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 15 
Abstract  16 
 17 
Impervious cover (IC) is a common metric for assessing the degree of urbanization in 18 
watersheds. However, there are different methods for determining IC, and use of IC correlation 19 
with urban watershed response to hydrologic and geochemical inputs can be strongly influenced 20 
by the end members (IC below 10% and above 40%). The resolution of the imagery (e.g., 1 m 21 
versus 30 m) used to measure IC can influence the estimate of IC, with differences up to 15% 22 
observed between these two resolutions for 21 watersheds along the east coast of the United 23 
States. The differences are greatest in the middle range between 10 - 40% IC. When using IC for 24 
correlation with urban watershed responses such as discharge flashiness or median solute 25 
concentrations, fits with R2 between 0.4 and 0.78 were obtained when including end members of 26 
IC from 0 to 50%. However, when trying to distinguish behavior between urban watersheds that 27 
fall in the middle ranges of IC, these same parameters do not correlate well with IC. Correlations 28 
fail significance tests, can switch direction, and fall below an R2 of 0.1 without the end members 29 
of very low or very high IC. Because of improved accuracy, the finest resolution is preferred 30 
when available, and mixing IC estimation methods should be avoided. Furthermore, using 31 
regressions that include end members may not contribute to differentiating how IC in the 10-40% 32 
range impacts hydrologic and geochemical responses in urban watersheds. Understanding this 33 
middle range of IC is important for comparing urban and suburban watersheds or planning 34 
watershed development to minimize impacts. 35 
 36 
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 38 
1. INTRODUCTION 39 
 40 
1.1 Impervious cover as a metric in urban watershed  41 

 42 
Hydrologic and geochemical responses in urban watersheds are complex because the land 43 

use varies on a fine scale. The increase in impervious cover (IC) leads to faster overland runoff 44 
to streams and even slight changes in topography can reroute water and dissolved constituents. 45 
The complex distribution of impervious surfaces and engineered subsurface structures that 46 
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capture or release water create fast flow paths to further accelerate runoff. Both surface and 47 
subsurface features are difficult to characterize in urban watersheds (Broadhead et al., 2013; 48 
McGrane, 2016; Oswald et al., 2023). Comparison of responses from watersheds within a city or 49 
among different cities can identify key processes that impact the hydrology of urban watersheds. 50 
However, a metric is needed to compare urban watersheds.  51 

Total IC is a commonly used metric to compare urban watersheds and identify the 52 
intensity of urbanization. IC increases as cities densify, and IC as low as 10% can increase 53 
stormwater response (rate and peak) in streams (Schueler et al., 2009), degradation of habitats 54 
(Wenger et al., 2008, 2-4%), and alteration of channel morphology (Walsh et al., 2005). IC has 55 
been used to compare urban watersheds using metrics such as temperature (Somers et al., 2013), 56 
specific conductivity and variation in specific conductivity (Moore et al., 2020), chloride 57 
(Blaszczak et al., 2019), water yield (Li et al, 2020), flooding (Blum et al., 2020) and flashiness 58 
(McPhillips et al., 2019; Hurley et al., 2024). IC has also been used in training machine learning 59 
models to predict stormwater quality (Guzman et al., 2022). 60 

However, the threshold for IC response is hard to define and the distribution of IC within 61 
a watershed may impact response (Jacobson, 2011). Several studies have suggested accounting 62 
for connected IC can better predict response (Sutherland, 2000; Roy and Shuster, 2009; 63 
O’Driscoll et al., 2010; Ebrahimian et al., 2016), but this requires understanding IC patterns at a 64 
fine scale (Rahimi and Ebrahimian, 2024) along with subsurface drainage. Using % IC also 65 
neglects the potential role of compacted low vegetation surfaces (such as lawns) in contributing 66 
to urban runoff. Compaction is common in urban soils particularly in the top few cm, which can 67 
inhibit infiltration (Pitt et al., 2008; Yang and Zhang, 2011; Yang and Zhang, 2015; Shuster et 68 
al., 2021). Given the demands to compile data for these alternate measures of IC, most studies 69 
use total IC when comparing watersheds rather than detailed metrics like effective or directly 70 
connected IC.  71 

