
Different learning aberrations relate to 
delusion-like beliefs with different contents
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The prediction error account of delusions has had success. However, its explanation of delusions with different con
tents has been lacking. Persecutory delusions and paranoia are the common unfounded beliefs that others have 
harmful intentions towards us. Other delusions include believing that one’s thoughts or actions are under external 
control or that events in the world have specific personal meaning.
We compare learning in two different cognitive tasks, probabilistic reversal learning and Kamin blocking, that have 
relationships to paranoid and non-paranoid delusion-like beliefs, respectively.
We find that clinical high-risk status alone does not result in different behavioural results in the probabilistic reversal 
learning task but that an individual’s level of paranoia is associated with excessive switching behaviour. During the 
Kamin blocking task, paranoid individuals learned inappropriately about the blocked cue. However, they also had de
creased learning about the control cue, suggesting more general learning impairments. Non-paranoid delusion-like 
belief conviction (but not paranoia) was associated with aberrant learning about the blocked cue but intact learning 
about the control cue, suggesting specific impairments in learning related to cue combination. We fit task-specific 
computational models separately to behavioural data to explore how latent parameters vary within individuals be
tween tasks and how they can explain symptom-specific effects. We find that paranoia is associated with low learn
ing rates in the probabilistic reversal learning task and the blocking task. Non-paranoid delusion-like belief 
conviction is instead related to parameters controlling the degree and direction of similarity between cue updating 
during simultaneous cue presentation.
These results suggest that paranoia and other delusion-like beliefs involve dissociable deficits in learning and belief 
updating, which, given the transdiagnostic status of paranoia, might have differential utility in predicting psychosis.
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Introduction
Delusions—the fixed false beliefs that characterize psychotic ill
nesses such as schizophrenia (but also bipolar disorder, depression 
and neurological and autoimmune illnesses)—represent profound 
departures from consensual reality. They have yet to yield entirely 
to empirical investigation, and, although they appear to be readily 
treated with antipsychotic drugs that block dopamine D2 receptors, 
many patients (≤50%) do not experience symptom resolution. 
Furthermore, we lack a coherent account that connects the phe
nomenology of delusions (what it is like to experience them) with 
the mental and neural processes that underwrite them and the so
cial factors that form and foment them. That is the promise of com
putational psychiatry.1 It has begun to deliver, but there is 
substantial distance yet to cover. Here, we try to address the puzzle 
of the contents of delusions with computational tools.

One influential theory of delusions argues that they result from 
aberrant prediction error signals. Prediction errors are the mis
matches between expectation and experience that drive learning. 
They are encoded in dopamine signals in the midbrain and stri
atum and in the brain more broadly.2 When they happen aberrant
ly, delusions can result.3-5 Such signals can direct learning to 
irrelevant events6 but they also may encourage overarching and 
spurious beliefs in volatility.7,8 However, it remains unclear 
whether these two aspects of prediction error processing are coin
cident responses to the same errors and, furthermore, whether 
these responses relate to delusions with different contents. These 
are the issues we attempt to address here.

In this paper, we move the prediction error theory further in 
three ways: (i) we examine delusion-like beliefs with different con
tents that fall on the continuum from health to illness, paranoia or 
persecutory delusion; (ii) we do so in healthy people and in people 
at clinical high risk for psychosis (CHR-P) and matched clinical con
trols; and (iii) we use two behavioural tasks (with attendant compu
tational models) in an effort to refine the relationships between 
learning mechanisms and psychotic symptoms and progress the 
prediction error theory of delusions, with a particular focus on 
delusion-like belief contents.

One key phenomenon that emphasizes the role of prediction 
error in learning is the Kamin blocking effect.9 When a novel cue 
(e.g. a tone) is paired with a stimulus (e.g. a light) that already pre
dicts an outcome (electric shock), the pretrained cue (the light) 
‘blocks’ new learning about the novel cue (the tone). This is not 
the case in people prone to delusion-like beliefs, who evince brain 
prediction error signals during the blocking trials and learn about 
the blocked cue.6 Likewise, in rodents, optogenetic10 and chemoge
netic11 techniques can be used to induce prediction error signals at 
the time of blocking trials in the midbrain and dorsomedial pre
frontal cortex, respectively, engendering learning about the 
blocked cue. Such learning also occurs with behavioural pharmaco
logical model psychoses in rats.12 Furthermore, brain prediction er
ror signals are engaged inappropriately in people with delusions 
and are correlated with the severity of delusions.3 Similar 

relationships have been observed in many task contexts and in 
model psychoses wherein people are administered a drug that en

genders a psychotic state transiently and reversibly. In these set
tings, again aberrant prediction errors have been observed, and 
again the magnitude of these aberrant signals correlates with the 
severity of delusion-like beliefs that participants experience.13,14

Delusions might form under the influence of aberrant prediction er
ror signals, registered inappropriately, which drive attention and 
learning towards irrelevant stimuli.4 These effects were present re
gardless of the content of delusions.

