) has
been computed using cp_span.

def multi_intersect(list):
set=list[0]
for j in range(len(list)):

set=intersect(set,list[j])
return set

points_in
This function takes as input a field K and a polynomial F . In our cases, the polynomial is
the equation defining the elliptic or hyperelliptic curve that we are studying. It returns a list
of points on the curve y2 = F (x) with x, y ∈ K. It does not include any points at infinity.

36

For each element of i ∈ K, it tests if F (i) is a square by calling squares. It then calculates
the y values and adds the points (x, y), (x,−y) to the list, unless y = 0 in which case it only
adds (x, y) to the list. We can use this function to figure out the number of points a curve has
over a finite field by taking len(points_in(K,F)) and adding any points at infinity.

def points_in(K,F):
points=[]
for i in K:

if K(F(i)) in squares(K) and [i, sqrt(F(i))] not in points:
points.append([i, sqrt(F(i))])
if not sqrt(F(i))==0:

points.append([i, -sqrt(F(i))])
return points

points_not_in_ground_field
This function takes as input a field K of positive characteristic and a polynomial F , as in
points_in. It returns all of the points on the curve y2 = f(x) with (x, y) ∈ K but not both in
the prime subfield. This calls the built in SAGE function characteristic() to determine the
characteristic of K and also calls points_in.

def points_not_in_ground_field(K,F):
p=K.characteristic()
v=[]
for x in points_in(K,F):

if x[0] not in GF(p) or x[1] not in GF(p):
v.append(x)

return v

prime_divisors
This function takes as input a nonzero rational number x and returns the list of primes where
x has nonzero valuation. It calls the built in SAGE function factor().

def prime_divisors(x):
primes=[]
F=factor(x)
for i in F:

primes.append(i[0])
return primes

Q_p_mod_squares
This function has four input values: a rational number x, a prime number p, a list of repre-
sentatives of the group Qp

×/Qp
×2, and a positive integer n. It uses Hensel’s Lemma to try to

37

find the representative from the given list of the coset containing x in Qp
×/Qp

×2. The posi-
tive integers n tells the program at which power of p to stop looking. By taking n sufficiently
large, this will always return the desired representative. If x = 0, the function returns 0. The
function calls squares_mod_with_roots and val. The idea is that x lies in exactly one coset
of Qp

×/Qp
×2. As every coset has order two the product x · j, for a representative j from

reps, will be a square in Qp if and only if x and j are in the same coset. This function runs
through all possible products x · j and uses the criterion of Hensel’s Lemma to determine
when the correct representative has been found. This function is used for calculating the
images of points under the λp maps.

def Q_p_mod_squares(x, p, reps, n):
for i in range(1,n+1):

for j in reps:
if ((x*j)%(p^i)) in squares_mod(p^i):

for y in squares_mod_with_roots(p^i):
if y[0]==((x*j)%(p^i)) and not y[1]==0:

if y[1]^2-x*j==0:
return j
break

if val(y[1]^2-x*j, p) > 2*val(2*y[1],p):
return j
break

return 0

same_set
This function takes as input two lists X, Y representing mathematical sets and returns ’True’
if X = Y as sets and ’False’ otherwise. This function is used in the examples to determine
if the intersection found using multi_intersect is equal to the known elements in Imλ.

def same_set(X,Y):
for x in X:

if not x in Y:
return False
break

for y in Y:
if not y in X:

return False
break

return True

square_free_part
This function takes as input a rational number x and returns the square free representative of

38

x in the group Q×/Q×2. It calls the built in SAGE function factor() which returns a list of
tuples of the form (p, e), where p is a prime and e ∈ Z is the p-adic valuation of x. It also
stores the sign of x as factor(x).unit().

def square_free_part(x):
F=factor(x)
u=F.unit()
for i in F:

if i[1]%2==1:
u=u*i[0]

return u

squares
This function takes as input a field K and returns a list of the elements that are squares. It
tests if each element in K is a square by calling a built in SAGE function is_square.().

def squares(K):
squares=[]
for a in K:

if a.is_square():
squares.append(a)

return squares

squares_mod
This function takes as input a positive integer n and returns the squares modulo n. It is
similar to squares but does not require working over a field.

def squares_mod(n):
v=[]
for i in range(n):

if i^2%n not in v:
v.append(i^2%n)

return v

squares_mod_with_roots
This function takes as input a positive integer n and returns a list of pairs, where the first
coordinate of each pair is a square modulo n and the second number is a square root of the
first modulo n. Every possible such pair appears in the list exactly once.

def squares_mod_with_roots(n):
v=[]

39

for i in range(n):
v.append([i^2%n, i])

return v

val
This function takes as input a nonzero rational number x and a prime number p. It returns
the p-adic valuation of x. It calls the function prime_divisors.

def val(x, p):
v=0
while p in prime_divisors(x):

v=v+1
x=ZZ(x/p)

return v

References
[1] A. Brumer and K. Kramer, "The rank of elliptic curves", Duke Math. J. 44 (1977), No. 4,

715–743.

[2] J.W.S. Cassels, Lectures on elliptic curves, LMS Student Texts 24, CUP, 1991.

[3] J.W.S Cassels and E.V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus
2, LMS Lecture Note Series, CUP, 1996.

[4] E.V. Flynn, B. Poonen, E.F. Schaefer, "Cycles of quadratic polynomials and rational points
on a genus 2 curve", Duke Math. J. 90 (1997), No. 3, 435–463.

[5] D.M. Gordon and D. Grant, "Computing the Mordell-Weil rank of jacobians of curves of
genus 2", Trans. Amer. Math. Soc. 337, 807–824.

[6] A.W. Knapp, Elliptic Curves, Mathematical Notes 40, Princeton University Press, 1992.

[7] [Sage] William A. Stein et al., Sage Mathematics Software (Version 4.1). The Sage Devel-
opment Team, 2009, http://www.sagemath.org.

[8] E.F. Schaefer, "2-descent on the Jacobians of hyperelliptic curves", J. Number Theory 51
(1995), No. 2, 219–232.

[9] J.H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer, 1986.

[10] M. Stoll, "Implementing 2-descent for Jacobians of hyperelliptic curves", Acta Arith. 98
(2001), No. 3, 245–277.

40