In this paper, we evaluate how using total IC as a metric influences interpretation of 72 
hydrologic and geochemical impacts in urban watersheds. Specifically, we are not trying to 73 
understand how the watersheds are impacted by IC, but how the metric is used. First, we 74 
compare coarse and fine spatial resolutions commonly used to measure total IC to quantify how 75 
they differ. Then we evaluate whether watershed characteristics are correlated with 10-40% IC 76 
when the lower IC values and higher IC values are not included in the correlation. An important 77 
distinction here is that correlating watershed response to end members at low IC (<10%) and 78 
high IC (>40%) would not lead to a surprising prediction – these end members are expected to 79 
differ.  The question is how do watershed responses vary in the middle range between 10-40% 80 
IC. This range is typical of many urban and suburban areas, and important for considering effects 81 
of development and stormwater control measures.  82 
 83 
1.2 Types of land cover data sets in the United States  84 
 85 

One of the most widely used land cover data sets in the United States (US) is the National 86 
Land Cover Database (NLCD) which provides national-scale land cover and impervious cover at 87 
30-m resolution. The NLCD was developed by a consortium of government agencies to map 88 
land cover at 30-m resolution over time across the US (Dewitz, 2021; USGS, 2024a). The 89 
database makes use of cloud-free Landsat imagery, with an emphasis on providing an annual 90 
time series of land cover from 1985-2023.  91 



In contrast, more detailed land cover provides data at a 1-m resolution, but these data are 92 
often confined to a single city, watershed, or state. The University of Vermont Spatial Analysis 93 
Lab (VT-SAL) database uses a combination of imagery, planimetric data (e.g., house and road 94 
footprints), and LiDAR (light detection and ranging for fine resolution topography) to estimate 95 
IC both with and without tree canopy cover at 1-m resolution (O’Neil-Dunne et al., 2014a,b). 96 
This resolution provides readily downloadable rasters at 900 times more resolution than the 30-m 97 
NLCD but is currently only available for the Chesapeake Bay and Delaware River watersheds 98 
plus selected cities across the United States. VT-SAL coverage of several northeast states is in 99 
progress. Yang et al. (2018) report differences between IC at a fine resolution and the NLCD of 100 
3 to 29%, while Wickham et al. (2018) report a mean fine-to-coarse difference of 1.5 % in 101 
mostly non-urban watersheds of the Chesapeake Bay but ranging up to 15% for urban 102 
watersheds.  103 

For cities without high resolution land cover, coverages similar to the VT-SAL estimates 104 
can be approximated with tools in Geographic Information System (GIS) software and high-105 
resolution imagery, but the process is time intensive (as described in methods below). An 106 
example of high-resolution imagery to supplement with GIS classifications tools is the National 107 
Agricultural Imagery Program (NAIP) which is collected on a statewide basis in alternate years, 108 
although national infrared-on coverage did not begin until around 2018 (USDA, 2024). Another 109 
product, the NOAA Coastal Change Analysis Program (CCAP) is developing a high-resolution 110 
data set, but depending on the state may not estimate impervious cover under canopy and is 111 
currently limited to coastal zones in the US (Office for Coastal Management, 2024). Rahimi and 112 
Ebrahimian (2024) found an average increase of 22% in IC when accounting for shaded IC in 113 
several Minnesota urban watersheds. The shading can be accounted for by comparing the IC data 114 
with planimetric maps to break out rasters that should be labeled IC under canopy. However, 115 
using planimetric maps for correction still would not likely capture canopy over parking lots. 116 
Thus, gaps in fine resolution mapping remain.  117 
 118 
2. METHODOLOGY 119 
 120 

