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Fix a prime p > 2. Let ρ : Gal(Q/Q) → GL2(I) be the Galois representation coming from

a non-CM irreducible component I of Hida’s p-ordinary Hecke algebra. Assume the residual

representation ρ̄ is absolutely irreducible. Under a minor technical condition, we identify a

subring I0 of I containing Zp[[T ]] such that the image of ρ is large with respect to I0. That

is, Im ρ contains ker(SL2(I0) → SL2(I0/a)) for some non-zero I0-ideal a. This work builds

on recent work of Hida, who showed that the image of such a Galois representation is large

with respect to Zp[[T ]]. Our result is an I-adic analogue of the description of the image of

the Galois representation attached to a non-CM classical modular form obtained by Ribet

and Momose in the 1980s. In addition, we discuss further questions related to determining

the largest I0-ideal c0 for which Im ρ contains ker(SL2(I0)→ SL2(I0/c0)).
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CHAPTER 1

Introduction

1.1 The question and heuristic

The main question to be studied in this thesis is a special case of the following broad question,

which has been of interest to number theorists for many decades:

Question. Given a Galois representation (usually arising from an arithmetic object such as

an elliptic curve, modular form, or motive), what is its image?

The following heuristic is a rough guide for how we expect the images of such Galois

representations to behave.

Heuristic. The image of a Galois representation that arises from a geometric object (such

as an elliptic curve, modular form, or motive) should be as large as possible, subject to the

symmetries of the geometric object from which it arises.

The idea behind the above heuristic is that (most of) the Galois action on the geometric

object will have to commute with the geometric symmetries. Thus, the more symmetries

(or endomorphisms) the geometric object has, the more matrices the image of the associated

Galois representation will have to commute with. Since large subgroups of GLn are highly

non-commutative, the image of the associated Galois representation must be small.

Of course, this is quite vague as terms like “symmetries”, “large”, and “small” have not

been rigorously defined. We shall make theses notions more precise in Chapter 3. For now

we give an example that illustrates this philosophy.
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Example 1. Let E be the elliptic curve with Weierstrass equation y2 = x3 + x. The curve E

has CM by Q(i); that is, its endomorphism ring is an order in Q(i), which is larger than the

usual endomorphism ring Z. Indeed, i acts on E(Q) by sending x to −x and y to −iy. One

can check that this endomorphism commutes with the group law on E and hence i acts on

the p-adic Tate module E[p∞] of E for any prime p.

Let σ ∈ Gal(Q/Q) and (x, y) ∈ E(Q). Then

i ◦ σ(x, y) = i(xσ, yσ) = (−xσ,−iyσ)

while

σ ◦ i(x, y) = σ(−x,−iy) = (−xσ,−iσyσ).

Thus, the actions of i and σ commute if and only if σ ∈ Gal(Q/Q(i)). The fact that

i has order four and does not commute with complex conjugation shows that the action

of i on E[p∞] has two distinct eigenvalues. Thus, there is some basis of E[p∞] for which

the matrix A representing the endomorphism i is diagonal and non-scalar. Writing ρE,p :

Gal(Q/Q) → GL2(Zp) for the p-adic Galois representation of E, we see that, in the chosen

basis, Im ρE,p|Gal(Q/Q(i)) is contained in the diagonal matrices. Finally, Gal(Q/Q(i)) is a

subgroup of index two in Gal(Q/Q), so the set of diagonal matrices in Im ρE,p form an open

subset of Im ρE,p. From this it follows that Im ρE,p cannot be “large”. For example, Im ρE,p

cannot contain

{x ∈ SL2(Zp) : x ≡ 1 mod pr}

for any r > 0.

1.2 History of the problem

Serre initiated the study of images of Galois representations in 1968. He showed that if an

elliptic curve defined over Q does not have CM, then the image of the associated p-adic

Galois representation is open for any prime p [40]. Furthermore, he showed that the p-adic

Galois representation associated to such an elliptic curve is surjective (onto GL2(Zp)) for

2



almost all primes p [40].

The study of the image of the Galois representation attached to a modular form, and

showing that it is large in the absence of CM, was first carried out by Serre [41] and

Swinnerton-Dyer [43] in the early 1970s. They studied the Galois representation attached

to a modular form of level one with integral coefficients. In the 1980s, Ribet [38, 39] and

Momose [34] generalized the work of Serre and Swinnerton-Dyer to cover all Galois represen-

tations coming from classical modular forms. Ribet’s work dealt with the weight two case,

and Momose proved the general case. A key innovation of Ribet in generalizing the work of

Serre and Swinnerton-Dyer was to introduce a new type of symmetry of modular forms that

we shall call conjugate self-twists. These new symmetries, which can be viewed as a weak

version of the CM-type symmetry, allowed Ribet and Momose to define what “as large as

possible” should mean in the above heuristic. The main theorem in this thesis is an analogue

of their results in the I-adic setting.

In the 1980s, Hida developed his theory of p-adic families of ordinary modular forms [13]

and the Galois representations attached to them [12]. This theory will be reviewed in more

detail in Chapter 2. For now, it suffices to say that the Galois representation ρF arising from

a Hida family F take values in GL2(I), where I is an integral domain that is finite flat over

Λ = Zp[[T ]]. Shortly after Hida constructed these Galois representations, Mazur and Wiles

[30] showed that if I = Λ and the image of the residual representation ρ̄F contains SL2(Fp)

then Im ρF contains SL2(Λ). Under the assumptions that I is a power series ring in one

variable and the image of the residual representation ρ̄F contains SL2(Fp), our main result

was proved by Fischman [8]. Fischman’s work is the only previous work that considers the

effect of conjugate self-twists on Im ρF .

Hida has shown [19] under some technical hypotheses that, if F does not have CM then

Im ρF is “large” with respect to the ring Λ, even when I ) Λ. That is, there is a non-

zero Λ-ideal a such that Im ρF contains ker(SL2(Λ) → SL2(Λ/a)) (but it is possible that

Im ρF 6⊇ SL2(Λ)). The methods he developed play an important role in this thesis.

The local behavior of ρF at p was studied by Ghate, Vatsal [9] and later by Hida [18].

3



Let Dp denote the decomposition group at p in GQ. They showed, under some assumptions

that were later removed by Zhao [49], that ρF |Dp is indecomposable, a result that we make

use of in this thesis.

The main result of this thesis is to identify a Λ-subalgebra I0 of I such that Im ρF is

large with respect to I0 in a sense analogous to that of [19]. In some sense, we are p-

adically interpolating the results of Ribet [38, 39] and Momose [34] about images of Galois

representations associated to (ordinary) classical modular forms. As such, their results are

a key input into my proof.

Finally, there has been some work in other settings. Hida and Tilouine have shown that

certain GSp4-representations associated to p-adic families of Siegel modular forms have large

image [21]. Conti, Iovita, and Tilouine have investigated the non-ordinary version of Hida’s

[19] and obtained results analogous to those presented in this thesis [3].

Detailed information about images of Galois representations is important for other meth-

ods in number theory. For example, the Euler systems recently constructed by Lei, Loeffler,

and Zerbes require big image results [27, 28]. Furthermore, precise descriptions of images of

Galois representations often lead to new solutions to the inverse Galois problem [48, 50].

1.3 Structure of the dissertation

In Chapter 2 we will review Hida’s theory of ordinary p-adic families of modular forms and

the Galois representations associated to them. In particular, we will define Hida’s big Hecke

algebra, use the Hecke algebra to define Hida families, and discuss a duality between the

two. We will also show how Wiles’ definition of a Hida family [47] is equivalent to that of

Hida. Finally, we give a brief exposition of the theory of newforms for Hida families.

Chapter 3 is the main original mathematical content of the dissertation. We prove that

the image of a Galois representation associated to a non-CM Hida family is large, under some

assumptions. Chapter 3 is essentially my paper [25]. See Section 3.1 for a more detailed

summary of the internal structure of Chapter 3.
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Chapter 4 contains a purely automorphic proof of some special cases of Theorem 3.2.1.

The statement of Theorem 3.2.1 is purely automorphic, but the proof we give in Section 3.2

uses deformation theory. Chapter 4 is a proof-of-concept that suggests one may be able to

avoid the use of deformation theory in the proof.

In Chapter 5 we prove some small results that may be of independent interest and have

some relationship with the problems and conjectures discussed in Chapter 6.

Finally, Chapter 6 serves as my rough research plan going forward. I discuss problems

and conjectures related to the main theorem and techniques in Chapter 3 that I hope to

make some progress on in the next several years.
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CHAPTER 2

Background

The purpose of this chapter is to give a self-contained summary of the parts of Hida theory

that will be used in Chapter 3. We begin in Section 2.1 by introducing Hida’s notion of

p-adic families of modular forms and his associated Hecke algebras, following [13]. We quote

some basic results from that paper, such as the duality between modular forms and Hecke

algebras, without proof. While one can develop the theory in great generality, we focus on

a particular congruence subgroup and only describe the theory for cusp forms as that is all

that will be needed in the rest of the thesis. In Section 2.2 we discuss two properties of the

Hecke algebra that are used in Chapter 3. First we sketch the equivalence of Wiles’ definition

of a Hida family with that introduced in Section 2.1. We also note that the Hecke algebra

is étale over Λ at arithmetic points, a key geometric fact that is critical to the argument in

Section 3.2. Finally, in Section 2.3, we give a brief account of the theory of newforms for

Hida families, without proofs.

2.1 Defining big Hecke algebras and Hida families

Fix a prime p > 2 and an integer N = N0p
r, with (N0, p) = 1 and r ≥ 1. Fix a character

χ : (Z/NZ)× → Q×. Let

Γ0(N) =


a b

c d

 ∈ SL2(Z) : c ≡ 0 mod N

 .
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2.1.1 Classical modular forms

For an integer k ≥ 2, let Sk(N,χ) denote the space of classical modular forms of weight k,

level Γ0(N), and nebentypus χ. That is, f ∈ Sk(N,χ) if f : {z ∈ C : =z > 0} → C is

homomorphic and satisfies the following two properties:

1. for all
(
a b
c d

)
∈ Γ0(N) we have f

(
az+b
cz+d

)
= χ(d)(cz + d)kf(z) for all z ∈ C such that

=z > 0

2. for all
(
a b
c d

)
∈ SL2(Z), we have limy→∞,y∈R f

(
aiy+b
ciy+d

)
= 0 (so f vanishes at all cusps).

It is well known that these two properties imply that any such f has a Fourier expansion

of the form

f =
∞∑
n=1

a(n, f)qn,

where q = e2πiz.

There are Hecke operators acting on Sk(N,χ) given by the following formulae. For a

prime `,

a(m, f |T (`)) =


a(m`, f) + χ(`)qk−1a(m/`, f) ` - N

a(m`, f) `|N,
(2.1)

where a(m/`, f) = 0 if m/` is not an integer. We sometimes write U(`) for T (`) when `|N .

Let hk(N,χ) denote the C-subalgebra of EndC(Sk(N,χ)) generated by {T (`)}` prime.

It turns out that Sk(N,χ) has a basis of eigenforms. If f is an eigenform normalized

such that a(1, f) = 1, then f |T (n) = a(n, f) for all n. From this, together with the fact that

Sk(N,χ) is a finite dimensional C-vector space, one can conclude that Q(a(n, f) : n ∈ Z+)

is a finite extension of Q. Let Z[χ] denote the ring generated by the values of χ. For any

subring A of C, let Sk(N,χ;A) = {f ∈ Sk(N,χ) : a(n, f) ∈ A, ∀n ∈ Z+}, which is a finite

type A-module. It is a deep fact that Sk(N,χ;Z[χ, 1
6N

])⊗Z[χ, 1
6N

] C ∼= Sk(N,χ).

7



2.1.2 The space of p-adic modular forms

Fix algebraic closures Q of Q and Qp of Qp as well as embeddings Q ↪→ C and Q ↪→ Qp.

Fix a finite extension K of Qp (sufficiently large) with ring of integers O. Let K0 ⊂ K be a

finite extension of Q that is dense in K under the p-adic topology. Define

Sk(N,χ;K) = Sk(N,χ;K0)⊗K0 K.

Let Ω be the p-adic completion of the fixed algebraic closure of Qp. Consider the formal

power series ring Ω[[q]], which comes with the following p-adic norm:

|
∞∑
n=0

anq
n|p = sup

n
|an|p.

The norm is finite on Sk(N,χ;K0), and Sk(N,χ;K) may be identified with the completion

of Sk(N,χ;K0) in Ω[[q]] under the p-adic norm. Define

Sk(N,χ;O) = {f ∈ Sk(N,χ;K) : |f |p ≤ 1} = S(N,χ;K) ∩ O[[q]].

The next step is to put all the p-adic modular forms of different weights together into a

big space. Let A be either K or O. For j > 0, define

Sj(N,χ;A) = ⊕jk=1Sk(N,χ;A).

Define

S(N,χ;A) =
⋃
j>0

Sj(N,χ;A).

One can check that one can embed S(N,χ;A) ↪→ A[[q]] via q-expansions. The space of

cuspidal p-adic modular forms of level Γ0(N) and nebentypus χ with coefficients in A is

then defined to be the p-adic completion of S(N,χ;A) in A[[q]]. The space will be denoted

S̄(N,χ;A).

2.1.3 The p-adic Hecke algebra

Define Hecke operators on S̄(N,χ;A) by the formulae given in (2.1). One can check that

for all j > 0, the space Sj(N,χ;A) is stable under all of the above Hecke operators. Let
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hj(N,χ;A) denote the A-subalgebra of EndA−Mod(Sj(N,χ;A)) generated by {T (`)}` prime.

Note that for j′ > j the restriction map gives a natural morphism hj
′
(N,χ;A)→ hj(N,χ;A).

Define

h(N,χ;O) = lim←−
j

hj(N,χ;O).

By definition, this acts on S(N,χ;O) = lim−→j
Sj(N,χ;O). One can easily check that the

action of h(N,χ;O) on S(N,χ;O) is uniformly continuous and therefore h(N,χ;O) acts

naturally on S̄(N,χ;O).

Unfortunately, h(N,χ;O) is too big to study all at once, so Hida introduced the ordinary

part of the space. We begin by defining the ordinary projector on hj(N,χ;O) by

ej = lim
n→∞

T (p)n!.

This limit converges [14, Lemma 7.2.1] to an idempotent in hj(N,χ;O). These idempotents

are compatible with the projection maps hj(N,χ;O) → hi(N,χ;O) for j ≥ i, and so we

define the ordinary projector [13, (1.17b)] by

e = lim←−
j

ej ∈ h(N,χ;O).

Again, e is an idempotent. For any h(N,χ;O)-module M , we write Mord for eM , which is

called the ordinary part of M .

Definition 2.1.1. A Hida family is an irreducible component of Spechord(N,χ;O), which

we sometimes identify with the corresponding ring.

2.2 Important properties of the big Hecke algebra

In this section we discuss some properties of Hecke algebras and Hida families that will be

used in Chapter 3.
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2.2.1 Duality between Hecke algebras and modular forms

As above, let A denote either K or O. We begin by defining a bilinear form

hj(N,χ;A)× Sj(N,χ;A)→ A (2.2)

(h, f)jA 7→ a(1, f |h), (2.3)

where a(1, f |h) denotes coefficient of q in the q-expansion of f |h.

Furthermore, set Sj(N,χ;K/O) = Sj(N,χ;K)/Sj(N,χ;O). Then we can define

S(N,χ;K/O) = S(N,χ;K)/S(N,χ;O) = lim−→
j

Sj(N,χ;K/O)

which we equip with the discrete topology. Define a pairing

hj(N,χ;O)× S(N,χ;K/O)→ K/O

(h, f̄)jK/O 7→ (h, f)j mod O,

where f̄ denotes the class in S(N,χ;K/O) containing f . These pairings are compatible

with the projective and injective limits in the definitions of h(N,χ;O) and S(N,χ;K/O),

respectively, and so we get a pairing

( , )K/O : h(N,χ;O)× S(N,χ;K/O)→ K/O. (2.4)

Theorem 2.2.1. [13]

1. The pairing ( , )jA induces a natural isomorphism

hj(N,χ;A) ∼= HomA(Sj(N,χ;A), A).

2. The pairing ( , )K/O induces a Pontrjagin duality between the compact module h(N,χ;O)

and the discrete module S(N,χ;K/O).

3. Furthermore, ( , )K/O respects ordinarity. That is, Sord(N,χ;K/O) is dual to hord(N,χ;O)

with respect to this pairing.
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2.2.2 The Λ-algebra structure of h(N,χ;O)

Let Γ = 1 + pZp and for each positive integer n set Γn = 1 + pnZp. Fix γ ∈ Γ to be a

topological generator; for example, one could choose γ = 1 + p. Define

ΛK = lim←−
n

O[Γ/Γn] ∼= O[[T ]].

The last (non-canonical isomorphism) is given by identifying γ with 1 + T . When K = Qp

we simply write Λ for ΛK .

We begin by defining an action of Γ on S(N,χ;K). For f ∈ S(N,χ;K), we can write f

as a finite sum f =
∑j

k=1 fk, with each fk ∈ Sk(N,χ;K). For z ∈ Γ, the action of z on f is

defined by

f |z :=

j∑
k=1

zkχ(z)fk,

where we view z ∈ (Z/NZ)× as

(z mod pr, 1) ∈ (Z/prZ)× × (Z/N0Z)× ∼= (Z/NZ)×.

It follows directly from the definition that S(N,χ;O) is preserved under the Γ-action and

that S(N,χ;K/O) inherits a continuous ΛK-action [13, §3].

By duality (Theorem 2.2.1), we see that h(N,χ;O) inherits a ΛK-action, which can be

shown to be continuous with respect to the projective limit topologies on ΛK and h(N,χ;O).

We now introduce some special prime ideals in the ring ΛK . An arithmetic prime of ΛK

is a prime ideal of the form

Pk,ε := (1 + T − ε(1 + p)(1 + p)k)

for an integer k ≥ 2 and character ε : 1 + pZp → O× of p-power order. We shall write r(ε)

for the non-negative integer such that pr(ε) is the order of ε. If R is a finite extension of ΛK ,

then we say a prime of R is arithmetic if it lies over an arithmetic prime of ΛK .

Furthermore, let ω denote the p-adic Teichmüller character. Let χ1 be the product of

χ|(Z/N0Z)× with the tame p-part of χ. The following theorem summarizes the essence of
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Hida’s theory of ordinary families of p-adic modular forms and their Hecke algebras. The

content of this theorem is used both explicitly and implicitly throughout the dissertation.

Theorem 2.2.2. 1. [13, Theorem 3.1] The ordinary Hecke algebra hord(N,χ;O) is free

of finite rank over ΛK.

2. [19]The ordinary Hecke algebra hord(N,χ;O) satisfies the following specialization prop-

erty: for every arithmetic prime Pk,ε of ΛK, there is an isomorphism

hord(N,χ;O)/Pk,εh
ord(N,χ;O) ∼= hord

k (Npr(ε)+1, χεω−k)

sending T (`) to T (`) for all primes `.

3. [16, Proposition 3.78] The ordinary Hecke algebra hord(N,χ;O) is étale over all arith-

metic points of ΛK.

2.2.3 Wiles’ definition of Hida families

In [47], Wiles gave a different definition of Hida families that will be used in Chapter 3. In this

section we give Wiles’ definition and explain how to translate between the two definitions.

Fix a finite flat integral domain I over ΛQp(χ). A formal power series G =
∑∞

n=1 a(n,G)qn

is an I-adic cusp form of level N and character χ if for almost all arithmetic primes P of

I, the specialization of G at P gives the q-expansion of an element gP of Sk(Np
r(ε), εχω−k),

where P lies over Pk,ε. Such a form is ordinary if Ap ∈ I×. Let S(N,χ; I) be the I-submodule

of I[[q]] spanned by all I-adic cusp forms of level N and character χ, and let Sord(N,χ; I)

denote the I-submodule of S(N,χ; I) spanned by all ordinary I-adic cusp forms. Equivalently,

we could define ΛQp(χ)-adic forms as above, and then for any finite flat integral domain I

over ΛQp(χ) we would have S(N,χ; I) = S(N,χ; ΛQp(χ))⊗ΛQp(χ)
I and similarly for the ordinary

part. Wiles proved that Sord(N,χ; ΛQp(χ)) is free of finite rank over ΛQp(χ) [14, Theorem 7.3.1].

Furthermore, Sord(N,χ; ΛQp(χ)) satisfies the same interpolation property as hord(N,χ;O) in

the previous section. That is, for any arithmetic prime Pk,ε, we have [14, Theorem 7.3.3]

Sord(N,χ; ΛQp(χ))/Pk,εSord(N,χ; ΛQp(χ)) ∼= Sord
k (Npr(ε), εχω−k). (2.5)

12



We now wish to define Hecke operators on S(N,χ; I). Recall that for p > 2 we have a

canonical decomposition Z×p ∼= µp−1 × Γ. For s ∈ Zp, let 〈s〉 denote its projection to Γ.

Define the character κ : Γ→ Λ× by, for any s ∈ Zp,

κ(γs) = (1 + T )s =
∞∑
n=0

(
s

n

)
T n. (2.6)

For F =
∑∞

n=1 a(n, F )qn ∈ S(N,χ; I) and a prime `, we define

a(m,F |T (`)) =


a(m`, F ) + κ(〈`〉)χ(`)`−1a(m/`, F ) ` - N

a(m`, F ) `|N,
(2.7)

where, as in the classical case, a(m/`, F ) is defined to be 0 whenever m/` is not an integer.

It is straightforward to check (see [14, §7.3]) that, modulo arithmetic primes, these formulae

induce the classical formulae for Hecke operators given in (2.1). Therefore the Hecke op-

erators preserve S(N,χ; I) as well as the ordinary subspace Sord(N,χ; I). Let hord(N,χ; I)

denote the I-submodule of EndI(Sord(N,χ; I)) generated by {T (`)}` prime. As usual, for each

integer e ≥ 1 we inductively define

T (`e+1) =


T (`)T (`e)− χ(`)κ(〈`〉)`−1T (`e−1) ` - N

T (`)e+1 `|N

For any integer m =
∏

` `
e` , we define T (m) =

∏
` T (`e`).

As in (2.2), we can define a pairing

hord(N,χ; I)× Sord(N,χ; I)→ I (2.8)

(h, F )I 7→ a(1, F |h). (2.9)

Just as in the previous section, there is a duality between the space of ordinary I-adic cusp

forms and the Hecke algebra.

Theorem 2.2.3. The pairing (2.8) induces isomorphisms HomI(h
ord(N,χ; I), I) ∼= Sord(N,χ; I)

and HomI(Sord(N,χ; I), I) ∼= hord(N,χ; I).

We now explain how to translate between I-adic cusp forms and Hida families.
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Proposition 2.2.4. Every Hida family gives rise to an I-adic cusp form.

Proof. Start with a Hida family, that is, an irreducible component Spec I of Spechord(N,χ;O).

Then there is a surjective ring morphism πI : hord(N,χ;O) → I induced by the natural in-

clusion of spectra. Define

F =
∞∑
n=1

a(n, F )qn ∈ I[[q]],

where a(n, F ) = πI(T (n)). To see that F is an I-adic cusp form, let P be an arithmetic

prime of I lying over Pk,ε. By Theorem 2.2.2 we get an algebra homomorphism

hord
k (Npr(ε), χεω−k) ∼= hord(N,χ;O)/Pk,εh

ord(N,χ;O) � I/Pk,εI→ I/P.

By duality (Theorem 2.2.1), the above homomorphism corresponds to en eigenform fP ∈

Sord
k (Npr(ε), εχω−k;O). Since Sord

k (Npr(ε), εχω−k,O) = Sord
k (Npr(ε), εω−k;OK0)⊗OK0

O, and

Sord
k (Npr(ε), εχω−k;OK0) has a basis of eigenforms, we have fP ∈ Sord

k (Npr(ε), εχω−k;OK0).

Hence, F is an I-adic cusp form in the sense of Wiles. The fact that a(p, F ) ∈ I× follows

from the fact that, by definition of ordinarity, the U(p)-operator is a unit in hord(N,χ;O).

Hence F ∈ Sord(N,χ; I), as desired.

