

IMAGES OF GALOIS REPRESENTATIONS OF HIDA FAMILIES

UCLA

JACLYN LANG UNIVERSITY OF CALIFORNIA, LOS ANGELES, MATHEMATICS

INTRODUCTION AND HEURISTIC

Let $G_{\mathbb{Q}}$ be the absolute Galois group of the rational numbers. A *Galois representation* is a continuous homomorphism

$$\rho: G_{\mathbb{Q}} \to \mathrm{GL}_2(A),$$

for a topological ring A. In practice, Galois representations arise from the action of $G_{\mathbb{Q}}$ on the cohomology of varieties defined over \mathbb{Q} .

Heuristic. The image of a Galois representation should be as large as possible subject to the symmetries (cf. Definition 1) of the geometric object from which it arose.

DEFINITIONS

Fix a prime p>2 and embeddings $\overline{\mathbb{Q}}\hookrightarrow\mathbb{C}$ and $\overline{\mathbb{Q}}\hookrightarrow\overline{\mathbb{Q}}_p$.

Definition 1. [6] Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a cuspidal Hecke eigenform, and let K be the number field generated by $\{a_n : n \in \mathbb{Z}^+\}$. An automorphism σ of K is a *conjugate self-twist* of f if there is a nontrivial Dirichlet character η_{σ} such that

$$a_{\ell}^{\sigma} = \eta_{\sigma}(\ell)a_{\ell}$$

for almost all primes ℓ . If the identity automorphism is a conjugate self-twist of f, then we say f has *complex multiplication (CM)*.

Let $\Lambda = \mathbb{Z}_p[[T]]$. For an integer $k \geq 2$ and a ppower root of unity ζ , let $P_{k,\zeta} = (1 + T - \zeta(1 + p)^k)\Lambda$. Such primes (and primes lying over them) are called *arithmetic*.

Definition 2. [2] Let \mathbb{I} be an integral domain that is finite flat over Λ . A formal power series $F = \sum_{n=1}^{\infty} A_n q^n \in \mathbb{I}[[q]]$ is a *Hida family* if $A_p \in \mathbb{I}^{\times}$ and, for every prime ideal \mathfrak{P} of \mathbb{I} lying over some $P_{k,\zeta}$, we have

- $A_n \bmod \mathfrak{P} \in \overline{\mathbb{Q}}$ (rather than just $\overline{\mathbb{Q}}_p$)
- $f_{\mathfrak{P}} := \sum_{n=1}^{\infty} (A_n \mod \mathfrak{P}) q^n$ is the qexpansion of a classical modular form of weight k and the appropriate level and nebentypus.

MAIN THEOREM

Let $F = \sum_{n=1}^{\infty} A_n q^n \in \mathbb{I}[[q]]$ be a Hida familly. Hida showed [1] that there is a Galois representation $\rho_F : G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{I})$ that is unramified outside a finite set of primes and such that

$$\operatorname{tr} \rho_F(\operatorname{Frob}_{\ell}) = A_{\ell}$$

for all primes ℓ at which ρ_F is unramified.

We can define *conjugate self-twists* of F and the notion of CM following Definition 1 but replacing K with the field of fractions of \mathbb{I} . For simplicity assume that \mathbb{I} is normal, and let \mathbb{I}_0 be the subring of \mathbb{I} fixed by all conjugate self-twists of F.

Theorem 1. (*L.*, [4]) Let F be a non-CM Hida family. Assume that the residual representation $\bar{\rho}_F$ is absolutely irreducible and satisfies a minor \mathbb{Z}_p -regularity condition. Then there is a non-zero \mathbb{I}_0 -ideal \mathfrak{a}_0 such that, in an appropriate basis, the image of ρ_F contains

$$\ker(\operatorname{SL}_2(\mathbb{I}_0) \to \operatorname{SL}_2(\mathbb{I}_0/\mathfrak{a}_0)).$$