We compared total IC at 1-m resolution (VT-SAL and calculated) with 30-m resolution 121 
(NCLD) for 17 urban watersheds and 4 non-urban watersheds that drain to U.S. Geological 122 
Survey (USGS) gages along the east coast of the US from Georgia to New York (Figure 1).  We 123 
used the 2011 NLCD data set (USGS, 2014) because it was readily available and split the 124 
difference between the time range used for watershed characteristics (2000-2022). The VT-SAL 125 
uses multiple years for imagery and LiDAR, all within the range of the study period. The 1-m 126 
resolution data that were calculated for this project are based on more recent (late 2010’s) 127 
imagery from NAIP. However, because the selected watersheds are not developing at a rapid 128 
rate, slight changes over time are not expected to greatly influence estimates of total IC. 129 
Nonetheless, such differences would occur in any data set comparing urban watersheds across 130 
different regions. Our study includes a local region with data from the same time period for 131 
investigation under more uniform conditions (as described below). For the rest of this paper, we 132 
refer to total IC simply as IC.  133 

The data set was divided into 12 northern and 9 southern watersheds based on road salt 134 
application and observed conductivity data (Moore et al., 2020).  Northern Virginia and higher 135 
latitudes are included in the 12 northern watersheds; North Carolina and lower latitudes are 136 
designated as the 9 southern watersheds. Watersheds were selected for the availability of long-137 



term discharge data, extensive geochemical data, along with fine resolution land cover mapping. 138 
The watersheds vary in size from 0.3 km2 to 172 km2 (Table S1). The non-urban watersheds span 139 
the range of watershed sizes. The two smallest watersheds are non-urban, with the largest non-140 
urban watershed reaching 42 km2. For the northern watersheds, 20-year median chloride (Cl) 141 
concentrations were calculated based on baseflow samples collected at gages by the USGS 142 
(USGS, 2024b) and the Baltimore Ecosystem Study (Groffman et al., 2023). Two northern 143 
watersheds from the National Science Foundation Urban Critical Zone Network were included 144 
with just 3 years of chloride data at USGS gages. Variations in data set collection are not 145 
expected to be critical to the purpose of comparing correlation methods (rather than detailed 146 
comparison of watersheds). To illustrate the robustness of median Cl concentrations as a metric, 147 
Moore et al (2020) compared correlations of grab sample measurements and continuous 148 
conductivity data with % IC and found similar median values. Mean daily discharge data using 149 
the same 20-year period was used to calculate streamflow flashiness measured by the ratio of the 150 
90th percentile discharge divided by the average discharge (Q90/Qave). The daily flow metric we 151 
selected was somewhat linear when using the full range of data and daily data were available for 152 
all sites, so it provided an illustrative case.  It is important to note that we were not trying to 153 
understand flashiness, but rather to evaluate different ranges of IC. Nested watersheds (stations 154 
within a selected watershed) were not included. 155 

We identified non-urban watersheds as having less than 10% fine resolution IC, which is 156 
a commonly used threshold for urbanization (Walsh et al., 2005; Schueler et al., 2009). The non-157 
urban watersheds ranged from 0 to 5% at the fine resolution. We further classified watersheds as 158 
highly urbanized when IC exceeded 40%. There was a gap in the IC above 40% with the  159 
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Figure 1: Location of 21 east coast USGS gages associated with each watershed for comparing 183 
fine and coarse resolution % IC and regressions on urban watershed characteristics. The gap 184 
between northern Virgina and North Carolina delimits the break between northern and southern 185 
watersheds. Inset shows regional D.C. area data set for Cl comparison. 186 
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 188 
 189 
 190 

highest two points at 47 and 54%. We define 10 to 40% as the mid-range of urbanization when 191 
considering regression with urbanization parameters. Because the fine resolution IC tends to 192 
increase the percent IC, these watersheds in this midrange of urbanization fall between 2 and 193 
30% at the coarse resolution. Otherwise, the watersheds classified as non-urban and highly urban 194 
would be inconsistent between fine- and coarse-resolution IC. 195 