Proposition 2.2.5. Let F be an I-adic cusp form of level N and character χ that is also a

Hecke eigenform. Without loss of generality, assume that I = Λ[a(n, F ) : n ∈ Z+]. Then I

is a Hida family; that is, Spec I is an irreducible component of hord(N,χ;O).

Proof. The key point in the proof is that both hord(N,χ; I) and hord(N,χ;O) p-adically

interpolate the weight k p-adic Hecke algebras, and there is essentially only one way to do

that since arithmetic primes are dense in Λ.

Since I is an integral domain, Spec I is irreducible. Therefore, it suffices to construct a

ring homomorphism hord(N,χ;O)→ I. By Theorem 2.2.3 we know that there is an I-algebra

homomorphism λF : hord(N,χ; I)→ I such that λF (T (n)) = a(n, F ) for all integers n. Thus,

it suffices to show that hord(N,χ; ΛO) ∼= hord(N,χ;O).

Define a ΛO-algebra map

ϕ : hord(N,χ; ΛO)→ hord(N,χ;O)
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by sending T (n) to T (n) for all positive integers n. This is well-defined since if r were any

ΛO-formal linear combination of T (n)’s such that r = 0 ∈ hord(N,χ; ΛO), it follows that

for any arithmetic prime Pk,ε, the formal ΛO/Pk,ε-linear combination r would be equal to

zero in hord
k (Npr(ε), εχω−k;O[ε]) by the interpolation property of hord(N,χ; ΛO) ((2.5) and

Theorem 2.2.3). Since arithmetic primes are dense in ΛO, it follows that ϕ(r) = 0, and so ϕ

is well-defined.

The surjectivity of ϕ follows from the fact that, by definition, hord(N,χ;O) is generated

by the T (n)’s. To see that ϕ is injective, let Pk,ε be any arithmetic prime of ΛO. Then by

the interpolation property of hord(N,χ; ΛO) ((2.5) and Theorem 2.2.3), it follows that

kerϕ = Pk,ε kerϕ ⊆ Pk,εh
ord(N,χ; ΛO).

The above holds for all arithmetic primes Pk,ε, and such primes are dense in Λ. Since

hord(N,χ; ΛO) is finite over ΛO, it follows that kerϕ = 0, as desired.

2.3 Theory of newforms

We briefly review the theory of newforms for both classical modular forms and Hida families.

2.3.1 Classical newforms

The content in this section is taken from [33, Section 4.6]. Let H denote the upper half

complex plane. For z ∈ H, we write z = x + iy with x, y ∈ R and i =
√
−1. Recall that

for f, g ∈ Sk(N,χ) we have the Hermitian Petersson inner product given by the following

formula:

〈f, g〉 =

∫
Γ0(N)\H

f(z)g(z)=(z)k−2dxdy,

where the bar over g(z) denotes complex conjugation.

The space of old forms in Sk(N,χ) is generated by forms coming from lower level. More

precisely, let c(χ) denote the conductor of χ. Let Sold
k (N,χ) be the C-subspace of Sk(N,χ)
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generated by ⋃
M

⋃
d

{f(dz) : f(z) ∈ Sk(M,χ)},

where M runs over all positive integers such that c(χ)|M |N and M 6= N , and d runs over all

positive integral divisors of N/M , including 1 and N/M . The space of newforms, denoted

Snew
k (N,χ), is defined to be the orthogonal complement of Sold

k (N,χ) in Sk(N,χ) with respect

to the Petersson inner product [33, p. 162]. The spaces of new and old forms are stable under

the Hecke operators T (`) for all primes ` - N . We say f ∈ Snew
k (N,χ) is a primitive form of

conductor N if f is an eigenfunction for T (`) for all primes ` such that ` - N and the first

term in the q-expansion of f is equal to 1. Every Hecke eigenform has a unique associated

primitive form. Furthermore, primitive forms are the object to which one can attach Galois

representations. The following theorem makes these two statements more precise.

Theorem 2.3.1. 1. [33, Corollary 4.6.14] If f ∈ Sk(N,χ) is an eigenform for T (`) with

eigenvalue a(`, f) for every prime ` with ` - N , then there is an integer M such that

c(χ)|M |N and a unique primitive form f0 ∈ Snew
k (M,χ) such that f0|T (`) = a(`, f)f0

for all primes ` such that ` - N .

2. [4] Let f =
∑∞

n=1 a(n, f)qn be a primitive form, and let K be the field extension of Q

generated by {a(n, f) : n ∈ Z+}, which is well known to be a finite extension of Q. Let

Kp be the completion of K with respect to a prime lying over p. There is a continuous

representation ρf,p : GQ → GL2(Kp) that is unramified outside Np and for all primes

` - Np,

tr ρf,p(Frob`) = a(`, f),

where Frob` denotes a conjugacy class of a Frobenius element at ` in GQ.

These are the Galois representations studied by Ribet and Momose.
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2.3.2 Newforms in p-adic families

Let F ∈ I[[q]] be a Hida family in the sense of Wiles. Assume that F is an eigenform for

Hida’s Hecke algebra. We say that F is primitive if, for every arithmetic prime P of I, the

specialization fP of F at P satisfies one of the following two properties:

1. fP is a primitive form in the sense of the previous section

2. the level of fP and the level of the associated primitive form to fP from Theorem 2.3.1

differ only by a power of p.

If F has level N and N0 is the prime-to-p part of N , we shall refer to the above two conditions

simultaneously by saying that fP is N0-new. It turns out that F is primitive if and only if

there exists an arithmetic prime P of I for which fP is N0-new.

Let f ∈ Sk(Γ0(N), χ) be a classical primitive form of weight k ≥ 2 whose level is prime

to p. Assume that f is ordinary at p (so a(p, f) is a p-adic unit). Then the polynomial

x2 − a(p, f)x+ χ(p)pk−1 = (x− α)(x− β) has exactly one root that is a p-adic unit, say α.

The p-stabilization of f is defined to be

fα(z) := f(z)− βf(pz).

It is a p-ordinary normalized eigenform of level Np, and fα|U(p) = αfα.

A key fact in the theory of newforms in p-adic families is the following theorem of Hida.

Theorem 2.3.2. [13, Corollary 3.7] Let f be a primitive classical form of weight at least 2

and level N . Let f0 be f if p|N and f0 be the p-stabilization of f if p - N . Then there is

a unique primitive Hida family F ∈ I[[q]] of level N such that f0 = fP for some arithmetic

prime P of I.

The idea of the proof of the above theorem is as follows. One counts the number of

classical forms of a fixed weight that are arithmetic specializations of a given primitive Hida

family of level N0. One then counts the number of classical forms f of weight k whose
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associated f0 as in the above theorem has conductor divisible by N0. The first number is

bounded above by the second number, and one uses Hida’s control theorem [13, Theorem

3.1] to conclude that the two numbers must be equal. Thus, each f0 necessarily belongs to

a unique primitive Hida family.

Using Theorem 2.3.2, together with the rest of the theory of newforms developed in [13],

one can prove the first part of the following analogue of Theorem 2.3.1.

Theorem 2.3.3. 1. If F ∈ Sord(N,χ) is an eigenform for T (`) with eigenvalue a(`, F )

for every prime ` with ` - N , then there is an integer M such that c(χ)|M |N and a

unique primitive form F0 ∈ Sord(M,χ) such that F0|T (`) = a(`, F )F0 for all primes `

such that ` - N .

2. [12] Let F =
∑∞

n=1 a(n, F )qn be a primitive Hida family, and let K be the field extension

of Q(Λ) generated by {a(n, F ) : n ∈ Z+}, which is well known to be a finite extension

of Q(Λ). There is a continuous representation ρF : GQ → GL2(K) that is unramified

outside Np and for all primes ` - Np,

tr ρF (Frob`) = a(`, F ),

where Frob` denotes a conjugacy class of a Frobenius element at ` in GQ.

It is these representations that we are interested in studying in this thesis.
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CHAPTER 3

The Main Result

3.1 Main theorems and structure of paper

We begin by fixing notation that will be in place throughout this chapter. Let p > 2 be

prime. Fix algebraic closures Q of Q and Qp of Qp as well as an embedding ιp : Q → Qp.

Let GQ = Gal(Q/Q) be the absolute Galois group of Q. Let Z+ denote the set of positive

integers. Fix N0 ∈ Z+ prime to p; it will serve as our tame level. Let N = N0p
r for

some fixed r ∈ Z+. Fix a Dirichlet character χ : (Z/NZ)× → Q× which will serve as our

nebentypus. Let χ1 be the product of χ|(Z/N0Z)× with the tame p-part of χ, and write c(χ)

for the conductor of χ. During the proof of the main theorem we will assume that the order

of χ is a power of 2 and that 2c(χ)|N . The fact that we can assume these restrictions on χ

for the purpose of demonstrating I0-fullness is shown in Proposition 3.2.9.

For a valuation ring W over Zp, let ΛW = W [[T ]]. Let Zp[χ] be the extension of Zp

generated by the values of χ. When W = Zp[χ] we write Λχ for ΛW . When W = Zp then we

let Λ = ΛZp . For a commutative ring R, we use Q(R) to denote the total ring of fractions of

R. Let Spec I be an irreducible component of Spec hord(N0, χ; Λχ). Assume further that I is

primitive in the sense of section 2.3.2. Let λF : hord(N0, χ; Λχ)→ I be the natural Λχ-algebra

homomorphism coming from the inclusion of spectra. Let

ρF : GQ → GL2(Q(I))

be the associated Galois representation from Theorem 2.3.3. So ρF is unramified outside N

and satisfies

tr ρF (Frob`) = λF (T (`))
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for all primes ` not dividing N .

Henceforth for any n ∈ Z+ we shall let a(n, F ) denote λF (T (n)). Let F be the formal

power series in q given by

F =
∞∑
n=1

a(n, F )qn.

Let I′ = Λχ[{a(`, F ) : ` - N}] which is an order in Q(I) since F is primitive. We shall

consider the Hida family F and the associated ring I′ to be fixed throughout the chapter.

For a local ring R we will use mR to denote the unique maximal ideal of R. Let F := I′/mI′

the residue field of I′. We exclusively use the letter P to denote a prime of I, and P′ shall

always denote P∩ I′. Conversely, we exclusively use P′ to denote a prime of I′ in which case

we are implicitly fixing a prime P of I lying over P′.

Recall that Hida has shown [12] that there is a well defined residual representation ρF :

GQ → GL2(I/mI) of ρF . Throughout this thesis we impose the following assumption.

Assume that ρ̄F is absolutely irreducible. (abs)

By the Chebotarev density theorem, we see that tr ρ̄F is valued in F. Under (abs) we may

use pseudo representations to find a GL2(I′)-valued representation that is isomorphic to ρF

over Q(I). Thus we may (and do) assume that ρF takes values in GL2(I′).

Definition 3.1.1. Let g =
∑∞

n=1 a(n, g)qn be either a classical Hecke eigenform or a Hida

family of such forms. Let K be the field generated by {a(n, g) : n ∈ Z+} over either Q in

the classical case or Q(Λχ) in the Λχ-adic case. We say a pair (σ, ησ) is a conjugate self-twist

of g if ησ is a Dirichlet character, σ is an automorphism of K, and

σ(a(`, g)) = ησ(`)a(`, g)

for all but finitely many primes `. If there is a non-trivial character η such that (1, η) is a

conjugate self-twist of g, then we say that g has complex multiplication or CM. Otherwise,

g does not have CM.

If a modular form does not have CM then a conjugate self-twist is uniquely determined

by the automorphism.

20



We shall always assume that our fixed Hida family F does not have CM. Let

Γ = {σ ∈ Aut(Q(I)) : σ is a conjugate self-twist of F}.

Under the assumption (abs) it follows from a lemma of Carayol and Serre [15, Proposition

2.13] that if σ ∈ Γ then ρσF
∼= ρF ⊗ ησ over I′. As ρF is unramified outside N we see that

in fact σ(a(`, F )) = ησ(`)a(`, F ) for all primes ` not dividing N . Therefore σ restricts to an

automorphism of I′. Let I0 = (I′)Γ. Define

H0 :=
⋂
σ∈Γ

ker ησ

and

H := H0 ∩ ker(det(ρF )).

These open normal subgroups of GQ play an important role in our proof.

For a commutative ring B and ideal b of B, write

ΓB(b) := ker(SL2(B)→ SL2(B/b)).

We call ΓB(b) a congruence subgroup of GL2(B) if b 6= 0. We can now define what we mean

when we say a representation is “large” with respect to a ring.

Definition 3.1.2. Let G be a group, A a commutative ring, and r : G → GL2(A) a

representation. For a subring B of A, we say that r is B-full if there is some γ ∈ GL2(A)

such that γ(Im r)γ−1 contains a congruence subgroup of GL2(B).

Let Dp be the decomposition group at p in GQ. That is, Dp is the image of GQp :=

Gal(Qp/Qp) under the embedding GQp ↪→ GQ induced by ιp. Recall that over Q(I) the local

representation ρF |Dp is isomorphic to
(
ε u
0 δ

)
[17, Theorem 4.3.2]. Let ε̄ and δ̄ denote the

residual characters of ε and δ, respectively.

Definition 3.1.3. For any open subgroup G0 ≤ GQ we say that ρF is G0-regular if ε̄|Dp∩G0 6=

δ̄|Dp∩G0 .
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The main result of this thesis is the following.

Theorem 3.1.4. Assume p > 2 and let F be a primitive non-CM p-adic Hida family.

Assume |F| 6= 3 and that the residual representation ρF is absolutely irreducible and H0-

regular. Then ρF is I0-full.

The strategy of the proof is to exploit the results of Ribet [38, 39] and Momose [34]. Since

an arithmetic specialization of a non-CM Hida family cannot be CM, their work implies that

if P′ is an arithmetic prime of I′ then there is a certain subring O ⊆ I′/P′ for which

ρF mod P′ is O-full. To connect their ring O with I0, in section 3.5 we show that Q(O) =

Q(I0/Q), where Q = I0 ∩ P′. The proof that Q(O) = Q(I0/Q) relies on establishing a

relationship between conjugate self-twists of F and conjugate self-twists of the arithmetic

specializations of F . As this may be of independent interest we state the result here.

Theorem 3.1.5. Let P be an arithmetic prime of I and σ be a conjugate self-twist of fP

that is also an automorphism of the local field Qp({a(n, fP) : n ∈ Z+}). Then σ can be lifted

to σ̃ ∈ Γ such that σ̃(P′) = P′, where P′ = P ∩ I′.

The proof, in section 3.2, uses a combination of abstract deformation theory and auto-

morphic techniques. Deformation theory is used to lift σ to an automorphism of the universal

deformation ring of ρ̄F . Then we use automorphic methods to show that this lift preserves

the irreducible component Spec I. The key technical input is that hord(N,χ; Λχ) is étale over

arithmetic points of Λ.

The remainder of the chapter consists of a series of reduction steps that allow us to

deduce our theorem from the aforementioned results of Ribet and Momose. Our methods

make it convenient to modify ρF to a related representation ρ : H → SL2(I0) and show that

ρ is I0-full. We axiomatize the properties of ρ at the beginning of section 3.3 and use ρ in

the next three sections to prove Theorem 3.1.4. Then in section 3.6 we explain how to show

the existence of ρ with the desired properties.

The task of showing that ρ is I0-full is done in three steps. In section 3.3 we consider

the projection of Im ρ to
∏
Q|P SL2(I0/Q), where P is an arithmetic prime of Λ and Q runs
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over all primes of I0 lying over P . We show that if the image of Im ρ in
∏
Q|P SL2(I0/Q) is

open then ρ is I0-full. This uses Pink’s theory of Lie algebras for p-profinite subgroups of

SL2 over p-profinite semilocal rings [35] and the related techniques developed by Hida [19].

In section 3.4 we show that if the image of Im ρ in SL2(I0/Q) is I0/Q-full for all primes Q

of I0 lying over P , then the image of Im ρ is indeed open in
∏
Q|P SL2(I0/Q). The argument

is by contradiction and uses Goursat’s Lemma. It was inspired by an argument of Ribet [36].

This is the only section where we make use of the assumption that |F| 6= 3.

The final step showing that the image of Im ρ in SL2(I0/Q) is I0/Q-full for every Q lying

over P is done in section 3.5. The key input is Theorem 3.1.5 from section 3.2 together

with the work of Ribet and Momose on the image of the Galois representation associated

to a non-CM classical modular form. We give a brief exposition of their work and a precise

statement of their result at the beginning of section 3.5. We reiterate the structure of the

proof of Theorem 3.1.4 at the end of section 3.5.

3.2 Lifting twists

Let P1 and P2 be (not necessarily distinct) arithmetic primes of I, and let P′i = Pi ∩ I′. We

shall often view Pi as a geometric point in Spec(I)(Qp). Suppose there is an isomorphism

σ : I/P1
∼= I/P2 and a Dirichlet character η : GQ → Q(I/P2)× such that

σ(a(`, fP1)) = η(`)a(`, fP2)

for all primes ` not dividing N . We may (and do) assume without loss of generality that η is

primitive since the above relation holds even when η is replaced by its primitive character.

In this section we show that σ can be lifted to a conjugate self-twist of F .

Theorem 3.2.1. Assume that η takes values in Zp[χ] and that the order of χ is a power

of 2. If η is ramified at 2, assume further that 2c(χ)|N . Then there is an automorphism

σ̃ : I′ → I′ such that

σ̃(a(`, F )) = η(`)a(`, F )
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for all but finitely many primes ` and σ ◦P′1 = P′2 ◦ σ̃. In particular, P′1 and P′2 necessarily

lie over the same prime of I0.

Remark 1. The condition that the order of χ be a power of 2 looks restrictive. However in

Proposition 3.2.9 we show that for the purpose of proving I0-fullness we may replace F with

a family whose nebentypus has order a power of 2. The same proposition shows that the

condition that 2c(χ)|N is not restrictive when proving I0-fullness.

There are two steps in the proof of Theorem 3.2.1. First we use abstract deformation

theory to construct a lift Σ of σ to the universal deformation ring of ρ̄F (or some base change

of that ring). This allows us to show that η is necessarily quadratic. Then we show that

the induced map on spectra Σ∗ sends the irreducible component Spec I′ to another modular

component of the universal deformation ring. Since σ is an isomorphism between I/P1 and

I/P2 it follows that the arithmetic point P′1 lies on both Spec I′ and Σ∗(Spec I′). Since the

Hecke algebra is étale over arithmetic points of Λ, it follows that Σ∗(Spec I′) = Spec I′ and

hence Σ descends to the desired automorphism of I′.

3.2.1 Lifting σ to the universal deformation ring

Let W be the ring of Witt vectors of F. Let QN be the maximal subfield of Q unramified

outside N and infinity, and let GN
Q := Gal(QN/Q). Note that ρF factors through GN

Q . For

the remainder of this section we shall consider GN
Q to be the domain of ρF and ρ̄F .

We set up the notation for deformation theory. For our purposes universal deforma-

tion rings of pseudo representations are sufficient. However, since we are assuming that

ρ̄F is absolutely irreducible, we use universal deformation rings of representations to avoid

introducing extra notation for pseudo representations.

Let C denote the category of complete local p-profinite W -algebras with residue field F.

Let π̄ : GN
Q → GLn(F) be an absolutely irreducible representation. We say an object Rπ̄ ∈ C

and representation π̄univ : GN
Q → GLn(Rπ̄) is a universal couple for π̄ if: π̄univ mod mRπ̄

∼= π̄

and for every A ∈ C and representation r : GN
Q → GLn(A) such that r mod mA

∼= π̄, there
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exists a unique W -algebra homomorphism α(r) : Rπ̄ → A such that r ∼= α(r) ◦ π̄univ. Mazur

proved that a universal couple always exists (and is unique) when π̄ is absolutely irreducible

[31].

Since η takes values in Zp[χ] which may not be contained in W , we need to extend

scalars. Let O = W [η]. We recommend the reader assume O = W on the first read. In fact,

in Proposition 3.2.4 we will use deformation theory to conclude that η is quadratic, but we

cannot assume that from the start. For a commutative W -algebra A, let OA := O ⊗W A. It

will be important that we are tensoring on the left by O as we will sometimes want to view

OA as a right W -algebra.

Let σ̄ denote the automorphism of F induced by σ and η̄ the projection of η to F. The

automorphism σ̄ of F induces an automorphism W (σ̄) on W . For any W -algebra A, let

Aσ̄ := A ⊗W (σ̄) W , where W is considered as a W -algebra via W (σ̄). Note that Aσ̄ is a

W -bimodule with different left and right actions. Namely there is the left action given by

w(a⊗w′) = aw⊗w′, which may be different from the right action given by (a⊗w′)w = a⊗ww′.

In particular, OAσ̄ = O ⊗W A ⊗W (σ̄) W . Let ι(σ̄, A) : A → Aσ̄ be the usual map given by

ι(σ̄, A)(a) = a⊗1. It is an isomorphism of rings with inverse given by ι(σ̄−1, A). Furthermore,

ι(σ̄, A) is a left W -algebra homomorphism.

Consider the universal couples (Rρ̄F , ρ̄
univ
F ), (Rρ̄σ̄F

, (ρ̄σ̄F )univ), and (Rη̄⊗ρ̄F , (η̄⊗ ρ̄F )univ). The

next lemma describes the relationship between these deformation rings.

Lemma 3.2.2. 1. If ρ̄σ̄F
∼= η̄ ⊗ ρ̄F then the universal couples (Rη̄⊗ρ̄F , (η̄ ⊗ ρ̄F )univ) and

(Rρ̄σ̄F
, (ρ̄σ̄F )univ) are canonically isomorphic.

2. There is a canonical isomorphism ϕ : Rσ̄
ρ̄F
→ Rρ̄σ̄F

of right W -algebras such that

(ρ̄σ̄F )univ ∼= ϕ ◦ ι(σ̄, Rρ̄F ) ◦ ρ̄univ
F .

3. Viewing (η̄ ⊗ ρ̄F )univ as a representation valued in GL2(ORη̄⊗ρ̄F ) via the natural map

Rη̄⊗ρ̄F → ORη̄⊗ρ̄F , there is a natural W -algebra homomorphism ψ : Rη̄⊗ρ̄F → ORρ̄F such

that

η ⊗ ρ̄univ
F
∼= (1⊗ ψ) ◦ (η̄ ⊗ ρ̄F )univ.
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Proof. The first statement follows directly from the definition of universal couples.

For the second point, we show that the right W -algebra Rσ̄
ρ̄F

satisfies the universal

property for ρ̄σ̄F . Let A ∈ C and r : GN
Q → GL2(A) be a deformation of ρ̄σ̄F . Then

ι(σ̄−1, A) ◦ r is a deformation of ρ̄F , viewing Aσ̄
−1

as a right W -algebra. By universal-

ity there is a unique right W -algebra homomorphism α(ι(σ̄−1, A) ◦ r) : Rρ̄F → Aσ̄
−1

such

that ι(σ̄−1, A) ◦ r ∼= α(ι(σ̄−1, A) ◦ r) ◦ ρ̄univ
F . Tensoring α(ι(σ̄−1, A) ◦ r) with W over W (σ̄)

gives a homomorphism of right W -algebras α(ι(σ̄−1, A) ◦ r) ⊗W (σ̄) 1 : Rσ̄
ρ̄F
→ A such that

r ∼= (α(ι(σ̄−1, A) ◦ r) ⊗W (σ̄) 1) ◦ ι(σ̄, Rρ̄F ) ◦ ρ̄univ
F . This shows that the right W -algebra Rσ̄

ρ̄F

satisfies the universal property for ρ̄σ̄F . With notation as above, when r = (ρ̄σ̄F )univ we set

ϕ = α(ι(σ̄−1, Rρ̄σ̄F
) ◦ (ρ̄σ̄F )univ)⊗W (σ̄) 1, so

(ρ̄σ̄F )univ ∼= ϕ ◦ ι(σ̄, Rρ̄F ) ◦ ρ̄univ
F . (3.1)

In particular, ϕ is a right W -algebra homomorphism.

