Images of Galois representations associated to Hida families

Jaclyn Lang University of California, Los Angeles

September 12, 2015

Preliminaries

Fix embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ for each prime p. Fix a classical Hecke eigenform $f \in S_k(\Gamma_0(N), \chi)$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Ξ.

Preliminaries

Fix embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ for each prime p. Fix a classical Hecke eigenform $f \in S_k(\Gamma_0(N), \chi)$.

Modular form

 $egin{aligned} f &= \sum_{n=1}^\infty a_n q^n \ \mathcal{O}: ext{ integral closure of } \ \mathbb{Z}[a_n:n\in\mathbb{Z}^+] \ \mathfrak{p}: ext{ prime of } \mathcal{O} \ (p) &= \mathfrak{p}\cap\mathbb{Z} \end{aligned}$

Galois represenation

$$o_{\mathfrak{p}}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathcal{O}_{\mathfrak{p}})$$

- unramified outside Np
- tr $\rho_{\mathfrak{p}}(\operatorname{Frob}_{\ell}) = a_{\ell}$ for all primes $\ell \nmid Np$
- det $\rho_{\mathfrak{p}}(\operatorname{Frob}_{\ell}) = \chi(\ell)\ell^{k-1}$ for all primes $\ell \nmid Np$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Preliminaries

Fix embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ for each prime p. Fix a classical Hecke eigenform $f \in S_k(\Gamma_0(N), \chi)$.

Modular form

 $f = \sum_{n=1}^{\infty} a_n q^n$ \mathcal{O} : integral closure of $\mathbb{Z}[a_n : n \in \mathbb{Z}^+]$ \mathfrak{p} : prime of \mathcal{O} $(p) = \mathfrak{p} \cap \mathbb{Z}$

Galois represenation

$$p_{\mathfrak{p}}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathcal{O}_{\mathfrak{p}})$$

- unramified outside Np
- tr $\rho_{\mathfrak{p}}(\operatorname{Frob}_{\ell}) = a_{\ell}$ for all primes $\ell \nmid Np$
- det $\rho_{\mathfrak{p}}(\operatorname{Frob}_{\ell}) = \chi(\ell)\ell^{k-1}$ for all primes $\ell \nmid Np$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Note: If $f = f_E$ for an elliptic curve E/\mathbb{Q} then ρ_p is just the *p*-adic Tate module of *E*.

Question

What is the image of $\rho_{\mathfrak{p}}$?

Heuristic

The image of a Galois representation (such as $\rho_{\mathfrak{p}}$) should be as large as possible subject to the symmetries of the geometric object it arises from (such as *f*).

イロト イ理ト イヨト イヨト

크

• We say f has CM if there is a non-trivial Dirichlet character η such that

 $a_{\ell} = \eta(\ell)a_{\ell}$ for almost all primes ℓ .

Henceforth we assume f does not have CM.

 We say an automorphism σ of O is a *conjugate self-twist* of *f* if there is a non-trivial Dirichlet character η_σ such that

 $a_{\ell}^{\sigma} = \eta_{\sigma}(\ell) a_{\ell}$ for almost all primes ℓ .

Ribet and Momose showed that these symmetries, together with the determinant of ρ_{p} , determine the image of ρ_{p} up to finite error.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Notation:

 $\Gamma : \{ \sigma \in \operatorname{Aut} \mathcal{O} : \sigma \text{ is a conjugate self-twist for } f \} \\ \mathcal{O}_0 : \text{integral closure of } \mathbb{Z} \text{ in the field fixed by } \Gamma \\ H = \bigcap_{\sigma \in \Gamma} \ker \eta_{\sigma}$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Notation:

 $\begin{array}{l} \Gamma: \{ \sigma \in \operatorname{Aut} \mathcal{O} : \sigma \text{ is a conjugate self-twist for } f \} \\ \mathcal{O}_0: \text{ integral closure of } \mathbb{Z} \text{ in the field fixed by } \Gamma \\ H = \bigcap_{\sigma \in \Gamma} \ker \eta_{\sigma} \end{array}$

Theorem (Ribet k = 2, Momose)

If f as above does not have CM then for all primes $\mathfrak p$ of $\mathcal O$

- $\rho_{\mathfrak{p}}|_H$ takes values in $GL_2(\mathcal{O}_{0,\mathfrak{p}})$;
- 2 Im $\rho_{\mathfrak{p}}|_H$ contains an open subgroup of SL₂($\mathcal{O}_{0,\mathfrak{p}}$); i.e.