An additional data set from a smaller region around the Washington, D.C. area (D.C., 196 
Maryland, and Virginia) was also examined to evaluate correlations with median Cl at a more 197 
local scale. This local data includes 3 watersheds in the larger east coast data set combined with 198 
5 watersheds in the D.C. area (Moore et al. 2020) that include Cl data. The data from these 199 
watersheds were all from USGS gages, providing a data set with consistent sampling 200 
methodology and time period. VSTAL imagery was available for fine resolution IC. 201 

For the southern watersheds outside the Chesapeake Bay and Delaware Watersheds, we 202 
estimated high-resolution IC using GIS and NAIP imagery. Planimetric maps were overlaid on 203 
clustered NAIP infrared-on aerial photography. Rasters for roads and structures were 204 
automatically labeled as IC. Then, the spectral clusters in the aerial photography were used to  205 
delineate parking lots, sidewalks and other impervious cover not mapped in planimetric data. 206 
These mapped impervious surfaces were checked for accuracy by comparison with aerial 207 
photography. Furthermore, to match the land cover for IC under canopy provided in the VT-SAL 208 
database, manual projection of roadways and parking lots was used to identify IC under canopy 209 
since leaf-off photographs were not available in the NAIP imagery. 210 

 211 
 212 

3. RESULTS 213 
3.1 Differences in Impervious Cover for 1-m and 30-m Resolution 214 
 215 

IC based on fine-resolution data was typically higher than coarse resolution IC with 216 
deviations of -2 to 15% fine minus coarse resolution IC (Figure 2a). Only one watershed had 217 
lower % IC for the fine resolution (Intrenchment Creek near Atlanta, GA). The overall absolute 218 
value mean deviation was 7%, but the largest deviation was in the middle range between 10-40% 219 
fine resolution IC. The deviations were not well correlated to basin size (R2 = 0.19, p = 0.05) 220 
(Figure 2a, Figure S1). However, basins less than 7 km2 in size had deviations less than 5%, and 221 
the non-urban basins also had less than 5% deviation in IC. The most urbanized watershed at 222 
53% showed only a 0.1% deviation. 223 

Furthermore, the rank order of watersheds from least to most urban differed between the 224 
fine and coarse IC metrics (Figure 2b). At the low end of IC, in the non-urban watersheds, the 225 
rank order was the same for both fine and coarse. At the high end, the watersheds with the 226 
highest IC also had the same order, but these were smaller watersheds (7 and 14 km2). In the 227 
middle range, a watershed that ranked 9th on the fine resolution IC ranked 1th3 on the coarse 228 



resolution IC, and one that ranked 20th on the fine resolution IC ranked 15th on the coarse 229 
resolution IC. In other words, fine and coarse resolution IC provided different ordinal metrics. 230 
The distribution of the two data sets is not statistically different, but the correlation between the 231 
data sets shows heteroskedasticity because the middle range of IC shows more variation than the 232 
full data set with the end members included. Furthermore, the distribution varies in that the fine 233 
resolution data set has 6 watersheds between 30-40% IC whereas the coarse data set has only one 234 
site. 235 

 236 
 

 
(a) 

 

(b) 
 

Figure 2 Comparison of fine and coarse resolution % IC. Differences are greater in the middle 237 
range. (a) Fine resolution has up to 15% higher IC, and averages 8% higher for urban 238 
watersheds.  Symbol color indicating watershed size. (b) Ranked IC shows that the order of % IC 239 
is not presented correctly by the coarse scale in the middle range.  Symbol color indicates urban 240 
and non-urban watersheds.  241 
 242 