Finally, let i : Rη̄⊗ρ̄F → ORη̄⊗ρ̄F be the map given by x 7→ 1 ⊗ x. If A is a W -algebra

and r : GN
Q → GL2(A) is a deformation of ρ̄F then η ⊗ r : GN

Q → GL2(OA) is a deformation

of η̄ ⊗ ρ̄F . Hence there is a unique W -algebra homomorphism α(η ⊗ r) : Rη̄⊗ρ̄F → OA such

that η⊗ r ∼= α(η⊗ r)◦ (η̄⊗ ρ̄F )univ. We can extend α(η⊗ r) to an O-algebra homomorphism

1⊗ α(η ⊗ r) : ORη̄⊗ρ̄F → OA by sending x⊗ y to (x⊗ 1)α(η ⊗ r)(y). In particular, η ⊗ r ∼=

(1⊗ α(η ⊗ r)) ◦ i ◦ (η̄ ⊗ ρ̄F )univ. When r = ρ̄univ
F , let ψ denote α(η ⊗ ρ̄univ

F ), so

η ⊗ ρ̄univ
F
∼= (1⊗ ψ) ◦ i ◦ (η̄ ⊗ ρ̄F )univ.

Let A be a W -algebra. We would like to define a ring homomorphism m(σ̄, A) : Aσ̄ →

A such that m(σ̄, A) ◦ ι(σ̄, A) is a lift of σ̄. When A = F we can do this by defining

m(σ̄,F)(x⊗y) = σ̄(x)y. Similarly, when A = W we can define m(σ̄,W )(x⊗y) = W (σ̄)(x)y.

If A = W [T ] or W [[T ]] then Aσ̄ = W σ̄[T ] or W σ̄[[T ]], and we can define m(σ̄, A) by simply

applying m(σ̄,W ) to the coefficients of the polynomials or power series. However, for a

general W -algebra A it is not necessarily possible to define m(σ̄, A) or to lift σ̄. (If A
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happens to be smooth over W then it is always possible to lift σ̄ to A.) Note that by

Nakayama’s Lemma, if m(σ̄, A) exists then m(σ̄, A) ◦ ι(σ̄, A) is a ring automorphism of A.

Fortunately, we do not need m(σ̄, A) to exist for all W -algebras; just for I′. Our strategy

is to prove that if ρ̄σ̄F
∼= η̄ ⊗ ρ̄F , then the ring homomorphism m(σ̄,ORρ̄F ) exists.

Lemma 3.2.3. If ρ̄F is absolutely irreducible and ρ̄σ̄F
∼= η̄ ⊗ ρ̄F then there is a ring homo-

morphism m(σ̄,ORρ̄F ) : ORσ̄
ρ̄F
→ ORρ̄F that is a lift of m(σ̄,F). In particular, m(σ̄,ORρ̄F ) ◦

ι(σ̄,ORρ̄F ) is a lift of σ̄.

Proof. With notation as in Lemma 3.2.2 define m(σ̄,ORρ̄F ) = (1⊗ψ)◦ (1⊗ϕ). We will show

that 1⊗ ϕ induces m(σ̄,F) and 1⊗ ψ induces the identity on F. Note that F is the residue

field of O since χ̄, and hence η̄, takes values in F. Therefore all of the tensor products with

O residually disappear. Hence it suffices to show that ϕ induces m(σ̄,F) and ψ acts trivially

on F.

By definition F is generated by {a(`, F ) : ` - N}. Therefore it suffices to check that ψ

acts trivially on a(`, F ) for any prime ` not dividing N . But ψ ◦ (η̄ ⊗ ρ̄F )univ ∼= η ⊗ ρ̄univ
F .

Evaluating at Frob`, taking traces, and reducing to the residue field shows that ψ induces

the identity on F.

Let ϕ̄ : F⊗σ̄ F→ F be the residual map induced by ϕ. By reducing (3.1) to the residue

field we find that σ̄ ◦ ρ̄F ∼= ϕ̄ ◦ ι(σ̄,F) ◦ ρ̄F . By universality we conclude that σ̄ = ϕ̄ ◦ ι(σ̄,F).

But σ̄ = m(σ̄,F) ◦ ι(σ̄,F) and hence ϕ̄ = m(σ̄,F), as desired.

Define Σ = (1⊗ ψ) ◦ (1⊗ ϕ) ◦ (1⊗ ι(σ̄, Rρ̄F )). By the proof of Lemma 3.2.3 we see that

Σ is a lift of σ̄ to ORρ̄F . In subsection 3.2.2 we use automorphic techniques to descend Σ to

I′. In order to do so we need the following properties of Σ.

Proposition 3.2.4. 1. For all w ∈ W we have Σ(1⊗ w) = 1⊗W (σ̄)(w).

2. For all x ∈ O we have Σ(x⊗ 1) = x⊗ 1.

3. The automorphism σ̄ of F is necessarily trivial and hence, under the assumption that

the order of χ is a power of 2 and p 6= 2, it follows that η is a quadratic character.
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4. The automorphism Σ of Rρ̄F is a lift of σ.

Proof. The first point is the most subtle. The key point is that ϕ is a right W -algebra

homomorphism. Let w ∈ W . Then

(1⊗ ι(σ̄,ORρ̄F ))(1⊗ w) = 1⊗ w ⊗ 1 = 1⊗ 1⊗W (σ̄)(w).

Since ϕ is a right W -algebra homomorphism and ψ is a W -algebra homomorphism we see

that Σ(1⊗ w) = 1⊗W (σ̄)(w), as claimed.

The fact that Σ(x⊗ 1) = x⊗ 1 for all x ∈ O follows directly from the definition of Σ.

The first two facts imply that W (σ̄) is trivial. Indeed, for any w ∈ W we have w ⊗ 1 =

1⊗ w ∈ ORρ̄F . Therefore by the first two facts, in ORρ̄F we have

w ⊗ 1 = Σ(w ⊗ 1) = Σ(1⊗ w) = 1⊗W (σ̄)(w) = W (σ̄)(w)⊗ 1.

The ring homomorphism O → ORρF is injective since Rρ̄F covers I′ and I′ ⊃ O. Therefore

W (σ̄) and hence σ̄ must be trivial.

Therefore ρ̄F ∼= η̄ ⊗ ρ̄F . Taking determinants we find that det ρ̄F = η̄2 det ρ̄F and hence

η̄ is quadratic. Therefore the values of η are of the form ±ζ, where ζ is a p-power root of

unity. But by assumption η takes values in Zp[χ] and χ has 2-power order. Since p 6= 2 it

follows that η must be quadratic.

In view of the previous parts of the current proposition we see that O = W and hence

ORρ̄F = Rρ̄F . Furthermore, the first two maps in the definition of Σ become trivial and hence

Σ = ψ. By definition of ψ we have ψ ◦ ρ̄univ
F
∼= η ⊗ ρ̄univ

F . Let α = α(ρF ) : Rρ̄F → I′ and

regard P′i : I′ → Qp as an algebra homomorphism. Since ρσ1
∼= η ⊗ ρ2 it follows from the

definitions of all maps involved that

σ ◦P′1 ◦ α ◦ ρ̄univ
F
∼= P′2 ◦ α ◦ Σ ◦ ρ̄univ

F .

By universality σ ◦P′1 ◦ α = P′2 ◦ α ◦ Σ and thus Σ is a lift of σ.
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3.2.2 Descending Σ to I′ via automorphic methods

To prove Theorem 3.2.1 it now remains to show that Σ descends to an automorphism of

I′. Let us describe the strategy of proof before proceeding. We begin by showing that the

character η is unramified at p. Once we know this, it is fairly straightforward to check

that the irreducible component Σ∗(Spec I′) is modular in the sense that it is an irreducible

component of an ordinary Hecke algebra of some tame level and nebentypus. We then verify

that the tame level and nebentypus of Σ∗(Spec I′) match those for Spec I′, so we have two

irreducible components of the same Hecke algebra. Finally, P′1 is an arithmetic point on

both Spec I′ and Σ∗(Spec I′). As the ordinary Hecke algebra is étale over Λ at arithmetic

points [16, Proposition 3.78], the two irreducible components Σ∗(Spec I′) and Spec I′ must

coincide. In other words, Σ descends to I′ as desired. There is a technical point that Spec I′

and Σ∗(Spec I′) are only irreducible components of the algebra generated by Hecke operators

away from N , so in order to use étaleness we must associate to Σ∗(Spec I′) a primitive

irreducible component Spec J of the full Hecke algebra. See the discussion after Corollary

3.2.7.

Lemma 3.2.5. Let ρ1, ρ2 : GQp → GL2(Qp) be ordinary representations such that the inertia

group acts by an infinite order character on the kernel of the unique p-unramified quotient

of each ρi. Assume there is an automorphism σ ∈ GQp and a finite order character η such

that ρσ1
∼= η ⊗ ρ2. Then η is unramified at p.

Proof. Since ρi is p-ordinary, by choosing bases appropriately we may assume ρi =
( εi ∗

0 δi

)
with δi unramified. By assumption εi|Ip has infinite order. As ρσ1

∼= η ⊗ ρ2, it follows that

for some x ∈ GL2(Qp) we have ρσ1 = x(η ⊗ ρ2)x−1. Write x =
(
a b
c d

)
and η ⊗ ρ2 =

( ηε2 u
0 ηδ2

)
.

A straightforward matrix computation shows that on Ip we haveεσ1 ∗

0 1

 =
1

ad− bc

(adε2 − bc)η − acu ∗

c(dη(ε2 − 1)− cu) (ad− bcε2)η + acu

 .

Hence either c = 0 or cu = dη(ε2 − 1).
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If c = 0 then on Ip we have εσ1 ∗

0 1

 =

ηε2 ∗

0 η

 ,

and so η|Ip = 1, as desired. If cu = dη(ε2 − 1) then on Ip we haveεσ1 ∗

0 1

 =

η ∗

0 ηε2

 .

Therefore we have εσ1 |Ip = η|Ip = ε−1
2 |Ip . But this is impossible since εi|Ip has infinite order

by assumption while η has finite order. Therefore η must be unramified.

In what follows we use Wiles’s interpretation of Hida families [47]. For each Dirichlet

character ψ, we shall write c(ψ) ∈ Z+ for the conductor of ψ. Let ψ : (Z/LZ)× → Q× be a

Dirichlet character. Let η be a primitive Dirichlet character with values in Z[χ]. (Every twist

character of F has this property by Lemma 3.2.11.) Denote by M(ψ, η) the least common

multiple of L, c(η)2, and c(ψ)c(η). By [42, Proposition 3.64], there is a linear map

Rψ,η : Sk(Γ0(M(ψ, η)), ψ)→ Sk(Γ0(M(ψ, η)), η2ψ)

f =
∞∑
n=1

a(n, f)qn 7→ ηf =
∞∑
n=1

η(n)a(n, f)qn.

We now show that there is an analogous map in the J-adic setting.

Lemma 3.2.6. There is a well defined J-linear map

Rχ,η : S(M(χ, η), χ; J)→ S(M(χ, η), η2χ; J)

G =
∞∑
n=1

a(n,G)qn 7→ ηG =
∞∑
n=1

η(n)a(n,G)qn.

If p - c(η) then Rχ,η sends Sord(M(χ, η), χ; J) to Sord(M(χ, η), η2χ; J).

Proof. Let P be an arithmetic prime of J, and let Pk,ε be the arithmetic prime of Λ lying

under P. If G ∈ Sord(M(χ, η), χ; J) then

gP ∈ Sk(Γ0(M(χ, η)pr(ε)), εχω−k).
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Let ψ = εχω−k. One checks easily from the definitions that M(ψ, η) = M(χ, η)pr(ε). There-

fore

ηgP = Rψ,η(gP) ∈ Sk(Γ0(M(ψ, η)), η2ψ) = Sk(Γ0(M(χ, η)pr(ε)), η2εχω−k),

so ηG ∈ S(M(χ, η), η2χ; J).

For the statement about ordinarity, we may assume G is a normalized eigenform, so

a(p,G) is the eigenvalue of G under the U(p) operator. If G is ordinary then a(p,G) ∈ J×.

Hence η(p)a(p,G) = a(p, ηG) ∈ J× if and only if η(p) 6= 0.

Corollary 3.2.7. The representation associated to Σ∗(Spec I′) is modular of level M(χ, η)

and nebentypus χ.

Proof. The representation associated to Σ∗(Spec I′) is isomorphic to η ⊗ ρF . Consider the

formal q-expansion ηF :=
∑∞

n=1 η(n)a(n, F )qn ∈ I[[q]]. By Lemma 3.2.6 and Lemma 3.2.5

we see that ηF is a Hida family of level Γ0(M(χ, η)) and nebentypus η2χ. Clearly the Galois

representation of ηF is isomorphic to η ⊗ ρF since their traces on Frobenius elements agree

on all but finitely many primes. Since η ⊗ ρF ∼= α ◦ Σ ◦ ρ̄univ
F , it follows that Σ∗(Spec I′)

is modular of level M(χ, η) and nebentypus η2χ. By Proposition 3.2.4 we know that η is

quadratic and hence η2χ = χ.

For any integer multipleM ofN , let hord(M,χ; Λχ)′ be the Λχ-subalgebra of hord(M,χ; Λχ)

generated by {T (n) : (n,N) = 1}. Corollary 3.2.7 shows that Σ∗(Spec I′) is an irreducible

component of Spec hord(M(χ, η), χ; Λχ)′. There is a natural map β : Spec hord(M,χ; Λχ) →

Spec hord(M,χ; Λχ)′ coming from the natural inclusion of algebras. An irreducible compo-

nent Spec J′ of hord(M,χ; Λχ)′ essentially corresponds to the data of the fourier coefficients

away from N . The preimage β−1(Spec J′) is a union of irreducible components whose fourier

coefficients agree with those of J′ away from N . By the theory of newforms we know that

there is a unique primitive irreducible component Spec J of hord(M,χ; Λχ) that projects to

Spec J′ under β. Let Spec J be the primitive component of hord(M(χ, η), χ; Λχ) that projects

to Σ∗(Spec I′) under β. By the proof of Corollary 3.2.7, J is the primitive form associated to

ηF and so ρJ ∼= η ⊗ ρF .
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Since N |M(χ, η) there is a natural inclusion

Spec hord(N,χ; Λχ) ↪→ Spec hord(M(χ, η), χ; Λχ).

We wish to show that Spec J is an irreducible component of Spec hord(N,χ; Λχ). We do this

locally by computing the level of Spec J at each prime `. Let v` denote the usual `-adic

valuation on the integers, normalized such that v`(`) = 1.

Proposition 3.2.8. The primitive component Spec J is an irreducible component of the

Hecke algebra Spechord(N,χ; Λχ).

Proof. First note that if ` - c(η) then v`(M(χ, η)) = v`(N) since c(χ)|N . In particular, by

Lemma 3.2.5 we have vp(M(χ, η)) = vp(N).

Fix a prime ` 6= p at which η is ramified. For a pro-p ring A and representation π : GQ` →

GL2(A), let C`(π) denote the `-conductor of π. See [19, p. 659] for the precise definition.

When π is the representation associated to a classical form f , the `-conductor of π is related

to the level of f by the proof of the local Langlands conjecture for GL2. Indeed, when f is

a classical newform of level N we have C`(ρf ) = `v`(N). If f is new away from p and ` 6= p

then we still have C`(ρf ) = `v`(N).

First suppose that ρF |I` is not reducible indecomposable. Then (η⊗ρF )|I` is not reducible

indecomposable either. Therefore C`(ρF ) = C`(ρfP1
) and C`(η ⊗ ρF ) = C`(η ⊗ ρfP2

) [19,

Lemma 10.2(2)]. Since Galois action does not change conductors we have

C`(ρF ) = C`(ρfP1
) = C`(ρ

σ
fP1

) = C`(η ⊗ ρfP2
) = C`(η ⊗ ρF ).

Since F is a primitive form we have that fP1 is new away from p and hence C`(ρfP1
) = `v`(N).

On the other hand since J is primitive we have C`(ρJ) = C`(η⊗ ρF ) is equal to the `-part of

the level of J, which gives the desired result at `.

Now assume that ρF |I` is reducible indecomposable. By [19, Lemma 10.1(4)] we have a

character ψ : GQ` → I× such that ρF |GQ`
∼=
(Nψ ∗

0 ψ

)
, where N is the unramified cyclotomic

character acting on p-power roots of unity and ψ|I` has finite order. Note that since η is a
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quadratic character, c(η) is squarefree away from 2. Similarly, since χ has 2-power order it

follows that c(χ) is a power of 2 times a product of distinct odd primes. Therefore, for odd

primes ` it is enough to show that c`(η)2|N . We use the description of the conductor of a

locally reducible indecomposable representation given on [19, p. 660]. Let ψ1 = ψ mod P1.

Then ρfP2
|I` ∼=

( η−1ψσ1 ∗
0 η−1ψσ1

)
. If ψ1 is unramified then η−1ψσ1 is ramified and hence

c`(η)2 = c`(η
−1)2 = c`(η

−1ψσ1 )2 = C`(ρfP2
).

Since ρfP2
is a specialization of F we have C`(ρfP2

)|N giving the desired result. Now suppose

that ψ1 is ramified. Then c`(η) = `|c`(ψ1) and C`(ρfP1
) = c`(ψ1)2. Again, since ρfP1

is a

specialization of ρF we see that c`(η)2|N .

Finally the case ` = 2 follows from the assumption that 2c(χ)|N . We are able to make

this hypothesis by Proposition 3.2.9.

Therefore Spec J is an irreducible component of hord(N,χ; Λχ), as desired.

We now summarize how the results in this section fit together to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. We first lift σ to an automorphism Σ of ORρ̄F by Lemma 3.2.3. We

are able to use the definition of Σ to show that ORρ̄F = Rρ̄F and that η is quadratic in Propo-

sition 3.2.4. By Proposition 3.2.8 we see that Σ∗(Spec I′) is a component of hord(N,χ; Λχ)′.

Since ρσfP1

∼= η ⊗ ρfP2
it follows that the arithmetic point P′1 is a point on both Spec I′ and

Σ∗(Spec I′). We claim that in fact P1 ∈ Spec I ∩ Spec J.

Note that J is the primitive family passing through fσP1
. (We know fσP1

is primitive

since fP1 is an arithmetic specialization of the primitive family F , and Galois conjugation

does not change the level.) Indeed, J is the primitive form of ηF . Let P ∈ Spec J such

that J mod P = fσP1
. On the other hand fσP1

= σ(F mod P1) and so the kernel of the

specialization map giving rise to fσP1
is P1. Therefore P = P1 ∈ Spec I ∩ Spec J.

Since hord(N,χ; Λχ) is étale over arithmetic points of Λ [16, Proposition 3.78], it follows

that the irreducible components Spec I and Spec J must coincide and hence Σ∗(Spec I′) =

Spec I′. Therefore Σ descends to the desired automorphism σ̃ of I′. The fact that σ̃(a(`, F )) =
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η(`)a(`, F ) for almost all primes ` follows from specializing Σ ◦ ρ̄univ
F
∼= η ⊗ ρ̄univ

F to I′ and

taking traces. Finally, σ ◦P′1 = P′2 ◦ σ̃ since Σ is a lift of σ by Proposition 3.2.4.

3.2.3 Nebentypus and twist characters

We end this section with some information about twist characters. In particular Proposition

3.2.9 shows that we may assume from the beginning that χ has 2-power order with 2c(χ)|N .

Note that the ring I0 depends on F . However, if ψ is a character then ψF has the same

group of conjugate self-twists as that of F , and thus the same fixed ring I0. Indeed, if σ is

a conjugate self-twist of F with character η, then a straightforward calculation shows that

ψσηψ−1 is the twist character of σ on ψF .

Proposition 3.2.9. There is a Dirichlet character ψ such that the nebentypus ψ2χ of ψF

has order a power of 2 and 2c(ψ2χ)|M(χ, ψ). Furthermore, ρF is I0-full if and only if ρψF

is I0-full.

Proof. It is well known that the nebentypus of ψF is ψ2χ [42, Proposition 3.64]. Write

χ = χ2ξ, where χ2 is a character whose order is a power of 2 and ξ is an odd order character.

Let 2n − 1 denote the order of ξ. Then ξ2n = ξ, so taking ψodd = ξ−n we see that ψ2
oddχ =

χ2ξ
−2nξ = χ2 is a character whose order is a power of 2.

Let 2t−1 be the order of ψ2
oddχ, and let ψ2 : (Z/2tZ)× → Q× be the associated primitive

character. Let ψ = ψ2ψodd. Then 22t|M(χ, ψ) whereas c2(ψ2χ)|2t−1. Since t ≥ 1 we see that

2c2(ψ2χ)|2t|M(χ, ψ),

as desired.

Suppose that ρψF is I0-full. Since ψ is a finite order character, kerψ is an open subgroup

of GQ. Thus ρψF |kerψ is also I0-full. Note that ρψF |kerψ = ρF |kerψ. Thus ρF is I0-full.

We finish this section by recalling a lemma of Momose that shows that twist characters are

valued in Zp[χ]. Thus Theorem 3.2.1 says that whenever a conjugate self-twist of a classical
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specialization fP of F induces an automorphism of Qp(fP), that conjugate self-twist can be

lifted to a conjugate self-twist of the whole family F .

Lemma 3.2.10 (Lemma 1.5, [34]). If σ is a conjugate self-twist of f ∈ Sk(Γ0(N), χ), then

ησ is the product of a quadratic character with some power of χ. In particular, ησ takes

values in Z[χ].

The proof of Lemma 3.2.10 is not difficult and goes through without change in the I-adic

setting. For completeness, we give the proof in that setting.

Lemma 3.2.11. If σ is a conjugate self-twist of F then ησ is the product of a quadratic

character with some power of χ. In particular, ησ has values in Z[χ].

Proof. As ρ̄F is absolutely irreducible, ρσF
∼= ησ ⊗ ρF . Thus σ(det ρF ) = η2

σ det ρF . Recall

that for all primes ` not dividing N we have

det ρF (Frob`) = χ(`)κ(〈`〉)`−1,

where κ is the map defined in (2.6). Substituting this expression for det ρF into σ(det ρF ) =

η2
σ det ρF yields η2

σ = χσχ−1.

Recall that χσ = χα for some integer α > 0. To prove the result it suffices to show

that there is some i ∈ Z such that η2
σ = χ2i. If χ has odd order then there is a positive

integer j for which χ = χ2j. Thus η2
σ = χσ−1 = χ2j(α−1). If χ has even order then χσ also

has even order since σ is an automorphism. Thus α must be odd. Then α − 1 is even and

η2
σ = χσχ−1 = χα−1, as desired.

3.3 Sufficiency of open image in product

Recall that H0 = ∩σ∈Γ ker(ησ) and H = H0 ∩ ker(det ρ̄F ). For a variety of reasons, our

methods work best for representations valued in SL2(I0) rather than GL2(I′). Therefore,

for the next three sections we assume the following theorem, the proof of which is given in

section 3.6.
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Theorem 3.3.1. Assume that ρ̄F is absolutely irreducible and H0-regular. If V = I′2 is the

module on which GQ acts via ρF , then there is a basis for V such that all of the following

happen simultaneously:

1. ρF is valued in GL2(I′);

2. ρF |Dp is upper triangular;

3. ρF |H0 is valued in GL2(I0);

4. There is a matrix j =
(
ζ 0
0 ζ′

)
, where ζ and ζ ′ are roots of unity, such that j normalizes

the image of ρF and ζ 6≡ ζ ′ mod p.

Let H ′ = ker(det ρ̄F ). For any h ∈ H ′ we have det ρF (h) ∈ 1 + mI′ . Since p 6= 2 and I′ is

p-adically complete, we have

√
det ρF (h) =

∞∑
n=0

(
1/2

n

)
(det ρF (h)− 1)n ∈ I′×.

Since ρF is a 2-dimensional representation ρF |H′ ⊗
√

det ρF |H′
−1

takes values in SL2(I′).

Restricting further it follows from Theorem 3.3.1 that

ρ := ρF |H ⊗
√

det ρF |H
−1

takes values in SL2(I0). Note that the image of ρ is still normalized by the matrix j of

Theorem 3.3.1 since we only modified ρF by scalars, which commute with j. In Proposition

3.3.10 we show that ρF is I0-full if and only if ρ is I0-full. The proof of Proposition 3.3.10 is

postponed until the end of the current section since it uses the theory of Pink-Lie algebras

developed below. In the next three sections we prove that ρ is I0-full.

The purpose of the current section is to make the following reduction step in the proof

of Theorem 3.1.4.