 $\operatorname{Im} \rho_{\mathfrak{p}}|_{H} \supseteq \Gamma_{\mathcal{O}_{0,\mathfrak{p}}}(\pi^{r}) = \{ x \in \operatorname{SL}_{2}(\mathcal{O}_{0,\mathfrak{p}}) : x \equiv \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \bmod \pi^{r} \}$

for a uniformizer π of $\mathcal{O}_{0,\mathfrak{p}}$ and $r \geq 0$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Hida Families

Fix a prime $p \ge 5$. $\Lambda = \mathbb{Z}_p[[T]]$ (base ring; analogous to \mathbb{Z}) For integers $k \ge 2$ we define the *k*-th *arithmetic prime* of Λ

$$P_k = (1 + T - (1 + p)^k)\Lambda.$$

I: integral domain finite flat over Λ (analogous to \mathcal{O})

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hida Families

Fix a prime $p \ge 5$. $\Lambda = \mathbb{Z}_p[[T]]$ (base ring; analogous to \mathbb{Z}) For integers $k \ge 2$ we define the *k*-th *arithmetic prime* of Λ

$$P_k = (1 + T - (1 + p)^k)\Lambda.$$

 \mathbb{I} : integral domain finite flat over Λ (analogous to $\mathcal{O})$

Definition (Hida family)

A formal power series $F = \sum_{n=1}^{\infty} A_n q^n \in \mathbb{I}[[q]]$ is a *Hida family* if $A_p \in \mathbb{I}^{\times}$ and for every $k \geq 2$ and every prime \mathfrak{P} of \mathbb{I} lying over P_k

- $F \mod \mathfrak{P}$ has coefficients in $\overline{\mathbb{Q}}$ (rather than just $\overline{\mathbb{Q}}_p$)
- *F* mod 𝔅 gives the *q*-expansion of a classical modular form *f*_𝔅 of weight *k*.

Theorem (Hida)

- Every (p-ordinary) classical modular form of weight at least 2 can be put into a unique such family.
- 2 Furthermore, there is a representation $\rho_F: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{I})$ such that for all $k \ge 2$ and every prime \mathfrak{P} of \mathbb{I} lying over P_k we have

$$\rho_F \mod \mathfrak{P} \cong \rho_{f_{\mathfrak{P}}}.$$

We can define CM and conjugate self-twist as in the classical case in terms of *q*-expansions:

•
$$A_\ell = \eta(\ell) A_\ell$$
 a.a. ℓ

•
$$A_\ell^\sigma = \eta_\sigma(\ell) A_\ell$$
 a.a. ℓ and $\sigma \in \operatorname{Aut} \mathbb{I}$

▲冊▶ ▲ 臣▶ ▲ 臣

Images of Galois representations of Hida families

Notation:

- Γ : {conjugate self-twists of *F*}
- \mathbb{I}_0 : integral closure of Λ in the field fixed by Γ

 $H = \bigcap_{\sigma \in \Gamma} \ker \eta_{\sigma}$

▲御▶ ▲理▶ ▲理▶

Notation:

- $\Gamma : \{ \text{conjugate self-twists of } F \}$
- \mathbb{I}_0 : integral closure of Λ in the field fixed by Γ
- $H=\bigcap_{\sigma\in\Gamma}\ker\eta_\sigma$

Theorem (L.)

Let *F* be a non-CM Hida family such that $\rho_F \mod \mathfrak{m}_{\mathbb{I}}$ is absolutely irreducible (+ small technical condition). Then

•
$$\rho_F|_H$$
 takes values in $GL_2(\mathbb{I}_0)$;

2 There is a non-zero I_0 -ideal \mathfrak{a} such that

$$\operatorname{Im} \rho_F|_H \supseteq \Gamma_{\mathbb{I}_0}(\mathfrak{a}) = \{ x \in \operatorname{SL}_2(\mathbb{I}_0) : x \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ mod } \mathfrak{a} \}.$$

▲ □ ▶ ▲ □ ▶

Theorem (L.)

Let \mathfrak{P} be an arithmetic prime of \mathbb{I} and σ a conjugate self-twist of $f_{\mathfrak{P}}$. If σ preserves the local field generated by the Fourier coefficients of $f_{\mathfrak{P}}$, then σ can be lifted to a conjugate self-twist $\tilde{\sigma}$ of *F*.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

Theorem (L.)

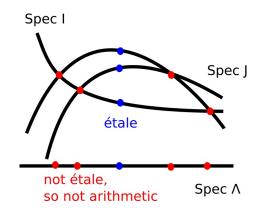
Let \mathfrak{P} be an arithmetic prime of \mathbb{I} and σ a conjugate self-twist of $f_{\mathfrak{P}}$. If σ preserves the local field generated by the Fourier coefficients of $f_{\mathfrak{P}}$, then σ can be lifted to a conjugate self-twist $\tilde{\sigma}$ of *F*.

- Lift σ to a conjugate self-twist Σ of the (unrestricted) universal deformation of ρ_F.
- Show that Σ preserves an appropriate Hida Hecke algebra. Thus Spec I and Σ* Spec I are modular irreducible components intersecting at the arithmetic point 𝔅.

(日)

Étatleness of the Hecke algebra

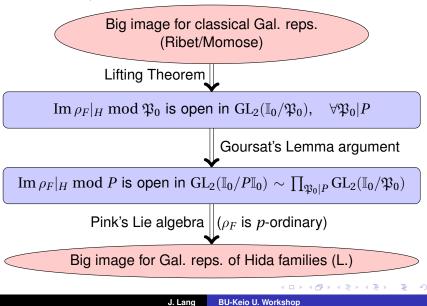
Use the fact that the Hecke algebra is étale over Λ at arithmetic points to conclude that Σ descends to the desired automorphism $\tilde{\sigma}$ of \mathbb{I} .



▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Proof: Reduction Steps

P: arithmetic prime of Λ



Thank you!

3