In addition to mapped IC, including semi-pervious areas (low vegetation that is mowed 243 
and compacted) increases the percentage of land cover in urban watersheds contributing to low 244 
infiltration and high runoff volume (rapid runoff). For example, including low vegetation areas 245 
as semi- or impervious cover increased the percentage of watershed likely to produce rapid 246 
runoff from 36 to 60% in the Pennypack Creek (Figure 3). Low vegetation is not typically 247 
considered in urban land cover classification, but it can increase connectivity of impervious 248 
surfaces. This land cover can be difficult to break out in the coarse resolution NLCD maps 249 
because some low vegetation, particularly in residential areas, is difficult to identify at 30-m 250 
resolution (Wickham et al., 2013).  251 
 252 
3.2 Regression Analysis: Uncertainty in the Middle Range of IC 253 
 254 

When using IC for linear regression or correlation analysis of site characteristics it is 255 
important to consider the influence of end members from both non-urban watersheds and highly 256 
urban watersheds. Linear regression is often used as an initial assessment for the influence of IC 257 
on watershed parameters even when the response may be influenced by other factors or be non-258 
linear. We examined the influence of the end members by comparing linear regressions of 259 



flashiness and median Cl concentration over the full range of IC and in the middle range of IC 260 
(10 to 40% fine resolution). Additional results for 10 to 40% for coarse resolution are presented 261 
primarily in supporting information (Table S2).  262 

Discharge flashiness (Q90/Qave) is expected to increase with % IC. Linear regressions for 263 
discharge flashiness demonstrated R2 of 0.49 (P<0.001) for fine resolution IC from 0 to 50% 264 
(that is, including end member IC) (Figure 4). As expected, as IC increased, streamflow 265 
flashiness increased. However, when trying to distinguish behavior between urban watersheds 266 
that fall in the middle ranges of IC between 10-40%, there was no significant correlation with IC 267 
(Figure 4). In the middle range, neither resolution of IC followed the trend predicted by the data 268 
set with a full range of IC from 0 to 50% (Table S2).  269 

 270 

 271 
 272 



Figure 3 Impervious and semi-pervious land cover in the Pennypack Creek Watershed in the 273 
Philadelphia area based on VT-SAL database. Semi-pervious land cover is typically low 274 
vegetation or compacted mowed area which can increase overland runoff and connectivity. 275 

 276 

 277 
Figure 4 Discharge ratio (Q90/Qave) as a measure of flashiness showed different regressions for 278 
the full range of % IC (fine resolution) and the middle range (10-40% IC). 279 

Chloride (Cl) is another parameter that is expected to increase with % IC in regions 280 
where de-icing salt is used. Linear regressions between % IC and median Cl were only examined 281 
for the northern watersheds (Table S1). As expected, when the full range of IC was included, the 282 
linear regression between % IC and Cl had an R2 of 0.6 (p < 0.001) for fine resolution % IC 283 
(Figure 5). However, the data were not correlated in the 10 to 40% range. Interestingly, the 284 
coarse resolution showed a weak correlation (R2= 0.5, p<0.02) between 10 and 40% but only 285 
when including the point at the upper end that was over 40% in the fine resolution. When this 286 
point is excluded, which is indicated by the higher % IC with more accurate resolution, the data 287 
are no longer correlated (Table S2). This example illustrates how data could be misinterpreted by 288 
predicting a relationship based on underestimation of % IC when using coarse resolution data. 289 



 290 
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 303 
 304 

Figure 5 Median Cl concentration for northern watersheds showed different regressions for the 305 
full range of % IC (fine resolution) and the middle range (10-40% IC). 306 

 307 
Watersheds in the D.C. area with Cl data were examined separately to evaluate trends in 308 

a local area and also showed a correlation when including the end member point at 62% IC 309 
(Figure 6). A regional data set (Figure 1) can reduce variability due to climate or other factors. 310 
The positive correlation in the entire local data set increased with R2 of 0.78 (p < 0.003) 311 
compared to an R2 of 0.63 for the larger fine resolution data set. In the middle range (without the 312 
end member data point), the Cl no longer correlates with % IC (Figure 6). It is noteworthy that 313 
the middle range data set has only one point less than the full range, and the correlation for the 314 
full range was essentially dependent on this one extreme value.  315 