Proposition 3.3.2. Assume there is an arithmetic prime P of Λ such that the image of

Im ρ in
∏
Q|P SL2(I0/Q) is open in the product topology. Then ρ (and hence ρF ) is I0-full.
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In the proof we use a result of Pink [35] that classifies p-profinite subgroups of SL2(A)

for a complete semilocal p-profinite ring A. (Our assumption that p > 2 is necessary for

Pink’s theory.) We give a brief exposition of the relevant parts of his work for the sake of

establishing notation. Define

Θ : SL2(A)→ sl2(A)

x 7→ x− 1

2
tr(x),

where we consider 1
2

tr(x) as a scalar matrix. Let G be a p-profinite subgroup of SL2(A).

Define L1(G) to be the closed subgroup of sl2(A) that is topologically generated by Θ(G). Let

L1·L1 be the closed (additive) subgroup of M2(A) topologically generated by {xy : x,y ∈ G}.

Let C denote tr(L1 · L1). Sometimes we will view C ⊂ M2(A) as a set of scalar matrices.

For n ≥ 2 define Ln(G) to be the closed (additive) subgroup of sl2(A) generated by

[L1(G), Ln−1(G)] := {xy− yx : x ∈ L1(G),y ∈ Ln−1(G)}.

Definition 3.3.3. The Pink-Lie algebra of a p-profinite group G is L2(G). Whenever we

write L(G) without a subscript we shall always mean L2(G).

As an example one can compute that for an ideal a of A, the p-profinite subgroup G =

ΓA(a) has Pink-Lie algebra L2(G) = a2sl2(A). This example plays an important role in what

follows.

For n ≥ 1, define

Mn(G) = C ⊕ Ln(G) ⊂M2(A)

Hn(G) = {x ∈ SL2(A) : Θ(x) ∈ Ln(G) and tr(x)− 2 ∈ C}.

Pink proves thatMn(G) is a closed Zp-Lie subalgebra of M2(A) and Hn = SL2(A)∩(1+Mn)

for all n ≥ 1. Furthermore, write

G1 = G,Gn+1 = (G,Gn),

where (G,Gn) is the closed subgroup of G topologically generated by the commutators

{ggng−1g−1
n : g ∈ G, gn ∈ Gn}. Pink proves the following theorem.
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Theorem 3.3.4 (Pink [35]). With notation as above, G is a closed normal subgroup of

H1(G). Furthermore, Hn(G) = (G,Gn) for n ≥ 2.

There are two important functoriality properties of the correspondence G 7→ L(G) that

we will use. First, since Θ is constant on conjugacy classes of G it follows that Ln(G) is

stable under the adjoint action of the normalizer NSL2(A)(G) of G in SL2(A). That is, for

g ∈ NSL2(A)(G),x ∈ Ln(G) we have gxg−1 ∈ Ln(G). If a is an ideal of A such that A/a is

p-profinite, then we write Ga for the p-profinite group G · ΓA(a)/ΓA(a) ⊆ SL2(A/a). The

second functoriality property is that the canonical linear map L(G) → L(Ga) induced by

x 7→ x mod a is surjective.

Let m0 be the maximal ideal of I0, and let G denote the p-profinite group Im ρ∩ΓI0(m0).

The proof of Proposition 3.3.2 consists of showing that if GP I0 is open in
∏
Q|P SL2(I0/Q)

then G contains ΓI0(a0) for some nonzero I0-ideal a0. Let L = L(G) be the Pink-Lie algebra

of G. Since GP I0 is open, for every prime Q of I0 lying over P there is a nonzero I0/Q-ideal

aQ such that

GP I0 ⊇
∏
Q|P

ΓI0/Q(aQ).

Thus L(GP I0) ⊇ ⊕Q|Pa2
Qsl2(I0/Q).

Recall from Theorem 3.3.1 that we have roots of unity ζ and ζ ′ such that ζ 6≡ ζ ′ mod p

and the matrix j :=
(
ζ 0
0 ζ′

)
normalizes G. Let α = ζζ ′−1. A straightforward calculation shows

that the eigenvalues of Ad(j) acting on sl2(I0) are α, 1, α−1. Note that since ζ 6= ζ ′ either all

of α, 1, α−1 are distinct or else α = −1. For λ ∈ {α, 1, α−1} let L[λ] be the λ-eigenspace of

Ad(j) acting on L. One computes that L[1] is the set of diagonal matrices in L. If α = −1

then L[−1] is the set of antidiagonal matrices in L. If α 6= −1 then L[α] is the set of upper

nilpotent matrices in L, and L[α−1] is the set of lower nilpotent matrices in L. Regardless of

the value of α, let u denote the set of upper nilpotent matrices in L and ut denote the set of

lower nilpotent matrices in L. Let L be the Zp-Lie algebra generated by u and ut in sl2(I0).

Lemma 3.3.5. The matrix J :=
(

1+T 0
0 1

)
normalizes Im ρ, and L is a Λ-submodule of sl2(I0).
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Proof. First we show that L is a Λ-module assuming that J normalizes Im ρ. Since L is a

Zp-Lie algebra and Λ = Zp[[T ]], it suffices to show that x ∈ L implies Tx ∈ L. If x ∈ u

then a simple computation shows that JxJ−1 = (1 + T )x. As L is an abelian group it

follows that Tx = (1 + T )x − x ∈ u. Similarly, for y ∈ ut we have Ty ∈ ut. It follows that

T [x,y] = [Tx,y] ∈ L. Any element in L can be written as a sum of elements in u, ut, and

[u, ut]. Therefore L is a Λ-submodule of sl2(I0).

Now we show that J normalizes Im ρ. The proof is nearly identical to the proof of [19,

Lemma 1.4] except we do not require ζ, ζ ′ ∈ Zp. By [17, Theorem 4.3.2], there is an element

τ =
(

1+T u
0 1

)
∈ Im ρF . A straightforward matrix calculation shows that τ ∈ Im ρF |H .

Writing t = (1 + T )1/2 and u′ = t−1u we see that τ ′ =
(
t u′

0 t−1

)
∈ Im ρ. Since ρF |H and ρ

differ only by a character, their images have the same normalizer. In particular, the matrix

j from Theorem 3.3.1 normalizes Im ρ. Hence the commutator (τ ′, j) ∈ Im ρ and we can

compute

(τ ′, j) =

1 u′t(1− α)

0 1

 .

Let v =
{
x ∈ I0 :

(
0 x
0 0

)
∈ u

}
. Then v is a Zp[α]-module. Indeed, it is a Zp-module

since we can raise unipotent matrices to Zp-powers, so it suffices to show that v is closed

under multiplication by α. This follows by conjugating unipotent elements by j. Since α 6≡ 1

mod p we have that 1−α is a unit in Zp[α]. Therefore u′t ∈ v. Let β = τ ′−1
(

1 u′t
0 1

)
τ ′ ∈ Im ρ.

Then t−1J = τ ′β−1 (and hence J) normalizes Im ρ.

The proof of Proposition 3.3.2 depends on whether or not α = −1; it is easier when

α 6= −1.

Proof of Proposition 3.3.2 when α 6= −1. We will show that the finitely generated Λ-module

X := sl2(I0)/L

is a torsion Λ-module. From this it follows that there is a nonzero Λ-ideal a such that

asl2(I0) ⊆ L. Thus

(aI0)2sl2(I0) ⊆ L ⊆ L
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since I0sl2(I0) = sl2(I0). But (aI0)2sl2(I0) is the Pink-Lie algebra of ΓI0(aI0) and so ΓI0(aI0) ⊆

G2 ⊆ G, as desired.

To show that X is a finitely generated Λ-module, recall that the arithmetic prime P in the

statement of Proposition 3.3.2 is a height one prime of Λ. By Nakayama’s Lemma it suffices

to show that X/PX is Λ/P -torsion. The natural epimorphism sl2(I0)/P sl2(I0) � X/PX

has kernel L · P sl2(I0)/P sl2(I0), so

X/PX ∼= sl2(I0/P I0)/(L · P sl2(I0)/P sl2(I0)).

We use the following notation:

L = L(GP I0) : the Pink-Lie algebra of GP I0

L[λ] : the λ-eigenspace of Ad(j) on L, for λ ∈ {α, 1, α−1}

L : the Zp-algebra generated by L[α] and L[α−1]

The functoriality of Pink’s construction implies that the canonical surjection I0 � I0/P I0

induces surjections

L[λ] � L[λ]

for all λ ∈ {α, 1, α−1}. Therefore the canonical linear map L → L is also a surjection. That

is, L · P sl2(I0)/P sl2(I0) = L and so X/PX ∼= sl2(I0/P I0)/L. Since GP I0 ⊇
∏
Q|P ΓI0/Q(aQ),

it follows that

L[α] ⊇


0 x

0 0

 |x ∈ ⊕Q|Pa2
Q


L[α−1] ⊇


0 0

x 0

 |x ∈ ⊕Q|Pa2
Q

 .

Since α 6= −1 we have u = L[α] and ut = L[α−1]. Therefore

L ⊇ ⊕Q|Pa4
Qsl2(I0/Q).

Since each aQ is a nonzero I0/Q-ideal, it follows that ⊕Q|P sl2(I0/Q)/a4
Qsl2(I0/Q) is Λ/P -

torsion. Finally, the inclusions

⊕Q|Pa4
Qsl2(I0/Q) ⊆ L ⊆ sl2(I0/P I0) ⊆ ⊕Q|P sl2(I0/QI)
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show that sl2(I0/P I0)/L ∼= X/PX is Λ/P -torsion.

Let

v =

v ∈ I0 :

0 v

0 0

 ∈ u

 and vt =

v ∈ I0 :

0 0

v 0

 ∈ ut

 .

Definition 3.3.6. A Λ-lattice in Q(I0) is a finitely generated Λ-submodule M of Q(I0) such

that the Q(Λ)-span of M is equal to Q(I0). If in addition M is a subring of I0 then we say

M is a Λ-order.

Proof of Proposition 3.3.2 when α = −1. We show in Lemmas 3.3.7 and 3.3.8 that v and vt

are Λ-lattices in Q(I0). To do this we use the fact that the local Galois representation ρF |Dp
is indecomposable [9, 49].

We then show in Proposition 3.3.9 that any Λ-lattice in Q(I0) contains a nonzero I0-ideal.

Let b and bt be nonzero I0-ideals such that b ⊆ v and bt ⊆ vt. Let a0 = bbt. Then from the

definitions of v, vt, and L, we find that

L ⊇ a2
0sl2(I0).

By Pink’s theory it follows that G ⊇ ΓI0(a0).

Finally, we prove the three key facts used in the proof of Proposition 3.3.2 when α = −1.

Lemma 3.3.7. With notation as above, v is a Λ-lattice in Q(I0).

Proof. Let L = L(GP I0). Recall that L[1] surjects onto L[1]. Now L[1] contains
a 0

0 −a

 : a ∈ ⊕Q|Pa2
Q

 ,

and ⊕Q|Pa2
Q is a Λ/P -lattice in Q(I0/P I0). It follows from Nakayama’s Lemma that the set

of entries in the matrices of L[1] contains a Λ-lattice a for Q(I0).

By a theorem of Ghate-Vatsal [9] (later generalized by Hida [18] and Zhao [49]) we know

that ρF |Dp is indecomposable. Hence there is a matrix in the image of ρ whose upper right
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entry is nonzero. This produces a nonzero nilpotent matrix in L1. Taking the Lie bracket of

this matrix with a nonzero element of L[1] produces a nonzero nilpotent matrix in L which

we will call
(

0 v
0 0

)
. Note that for any a ∈ a we have0 2av

0 0

 =

a 0

0 −a

 ,

0 v

0 0

 ∈ L.
Thus the lattice av is contained in v, so Q(Λ)v = Q(I0). The fact that v is finitely generated

follows from the fact that Λ is noetherian and v is contained in the finitely generated Λ-

module I0.

Lemma 3.3.8. With notation as above, vt is a Λ-lattice in Q(I0).

Proof. Let c ∈ ⊕Q|Pa2
Q. Since L[−1] surjects to L[−1] there is some

(
0 b
c 0

)
∈ L such that

b ∈ P I0 and c mod P I0 = c. Since v is a Λ-lattice in Q(I0) by Lemma 3.3.7, it follows that

there is some nonzero α ∈ Λ such that αb ∈ v.

We claim that there is some nonzero β ∈ Λ for which
(

0 αb
βc 0

)
∈ L. Assuming the existence

of β, since αb ∈ v it follows that βc ∈ vt. That is, c ∈ Q(Λ)vt. Since c runs over ⊕Q|Pa2
Q, it

follows from Nakayama’s Lemma that vt is a Λ-lattice in Q(I0).

To see that β exists, recall that L is normalized by the matrix J =
(

1+T 0
0 1

)
by Lemma

3.3.5. Thus0 b

c 0

+

 0 Tb

((1 + T )−1 − 1)c 0

 =

1 + T 0

0 1

0 b

c 0

(1 + T )−1 0

0 1

 ∈ L.
Write α = f(T ) as a power series in T . Since (1 +T )−1−1 is divisible by T , we can evaluate

f at (1 +T )−1− 1 to get another element of Zp[[T ]]. Taking β = f((1 +T )−1− 1), the above

calculation shows that  0 αb

βc 0

 ∈ L,
as desired.

Proposition 3.3.9. Every Λ-lattice in Q(I0) contains a nonzero I0-ideal.
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Proof. Let M be a Λ-lattice in Q(I0). Define

R = {x ∈ I0 : xM ⊆M}.

Then R is a subring of I0 that is also a Λ-lattice for Q(I0). Thus R is a Λ-order in I0, and

M is an R-module. Therefore

c := {x ∈ I0 : xI0 ⊆ R}

is a nonzero I0-ideal. Note that Q(R) = Q(I0) = Q(Λ)M . Since M is a finitely generated

Λ-module there is some nonzero r ∈ I0 such that rM ⊆ R. As rM is still a Λ-lattice for

Q(I0), by replacing M with rM we may assume that M is an R-ideal.

Now consider a = c · (MI0), where MI0 is the ideal generated by M in I0. Note that a is

a nonzero I0-ideal since both c and MI0 are nonzero I0-ideals. To see that a ⊆M , let x ∈ I0

and c ∈ c. Then xc ∈ R by definition of c. If a ∈ M then xca ∈ M since M is an R-ideal.

Thus xca ∈M , so a ⊆M .

Remark 2. Note that the only property of I0 that is used in the proof of Proposition 3.3.9

is that I0 is a Λ-order in Q(I0). Thus, once we have shown that ρ (or ρF ) is I0-full, it

follows that the representation is R-full for any Λ-order R in Q(I0). In particular, if Ĩ0 is

the maximal Λ-order in Q(I0) then ρF is Ĩ0-full.

Finally, we show that for the purposes of proving I0-fullness it suffices to work with ρ

instead of ρF .

Proposition 3.3.10. The representation ρF is I0-full if and only if ρ is I0-full.

Proof. Note that Im ρF |H0 ∩ SL2(I0) ⊆ Im ρ by definition. Thus if ρF is I0-full then so is ρ.

Now assume that ρ is I0-full. As in the proof of [19, Theorem 8.2], let Γ = {(1 + T )s :

s ∈ Zp} and

K = {x ∈ ρF (H0) : det x ∈ Γ}.
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Note that K is a finite index subgroup of Im ρF . Since F is ordinary and non-CM we can

find an element of the form τ =
(

1+T u
0 1

)
∈ Im ρF [17, Theorem 4.3.2]. Let n = [GQ : H0].

By replacing Γ with {(1 + T )ns : s ∈ Zp} and τ with τ n, we may assume that τ ∈ K.

Let S = K ∩ SL2(I0) and T = {τ s : s ∈ Zp}. Then we can write K as a semidirect

product

K = T n S.

Indeed, given x ∈ K there is a unique s ∈ Zp such that det x = (1 + T )s. Thus we identify

x with (τ s, τ−sx) ∈ T n S.

Let K′ be the image of K under the natural map

Φ : K→ Im ρ

x 7→ x(det x)−1/2.

Then K′ is a finite index subgroup of Im ρ and therefore contains ΓI0(a) for some nonzero

I0-ideal a since ρ is I0-full. Note that ker Φ is precisely the set of scalar matrices in K.

Therefore, for some 0 ≤ r ≤ ∞,

ker Φ ∼= {(1 + T )s : s ∈ prZp},

where r = ∞ means ker Φ = {1}. If r 6= ∞ then by passing to finite index subgroups of

K,K′, and Γ we may assume that ker Φ = Γ. Thus, given any y ∈ ΓI0(a) we can find x ∈ K

such that Φ(x) = y. Let s ∈ Zp such that det x = (1 + T )s/2. Then the scalar matrix

(1 + T )−s/2 is in Γ hence in K. Hence x(1 + T )−s/2 ∈ S and Φ(x(1 + T )s/2) = y. But Φ is

the identity on S, so y = x(1 + T )−s/2 ∈ S. Therefore ΓI0(a) ⊆ S and ρF is I0-full.

It remains to deal with the case when ker Φ = {1}. In this case Φ is an isomorphism onto

K′ and we can use Φ−1 to get a continuous group homomorphism from K′ onto Zp:

s : K′ ∼= K ∼= T n S � T ∼= Zp.

Note that ker s = S, so we want to show that ker s is I0-full. By assumption there is

a non-zero I0-ideal a0 such that ΓI0(a0) ⊆ K′. Let v = {b ∈ a0 :
(

1 b
0 1

)
∈ ker s} and
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vt = {c ∈ a0 :
(

1 0
c 1

)
∈ ker s}. Both v and vt are Λ-lattices in Q(I0). We shall prove this for

v; the proof for vt is similar. Note that v is a Zp-module: if
(

1 b
0 1

)
∈ S then

(
1 sb
0 1

)
=
(

1 b
0 1

)s ∈ S

since S is closed (as it is the determinant one image of a Galois representation). To see that

v is a Λ-module, recall that S is normalized by J =
(

1+T 0
0 1

)
by the proof of Lemma 3.3.5.

Therefore conjugation by J gives an action of T on v as in the proof of Lemma 3.3.5. Now

we consider the Λ-module a0/v which, as a group, is isomorphic to a closed subgroup of Zp.

Therefore a0/v is a torsion Λ-module. Since a0 is a Λ-lattice in Q(I0) it follows that v must

also be a Λ-lattice in Q(I0), as claimed.

We have shown that there are non-zero I0-ideals b ⊆ v and bt ⊆ vt such that the Pink-Lie

algebra L(S) contains 
0 b

0 0

 : b ∈ b

 ∪

0 0

c 0

 : c ∈ bt

 .

By letting c = bbt and taking Lie brackets of the upper and lower nilpotent matrices above,

we find that L(S) ⊇ c2sl2(I0). Therefore S is I0-full, as desired.

Remark 3. Here is another proof of Proposition 3.3.10. Assume ρ is I0-full, so by Corollary

1 in [44] we see that Im ρ is a nontrivial subnormal subgroup of SL2(I0). Let G = Im ρF |H ∩

SL2(I0). To see that ρF is I0-full it suffices to show that G is a nontrivial subnormal subgroup

of SL2(I0). Since Im ρ is nontrivial and subnormal and G ⊆ Im ρ, it suffices to show that

G is normal in Im ρ and G 6= 1. The fact that G is normal in Im ρ follows easily from the

definition of ρ. If G = 1, then the determinant map on Im ρF |H is an isomorphism onto its

image. In particular, Im ρF |H is abelian. Since F is non-CM, this contradicts Ribet’s results

on the images of classical non-CM Galois representations [39].

3.4 Open image in product

The purpose of this section is to prove the following reduction step in the proof of Theorem

3.1.4.
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Proposition 3.4.1. Assume that |F| 6= 3. Fix an arithmetic prime P of Λ. Assume that for

every prime Q of I0 lying over P , the image of Im ρ in SL2(I0/Q) is open. Then the image

of Im ρ in
∏
Q|P SL2(I0/Q) is open in the product topology.

Thus if we can show that there is some arithmetic prime P of Λ satisfying the hypothesis

of Proposition 3.4.1, then combining the above result with Proposition 3.3.2 yields Theorem

3.1.4.

Fix an arithmetic prime P of Λ satisfying the hypothesis of Proposition 3.4.1. Note that

Zp does not contain any p-power roots of unity since p > 2. Therefore P = Pk,1 for some

k ≥ 2. Recall that G = Im ρ ∩ ΓI0(m0), and write G for the image of G in
∏
Q|P SL2(I0/Q).

We begin our proof of Proposition 3.4.1 with the following lemma of Ribet which allows us

to reduce to considering products of only two copies of SL2.

Lemma 3.4.2 (Lemma 3.4, [36]). Let S1, . . . , St(t > 1) be profinite groups. Assume for each

i that the following condition is satisfied: for each open subgroup U of Si, the closure of the

commutator subgroup of U is open in Si. Let G be a closed subgroup of S = S1 × · · · × St

that maps to an open subgroup of each group Si × Sj(i 6= j). Then G is open in S.

Apply this lemma to our situation with {S1, . . . , St} = {SL2(I0/Q) : Q|P} and G = G.

The lemma implies that it is enough to prove that for all primes Q1 6= Q2 of I0 lying over P ,

the image G of G under the projection to SL2(I0/Q1) × SL2(I0/Q2) is open. We shall now

consider what happens when this is not the case. Indeed, the reader should be warned that

the rest of this section is a proof by contradiction.

Proposition 3.4.3. Let P be an arithmetic prime of Λ satisfying the hypotheses of Propo-

sition 3.4.1, and assume |F| 6= 3. Let Q1 and Q2 be distinct primes of I0 lying over P . Let

Pi be a prime of I lying over Qi. If G is not open in SL2(I0/Q1)× SL2(I0/Q2) then there is

an isomorphism σ : I0/Q1
∼= I0/Q2 and a character ϕ : H → Q(I0/Q2)× such that

σ(a(`, fP1)) = ϕ(`)a(`, fP2)

for all primes ` for which Frob` ∈ H.
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Proof. Our strategy is to mimic the proof of [36, Theorem 3.5]. Let Gi be the projection of

G to SL2(I0/Qi), so G ⊆ G1×G2. By hypothesis Gi is open in SL2(I0/Qi). Let πi : G→ Gi

be the projection maps and set N1 = ker π2 and N2 = ker π1. Though a slight abuse of

notation, we view Ni as a subset of Gi. Goursat’s Lemma implies that the image of G in

G1/N1 ×G2/N2 is the graph of an isomorphism

α : G1/N1
∼= G2/N2.

Since G is not open in G1 × G2 by hypothesis, either N1 is not open in G1 or N2 is not

open in G2. (Otherwise N1 × N2 is open and hence G is open.) Without loss of generality

we may assume that N1 is not open in G1. From the classification of subnormal subgroups

of SL2(I0/Q1) in [44] it follows that N1 ⊆ {±1} since N1 is not open. If N2 is open in

SL2(I0/Q2) then α gives an isomorphism from either G1 or PSL2(I0/Q1) to the finite group

G2/N2. Clearly this is impossible, so N2 is not open in SL2(I0/Q2). Again by [44] we have

N2 ⊆ {±1}. Recall that Gi comes from G = Im ρ ∩ ΓI0(m0) by reduction. In particular,

−1 6∈ Gi since all elements of G reduce to the identity in SL2(F). Thus we must have

Ni = {1}. Hence α gives an isomorphism G1
∼= G2. We note that the Theorem in [44]

requires |F| 6= 3. This invocation of [44] is the only reason we assume |F| 6= 3.

The isomorphism theory of open subgroups of SL2 over a local ring was studied by

Merzljakov in [32]. (There is a unique theorem in his paper, and that is the result to which

we refer. His theorem applies to more general groups and rings, but it is relevant in particular

to our situation.) Although his result is stated only for automorphisms of open subgroups,

his proof goes through without change for isomorphisms. His result implies that α must be

of the form

α(x) = η(x)y−1σ(x)y, (3.2)

where η ∈ Hom(G1, Q(I0/Q2)×), y ∈ GL2(Q(I0/Q2)) and σ : I0/Q1
∼= I0/Q2 is a ring

isomorphism. By σ(x) we mean that we apply σ to each entry of the matrix x.

For any g ∈ G we can write g = (x,y) with x ∈ G1,y ∈ G2. Since G is the graph of

α we have α(x) = y. By definition of G there is some h ∈ H such that x = P1(ρ(h)) and
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y = P2(ρ(h)). Recall that for almost all primes ` for which Frob` ∈ H we have tr(ρ(Frob`)) =√
det ρF (Frob`)

−1
a(`, F ). Furthermore det ρF (Frob`) mod P = χ(`)`k−1 since P = Pk,1.