PROOF: LIFTING TWISTS

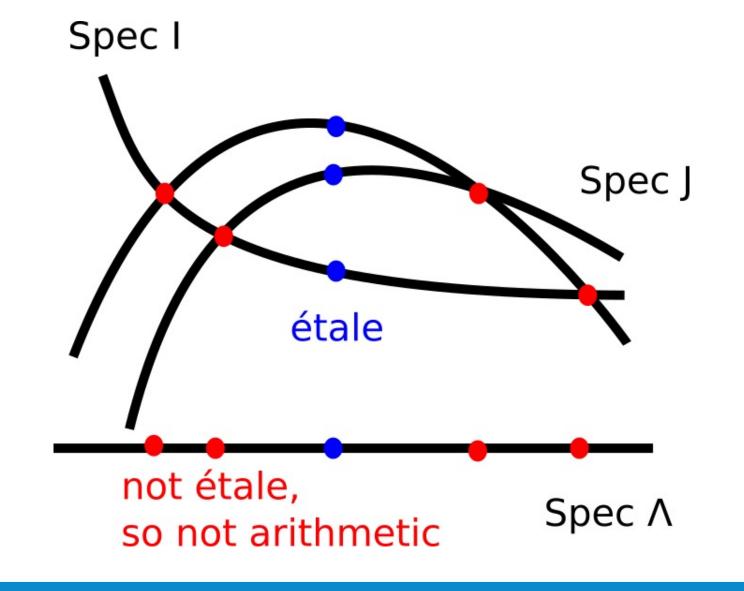
We keep the notation from Theorem 1 above. The following is a key input to the proof of Theorem 1.

Theorem 2. (L., [4]) Let \mathfrak{P} be an arithmetic prime of \mathbb{I} and σ a conjugate self-twist of $f_{\mathfrak{P}}$. If σ preserves the local field generated by the Fourier coefficients of $f_{\mathfrak{P}}$, then σ can be lifted to a conjugate self-twist $\tilde{\sigma}$ of F.

Step 1. Show that σ can be lifted to a conjugate self-twist Σ of the (unrestricted) universal deformation of $\bar{\rho}_F$ using abstract deformation theory.

Step 2. Show that Σ preserves an appropriate Hida Hecke algebra. Thus Spec \mathbb{I} and Σ^* Spec \mathbb{I} are both irreducible components of the Hecke algebra. They intersect at the arithmetic point \mathfrak{P} .

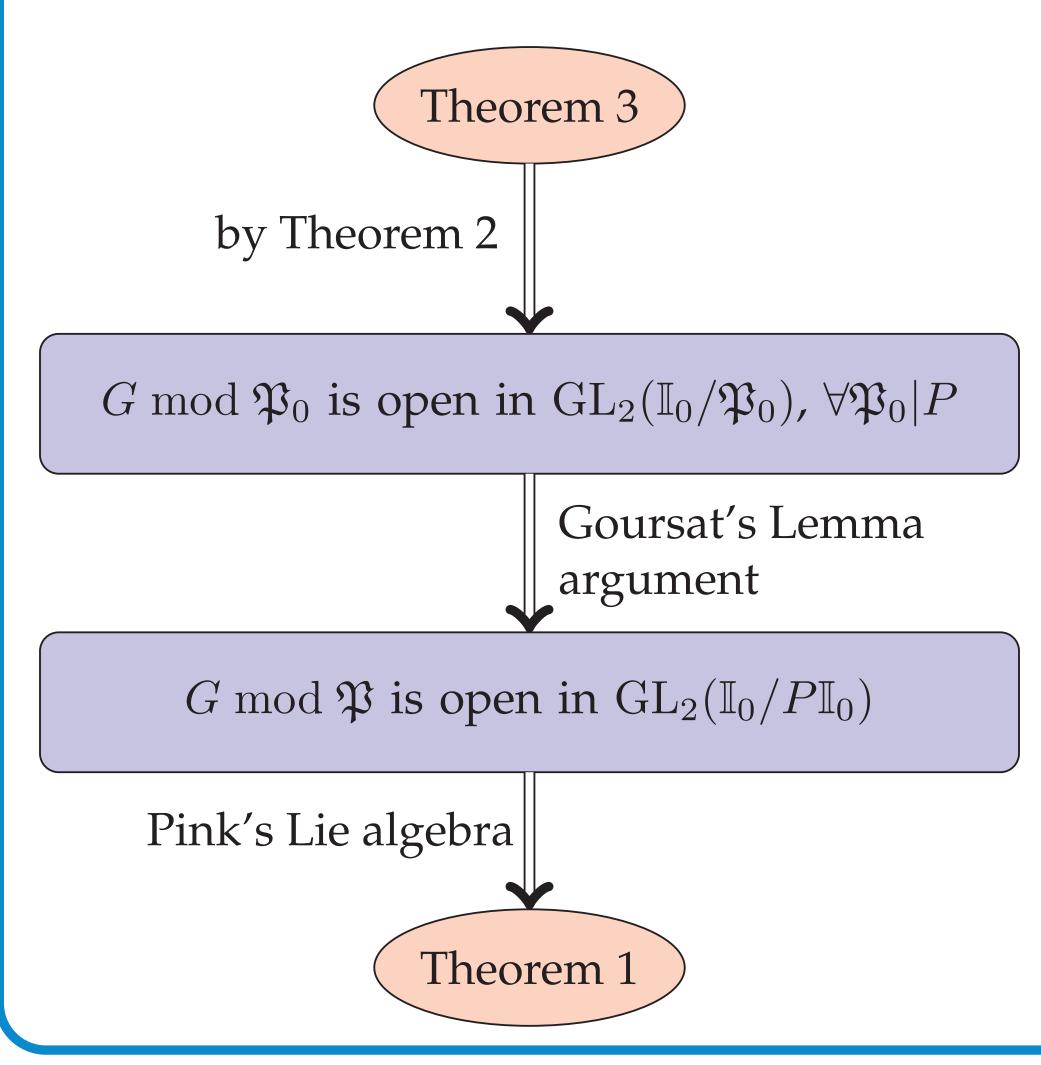
Step 3. Use the fact that the Hecke algebra is étale over Λ at arithmetic points [3] to conclude that Σ descends to the desired automorphism $\tilde{\sigma}$ of \mathbb{I} .