When trying to compare urban watersheds, it could be argued that the higher values of % 316 
IC would produce an obvious contrast with non-urban watersheds. In other words, it is not 317 
surprising that watersheds with less than 10% IC would differ from watersheds with over 40 or 318 
50% IC. Given the lack of fits in the 10-40% range, using linear regressions that include end 319 
members may not contribute to differentiating how IC in the middle range impacts hydrologic 320 
and geochemical behavior in urban watersheds. These examples show that there is high 321 
uncertainty in regression in the middle range of % IC. 322 

 323 
 324 
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 326 

Figure 6 Cl concentration for the regional data set showed different regressions for the full 327 
range of % IC (fine resolution) and the middle range (10-40% IC). 328 

 329 
 330 
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 333 
 334 
 335 
 336 
4. DISCUSSION 337 
 338 

Coarse and fine resolution IC can substantially differ in the values of % IC that they 339 
report. In our study of 21 east coast US watersheds, we found differences up to 15% IC. A 340 
previous comparison of fine and coarse resolution IC by Wickham et al. (2018) over the entire 341 
Chesapeake Bay watershed (262,000 km2) found only 1.5% mean absolute difference. However, 342 
only 1.5% of their watersheds had IC greater than 25%. They observed deviations up to 13% in 343 
urban centers, similar to our study. Another study by Smith et al. (2010) compared fine and 344 
coarse IC in urban watersheds of Baltimore County, MD. Smith et al. (2010) found that the 345 
pavement fine and coarse resolution IC values were closer to each other than the total IC values. 346 
They reported differences between fine and coarse resolution IC similar to values in our study 347 
(up to 18%) for total IC, and they cautioned about using coarse resolution metrics to understand 348 

 
 

 

 

 



fine resolution heterogeneity. Both studies identified an offset where fine resolution data 349 
identified larger % IC, but the correlation included both high and low IC values. Including 350 
watersheds at the low and high end of % IC can mask large differences between individual 351 
watersheds. In other words, caveats are needed when using coarse resolution data sets in urban 352 
watersheds, and coarse resolution IC values cannot be used to estimate fine resolution IC with a 353 
predictable offset.  354 

Although % IC seems like an obvious metric for describing urbanization, using readily 355 
available coarse resolution % IC data could lead to misinterpretation, particularly if the 356 
resolution is too coarse to define IC adequately. For example, the National Resource 357 
Conservation Service uses coarse resolution NLCD data to identify sites for urban soil sampling 358 
(Hernandez et al, 2017) which could potentially result in a distribution of samples that misses the 359 
actual IC variation, particularly in the middle ranges of IC. Rahimi and Ebrahimian (2024) found 360 
that metrics for connected IC could not be obtained accurately with coarse NLCD data. NLCD 361 
data are commonly used for studies of how urbanization changes over time because these are 362 
often the only data available for historic comparisons (e.g., Bhaskar et al., 2020; Blum et al., 363 
2020). However, if errors in % IC are not the same over time, then the evolution will not be 364 
correctly identified. Including uncertainties as error bars could be considered when presenting 365 
such data.  366 

Moreover, trying to understand hydrologic processes in urban watersheds is problematic 367 
when the source of % IC data is not reported or the data resolution is not included in the 368 
description. Consistency in sources of data does not equate with correct ranking from high to low 369 
IC when comparing fine and coarse resolution IC. Watersheds were observed to rank 4-5 370 
positions lower on coarse resolution than fine resolution and vice versa. Differences in ranking 371 
can change the interpretation of the data when a watershed is assumed to be more urban (as 372 
measured by % IC) but is not. Further uncertainty occurs when some data sets include IC 373 
covered with canopy while some do not, or when low vegetation surfaces cannot be accurately 374 
identified. 375 