Using these facts together with equation (3.2) we see that for almost any Frob` ∈ H we have

σ(a(`, fP1)) = ϕ(`)a(`, fP2),

where

ϕ(`) := η−1(P1(ρ(Frob`)))
σ(
√
χ(`)`k−1)√
χ(`)`k−1

,

as claimed.

To finish the proof of Proposition 3.4.1 we need to remove the condition that Frob` ∈ H

from the conclusion of Proposition 3.4.3. That is, we would like to show that there is an

isomorphism σ̃ : I′/P′1 ∼= I′/P′2 extending σ and a character ϕ̃ : GQ → Q(I′/P′2)× extending

ϕ such that

σ̃(a(`, fP1)) = ϕ̃(`)a(`, fP2)

for almost all primes `. If we can do this, then applying Theorem 3.2.1 allows us to lift σ̃

to an element of Γ that sends P′1 to P′2. (We also need to verify that ϕ̃ takes values in

Zp[χ] in order to apply Theorem 3.2.1.) But this is a contradiction since P′1 and P′2 lie

over different primes of I0. Hence it follows from Proposition 3.4.3 that G must be open in

SL2(I0/Q1)× SL2(I0/Q2) and Lemma 3.4.2 implies Proposition 3.4.1.

We show the existence of σ̃ and ϕ̃ using obstruction theory as developed in [15, §4.3.5].

For the sake of notation, we briefly recall the theory here. For the proofs we refer the

reader to [15]. Let K be a finite extension of Qp, n ∈ Z+, and r : H → GLn(K) be an

absolutely irreducible representation. For all g ∈ GQ define a twisted representation on H

by rg(h) := r(ghg−1). Assume the following condition:

r ∼= rg over K for all g ∈ GQ. (3.3)

Under hypothesis (3.3) it can be shown that there is a function c : GQ → GLn(K) with the

following properties:
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1. r = c(g)−1rgc(g) for all g ∈ GQ;

2. c(hg) = r(h)c(g) for all h ∈ H, g ∈ GQ;

3. c(1) = 1.

As r is absolutely irreducible, it follows that b(g, g′) := c(g)c(g′)c(gg′)−1 is a 2-cocycle

with values in K×. In fact b factors through ∆ := GQ/H and hence represents a class

in H2(∆, K×). We call this class Ob(r). It is independent of the function c satisfying the

above three properties. The class Ob(r) measures the obstruction to lifting r to a represen-

tation of GQ. We say a continuous representation r̃ : GQ → GLn(K) is an extension of r to

GQ if r̃|H = r.

Proposition 3.4.4. 1. There is an extension r̃ of r to GQ if and only if Ob(r) = 0 ∈

H2(∆, K×).

2. If Ob(r) = 0 and r̃ is an extension of r to GQ, then all other extensions of r to GQ are

of the form r̃ ⊗ ψ for some character ψ : ∆→ K×.

For ease of notation we shall write Ki = Q(I/Pi) and Ei = Q(I0/Qi). Write ρi : GQ →

GL2(Ki) for ρfPi . By Theorem 3.3.1 we see that ρi|H takes values in GL2(Ei). Proposition

3.4.3 gives an isomorphism σ : E1
∼= E2 and a character ϕ : H → E×2 such that

tr(ρ1|σH) = tr(ρ2|H ⊗ ϕ).

In order to use obstruction theory to show the existence of σ̃ and ϕ̃ we must show that

all of the representations in question satisfy hypothesis (3.3).

Lemma 3.4.5. Let Li be a finite extension of Ki. View ρ1 as a representation over L1 and

ρ2|H , ρ1|σH , ρ2|H ⊗ ϕ, and ϕ as representations over L2. Then ρi|H , ρ1|σH , ρ2|H ⊗ ϕ, and ϕ all

satisfy hypothesis (3.3). Furthermore we have Ob(ρi|H) = 0,Ob(ρ1|σH) = Ob(ρ2|H ⊗ ϕ), and

Ob(ρ2|H ⊗ ϕ) = Ob(ρ2|H) Ob(ϕ) ∈ H2(∆, (L2)×).
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Proof. Recall that a continuous representation of a compact group over a field of character-

istic 0 is determined up to isomorphism by its trace. Therefore to verify (3.3) it suffices to

show that if r is any of the representations listed in the statement of the lemma, then

tr r = tr rg

for all g ∈ GQ. This is obvious when r is ρ1|H or ρ2|H since both extend to representations

of GQ and hence

tr ρgi (h) = tr ρi(g)ρi(h)ρi(g)−1 = tr ρi(h).

Since ρi is an extension of ρi|H and Li ⊇ Ki we have Ob(ρi|H) = 0.

When r = ρ1|σH , let τ : K1 ↪→ Qp be an extension of σ. Then ρτ1 is an extension of

ρ1|σH and hence we can use the same argument as above to conclude that tr ρ1|σH = tr(ρ1|σH)g.

(Note that for this particular purpose, we do not care about the field in which τ takes values.)

When r = ρ2|H ⊗ ϕ, recall that tr ρ1|σH = ϕ tr ρ2|H . Since both ρ1|σH and ρ2|H satisfy

hypothesis (3.3) so does ρ2|H ⊗ ϕ. Furthermore, tr ρ1|σH = tr(ρ2|H ⊗ ϕ) implies that ρ1|σH ∼=

ρ2|H ⊗ ϕ and hence Ob(ρ1|σH) = Ob(ρ2|H ⊗ ϕ).

Since (ρ1|σH)g ∼= ρ2|gH ⊗ ϕg for any g ∈ GQ and since both ρi|H satisfy (3.3) we see that

ϕg tr ρ2|H = ϕ tr ρ2|H . (3.4)

Thus if we know tr ρ2|H is nonzero sufficiently often then we can deduce that ϕ satisfies (3.3)

. More precisely, let m ∈ Z+ be the conductor for ϕ, so ϕ : (Z/mZ)× → Q×. Then we

have a surjection H � Gal(Q(ζm)/Q) ∼= (Z/mZ)× with kernel κ. Choose a set S of coset

representatives of κ in H, so H = ts∈Ssκ. If we can show that tr ρ2(sκ) 6= {0} for all s ∈ S,

then it follows from equation (3.4) that ϕg = ϕ for all g ∈ GQ. Recall that ρ2 is a Galois

representation attached to a classical modular form, and so by Ribet [38, 39] and Momose’s

[34] result we know that its image is open. (See Theorem 3.5.1 for a precise statement of

their result.) Then the restriction of ρ2 to any open subset of GQ also has open image and

hence tr ρ2 is not identically zero. Each sκ is open in GQ, so ϕg = ϕ.
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Finally, note that if c : GQ → GL2(L2) is a function satisfying conditions 1-3 above for

r = ρ2|H and η : GQ → L×2 is a function satisfying conditions 1-3 above for ϕ, then ηc is

a function satisfying conditions 1-3 for ρ2|H ⊗ ϕ. From this it follows that Ob(ρ2|H ⊗ ϕ) =

Ob(ρ2|H) Ob(ϕ).

With Li as in the previous lemma, suppose there is an extension σ̃ : L1
∼= L2 of σ and

an extension ϕ̃ : GQ → L×2 of ϕ. We now show that this gives us the desired relation among

traces.

Lemma 3.4.6. If there exists extensions σ̃ of σ and ϕ̃ of ϕ, then there exists a character

η : GQ → L×2 that is also a lift of ϕ such that ρσ̃1
∼= ρ2 ⊗ η.

Proof. Note that since F does not have CM, ρ1|H and ρ2|H are absolutely irreducible by

results of Ribet [37]. For any absolutely irreducible representation π : GQ → GL2(L2)

Frobenius reciprocity gives

〈π, Ind
GQ
H (ρ1|σH)〉GQ = 〈π|H , ρ1|σH〉H = 〈π|H , ρ2|H ⊗ ϕ〉H . (3.5)

Thus if π is a 2-dimensional irreducible constituent of Ind(ρ1|σH) then ρ1|σH is a constituent

of π|H . As both are 2-dimensional, it follows that ρ1|σH ∼= π|H and thus π is an extension of

ρ1|σH . Since σ̃ exists by hypothesis, we know that ρσ̃1 is also an extension of ρ1|σH .

Since ϕ̃ exists by hypothesis, we can take π = ρ2 ⊗ ϕ̃. Then (3.5) implies that π is an

irreducible constituent of IndGH(ρ1|σH). By Proposition 3.4.4 there is a character ψ : ∆→ L×2

such that ρ2 ⊗ ϕ̃ ∼= ρσ̃1 ⊗ ψ. That is,

ρσ̃1
∼= ρ2 ⊗ (ϕ̃ψ−1).

Setting η = ϕ̃ψ−1 gives the desired conclusion.

Finally, we turn to showing the existence of σ̃ and ϕ̃. With notation as in Lemma

3.4.5, suppose there exists σ̃−1 : L2
∼= L1 that lifts σ−1. Then σ̃−1 induces an isomorphism

H2(∆, L×2 ) ∼= H2(∆, L×1 ) that sends Ob(ρ1|σH) to Ob(ρ1|H). It follows from Lemma 3.4.5 that
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Ob(ρ1|σH) = 1 and hence Ob(ρ2|H ⊗ ϕ) = 1. But 1 = Ob(ρ2|H ⊗ ϕ) = Ob(ρ2|H) Ob(ϕ) =

Ob(ϕ), and thus we can extend ϕ to ϕ̃ : GQ → L×2 .

The above argument requires that we find Li ⊇ Ki such that L1 is isomorphic to L2 via

a lift of σ. We can achieve this as follows. Let τ : K1 ↪→ Qp be an extension of σ. Let

L2 = K2τ(K1). Let σ̃−1 : L2 ↪→ Qp be an extension of τ−1 and set L1 = σ̃−1(L2). This

construction satisfies the desired properties. Applying Lemma 3.4.6 we see that there is a

character η : GQ → L×2 such that

tr ρσ̃1 = tr ρ2 ⊗ η. (3.6)

This is almost what we want. Note that by (3.6) it follows that σ̃ restricts to an isomorphism

from (I′/P′1)[η] to (I′/P′2)[η]. The only problem is that σ̃ may not send I′/P′1 to I′/P′2 and

η may have values in L2 that are not in (I′/P′2)×. We shall show that this cannot be the

case.

Recall that χ is the nebentypus of F and P1 and P2 lie over the arithmetic prime Pk,1 of

Λ. Thus for almost all primes ` we have det ρi(Frob`) = χ(`)`k−1. Applying this to equation

(3.6) we find that

χσ̃(`)`k−1 = η2(`)χ(`)`k−1.

Recall that χ(`) is a root of unity and hence χσ̃(`) is just a power of χ(`). Thus η2(`) ∈

Zp[χ] ⊆ I′/P′i and hence [(I′/P′i)[η] : I′/P′i] ≤ 2. Thus we may assume that L2 = K2[η],

which is at most a quadratic extension of K2.

Note that since η2 takes values in I′/P′i we can obtain (I′/P′i)[η] from I′/P′i by adjoining

a 2-power root of unity. (Write η as the product of a 2-power order character and an odd

order character and note that any odd order root of unity is automatically a square in any

ring in which it is an element.)

Lemma 3.4.7. We have (I′/P′i)[η] = I′/P′i for i = 1, 2. Therefore σ̃ : I′/P′1 ∼= I′/P′2 and η

takes values in Zp[χ].

Proof. Suppose first that I′/P′2 = (I′/P′2)[η] but [(I′/P′1)[η] : I′/P′1] = 2. Then we have that

52



σ̃ : (I′/P′1)[η] ∼= I′/P′2. Note that (I′/P′1)[η] is unramified over I′/P′1 since it is obtained by

adjoining a prime-to-p root of unity (namely a 2-power root of unity). Thus the residue field

of (I′/P′1)[η] must be a quadratic extension of the residue field F of I′/P′1. But F is also the

residue field of I′/P′2 and since (I′/P′1)[η] ∼= I′/P′2 they must have the same residue field, a

contradiction. Therefore we must have (I′/P′1)[η] = I′/P′1.

It remains to deal with the case when [(I′/P′1)[η] : I′/P′1] = [(I′/P′2)[η] : I′/P′2] = 2. As

noted above, these extensions must be unramified and hence the residue field of (I′/P′i)[η]

must be the unique quadratic extension E = F[η̄] of F. Note that σ̃ induces an automorphism

σ̂ of E that necessarily restricts to an automorphism of F. From χσ̃ = η2χ we find that

χ̄σ̂ = η̄2χ̄.

On the other hand σ̂ is an automorphism of F and hence is equal to some power of Frobenius.

So we see that for some s ∈ Z we have η̄2 = χ̄p
s−1. Since p is odd, ps−1 is even and hence η̄2

takes values in Fp[χ̄2]. Thus η̄ takes values in Fp[χ̄] ⊆ F, a contradiction to the assumption

that [F[η̄] : F] = 2.

Since η2 takes values in Zp[χ] and Fp[η̄] ⊆ Fp[χ̄], it follows that in fact η must take values

in Zp[χ]. Hence we may take Li = Ki and σ̃ : I′/P′1 ∼= I′/P′2.

Finally, we summarize how the results in this section fit together to prove Proposition

3.4.1.

Proof of Proposition 3.4.1. By Lemma 3.4.2 it suffices to show that, for any two primesQ1 6=

Q2 of I0 lying over Pk,1, the image of Im ρ in SL2(I0/Q1)× SL2(I0/Q2) is open. Proposition

3.4.3 says that if that is not the case, then there is an isomorphism σ : I0/Q1
∼= I0/Q2 and

a character ϕ : H → Q(I0/Q2)× such that tr ρfP1
|σH = tr ρfP2

|H ⊗ϕ. The obstruction theory

arguments allow us to lift σ and ϕ to σ̃ : I′/P′1 ∼= I′/P′2 and ϕ̃ : GQ → Q(I/P2)× such that

tr ρσ̃fP1
= tr ρfP2

⊗ ϕ̃. Theorem 3.2.1 allows us to lift σ̃ to an element of Γ that sends P′1 to

P′2. But P′1 and P′2 lie over different primes of I0 and Γ fixes I0, so we reach a contradiction.

Therefore the image of Im ρ in the product SL2(I0/Q1)× SL2(I0/Q2) is open.
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3.5 Proof of main theorem

In this section we use the compatibility between the conjugate self-twists of F and those of

its classical specializations established in section 3.2 to relate I0/Q to the ring appearing in

the work of Ribet [38, 39] and Momose [34]. This allows us to use their results to finish the

proof of Theorem 3.1.4.

We begin by recalling the work of Ribet and Momose. We follow Ribet’s exposition in [39]

closely. Let f =
∑∞

n=1 a(n, f)qn be a classical eigenform of weight k. Let K = Q({a(n, f) :

n ∈ Z+}) with ring of integers O. Denote by Γf the group of conjugate self-twists of f . Let

E = KΓf and Hf = ∩σ∈Γf ker ησ. For any character ψ, let G(ψ) denote the Gauss sum of

the primitive character of ψ. For σ, τ ∈ Γf Ribet defined

c(σ, τ) :=
G(η−1

σ )G(η−στ )

G(η−1
στ )

.

One shows that c is a 2-cocycle on Γf with values in K×.

Let X be the central simple E-algebra associated to c. Then K is the maximal commuta-

tive semisimple subalgebra of X. It can be shown that X has order two in the Brauer group

of E, and hence there is a 4-dimensional E-algebra D that represents the same element as

X in the Brauer group of E. Namely, if X has order one then D = M2(E) and otherwise D

is a quaternion division algebra over E.

For a prime p, recall that we have a Galois representation

ρf,p : GQ → GL2(OK ⊗Z Zp)

associated to f . The following theorem is due to Ribet in the case when f has weight 2 [38].

Theorem 3.5.1 (Momose [34]). We may view ρf,p|Hf as a representation valued in (D ⊗Q

Qp)
×. Furthermore, letting n denote the reduced norm map on D, the image of ρf,p|Hf is

open in

{x ∈ (D ⊗Q Qp)
× : nx ∈ Q×p }.
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In particular, when D⊗QQp is a matrix algebra, the above theorem tell us that Im ρf,p|Hf
is open in

{x ∈ GL2(OE ⊗Z Zp) : det x ∈ (Z×p )k−1}.

Let p be a prime of OE lying over p, and let ρf,p be the representation obtained by projecting

ρf,p|Hf to the OEp-component. Under the assumption that D ⊗Q Qp is a matrix algebra

Theorem 3.5.1 implies that ρf,p is OEp-full. Finally, Brown and Ghate proved that if f is

ordinary at p, then D ⊗Q Qp is a matrix algebra [2, Theorem 3.3.1].

Thus, the Galois representation associated to each classical specialization of our I-adic

form F is OEp-full with respect to the appropriate ring OEp . We must show that Ep is equal

to Q(I0/Q), where Q corresponds to p in a way we will make precise below.

Recall that we have a fixed embedding ιp : Q ↪→ Qp. Let P ∈ Spec(I)(Qp) be an

arithmetic prime of I, and let Q be the prime of I0 lying under P. As usual, let P′ = P∩ I′.

Let D(P′|Q) ⊆ Γ be the decomposition group of P′ over Q. Let

KP = Q({ι−1
p (a(n, fP)) : n ∈ Z+}) ⊂ Q,

and let ΓP be the group of all conjugate self-twists of the classical modular form fP. Set

EP = K
ΓP

P . Let qP be the prime of KP corresponding to the embedding ιp|KP
, and set pP =

qP ∩EP. Let D(qP|pP) ⊆ ΓP be the decomposition group of qP over pP. Thus we have that

the completion KP,qP of KP at qP is equal to Q(I/P) and Gal(KP,qP/EP,pP) = D(qP|pP).

Thus we may view D(qP|pP) as the set of all automorphisms of KP,qP that are conjugate

self-twists of fP.

With this in mind, we see that there is a natural group homomorphism

Φ : D(P′|Q)→ D(qP|pP)

since any element ofD(P′|Q) stabilizes P′ and hence induces an automorphism ofQ(I′/P′) =

Q(I/P) = KP,qP . The induced automorphism will necessarily be a conjugate self-twist of fP

since we started with a conjugate self-twist of F . Thus we get an element of D(qP|pP). The

main compatibility result is that Φ is an isomorphism.
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Proposition 3.5.2. The natural group homomorphism Φ is an isomorphism. Therefore

Q(I0/Q) = EP,pP.

Proof. The fact that Φ is injective is easy. Namely, if σ ∈ D(P′|Q) acts trivially on KP,qP

then for almost all ` we have

a(`, fP) = a(`, fP)σ = ησ(`)a(`, fP).

Since F (and hence its arithmetic specialization fP) does not have CM it follows that ησ = 1.

Hence σ = 1 and Φ is injective.

To see that Φ is surjective, let σ ∈ D(qP|pP). By Theorem 3.2.1 we see that there is

σ̃ ∈ Aut I′ that is a conjugate self-twist of F and σ ◦P = P ◦ σ̃. That is, σ̃ ∈ D(P′|Q) and

Φ(σ̃) = σ. We have

EP,pP = K
D(qP|pP)
P,qP

= Q(I′/P′)D(P|Q).

A general fact from commutative algebra [1, Theorem V.2.2.2] tells us that

Q(I′/P′)D(P|Q) = Q(I0/Q),

as desired.

Corollary 3.5.3. Let Q be a prime of I0 lying over an arithmetic prime of Λ. There is a

nonzero I0/Q-ideal aQ such that

ΓI0/Q(aQ) ⊆ Im(ρF mod QI′) ⊆
∏
P′|Q

GL2(I′/P′),

where the inclusion of ΓI0/Q(aQ) in the product is via the diagonal embedding GL2(I0/Q) ↪→∏
P′|QGL2(I′/P′). Hence the image of Im ρ in SL2(I0/Q) is open.

Proof. For a prime P of I, write OP for the ring of integers of EP,pP . By Theorem 3.5.1 and

the remarks following it, for each prime P of I lying over Q we have Im ρfP contains ΓOP
(aP)

for some nonzero OP-ideal aP. While I0/Q need not be integrally closed, by Proposition 3.5.2

we see that aP ∩ (I0/Q) is a nonzero I0/Q-ideal.
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Thus we have

ΓI0/Q(aP ∩ I0/Q) ⊆ ΓOP
(aP) ⊆ Im ρfP = Im ρF mod P ⊆ GL2(I′/P′).

Let aQ = ∩P|QaP ∩ I0/Q. This is a finite intersection of nonzero I0/Q-ideals and hence is

nonzero. The first statement follows from the above inclusions.

For the statement about ρ, recall that ρF |H0 is valued in GL2(I0) and hence Im ρF |H0 mod

Q lies in the diagonal copy of GL2(I0/Q) in
∏

P′|QGL2(I′/P′). Since H is open in GQ

by replacing aQ with a smaller I0/Q-ideal if necessary, we may assume that ΓI0/Q(aQ) is

contained in the image of ρF |H in GL2(I0/Q). Since ρ and ρF are equal on elements of

determinant 1 and ΓI0/Q(aQ) ⊆ SL2(I0/Q), it follows that ΓI0/Q(aQ) is contained in the

image of Im ρ in SL2(I0/Q). That is, the image of Im ρ in SL2(I0/Q) is open.

Summary of Proof of Theorem 3.1.4. Theorem 3.3.1, which will be proved in the next sec-

tion, allows us to create a representation ρ : H → SL2(I0) with the property that if ρ is I0-full

then so is ρF . This is important for the use of Pink’s theory in section 3.3 as well as for

the techniques of section 3.4. Proposition 3.3.2 shows that it is sufficient to prove that the

image of Im ρ in
∏
Q|P SL2(I0/Q) is open for some arithmetic prime P of Λ. Proposition 3.4.1

further reduces the problem to showing that the image of ρ modulo Q is open in SL2(I0/Q)

for all primes Q of I0 lying over a fixed arithmetic prime P of Λ.

This reduces the problem to studying the image of a Galois representation attached to one

of the classical specializations of F (twisted by the inverse square root of the determinant).

Hence we can apply the work of Ribet and Momose, but only after we show that Q(I0/Q) is

the same field that occurs in their work. This is done in Proposition 3.5.2, though the main

input is Theorem 3.2.1.

3.6 Obtaining an SL2(I0)-valued representation

In this section we prove Theorem 3.3.1.
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Theorem 3.3.1. Assume that ρ̄F is absolutely irreducible and H0-regular. If V = I′2 is the

module on which GQ acts via ρF , then there is a basis for V such that all of the following

happen simultaneously:

1. ρF is valued in GL2(I′);

2. ρF |Dp is upper triangular;

3. ρF |H0 is valued in GL2(I0);

4. There is a matrix j =
(
ζ 0
0 ζ′

)
, where ζ and ζ ′ are roots of unity, such that j normalizes

the image of ρF and ζ 6≡ ζ ′ mod p.

It is well known that so long as ρ̄F is absolutely irreducible we may assume that ρF has

values in GL2(I′) and the local representation ρF |Dp is upper triangular [17, Theorem 4.3.2].

To show that ρF |H0 has values in GL2(I0) we begin by investigating the structure of Γ.

Proposition 3.6.1. The group Γ is a finite abelian 2-group.

Proof. Let S be the set of primes ` for which a(`, F )σ = ησ(`)a(`, F ) for all σ ∈ Γ, so S

excludes only finitely many primes. For ` ∈ S, let

b` :=
a(`, F )2

det ρF (Frob`)
.

It turns out that b` ∈ I0. To see this, note that since ρ̄F is absolutely irreducible, for any

σ ∈ Γ we have ρσF
∼= ησ ⊗ ρF over I′. Taking determinants we find that det ρσ−1

F = η2
σ. Thus

we have

(a(`, F )σ)2 = ησ(`)2a(`, F )2 = det ρF (Frob`)
σ−1a(`, F )2,

from which it follows that bσ` = b`. Solving for a(`, F ) in the definition of b` we find that

Q(I′) = Q(I0)[
√
b` det ρF (Frob`) : ` ∈ S].

Recall that for ` ∈ S we have det ρF (Frob`) = χ(`)κ(〈`〉)`−1, where κ(〈`〉) ∈ 1 + mΛ.