PROOF: REDUCTION STEPS

Theorem 3. [7,5] Let f be a classical non-CM cuspidal eigenform. Let \mathcal{O}_0 be the ring fixed by all conjugate self-twists of f. Then for any prime \mathfrak{p} , the image of $\rho_{f,\mathfrak{p}}$ contains an open subgroup of $\mathcal{O}_{0,\mathfrak{p}}$.

Let $G = \operatorname{Im} \rho_F$ and P be an arithmetic prime of Λ .



CONTACT INFORMATION

Web www.math.ucla.edu/~jaclynlang/ Email jaclynlang@math.ucla.edu

FUTURE WORK

- What is the largest \mathbb{I}_0 -ideal \mathfrak{a}_0 that satisfies Theorem 1? We expect the answer is related to the congruence ideal of F, which in some cases can be related to p-adic L-functions.
- To what extent can we completely determine the image of ρ_F ?
- Is there an analogue of the Mumford-Tate Conjecture for *p*-adic families of Galois representations?

REFERENCES

- [1] Hida, H. (1986a). Galois representations into $GL_2(\mathbf{Z}_p[[X]])$ attached to ordinary cusp forms. *Invent. Math.*, 85(3):545–613.
- [2] Hida, H. (1986b). Iwasawa modules attached to congruences of cusp forms. *Ann. Sci. École Norm. Sup.* (4), 19(2):231–273.
- [3] Hida, H. (2006). *Hilbert modular forms and Iwasawa theory*. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford.
- [4] Lang, J. (2015). On the image of the Galois representation associated to a non-CM Hida family. submitted.
- [5] Momose, F. (1981). On the *l*-adic representations attached to modular forms. *J. Fac. Sci. Univ. Tokyo Sect. IA Math.*, 28(1):89–109.
- [6] Ribet, K. A. (1977). Galois representations attached to eigenforms with Nebentypus. In *Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976)*, volume 601 of *Lecture Notes in Math.*, pages 17–51. Springer, Berlin.
- [7] Ribet, K. A. (1985). On *l*-adic representations attached to modular forms. II. *Glasgow Math. J.*, 27:185–194.

ACKNOWLEDGEMENTS

This research was supported by an NSF GRF under Grant No. DGE-1144087.

Travel to BU-Keio U. Workshop was funded by UCLA Graduate Division Conference Travel Funds.

Thanks to Haruzo Hida for his guidance and for suggesting this problem.