The weakness of using % IC to evaluate associations with hydrologic and geochemical 376 
responses is manifested by the higher uncertainties in the middle range of 10 to 40% IC. Our 377 
study found that linear regressions between % IC and discharge flashiness and median Cl were 378 
not correlated in the middle range, in contrast to regression over the full range of IC (0 to 50%). 379 
These results indicate using regressions that include end members may not contribute to 380 
differentiating how IC in the middle range impacts hydrologic and geochemical fluxes in urban 381 
watersheds.  382 

Many studies of urban watersheds look at the middle range of % IC, and the lack of 383 
correlation suggests that there are missing factors that describe water flow in urban watersheds. 384 
Others have recognized that additional factors need to be considered when using IC as a metric 385 
(e.g., Schueler et al., 2009) because correlations to IC do not lead to strong predictions (e.g., R2 < 386 
0.6). Comparing data over a smaller region or similar climatic zones (Moore et al., 2020; 387 
Blaszczak et al., 2019; Gannon et al., 2022; Hurley et al. 2024) can improve correlations. 388 
Examples of additional factors include road density and watershed slope (Hopkins et al., 2015); 389 
soil infiltration and its influence on connectivity (Voter and Loheide, 2018; Sytsma et al., 2020; 390 
Kirker and Toran, 2023a), previous land use (Li et al., 2020), and subsurface infrastructure such 391 
as storm pipes (Ledford et al., 2020). Modeling can be used to assess additional urban runoff 392 
metrics and help focus field characterization efforts (Sytsma et al., 2022; Zhang and Parolari, 393 
2022; Kirker and Toran, 2023b; Mayou et al., 2024). 394 



Given the issues with using % IC as an urban metric, improved data descriptions and data 395 
evaluation are needed for design of stormwater control measures and other urban planning. 396 
When reporting urban metrics, particularly IC, it is important to state what resolution is applied, 397 
whether IC under canopy is included as a land cover, and whether semi-pervious surfaces are 398 
considered. Without an understanding of how % IC is obtained, it is difficult to interpret the 399 
values. Coarse resolution land cover and land cover analysis that omits IC under canopy tend to 400 
underestimate % IC, particularly in vegetated regions such as the east coast US. Furthermore, 401 
including end members in the metrics applied when comparing watersheds in the middle range of 402 
% IC could create a bias based on non-urban and highly urban watersheds. Although fine scale 403 
characterization of urban watersheds is challenging, it is critical to advancing our understanding 404 
of the impacts that urbanization has on watershed processes.  405 
 406 
5. CONCLUSIONS 407 

 408 
Our study of 17 urban and 4 non-urban watersheds on the east coast confirmed previous 409 

reports that showed fine resolution tends to have greater % IC than coarse resolution 410 
measurements. Our study pointed out that including non-urban and highly urban watersheds in 411 
comparisons of fine and coarse resolution % IC can mask differences in the middle range. We 412 
did not find a uniform offset that could estimate the fine resolution from coarse resolution data. 413 
Furthermore, the rank order of % IC changed for fine and coarse resolution data, which could 414 
change interpretation of comparison data sets when using % IC as a metric. 415 

An additional issue with using % IC as a metric to describe urban watersheds is that 416 
parameters that correlate linearly over the full range of % IC (including non-urban and highly 417 
urban watersheds) do not correlate in the middle range between 10 to 40% IC. Both median 418 
chloride concentrations and discharge ratio did not correlate linearly with % IC in the middle 419 
range, even when examining a regional subset of watersheds over a smaller area. This range in % 420 
IC is typical of many urban and suburban areas, and important for considering effects of 421 
development and stormwater control measures. These results indicate using regressions for % IC 422 
that include end members influences interpretation of results and may not contribute to 423 
differentiating how IC in the middle range impacts hydrologic and geochemical fluxes in urban 424 
watersheds. The lack of linear correlation with % IC in the middle range points to other 425 
important processes that contribute to quantifying urban watershed behavior. 426 
 427 
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Additional figure showing regression between % difference (fine minus coarse resolution IC) 633 
and watershed area and two data tables.  Tables show watershed characteristics and regression 634 
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