(Currently all that matters is that κ is valued in 1 + mΛ. For a precise definition of κ, see
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(2.6).) In particular,
√
κ(〈`〉) ∈ Λ. Similarly, we can write ` = 〈`〉ω(`) with 〈`〉 ∈ 1 + pZp

and ω(`) ∈ µp−1. So
√
〈`〉 ∈ Λ as well.

Let

K = Q(I0)[
√
b`,
√

det ρF (Frob`) : ` ∈ S],

which is an abelian extension of Q(I0) since it is obtained by adjoining square roots. The

above argument shows that in fact K is obtained from Q(I0)[
√
b` : ` ∈ S] by adjoining finitely

many roots of unity, namely the square roots of the values of χ and the square roots of µp−1.

As odd order roots of unity are automatically squares, we can write K = Q(I0)[
√
b` : ` ∈

S][µ2s ] for some s ∈ Z+. Thus we have

Gal(K/Q(I0)) ∼= Gal(Q(I0)[
√
b` : ` ∈ S]/Q(I0))×Gal(Q(I0)[µ2s ]/Q(I0)).

By Kummer theory the first group is an elementary abelian 2-group. The second group is

isomorphic to (Z/2sZ)× and hence is a 2-group. As Γ is a quotient of Gal(K/Q(I0)) it follows

that Γ is a finite abelian 2-group, as claimed.

For ease of notation let π = ρ̄F |H0 : H0 → GL2(F). Let D be a non-square in F, and let

E = F[
√
D] be the unique quadratic extension of F.

Lemma 3.6.2. Let K be a field and S ⊂ GLn(K) a set of nonconstant semisimple operators

that can be simultaneously diagonalized over K. If y ∈ GLn(K) such that ySy−1 ⊂ GLn(K),

then there is a matrix z ∈ GLn(K) such that zSz−1 = ySy−1. In particular, if π is irreducible

over F but not absolutely irreducible, then E is the splitting field for π.

Proof. Let σ ∈ GK := Gal(K/K). Then for any x ∈ S we have yσxy−σ = (yxy−1)σ =

yxy−1, so y−1yσ centralizes x. As elements in S are simultaneously diagonalizable, they

have the same centralizer in GLn(K). Since elements of S are semisimple, their centralizer

is a torus and hence isomorphic to (K)⊕n. It’s not hard to show that a : GK → (K
×

)⊕n

given by σ 7→ y−1yσ is a 1-cocycle. (Here we view (K
×

)⊕n as a GK-module by letting

elements of GK act component-wise.) By Hilbert’s Theorem 90 we have H1(GK , (K
×

)⊕n) =
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H1(GK , K
×

)⊕n = 0. Hence a is a coboundary. That is, there is some α ∈ (K
×

)⊕n such that

aσ = y−1yσ = α−1ασ

for all σ ∈ GK . Thus (yα−1)σ = yα−1 for all σ ∈ GK , so z := yα−1 ∈ GLn(K). But α

commutes with S and so zSz−1 = ySy−1, as claimed.

To deduce the claim about π, let S = Im π. The fact that S is semisimple follows

from Clifford’s Theorem since ρ̄F is absolutely irreducible [22, Theorem 6.5, Corollary 6.6].

If π is not absolutely irreducible then there is a matrix y ∈ GL2(F) that simultaneously

diagonalizes S. Note that every matrix in Imπ has eigenvalues in E. Indeed every matrix

has a quadratic characteristic polynomial and E is the unique quadratic extension of F.

Thus, taking K = E we see that ySy−1 ⊂ GL2(K). The first statement of the lemma tells

us that Imπ is diagonalizable over E. Since π is irreducible over F and [E : F] = 2, it follows

that E is the smallest extension of F over which Imπ is diagonalizable.

Let Z be the centralizer of Im π in M2(F). Since ρ̄F is H0-regular, exactly one of the

following three cases must occur:

1. The representation π is absolutely irreducible. In this case Z consists of scalar matrices

over F.

2. The representation π is not absolutely irreducible, but π is irreducible over F. In this

case we may assume

Z =


α βD

β α

 : α, β ∈ F

 ∼= E.

3. The representation π is reducible over F. In this case we may assume that Z consists

of diagonal matrices over F.

Recall that since ρ̄F is absolutely irreducible, for any σ ∈ Γ we have ρσF
∼= ησ ⊗ ρF . That

is, there is some tσ ∈ GL2(I′) such that

ρF (g)σ = ησ(g)tσρF (g)t−1
σ
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for all g ∈ GQ. Then for all σ, τ ∈ Γ, g ∈ GQ we have

ηστ (g)tστρF (g)t−1
στ = ρ(g)στ = ητσ(g)ητ (g)tτσtτρF (g)t−1

τ t−τσ .

Using the fact that ηστ = ητσητ we see that c(σ, τ) := t−1
στ tτσtτ commutes with the image of

ρF . As ρF is absolutely irreducible, c(σ, τ) must be a scalar. Hence c represents a 2-cocycle

of Γ with values in I′×.

We will need to treat case 2 (π is irreducible over F but not absolutely irreducible) a

bit differently, so we establish notation that will unify the proofs that follow. For a finite

extension M of Qp, let OM denote the ring of integers of M . Let K be the largest finite

extension of Qp for which OK [[T ]] is contained in I′. So K has residue field F. Let L be the

unique unramified quadratic extension of K. Write J = ΛOL [{a(`, F ) : ` - N}]. Note that

the residue field of J is the unique quadratic extension of F. Let

A =


J in case 2

I′ else.

Let κ be the residue field of A, so κ = E in case 2 and κ = F otherwise.

Since L is obtained from K by adjoining some prime-to-p root of unity, in case 2 it follows

that Q(A) is Galois over Q(I0) with Galois group isomorphic to Γ×Z/2Z. In particular, we

have an action of Γ on A in all cases. Let B = AΓ. In case 2, A is a quadratic extension of

B and B ∩ I′ = I0. Otherwise B = I0. We may consider the 2-cocycle c in H2(Γ, A×).

Lemma 3.6.3. With notation as above, [c] = 0 ∈ H2(Γ, A×). Thus there is a function

ζ : Γ→ A× such that c(σ, τ) = ζ(στ)−1ζ(σ)τζ(τ) for all σ, τ ∈ Γ.

Proof. Consider the exact sequence 1 → 1 + mA → A× → κ× → 1. Note that for j > 0 we

have Hj(Γ, 1 + mA) = 0 since 1 + mA is a p-profinite group for p > 2 and Γ is a 2-group by

Lemma 3.6.1. Thus the long exact sequence in cohomology gives isomorphisms

Hj(Γ, A×) ∼= Hj(Γ, κ×)

for all j > 0. Hence it suffices to prove that [c] = 0 ∈ H2(Γ, κ×).
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Let σ ∈ Γ and h ∈ H0. Recall that Γ acts trivially on F by Proposition 3.2.4. Since

ρσF (h) = ησ(h)tσρF (h)t−1
σ and ησ(h) = 1 it follows that tσ ∈ Z.

We now split into the three cases depending on the irreducibility of π. Suppose we are

in case 1, so π is absolutely irreducible and κ = F. Then tσ must be a scalar in F×. Call it

ζ̄(σ). Then c(σ, τ) = ζ̄(στ)−1ζ̄(σ)τ ζ̄(τ), and so [c] = 0 ∈ H2(Γ,F×).

In case 2, using the description of Z above we see that tσ =
(
ασ βσD
βσ ασ

)
for some ασ, βσ ∈ F.

This becomes a scalar, say ζ̄(σ) = ασ + βσ
√
D, over E = κ. Thus tσ = ζ̄(σ). As above

c(σ, τ) = ζ̄(στ)−1ζ̄(σ)τ ζ̄(τ), and thus [c] = 0 ∈ H2(Γ, κ×).

Finally, in case 3 we have that tσ is a diagonal matrix. The diagonal map F ↪→ F ⊕ F

induces an injection H2(Γ,F×) ↪→ H2(Γ,F× ⊕ F×). The fact that tσ is a diagonal matrix

allows us to calculate that the image of [c] in H2(Γ,F× ⊕ F×) is 0. Since the map is an

injection, it follows that [c] = 0 ∈ H2(Γ,F×), as desired.

Replace tσ ∈ GL2(I′) by tσζ(σ)−1 ∈ GL2(A). Then we still have ρσF = ησtσρF t−1
σ , and

now tστ = tτσtτ . That is, σ 7→ tσ is a nonabelian 1-cocycle with values in GL2(A). Since

F is primitive we have Q(I) = Q(I′). Thus by [17, Theorem 4.3.2] we see that ρF |Dp is

isomorphic to an upper triangular representation over Q(I′). Under the assumptions that ρ̄F

is absolutely irreducible and H0-regular, the proof of [17, Theorem 4.3.2] goes through with

I′ in place of I. That is, ρF |Dp is isomorphic to an upper triangular representation over I′.

Let V = I′2 be the representation space for ρF with basis chosen such that

ρF |Dp =

ε u

0 δ

 ,

and assume ε̄ 6= δ̄. Let V [ε] ⊂ V be the free direct summand of V on which Dp acts by ε and

V [δ] be the quotient of V on which Dp acts by δ. Let VA = V ⊗I′ A. Similarly for λ ∈ {ε, δ}

let VA[λ] := V [λ]⊗I′ A. For v ∈ VA, define

v[σ] := t−1
σ vσ, (3.7)

where σ acts on v component-wise. Note that in case 2 we are using the action of Γ on A

described prior to Lemma 3.6.3.
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Lemma 3.6.4. For all σ, τ ∈ Γ we have (v[σ])[τ ] = v[στ ], so this defines an action of Γ on

VA. Furthermore, this action stabilizes VA[ε] and VA[δ].

Proof. The formula (3.7) defines an action since σ 7→ tσ is a nonabelian 1-cocycle. Let λ be

either δ or ε. Let v ∈ VA[λ] and σ ∈ Γ. We must show that v[σ] ∈ VA[λ]. Let d ∈ Dp. Using

the fact that v ∈ VA[λ] and ρσF = ησtσρF t−1
σ we find that

ρF (d)v[σ] = η−1
σ (d)λσ(d)v[σ].

Note that for all d ∈ Dpεσ(d) uσ(d)

0 δσ(d)

 = ρσF (d) = ησ(d)tσρF (d)t−1
σ = ησ(d)tσ

ε(d) u(d)

0 δ(d)

 t−1
σ . (3.8)

Using the fact that ε 6= δ and that ρF |Dp is indecomposable [9, 49] we see that u/(ε − δ)

cannot be a constant. (If u/(ε − δ) = α is a constant, then conjugating by
(

1 α
0 1

)
makes

ρF |Dp diagonal.) Hence tσ must be upper triangular. Therefore (3.8) implies that λσ(d) =

ησ(d)λ(d), and thus

ρF (d)v[σ] = η−1
σ (d)λσ(d)v[σ] = λ(d)v[σ].

We are now ready to show that ρF |H0 takes values in GL2(I0).

Theorem 3.6.5. Let ρF : GQ → GL2(I′) such that ρF |Dp is upper triangular. Assume that

ρ̄F is absolutely irreducible and H0-regular. Then ρF |H0 takes values in GL2(I0).

Proof. We have an exact sequence of A[Dp]-modules

0→ VA[ε]→ VA → VA[δ]→ 0 (3.9)

that is stable under the new action of Γ defined in Lemma 3.6.4. Tensoring with κ over A

we get an exact sequence of κ-vector spaces

Vκ[ε̄]→ Vκ → Vκ[δ̄]→ 0. (3.10)
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Since VA[ε] is a direct summand of VA, the first arrow is injective. Since VA[ε] and VA are

free A-modules, it follows that dimκ Vκ[ε̄] = 1 and dimκ Vκ = 2. Counting dimensions in

(3.10) now tells us that dimκ Vκ[δ̄] = 1.

Going back to the exact sequence (3.9) we can take Γ-invariants since all of the modules

are stable under the new action of Γ. This gives an exact sequence of B[Dp ∩H0]-modules

0→ VA[ε]Γ → V Γ
A → VA[δ]Γ → H1(Γ, VA[ε]).

Since Γ is a 2-group by Lemma 3.6.1 and VA[ε] ∼= A is p-profinite, we find that H1(Γ, VA[ε]) =

0. Tensoring with κΓ over B we get an exact sequence

VA[ε]Γ ⊗B κΓ → V Γ
A ⊗B κΓ → VA[δ]Γ ⊗B κΓ → 0.

If dimκΓ VA[λ]Γ ⊗B κΓ = 1 for λ ∈ {ε, δ}, then it follows from Nakayama’s Lemma that

VA[λ]Γ is a free B-module of rank 1. Hence V Γ
A is a free B-module of rank 2. In all the cases

except case 2, this completes the proof. In case 2 the above argument tells us that if we view

ρF as a GL2(A)-valued representation, then ρF |H0 takes values in GL2(B). We know that

ρF actually has values in GL2(I′) and hence ρF |H0 has values in GL2(B ∩ I′) = GL2(I0).

Thus we must show that for λ ∈ {ε, δ} we have dimκΓ VA[λ]Γ ⊗B κΓ = 1. Note that

VA[λ]Γ ⊗B κΓ = Vκ[λ̄]Γ. When we are not in case 2, Γ acts trivially on κ and hence

dimF VF[λ̄]Γ = dimF VF[λ̄] = 1.

Now assume we are in case 2, so κ = E. Since dimE VE[λ̄] = 1 we can choose some nonzero

v ∈ VE[λ̄]. We would like to show that ∑
σ∈Γ

v[σ] 6= 0

since the right hand side is Γ-invariant.

Since VE[λ̄] is 1-dimensional, for each σ ∈ Γ there is some ασ ∈ E× such that v[σ] = ασv.

Thus ∑
σ∈Γ

v[σ] =
∑
σ∈Γ

ασv.

64



If
∑

σ∈Γ ασ 6= 0 then we are done. Otherwise we can change v to av for any a ∈ E×. It is

easy to see that (av)[σ] = aσασa
−1(av) and thus changing v to av changes ασ to aσa−1ασ.

So we need to show that there is some a ∈ E× such that
∑

σ∈Γ a
σ−1 6= 0. In other words, we

are interested in the zeros of the function

f(x) =
∑
σ∈Γ

ασx
σ−1

on E. By Artin’s Theorem on characters [26, Theorem VI.4.1], f is not identically zero on

E. Therefore dimF VE[λ̄]Γ ≥ 1.

To get equality, let 0 6= w ∈ VE[λ̄]Γ. Since VE[λ̄]Γ ⊆ VE[λ̄] and dimE VE[λ̄] = 1, any

element of VE[λ̄]Γ is an E-multiple of w. If β ∈ E \ F then σ does not fix β. Thus

(βw)[σ] = βσw[σ] = βσw 6= βw.

Hence VE[λ̄]Γ = Fw and dimF VE[λ̄]Γ = 1, as desired.

Finally, we modify ρF to obtain the normalizing matrix j in the last part of Theorem

3.3.1.

Lemma 3.6.6. Suppose ρF : GQ → GL2(I′) such that ρF |Dp is upper triangular and ρF |H0

is valued in GL2(I0). Assume ρ̄F is absolutely irreducible and H0-regular. Then there is

an upper triangular matrix x ∈ GL2(I0) and roots of unity ζ and ζ ′ such that j :=
(
ζ 0
0 ζ′

)
normalizes the image of xρFx

−1 and ζ 6≡ ζ ′ mod p.

Proof. This argument is due to Hida [17, Lemma 4.3.20]. As ρ̄F is H0-regular there is

an h ∈ H0 such that ε̄(h) 6= δ̄(h). Let ζ and ζ ′ be the roots of unity in I0 satisfying

ζ ≡ ε(h) mod m0 and ζ ′ ≡ δ(h) mod m0. By our choice of h we have ζ 6≡ ζ ′ mod p.

Let q = |F|. Then for some u ∈ I0

lim
n→∞

ρF (h)q
n

=

ζ u

0 ζ ′

 .

Conjugating ρF by
(

1 u/(ζ−ζ′)
0 1

)
preserves all three of the desired properties, and the image

of the resulting representation is normalized by j =
(
ζ 0
0 ζ′

)
.
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CHAPTER 4

Lifting without Deformation Theory

As we saw in Chapter 3, Theorem 3.2.1 was a key component in the proof of Theorem 3.1.4.

Although the statement of Theorem 3.1.4 is purely automorphic, deformation theory played

a key role in the proof we gave in Section 3.2. In this section we give a purely automorphic

proof of a version of Theorem 3.2.1.

4.1 Twists as endomorphisms of a Hecke algebra

In this section we seek to reformulate the existence of conjugate self-twists in terms of

commutative diagrams involving certain Hecke algebras. We use Wiles’ interpretation of

Hida families presented in section 2.2.3 and the notation M(ψ, η) introduced prior to Lemma

3.2.6.

For the rest of this section, fix a Dirichlet character η with values in Z[χ]. Let M be a

positive integer multiple of M(χ, η). We wish to unify the classical and J-adic cases in what

follows. Let A be either a ring of integers O in a number field containing Z[χ] or an integral

domain J that is finite flat over Λ and contains Z[χ]. We shall write S(M,χ;A) for either

Sk(Γ0(M), χ;O) when A = O or S(M,χ; J) when A = J. Let

rχ,η(M) =


Rχ,η(M) when A = O

Rχ,η(M) when A = J.

Denote by MT (n) the n-th Hecke operator on either S(M,χ;A) or S(M, η2χ;A). Note that

we use this notation MT (n) even when (n,M) > 1. The Hecke operators are compatible

with rχ,η(M) in the following sense.
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Lemma 4.1.1. For all n ∈ Z+ we have

MT (n) ◦ rχ,η(M) = η(n)rχ,η(M) ◦ MT (n).

In particular, both maps are zero when (n,M) > 1.

Proof. The classical case follows from the J-adic case by specialization, so we give the proof in

the J-adic case. (Incidentally, the classical case can be proved by exactly the same argument.)

It suffices to prove the lemma when n = ` is prime. Let G ∈ S(M,χ; J) and recall that

by definition of MT (`) we have

a(m,G|MT (`)) = a(m`,G) + κ(〈`〉)χ(`)`−1a(m/`,G),

where κ : 1 + pZp → Λ× was defined in (2.6) and a(m/`,G) = 0 if ` - m. Applying this

formula to Rχ,η(M)(G) ∈ S(M, η2χ; J) we calculate that for all m ∈ Z+

a(m,Rχ,η(M)(G)|MT (`)) = η(`)a(m,Rχ,η(M)(G|MT (`))).

This implies that

MT (`) ◦ Rχ,η(M)(G) = η(`)Rχ,η(M) ◦ MT (`)(G),

as desired.

For the rest of the chapter assume further that η is a quadratic character, so rχ,η(M)

is an endomorphism of S(M,χ;A). Let h(M,χ;A) be the Hecke algebra of S(M,χ;A).

Recall the duality between them (Theorems 2.2.1 and 2.2.3). Let θχ,η(M) be the A-algebra

endomorphism of h(M,χ;A) induced by rχ,η(M) via dualtiy. By Lemma 3.2.6 if p - c(η)

then θχ,η(M) restricts to an endomorphism of hord(M,χ; J).

Lemma 4.1.2. For all n ∈ Z+ we have

θχ,η(M)(MT (n)) = η(n)MT (n).
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Proof. By definition θχ,η(M) is the map that makes the following diagram commute.

h(M,χ;A) oo //

θχ,η(M)

��

HomA(S(M,χ;A), A)

rχ,η(M)∗

��
h(M,χ;A) oo // HomA(S(M,χ;A), A)

Note that MT (n) corresponds to (MT (n),−)A under duality, and rχ,η(M)∗((MT (n),−)A) =

(MT (n),−)A ◦ rχ,η(M). Using the formula for the action of MT (n) on q-expansions as in

Lemma 4.1.1 together with the definition of rχ,η(M) yields

(MT (n),−)A ◦ rχ,η(M)(f) = η(n)(MT (n), f)A

for all f ∈ S(M,χ). Thus (MT (n),−)A ◦ rχ,η(M) = η(n)(MT (n),−)A which corresponds to

η(n)MT (n) under duality. Thus θχ,η(M)(MT (n)) = η(n)MT (n), as claimed.

Lemma 4.1.3. Let f ∈ S(N,χ;A) be an eigenform and M a positive integer multiple of

N . There is an eigenform fM ∈ S(M,χ;A) such that fM |MT (n) = 0 for all n such that

(n,M/N) > 1 and fM has the same eigenvalues as f for all MT (n) with (n,M/N) = 1.

Proof. Write M/N = `1 . . . `t for not necessarily distinct primes `i. By induction on t it

suffices to show that we can construct an eigenform fN`1 ∈ S(N`1, χ) with fN`1|
N`1T (`1) = 0

and fN`1 having the same eigenvalues as f for all primes ` 6= `1.

Let λ1 be the eigenvalue of f under NT (`1), so

f |NT (`1) = λ1f.

If λ1 = 0 then just viewing f ∈ S(N`1, χ;A) has all the desired properties and we may take

fN`1 = f . Otherwise, define fN`1 = f − λ1f |[`1] where (f |[`1])(z) := f(`1z). It is well known

(and can be checked by a calculation with q-expansions) that f |[`1]|N`1T (`1) = f |NT (`1).

This implies that fN`1|
N`1T (`1) = 0. For ` 6= `1 one can check that

N`1T (`) ◦ [`1] = [`1] ◦ NT (`).

From this it follows that fN`1 and f have the same eigenvalues for N`1T (`) for all primes

` 6= `1, as desired.
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We are interested in describing conjugate self-twists of an eigenform f ∈ S(N,χ;A). Let

A′ be the subalgebra of A generated by {a(`, f) : ` - N} over either Z[χ] if A = O, or over Λχ

when A = I. Note that if f is a newform then Q(A) = Q(A′). If N2|M then the eigenform

fM from Lemma 4.1.3 is an element of S(M,χ;A′). Write λfM : h(M,χ;A′) → A′ for the

A′-algebra homomorphism corresponding to fM . That is, λfM (MT (n)) = a(n, fM) for all

n ∈ Z+.

Proposition 4.1.4. Let f ∈ S(N,χ;A) be primitive and let η be a primitive quadratic

character. Let M = c(η)N2. Then f has a conjugate self-twist with character η if and only

if there is an automorphism σ of A′ making the following diagram commute.

h(M,χ;A′)
θχ,η(M) //

λfM
��

h(M,χ;A′)

λfM
��

A′
∃σ // A′

Proof. Let f ∈ S(N,χ;A) be an eigenform.

First suppose that we are given the above diagram for some σ ∈ AutA′. Let ` be a

prime not dividing M . Then from the diagram and the definition of fM we have σ(a(`, f)) =

λfM ◦ θχ,η(M)(MT (`)). From the description of θχ,η(M) in Lemma 4.1.2 and the fact that η

takes values in A′ and λfM is an A′-algebra homomorphism, we see that

σ(a(`, f)) = η(`)λfM (MT (`)) = η(`)a(`, f).

Thus σ is a conjugate self-twist of f with character η.

Conversely assume that there is a conjugate self-twist σ of f with character η. Then we

have that ρσf
∼= ρf ⊗ η. Since ρf is unramified away from N it follows that the only primes

` for which

σ(a(`, f)) 6= η(`)a(`, f)

are those dividing N . We need only check that the diagram commutes for MT (`) for all

primes `. If `|M/N then both compositions are zero. If ` - M/N = c(η)N then using the
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definition of θχ,η(M) and λfM we see that

σ ◦ λfM
(
MT (`)

)
= λfM ◦ θχ,η(M)

(
MT (`)

)
,

as desired.

As the previous proposition shows, we will want η to be a twist character of F or one of

its specializations. We had to impose the condition that η be quadratic. By Lemma 3.2.11,

this can be achieved by assuming that the Nebentypus χ is quadratic. By Proposition 3.2.9,

for applications to fullness we need only assume that the order of χ is not divisible by four.

In order to use the automorphic lifting techniques developed in the previous section, we must

further assume that

χ has order two. (4.1)

This assumption will be in place for the rest of the chapter.

4.2 Reinterpreting I-adic conjugate self-twists

Fix an arithmetic prime Q of I0 lying over Pk,ε. The total ring of fractions Q(I′/QI′) of I′/QI′

breaks up as a finite product of fields indexed by the primes of I′ lying over Q. Namely

Q(I′/QI′) ∼=
∏
P′|Q

Q(I′/P′).

(This relies two facts. First Q is an arithmetic prime and hence unramified in I′. Secondly

the cokernel of I′/QI′ ↪→
∏

P′|Q I′/P′ is finite since dim I′ = 2.) Let ΓQ be the group of all

automorphisms σ of Q(I′/QI′) for which there is a Dirichlet character ησ such that

σ(a(`, F ) +QI′) = ησ(`)a(`, F ) +QI′

for all but finitely many primes `. Since Q ⊆ I0 and I0 is fixed by Γ, elements of Γ preserve

QI′. Hence there is a natural group homomorphism

Ψ : Γ→ ΓQ

70



by letting σ ∈ Γ act on Q(I′/QI′) via σ(a(`, F ) +QI′) := σ(a(`, F )) +QI′. While we expect

that Ψ is an isomorphism in general, the purely automorphic techniques only allow us to lift

certain elements of ΓQ to Γ. Let

Γ2,p = {σ ∈ Γ : η2
σ = 1 and p - c(ησ)}

Γ2,p
Q = {σ ∈ ΓQ : η2

σ = 1 and p - c(ησ)}.

It is easy to check that Γ2,p is a subgroup of Γ and Γ2,p
Q is a subgroup of ΓQ. Note that

under assumption (4.1) the condition η2
σ = 1 is automatic. Furthermore, by Lemma 3.2.5,

p - c(ησ). (The proof of Lemma 3.2.5 does not use deformation theory.) We shall show that

Ψ|Γ2,p : Γ2,p → Γ2,p
Q is an isomorphism.

Proposition 4.2.1. The homomorphism Ψ : Γ → ΓQ is injective. Furthermore, Ψ(Γ2,p) =

Γ2,p
Q .

Proof. Suppose σ ∈ Γ such that Ψ(σ) is trivial. Thus for almost all primes ` we have

a(`, F ) +QI′ = σ(a(`, F )) +QI′ = ησ(`)a(`, F ) +QI′.

Recall that QI′ = ∩P′|QP′, so for all primes P of I lying over Q and almost all rational

primes ` we have

a(`, fP) = ησ(`)a(`, fP).

Since fP is a non-CM form it follows that ησ must be the trivial character. Therefore σ = 1

and Ψ is injective.

Now we show that we can lift elements of Γ2,p
Q . Let σ ∈ Γ2,p

Q , so for almost all primes `,

σ(a(`, F ) +QI′) = ησ(`)a(`, F ) +QI′.

Let M = c(ησ)N2 and consider the map θχ,ησ(M) defined before Lemma 4.1.2 with A = I.

Since p - c(ησ) we know by Lemma 3.2.6 that θχ,ησ(M) restricts to an endomorphism:

θχ,ησ(M) : hord(M,χ; I)→ hord(M,χ; I)
MT (n) 7→ ησ(n)MT (n).
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Note that θχ,ησ(M) restricts to an endomorphism of hord(M,χ; I′). By Proposition 4.1.4 it

suffices to show that θχ,ησ(M) preserves the I′-component of the Hecke algebra hord(M,χ; I′).

The induced map θχ,ησ(M)∗ on spectra must send irreducible components to irreducible

components. Furthermore since σ ∈ ΓQ we have the following commutative diagram:

hord(M,χ; I′)
θχ,ησ (M) //

λFM mod QI′

��

hord(M,χ; I′)

λFM mod QI′

��
I′/QI′ σ // I′/QI′

That is, θχ,ησ(M)∗ maps set of points of Spec I′ lying over Q to itself. Hence the two irre-

ducible components Spec I′ and θχ,ησ(M)∗(Spec I′) of Spec hord(M,χ; I′) have nonempty inter-

section. (Namely, they intersect in some points of I′ lying over Q.) Since Spec hord(M,χ; I′)

is étale over Spec Λ at arithmetic points [16, Proposition 3.78] and Q is arithmetic, we must

have θχ,ησ(M)∗(Spec I′) = Spec I′. That is, there is an automorphism σ̃ : I′ → I′ such that

the following diagram commutes:

hord(M,χ; I′)
θχ,ησ (M) //

λFM

��

hord(M,χ; I′)

λFM

��
I′ σ̃ //

��

I′

��
I′/QI′ σ // I′/QI′

By Lemma 4.1.2 and the definition of λFM we see that σ̃ ∈ Γ. As the lower square of the

above diagram commutes, it follows that Ψ(σ̃) = σ, as desired.

4.3 Identifying I-adic and classical decomposition groups

We briefly recall the notation introduced in section 3.5. We have a fixed embedding ιp :

Q ↪→ Qp. Let P0 ∈ Spec(I)(Qp) be an arithmetic prime of I, and let Q be the prime of I0

lying under P0. Let D(P′0|Q) ⊆ Γ be the decomposition group of P′0 over Q. Let

KP0 = Q({ι−1
p (a(n, fP0)) : n ∈ Z+}) ⊂ Q,
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and let ΓP0 be the group of all conjugate self-twists of the classical modular form fP0 . As

in the previous section, define

Γ2,p
P0

= {σ ∈ ΓP0 : η2
σ = 1 and p - c(ησ)}.

Set EP0 = K
ΓP0
P0

. Let qP0 be the prime of KP0 corresponding to the embedding ιp|KP0
,

and set pP0 = qP0| ∩ EP0 . Let D(qP0 |pP0) ⊆ ΓP be the decomposition group of qP0 over

pP0 . Thus we have that the completion KP0,qP0
of KP0 at qP0 is equal to Q(I/P0) and

Gal(KP0,qP0
/EP0,pP0

) = D(qP0|pP0). Thus we may view D(qP0 |pP0) as the set of all auto-

morphisms of KP0,qP0
that are conjugate self-twists of fP0 .

Let

Φ : D(P′0|Q)→ D(qP0|pP0)

be the natural homomorphism defined in section 3.5. We saw that Φ is an isomorphism in

Proposition 3.5.2. In this section we give a second proof that

D(qP0|pP0) ∩ Γ2,p
P0
⊆ Im Φ.

Under assumption (4.1), this shows that Φ is an isomorphism as in Proposition 3.5.2.

Theorem 4.3.1. We have D(qP0|pP0) ∩ Γ2,p
P0
⊆ Im Φ.

Proof. Let σ ∈ D(qP0|pP0) ∩ Γ2,p
P0

. For any primeP′ of I′ lying over Q, there is some

γP′ ∈ Γ such that γP′(P
′
0) = P′. Then γP′ induces an automorphism γ̄P′ of Qp such

that γ̄P′(a(`, fP)) = ηγP′ (`)a(`, fP0) for almost all primes `. Then

γ̄−1
P′ ◦ σ ◦ γ̄P′ ∈ D(qP′ |pP′).

In fact, we can compute the action of this element explicitly. This computation makes use

of the fact that all twist characters are quadratic and hence their values are either ±1. In

particular, they are fixed by all automorphisms in question. For almost all primes ` we have

γ̄−1
P′ ◦ σ ◦ γ̄P′(a(`, fP)) = ησ(`)a(`, fP). (4.2)
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This shows that the automorphism γ̄−1
P′ ◦ σ ◦ γ̄P′ is independent of the choice of γP′ sending

P′0 to P′.

We can now put all of these automorphisms γ̄−1
P′ ◦ σ ◦ γ̄P′ together to obtain an automor-

phism

π :=
∏
P′|Q

γ̄−1
P′ ◦ σ ◦ γ̄P′

of Q(I′/QI′) ∼=
∏

P′|QQ(I′/P′) =
∏

P′|QKP,qP by simply letting each γ̄−1
P′ ◦ σ ◦ γ̄P′ act on

KPp,qP . By equation (4.2) we see that π is in fact an element of Γ2,p
Q . Thus by Proposition

4.2.1 it follows that π, and hence σ, can be lifted to an element σ̃ ∈ Γ. It is clear from the

definition of the action of σ on Q(I′/QI′) that σ̃ ∈ D(P′0|Q) and Φ(σ̃) = σ.

Remark 4. Suppose that Q lies over Pk,1 with k divisible by p− 1. Then fP ∈ Sk(Γ0(N), χ).

Under assumption (4.1) it follows from Lemma 3.2.10 that all twist characters of fP are

quadratic.
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CHAPTER 5

Other results

This section contains a collection of small results that I have proved related to the ideas

presented in the previous two chapters. The subsections are nearly independent of each

other. The results in this section have not, to my knowledge, been published anywhere else.

5.1 Another description of Q(I0)

We can give a more explicit description of Q(I0). In fact, the result holds for general fields

and more generally than just GL2-representations. Therefore we shall work with in a more

general setting for this section. This description of Q(I0) suggests an appropriate analogue

when proving big image theorems for larger groups.

Let K be a field of characteristic zero. Let G be a connected linear algebraic group

defined over K. Fix an algebraic closure K of K, and let L be an extension K in K. Let G

be any group and

ρ : G→ G(L)

be a representation.

Definition 5.1.1. An automorphism σ of L fixing K is a conjugate self-twist of ρ if there

is a character η : G→ L× such that

ρσ ∼= η ⊗ ρ.

Let Γ denote the group of all conjugate self-twists of ρ, and

L0 = LΓ = {x ∈ L : σ(x) = x,∀σ ∈ Γ}.
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Let g be the Lie algebra of G and Ad : G→ End g the adjoint representation. Let Z(G)

denote the center of G and PG = G/Z(G).

Proposition 5.1.2. Assume that Ad ρ is absolutely irreducible. Assume further that there

is an embedding ι : G ↪→ GLn over K such that Z(G) is contained in the diagonal matrices

Gm ⊆ GLn. Then L0 is generated over K by the values of the trace of Ad ρ.

Proof. First take σ ∈ Γ and g ∈ G. By definition of Γ there is a character η : G→ L× such

that ρσ ∼= η ⊗ ρ. Thus

Ad ρσ ∼= Ad(η ⊗ ρ) = Ad ρ.

The last equality follows from the fact that, via ι, we can view the adjoint representation

simply as matrix conjugation. In particular it is unaffected by the scalar values of η. Applying

both sides to g and taking traces shows that tr Ad ρ(g) ∈ L0.

Now assume that σ ∈ Gal(K/K(tr Ad ρ)). We will show that σ|L is a conjugate self-twist

of ρ and thus fixes L0 pointwise. Since

tr Ad ρσ(g) = tr Ad ρ(g)

for all g ∈ G and since Ad ρ is absolutely irreducible by assumption, it follows that

Ad ρσ ∼= Ad ρ. (5.1)

Since G is connected and charK = 0, the kernel of the natural map Ad : G → End g

is the center of G. (See Lemma 5.1.3 below for this fact.) Thus we may view Ad ρ : G →

AdG(L) ∼= PG(L). Indeed, an element g ∈ G is mapped to its class [ρ(g)] ∈ PG(L), and

similarly for Ad ρσ. By (5.1) it follows that

ρσ ∼= ρ mod Z(G).

Define η : G→ L× by

η(g) = ι(ρσ(g)ρ(g)−1) ∈ ι(Z(G)) ⊆ Gm(L) = L×.

Since ρσ(g)ρ(g)−1 ∈ Z(G) for all g ∈ G it follows easily that η is a character and ρσ = ρ⊗ η,

as desired.
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Lemma 5.1.3. If G is a connected algebraic group over a field of characteristic zero, then

Z(G) is the kernel of Ad : G→ End g.

Proof. Embed G ↪→ GLn so that we may view everything as matrices. As charK = 0 we

have the exponential map exp : g→ G given by

exp(x) =
∞∑
k=0

xk

k!
.

If g ∈ ker Ad then g commutes with all elements of g. Thus g also commutes with all

elements of exp(g). Since G is connected, exp(g) generates G. Thus ker Ad is contained in

the center of G. The reverse containment is evident.

5.2 Identifying G/H with Γ∗

Let ρ : GQ → GL2(O) be a continuous representation. For now, we will let O be either a

finite extension of Zp or a finite extension of Λ = Zp[[T ]]. Assume O is the integral closure

of either Zp or Λ in the field generated by the traces of ρ.

Let N be the conductor of ρ and χ its Nebentypus. Let Γ be the group of all conjugate

self twists of ρ in the sense of Definition 5.1.1. Assume ρ does not have CM, so there is no

nontrivial character η for which ρ ∼= η ⊗ ρ. Let

H =
⋂
σ∈Γ

ker ησ.

For any finite abelian group A we’ll write A∗ = Hom(A,Q/Z) for the Pontryagin dual.

The main point of this section is to identify G/H with Γ∗. In order to do this, we need

a few facts about conjugate self twists that were proved in Momose’s paper, namely Lemma

3.2.10 and for every σ ∈ Γ the character ησ has conductor dividing N [34]. That is, ησ can

be viewed as a map (Z/NZ)× → Q.

Proposition 5.2.1. There is a natural isomorphism GQ/H ∼= Γ∗.
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Proof. Since ρ does not have CM there is a natural inclusion

Γ ↪→ Hom((Z/NZ)×,Q/Z) ∼= Hom(Gal(Q(µN)/Q),Q/Z)

given by σ 7→ ησ. Recall that the natural isomorphism (Z/NZ)× ∼= Gal(Q(µN)/Q) is given

by a ↔ σa, where σa acts on a primitive N -th root of unity ζN by ζσaN = ζaN . Therefore

Pontryagin duality yields a surjection

Φ : Gal(Q(µN)/Q) � Γ∗

given explicitly by Φ(σa)(γ) = ηγ(a) (where we regard Q/Z as the group of all finite order

roots of unity).

Note that

ker Φ = {σa ∈ Gal(Q(µN)/Q) : ηγ(a) = 1,∀γ ∈ Γ}.

Thus under the isomorphism Gal(Q(µN)/Q) ∼= GQ/Gal(Q/Q(µN)) we have ker Φ corre-

sponds to H ·Gal(Q/Q(µN))/Gal(Q/Q(µN)). Therefore we have

Γ∗ ∼= Gal(Q(µN)/Q)/ ker Φ ∼= GQ/H ·Gal(Q/Q(µN)) ∼= Gal(QH ∩Q(µN)/Q).

Hence it suffices to show that QH ⊆ Q(µN) since Gal(QH
/Q) ∼= GQ/H.

For each σ ∈ Γ, let Kσ = Qker ησ
, so each Kσ is a finite extension of Q. By Galois theory

we know that QH
=
∏

σ∈Γ Kσ, the compositum of all Kσ’s. Thus it suffices to show that

Q(µN) ⊇ Kσ for all σ ∈ Γ.

Since each ησ may be viewed as a character of (Z/NZ)× [34], we have

Gal(Q/Q(µN)) ⊆ ker ησ.

Thus Q(µN) ⊇ Kσ, as desired.

5.3 Residual conjugate self-twists when Im ρ̄F ⊇ SL2(Fp)

In this section we investigate what we can say about conjugate self-twists in the case when

Im ρ̄ ⊇ SL2(Fp). Let p ≥ 5 throughout this section. Let ρ̄ : GQ → GL2(F) be a continuous
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odd representation such that Im ρ̄ ⊇ SL2(Fp). Assume that F is generated over Fp by the

trace of ρ, which is possible since ρ̄ is absolutely irreducible.

By Serre’s Conjecture we know that ρ̄ is the reduction of ρf for some modular form f

[23, 24]. Let Γ be the group of conjugate self twists of f . We will prove that all conjugate

self-twists act trivially on the residue field and thus are contained in the inertia group.

Lemma 5.3.1. Let p ≥ 5 and let F be a finite extension of Fp. Let G be a subgroup of

GL2(F) such that G ⊇ SL2(Fp). Assume that F is generated by {tr g : g ∈ G} over Fp. Then

G ⊇ SL2(F). Furthermore, writing D = {det g : g ∈ G} we have

G = {x ∈ GL2(F) : det x ∈ D}.

Proof. The second claim follows immediately from claim that G ⊇ SL2(F). Let G = G · F×

and Ḡ = G/F× ⊆ PGL2(F). By Dickson’s classification of finite subgroups of PGL2(F)

and the facts that G ⊇ SL2(Fp) and p ≥ 5 it follows that, for some x ∈ GL2(Fp), we

have xGx−1 = PSL2(E) or xGx−1 = PGL2(E) for some finite extension E/Fp. Therefore

xGx−1 · F× is either GL2(E) or SL2(E) · E×. In either case F ⊆ E.

Note that intersecting either GL2(E) or SL2(E) · E× with SL2(E) gives SL2(E). On the

other hand,

xGx−1 · F× ∩ SL2(E) =
⋃
α∈F×

x(α−1Gα2 ∩ SL2(F))x−1 ⊆ x SL2(F)x−1,

where Gα = {g ∈ G : det g = α}. Therefore

| SL2(E)| ≤ |x SL2(F)x−1| = | SL2(F)|.

Since F ⊆ E, this is only possible when F = E, G ⊇ SL2(F), and x ∈ GL2(F), as desired.

Proposition 5.3.2. Suppose σ is an automorphism of F and η : GQ → F× such that

ρ̄σ ∼= η ⊗ σ. Then σ = 1 and η = 1.

Proof. Let us write G = Im ρ̄ and H = ρ̄(∩γ∈Γ ker ηγ). We claim that H ⊇ SL2(Fp). Recall

that GQ/∩γ∈Γ ker ηγ ∼= Γ∗ (Proposition 5.2.1) and Γ is a finite abelian 2-group (Proposition

79



3.6.1). Since SL2(Fp) ⊆ G it follows that H ∩ SL2(Fp) is a normal subgroup in SL2(Fp) with

index a power of 2. Since PSL2(Fp) is simple for p ≥ 5 and the sequence

1→ {±1} → SL2(Fp)→ PSL2(Fp)

is non-split, it follows that we must have H ∩ SL2(Fp) = SL2(Fp).

Let F0 = FΓ. By Theorem 3.3.1 we may assume H ⊆ GL2(F0). By Lemma 5.3.1 and the

fact that H ⊇ SL2(Fp) we have H ⊇ SL2(F0) and G ⊇ SL2(F). Let q = |F0| and n = [F : F0].

Let DG = {det g : g ∈ G} and DH = {deth : h ∈ H}. Then we have

|G| = | SL2(F)||DG| = qn(q2n − 1)|DG|

|H| = | SL2(F0)||DH | = q(q2 − 1)|DH |.

Thus if n > 1 then q|[G : H]. But [G : H]|[GQ : ∩γ∈Γ ker ηγ|] = |Γ∗|, and Γ is a 2-group.

Since p ≥ 5 this is impossible. Therefore we must have n = 1 and Γ acts trivially on F.

5.4 Containing SL2

One is often interested in determining when the image of given representation contains

SL2 of some appropriate ring. Certainly if this is the case, then the image of the residual

representation will contain SL2(Fp). In this section we discuss sufficient conditions for a

group of matrices to contain SL2.

Let R be a local p-profinite ring with residue field F of characteristic p > 2. Let m

denote the maximal ideal of R. Let ρ : GQ → GLn(R) be a continuous representation (often

assumed to be ordinary and modular). Fix a closed subgroup G ≤ GL2(R).

Write G for the image of G under the natural projection to GL2(F), so G ∼= G ·

ΓR(m)/ΓR(m). For each k ≥ 1, write G(k) for the image of G in GL2(R/mk), so G(1) = G.

Lemma 5.4.1. Let k ≥ 1. Assume ΓR/mk+1(mk/mk+1) ⊆ G(k + 1) and G(k) ⊇ SL2(R/mk).

Then G(k + 1) ⊇ SL2(R/mk+1).
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Proof. Let Mn(mk/mk+1) denote the set of all n × n-matrices with all entries in mk/mk+1.

Note that the determinant map induces an isomorphism

(1 +Mn(mk/mk+1))/ΓR/mk+1(mk/mk+1) ∼= 1 + mk/mk+1.

Since ΓR/mk+1(mk/mk+1) ⊆ G(k + 1) we have that

(G(k + 1) ∩ (1 +Mn(mk/mk+1)))/ΓR/mk+1(mk/mk+1)

is a subgroup of (1+Mn(mk/mk+1))/ΓR/mk+1(mk/mk+1). Let Dk+1 be the image of G(k+1)∩

(1+Mn(mk/mk+1)) under the determinant map. Then we see that for any y ∈Mn(mk/mk+1),

we have 1 + y ∈ G(k + 1) if and only if det(1 + y) ∈ Dk+1.

Let x ∈ SLn(R/mk+1). Since G(k) ⊇ SLn(R/mk) there is some g ∈ G(k + 1) such that

x ≡ g mod (mk/mk+1). That is, xg−1 ∈ 1 + Mn(mk/mk+1). Write xg−1 = 1 + y for some

y ∈Mn(mk/mk+1). Note that

det(1 + y) = det(xg−1) = det g−1 ∈ Dk+1,

and therefore 1 + y ∈ G(k + 1) by the conclusion of the first paragraph of this proof.

There is something more that can be said in the case when R is a DVR.

Lemma 5.4.2. Assume charF - n. Let R be a DVR and k ≥ 1. If G ⊇ SLn(F) and

G(k + 1) ∩ ΓR/mk+1(mk/mk+1) 6= {1}, then G(k + 1) ⊇ ΓR/mk+1(mk/mk+1).

Proof. Let π be a uniformizer of R. Note that G(k+1) acts on G(k+1)∩ΓR/mk+1(mk/mk+1)

by conjugation. Furthermore, the group ΓR/mk+1(mk/mk+1) with multiplication is isomorphic

to the additive group sln(F) via x 7→ 1
πk

(x − 1). From this formula, we see that for any

g ∈ G(k + 1) we have gxg−1 7→ ḡ( 1
πk

(x − 1))ḡ−1. By assumption, G ⊇ SLn(F). Since

charF - n, the conjugation action of SLn(F) on sl2(F) is absolutely irreducible. Therefore

G(k + 1) ⊇ ΓR/mk+1(mk/mk+1), as desired.

Now we give some conditions under which we can remove the first assumption in Lemma

5.4.1 and still retain the conclusion. As above, R will be a DVR with uniformizer π.
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Lemma 5.4.3. Assume R is a DVR, and let k ≥ 2. If G(k) ⊇ SL2(R/mk) then G(k+ 1) ⊇

SL2(R/mk+1).

Proof. By Lemma 5.4.1 it suffices to show that G(k + 1) ⊇ ΓR/mk+1(mk/mk+1). Choose

integers i, j ≥ 1 such that i+j = k (which is possible as k ≥ 2). AsG(k) ⊃ SL2(R/mk) we can

find x, y ∈ G such that x ≡
(

1 πi
0 1

)
mod mk and y ≡

(
1 0
πj 1

)
mod mk. A direct computation

with matrices shows that there is some u ∈ (R/mk+1)× for which xyx−1y−1 ≡
(

1+uπk 0
0 1−uπk

)
mod mk+1. Since x, y ∈ G we have xyx−1y−1 ∈ G and hence G(k+ 1)∩ΓR/mk+1(mk/mk+1) 6=

{1}. Therefore, by Lemma 5.4.2, it follows thatG(k+1) ⊇ ΓR/mk+1(mk/mk+1), as desired.

Corollary 5.4.4. Let R be a DVR and G ≤ GL2(R) such that G ⊇ SL2(F) and G(2) ⊇

ΓR/m2(m/m2). Then G ⊇ SL2(R).

Proof. Direct application of Lemma 5.4.1 and Lemma 5.4.3.

Now we study what happens going from mod m to mod m2.

Proposition 5.4.5. Let R be a DVR with finite residue field F with charF = p > 2. Let H

be a subgroup of GL2(R/m2) such that the projection of H to GL2(F) contains SL2(F).

1. If 0 6= p ∈ R/m2 then H ⊇ SL2(R/m2).

2. If 0 = p ∈ R/m2 then H ⊇ SL2(R/m2) if and only if H ∩ ΓR/m2(m/m2) 6= {1}.

Proof. First assume that 0 6= p ∈ R/m2. Let w ∈ F and choose x ∈ H such that x ≡(
1 w
0 1

)
mod m2. We claim that if w 6= 0 then x has order p2. To see this, one shows by

induction on n that, for a, b, c, d ∈ m/m2 and w̃ a lift of w, 1 + a w̃ + b

c 1 + d

n

=

 1 + na+ αnw̃c nw̃ + nb+ w̃2βnc+ αnw̃(a+ d)

nc 1 + nd+ αnw̃c

 ,

where αn+1 = αn + n, βn+1 = αn + βn, α1 = 0, β1 = 0. One calculates that αp, βp are both

divisible by p and hence taking n = p in the above formula proves that xp 6= 1. Since
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xp ∈ G∩ΓR/m2(m/m2) it follows from Lemma 5.4.2 that H ⊇ ΓR/m2(m/m2) and then Lemma

5.4.1 gives the desired result.

For the case when 0 = p ∈ R/m2, one direction is obvious. On the other hand, if

H ∩ ΓR/m2(m/m2) 6= {1} then Lemma 5.4.2 implies that H ⊇ SL2(O/m2).

In an appendix of [30], Boston proves the following general proposition.

Proposition 5.4.6. Let R be a complete noetherian local ring with maximal ideal m. Assume

R/m is a finite field with characteristic different from 2. If H is a closed subgroup of SL2(R)

whose image modulo m2 is equal to SL2(R/m2), then H = SL2(R).

I was interested in whether the following generalization of Boston’s theorem might hold.

Question. Let R,m be as in Proposition 5.4.6. Let H be a subgroup of GL2(R) such that

the image of H in GL2(R/m2) contains SL2(R/m2). Does H contain SL2(R)?

I suspect the answer to the above question is ‘no’. Here is my proposed counterexample.

Let R = Λ = Zp[[T ]] and H be the subgroup (topologically) generated by SL2(Zp) ⊂ SL2(Λ)

and τ =
(

1+T 2 T
0 1

)
. Then the image of H in SL2(Λ/m2

Λ) is contained in SL2(Λ/m2
Λ), and I

believe SL2(Λ/m2
Λ) should be generated by SL2(Z/p2Z) and

(
1 T
0 1

)
. However, H 6⊆ SL2(Λ)

since det τ = 1 + T 2. It seems that H should be too small to contain SL2(Λ). Indeed, it is

hard to imagine how one would get
(

1 T
0 1

)
in H, but I cannot prove this is the case. Part

of the difficulty lies in the fact that neither SL2(Zp) nor the cyclic subgroup (topologically)

generated by τ normalize the other. Therefore, there are relatively few tools from group

theory available to study the group they generate.

However, this is a purely group theoretic counterexample. It is not obvious how one would

construct an element like τ in the image of a Galois representation. Therefore, one could

refine the question by requiring that H be the image of a Galois representation. Perhaps

that refinement has a positive answer.
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CHAPTER 6

Conjectures and Future Work

6.1 Determining the I0-level and relation to p-adic L-functions

Theorem 3.1.4 guarantees that there is a non-zero I0-ideal a0 such that the image of ρF

contains ΓI0(a0). The largest such ideal is called the I0-level of ρF and is denoted cI0,F .

A natural question is to determine the I0-level. More generally, as discussed in Remark

2 one knows that for any Λ-order R in Q(I0), there is a non-zero R-ideal aR such that

Im ρF ⊇ ΓR(aR). We may define the largest such R-ideal to be the R-level of ρF , denoted

cR,F . Thus, one might ask for a natural choice of Rcan such that ΓRcan(cRcan,F ) is maximal

among ΓR(cR,F ), as R varies over Λ-orders of Q(I0).

Conjecture 6.1.1. We can describe Rcan explicitly as Rcan = Λ[tr ad ρF ].

The plausibility of this conjecture, comes from Proposition 5.1.2, namely that Q(I0) =

Q(Λ)(tr ad ρF ). That is, the field fixed by conjugate self-twists is equal to the field generated

by the trace of the adjoint representation. Conjecture 6.1.1 can be seen as an integral

refinement of this result.

Recall the heuristic from the introduction: the image of ρF should be as large as possible,

subject to the symmetries of F . Theorem 3.1.4 shows that Q(I0) is the largest field such

that ρF is R-full for every Λ-order R of Q(I0). In this sense, the conjugate self-twists of F

account for all of its symmetries. Therefore, Proposition 5.1.2 shows that, on the level of

fields, tr ad ρF captures the same information as the symmetries of F . The heuristic therefore

suggests that if Conjecture 6.1.1 is false, then there is a new subtle type of symmetry of F

that is only visible at the integral level.
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I have the following outline for a strategy to prove Conjecture 6.1.1 in the case when

Im ρ̄F ⊇ SL2(Fp). The idea is to identify Rcan as an appropriate universal deformation

ring and the prove an R = T theorem, where the Hecke side can be identified as Λ[tr ad ρF ].

Indeed, ad ρF is essentially an orthogonal representation, and so one can look at the universal

deformation ring R parametrizing orthogonal deformations of ad ρ̄F , as in Tilouine’s book

[46]. Under the assumption that Im ρF ⊇ SL2(Fp), the adjoint representation ad ρ̄F will be

absolutely irreducible and hence R will exist [46]. By an analogue of Carayol’s Theorem we

may assume ad ρF takes values in the orthogonal group over Λ[tr ad ρF ]. By universality,

there is an algebra homomorphism α : R → IΓ, where we define IΓ = Q(I)Γ ∩ I in the case

when I is not normal. Thus, if we can prove that α is surjective and R = Λ[tr ad ρuniv], then

it will follow that IΓ = Λ[tr ad ρF ] and we’ll have the desired integral statement.

The Rcan-level of ρF is expected to depend on the shape of the image of the residual

representation. The following is expected to be the correct generalization of Hida’s Theorem

II in [19].

Conjecture 6.1.2. Let p > 2 be prime and F a Hida family that is satisfies the hypotheses

of Theorem 3.1.4.

1. If Im ρF ⊇ SL2(Fp), then cRcan,F = Rcan. That is, Im ρF ⊇ SL2(Rcan).

2. Suppose that ρ̄F ∼= IndQ
M ψ̄ for an imaginary quadratic field M in which p splits and

a character ψ̄ : Gal(Q/M) → F×p . Assume M is the only quadratic field for which ρ̄F

is induced from a Hecke character of that field. Under minor conditions on the tame

level of F , there is a product L0 of anticyclotomic Katz p-adic L-functions such that

cRcan,F is a factor of L0. Furthermore, every prime factor of L0 is a factor of cRcan,F

for some F .

3. If ρ̄ ∼= IndQ
M ψ̄ for a real quadratic field M and character ψ̄ : Gal(Q/M)→ F×p and ρ̄ is

not induced from any imaginary quadratic field, then cRcan,F = (1 + T )m − 1 for some

integer m ≥ 0.
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4. If the image of ρ̄F in PGL2(Fp) is tetrahedral, octahedral, or icosahedral, then cRcan,F =

T n ·Rcan for some integer n ≥ 1.

Note that even when I0 = Λ, part (1) of Conjecture 6.1.2 is stronger than Hida’s Theorem

II [19]. Indeed, under the assumption that Im ρ̄F ⊇ SL2(Fp), Hida’s theorem only guarantees

that cΛ,F ⊇ mr
Λ for some r ≥ 0. In proving case (1) of the conjecture, I will make use of

Manoharmayum’s recent work that shows Im ρF ⊇ SL2(W ) for a finite unramified extension

W of Zp [29]. By combining this with the Λ-module structure on the Pink Lie algebra

associated to Im ρF that was used in the proof of Theorem 3.1.4, I hope to show that

Im ρF ⊇ SL2(Rcan).

Parts (2) and (3) of Conjecture 6.1.2 are also stronger than Hida’s Theorem II [19]. When

ρ̄F is induced from an imaginary quadratic field (and I = Λ), Hida’s theorem shows that cΛ,F

is a factor of L2
0 and every prime factor of L0 is a factor of cΛ,F for some F . Furthermore,

Conjecture 6.1.2.1 is a natural extension of the work of Mazur-Wiles [30] and Fischman [8].

The strategy for proving case (2) is as follows. I will relate the I0-level to the congruence

ideal of F as in Hida’s proof of Theorem II [19]. The connection to Katz p-adic L-functions

is then obtained by relating the congruence ideal to the p-adic L-function through known

cases of the Main Conjecture of Iwasawa Theory. This should yield that cRcan,F |L2
0.

Next, suppose for simplicity that |Γ| = 2 and that the non-trivial element of Γ is the

involution defined in [20]. Then under the hypothesis that the class number of M is prime to

p and assuming the semi-simplicity conjecture, by [20, Theorem 8.1] we have that I = I0[
√
L0]

with L0 square-free. In particular, I0 = Λ in this case. The idea is that by using I = I0[L0],

we may be able to remove the square and conclude that cRcan,F = L0 in this case.

Note that part (3) of the above conjecture differs from [19, Theorem II] by a square, just

as in the second part of Conjecture 6.1.2. The rationale for these two conjectures is the same.

Namely, in [20] Hida shows that in the case when I0 = Λ and |ΓF | = 2, we have I = Λ[
√
f ],

where f is (1 + T )m − 1 for some integer m in the real quadratic case, and f is the relevant

product of anticyclotomic Katz p-adic L-functions in the imaginary quadratic case.

86



Proving Conjecture 6.1.2 would yield refined information about the images of Galois

representations attached to Hida families. It is the first step in completely determining the

images of such representations.

6.2 Computing O0-levels of classical Galois representations

The goal of this project is to compute the level of Galois representations coming from classical

modular forms and thus completely determine the image of such a representation. Let f be a

non-CM classical Hecke eigenform, p a prime of the ring of integers of the field generated by

the Fourier coefficients of f , and ρf,p : GQ → GL2(O) the associated p-adic representation.

Let π be a uniformizer of the subring O0 of O fixed by all conjugate self-twists. By the

work of Ribet [39] and Momose [34], there is a minimal non-negative integer c(f, p) such

that Im ρf contains ΓO0(πc(f,p)). Their work shows that c(f, p) = 0 for all but finitely many

primes p. However, relatively little is known about the case when c(f, p) is positive and

the weight of f is greater than 2. I plan to study how c(f, p) changes as f varies over the

classical specializations of a non-CM Hida family that is congruent to a CM family.

This project will have both theoretical and computational components. First, I will

establish a relationship between c(f, p) and the congruence number of f , which should also

be related to values of the Katz p-adic L-function, as suggested by the proof of Theorem II

in [19]. Once this is established, I will create a method in Sage [45] to compute c(f, p) by

computing the congruence number of f . Using the new functionality, I will create a large

data set of levels of classical Galois representations in Hida families, which will likely lead

to new conjectures to be studied theoretically.

6.3 Analogue of the Mumford-Tate Conjecture in p-adic families

Another way to describe the work of Ribet and Momose is as follows. Given a modular

form f , there is an algebraic group G, defined over Q, such that G ×Q Qp is equal to the
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connected component of the identity of the Zariski closure of the image of the p-adic Galois

representation associated to f . Conjecturally, G is the Mumford-Tate group of the motive

attached to f . Thus, one can say that the images of the `-adic Galois representations in the

compatible system coming from f are essentially independent of the prime `. We can view

this as a “horizontal independence” in families.

Hida has proposed an analogue of the Mumford-Tate Conjecture for p-adic families of

Galois representations, which can be seen as a “vertical independence” in p-adic families.

For an arithmetic prime P of I, write MTP for the Mumford-Tate group of the compatible

system containing ρfP , so MTP is an algebraic group over Q. Let κ(P) = IP/PP, and write

GP for the Zariski closure of Im ρfP in GL2(κ(P)). Let G◦P be the connected component of

the identity of GP and G′P the (closed) derived subgroup of GP. Finally, let ΓF denote the

group generated by the conjugate self-twists of a non-CM Hida family F .

Conjecture 6.3.1 (Hida). Assume F is non-CM. There is a simple algebraic group G′,

defined over Qp, such that for all arithmetic primes P of I one has G′P
∼= G′ ×Qp κ(P)

and Res
κ(P)
Qp GP is (the ordinary factor of) MTP×QQp. Furthermore, the component group

GP/G
0
P is canonically isomorphic to the Pontryagin dual of the decomposition group of P in

ΓF .

By obtaining a sufficiently precise understanding of images of Galois representations

attached to Hida families through the first project, I plan to prove results along the lines of

Conjecture 6.3.1. The relationship to the Pontryagin dual of ΓF can be seen in Proposition

5.2.1.

Conjecture 6.3.1 is significant because it suggests that the images of classical specializa-

tions of the Galois representation attached to a Hida family are even more related to one

another than previously thought. Not only do they arise as specializations of some group

in GL2(I), they can all be found simply by base change from a single group, at least up to

abelian error.
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6.4 Other settings

The above projects can be studied in more general settings than Hida families of elliptic

modular forms.

6.4.1 Hilbert modular forms

Let F be a totally real number field and f a primitive Hilbert modular form defined over F

with level n, an ideal of the ring of integers OF of F . For any prime l of OF , write a(l, f)

for the eigenvalue of f under the l-th Hecke operator. Let K be the number field generated

by all a(l, f)’s and O its ring of integers. Then for any prime p of O, there is a continuous

Galois representation [16, Theorem 2.43]

ρf,p : Gal(F/F )→ GL2(Op)

that is unramified outside of np such that for every prime l - np we have

tr ρf,p(Frobl) = a(l, f).

The images of the residual representations of such ρf,p have been studied by Dimitrov and

Dieulefait [7, 6]. However, the analogue of Ribet and Momose’s work has not been com-

pleted for Galois representations coming from Hilbert modular forms. Since these are GL2-

representations, one expects that the relevant “symmetries” in the heuristic from the intro-

duction should still be conjugate self-twists. Unlike in bigger groups, GL2-representations

do not have enough room for more complicated symmetries.

Furthermore, ordinary Hilbert modular forms can be put into p-adic families as well.

However, in this case, the base ring Λ may have more variables. Indeed, let r = [F :

Q] + 1 + δF , where δF is the defect of Leopoldt’s Conjecture for F . Thus, δF = 0 if

Leopoldt’s Conjecture is true for F . Then Hida’s big Hecke algebra will be finite over

Λ ∼= Zp[[T1, . . . , Tr]]. As usual, one has a big Galois representation attached to such a family,

say

ρ : Gal(F/F )→ GL2(I),
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where I is an irreducible component of a Hida Hecke algebra for Hilbert modular forms over

F .

In principle, many of the techniques presented in Chapter 3 of this thesis should apply

to the study of the images of such representations as well. However, one would first need

to study the images of the classical Galois representations and obtain results analogous to

those of Ribet and Momose in the elliptic modular setting. Once that is done, one of the

main challenges in studying Galois representations ρ attached to p-adic families of Hilbert

modular forms would be turning the Pink-Lie algebra of the image of ρ into a Λ-algebra

when F has more than one prime lying over p. Indeed, this would require that one be able

to find a basis in which for each prime p|p, the local representation ρ|Dp is upper triangular.

While it is known that ρ|Dp can be made upper triangular for each p|p, it is not known (and

may not be true) that this can be done simultaneously. However, one can first treat the case

where there is only one prime of F lying over p. In this case, it should be possible to prove a

result analogous to Theorem 3.1.4 for ρ. Once this is accomplished, the projects in the first

three subsections of this chapter could be studied in the analogous setting of representations

coming from Hilbert modular forms and p-adic families thereof.

6.4.2 Non-ordinary elliptic modular forms

Tilouine and his collaborators proved an analogue of Theorem 3.1.4 in the non-ordinary

GL2-setting [3] by building on the ideas in this thesis. They study the image of the Galois

representation ρ : Gal(Q/Q) → GL2(I◦) associated to a finite slope, non-ordinary Coleman

family f of elliptic modular forms, where I◦ is an irreducible component of an appropriate

Hecke algebra. Their analogue of Theorem 3.1.4 is as follows: they identify a certain subring

I◦0 of I◦[p−1], an I◦0-algebra Br, and a Lie algebra Hr ⊆ sl2(Br) associated to the image of ρ

such that

Hr ⊇ l · sl2(Br)
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for a nonzero I◦0-ideal l [3, Theorem 6.2]. The largest such I◦0-ideal is called the Galois level

of ρ. Loosely speaking, this says that the image of ρ is “large with respect to I◦0” in the sense

that it is not contained in a smaller algebraic group like a Borel or a unipotent subgroup.

However, their methods do not allow them to actually identify a large subgroup of the image

of ρ; they are only able to measure the size of the Lie algebra Hr. Thus their work does not

recover Theorem 3.1.4

Having proved the existence of the Galois level l, they proceed to relate it to a certain

(fortuitous) congruence ideal c. The ideal c measures congruences between the given family

f and CM forms of slope at most that of f. In particular, in Theorem 7.1 they show that

l and c have the same support whenever ρ is not induced from a Hecke character of a real

quadratic field. Finally, Theorem 7.4 shows that whenever ρ is not induced from a Hecke

character of a real quadratic field, one has c2 ⊆ l ⊆ c. This is the analogue of [19, Theorem

8.6], and the proof follows that of Hida. One would hope that by solving Conjecture 6.1.2,

similar techniques could be used to show that l = c in the non-ordinary setting.

The key new idea in [3] is to introduce the relative Sen operator in order to show that the

Lie algebra Hr is an algebra over a sufficiently large ring. In [19] and in Chapter 3 above, the

analogous step crucially depended on the representation being ordinary. Another important

contribution of this paper is their definition (in Section 3) of the fortuitous congruence ideal

c. Since there are no CM components of positive slope, the congruence ideal cannot be

defined as the (scheme-theoretic) intersection between the given family and CM components

as in the ordinary case. The fact that the fortuitous congruence ideal is related to the Galois

level in the same way as in the ordinary case indicates that the fortuitous congruence ideal

is the appropriate generalization to the non-ordinary setting.

The computational questions posed in Section 6.2 are also valid for non-ordinary forms.

However the division algebra D appearing in Momose’s Theorem 3.5.1 may not be a matrix

algebra when base changed to Qp. Thus, one works with congruence subgroups of (D⊗QQp)
×,

or rather their Lie algebras.
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6.4.3 Siegel modular forms

Hida and Tilouine proved an analogue of Hida’s Theorem II [19] for representations associated

to Hida families of Siegel modular forms, which take values in GSp4 [21]. There are two main

difficulties they overcome in their work: the types of symmetries are much more complicated

than CM versus non-CM, and Pink’s theory of Lie algebras is only valid for SL2. The images

of the classical representations associated to Siegel modular forms were studied by Dieulefait

[5].

One of the ideas they use to overcome the limitations of Pink’s theory of Lie algebras

is that for an algebraic group G and a root α of G, one has an embedding iα : SL2 ↪→ G.

Furthermore, G is generated by the images of all such embeddings. Thus, they can apply

Pink’s theory of Lie algebras to each SL2 and then combine them to study all of G.

One of the challenges in studying representations for larger groups is that there are more

types of symmetries that can contribute to the size of the image. In the GL2-case, the only

way to get a GL2-representation from a smaller dimension is to induce a Hecke character.

This is what gives rise to the CM versus non-CM dichotomy Theorem 3.1.4. For larger

groups, there are more ways to create representations from smaller dimensional ones. More

precisely, let ρ : GQ → GSp4(Op) be a p-adic Galois representation associated to a Siegel

modular form. Write G for the connected component of the identity of the Zariski closure

of the image of ρ and G′ for the derived subgroup of G. Write ρconn for ρ restricted to the

preimage of G. Then G′ takes one of the following forms [21]:

1. G′ ∼ Sp4

2. G′ ∼ SL2× SL2 with ρconn ∼= ρ1 ⊕ ρ2 with ρ1 6∼= ρ2 ⊗ χ for any character χ

3. G′ ∼ SL2, with ρconn ∼= χ ⊕ χ′ ⊕ ρ1, with χ, χ′ characters and ρ1 an irreducible two-

dimensional representation

4. G′ ∼ SL2 via the symmetric cube representation of SL2

92



5. G′ ∼ SL2 with ρconn ∼= ρ1 ⊕ (ρ1 ⊗ χ) for a two-dimensional irreducible representation

ρ1 and a character χ

6. G′ ∼ {1} with ρ ∼= IndQ
M χ for a character χ and a degree four CM field M/Q.

In each of these cases, one can formulate what it should mean for the representation

ρ to be full. This is done in [21], and the analogous results to Chapter 3 are proven in

the case when I = Λ. Thus, one can study the first three projects in this setting as well.

Indeed, Hida and Tilouine have already proved some results relating the Galois level of such

representations to appropriate congruence ideals [21].

6.5 The image of ρT

The ultimate goal of this program of studying images of modular Galois representations

would be to completely understand the image of ρT, where SpecT is a non-CM connected

component of the primitive part of Hida’s big Hecke algebra. Indeed, by the R = T philos-

ophy, T should essentially be the universal deformation ring for “nice” deformations of ρ̄T.

Thus, by understanding the image of ρT, we would have a good description of the image of

any deformation of ρ̄T.

The description of Im ρT is expected to depend heavily on the geometry of SpecT, which

is still not well understood. As a toy example, we will describe what we think would be

true in the case when SpecT = Spec I1 ∪ Spec I2, with Spec Ii irreducible components of

SpecT. (We continue to assume SpecT is a non-CM connected component of the primitive

part of Hida’s big Hecke algebra and that ρ̄T is absolutely irreducible.) Let pi : T → Ii be

the natural projection induced by the inclusion Spec Ii ↪→ SpecT. Then T can be viewed

as a subring of I1 × I2 via p1 ⊕ p2. In fact, we can give a precise description of the image

of T inside I1 × I2 using Hida’s theory of congruence modules [10, 11]. Let a = ker p2 and

b = ker p1, which can be viewed as ideals of I1 and I2, respectively. The kernel of the natural

map T→ I2/b is a⊕ b. Indeed, ker(T→ S/b) = {(x, y) ∈ T : y ∈ b}. However, if (x, y) ∈ T
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and y ∈ b = T ∩ (0× I2), then

(x, 0) = (x, y)− (0, y) ∈ T ∩ (I1 × 0) = a.

Thus T/(a⊕ b) ∼= I2/b. Similarly, T/(a⊕ b) ∼= I1/a, so we obtain an isomorphism

I1/a ∼= I2/b.

It now follows that

T = {(x, y) ∈ I1 × I2 : x mod a = y mod b},

where we have identified I1/a = I2/b.

Define the ring

I = {(x, y) ∈ I1 ⊕ I2 : x ≡ y mod mT}.

It is easy to see that T lies inside I. Furthermore, I is a local ring with maximal ideal

mI = {(x, y) ∈ I : x ≡ 0 mod mI1}.

Since I1, I2 are non-CM irreducible components of T, we have their corresponding rings

I1,0, I2,0 fixed by conjugate self-twists defined in Chapter 3. Let T0 = T ∩ (I1,0 × I2,0).

By Theorem 3.3.1 it follows that for an appropriate finite index subgroup H of GQ, the

representation ρT|H takes values in GL2(T0). Let a0 = a ∩ I1,0 and b0 = b ∩ I2,0.

Conjecture 6.5.1. Let SpecT be a non-CM primitive connected component of Hida’s big

Hecke algebra that has exactly two irreducible components, Spec I1 and Spec I2.

1. The I1,0-level of ρI1 is equal to a0, and the I2,0-level of ρI2 is equal to b0.

2. The representation ρT is T0-full, and the T0-level of ρT is a0 ⊕ b0 ⊂ T0.

Note that the first part of the conjecture is essentially a rephrasing of Conjecture 6.1.2,

since L-functions correspond to congruence ideals by the Main Conjecture. In terms of the

heuristic from the introduction, the conjecture amounts to saying that there should not

be any extra symmetries of the geometric object SpecT that are not accounted for by the

symmetries of its irreducible components. The justification for this expectation is that in

94



Section 3.2, we essentially showed that a conjugate self-twist of a connected component of

the Hecke algebra does not permute its irreducible components. However, in order to turn

this idea into a proof of the conjecture, one must think carefully about the difference between

I and I′, since it was really Spec I′ that was shown to be stable under conjugate self-twists

in Section 3.2.

Note that the picture becomes significantly more complicated when there are more than

two irreducible components of SpecT. Indeed, Hida’s theory of congruence modules works

well for comparing one irreducible component to the rest of the space, but if there are more

than two irreducible components, it is somewhat less clear how they all interact. The geome-

try of their intersection (which is what the congruence module captures) can be significantly

more complicated. Hida has pointed out that there may not be any known examples of

SpecT that have more than two components. Perhaps one could hope to prove this is indeed

the case in some generality by studying the image of ρT.
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