Aberrant prediction error signals might also yield an overarch
ing belief that the world is unpredictable, unstable and sinister.7

This would manifest as an altered sensitivity to volatility (the rate 
of change of the state of the task or the world) during learning in pa
tients with psychosis. Sense of volatility has been studied using 

probabilistic reversal learning tasks. Given a choice between three 
options for points reward (or loss), people with schizophrenia tend 
to switch choices even after a win.15-17 This suboptimal behaviour 
may be particularly prevalent in people who are paranoid, rather 

than connoting delusions more broadly.18 Furthermore, paranoia 
mediates the relationship between worry and task-derived volatil
ity beliefs in patients with schizophrenia.19 This is notable because 
worry is a key target for cognitive behavioural therapies for perse

cutory delusion.20 Understanding the underlying mechanisms of 
paranoia and other delusion-like beliefs will inform the future ap
plication and development of this approach.

The present work represents a key next step in the development 
of prediction error theory of delusions (and delusion-like beliefs). 

Can one explain delusion contents without appeal to content- 
specific dysfunction? Our prior work suggests that domain-general 
prediction errors are correlated with delusions with varied con
tents3,6,21 and that precision weighting of general prediction errors 

relates to paranoia.15,16,19

Here, we examine both aspects of prediction error, in the same 
people, for the first time. We sought to examine whether these as
pects of prediction error processing (unselective learning and aber
rant precision weighting, cast as aberrant learning rates or priors 

on volatility) were associated with delusion-like beliefs with different 
contents. We administered two cognitive tasks with differing de
mands on prediction error processing to the same participants for 
the first time: a Kamin blocking task, which requires selective learn

ing about competing cues with deterministic consequences6; and a 
probabilistic reversal learning task, which requires belief updating 
under uncertainty in a volatile task environment.16 We examined 
the associations between behavioural performance in the tasks, 

paranoia and other delusion-like beliefs. Furthermore, we designed 
and fitted a computational model for the Kamin blocking task and fit
ted the hierarchical Gaussian filter (HGF) to the probabilistic reversal 

learning (PRL) task. Both models aimed to explain task performance, 
after which we examined the associations between computational 
model parameters and symptom experiences, to make new, differen
tial, mechanistic claims about paranoia versus other delusions.
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Prior work suggests that distress is the variable that distin
guishes delusional patients from those with esoteric odd be
liefs,22,23 and that weaker Kamin blocking is correlated with 
distress regarding delusion-like beliefs.6,21 However, clinical delu
sions are typically held with incorrigible conviction.22,23 To be con
vinced of these bizarre beliefs ought to be distressing,24 and across 
a series of studies, Schmack and colleagues25-27 have found that 
Peters et al. Delusions Inventory (PDI) conviction relates to a weak
ening of the effect of past regularities on current processing in peo
ple with delusions and delusion-like beliefs. Hence, we predicted 
that delusion-like belief conviction would be associated with weak
er Kamin blocking.

In the present work, we computed the mean conviction asso
ciated with each belief endorsed on the PDI, excluding paranoid be
liefs. We examined the blocking and reversal learning behaviour of 
people who were particularly convinced of their non-paranoid de
lusional beliefs on the PDI-21 and compared their patterns of be
havioural responding (and computational model parameters) 
with those of people who endorsed high versus low paranoia on 
the Revised Green et al. Paranoid Thoughts Scale (R-GPTS). We 
note that is possible to have both high paranoia and high conviction 
in non-paranoid beliefs, but nevertheless, we sought the patterns of 
behaviour associated with paranoid and non-paranoid delusion- 
like beliefs.

Materials and methods
Data collection for this multi-site study commenced in late 2020. 
Study sites included the following: Northwestern University; 
University of Maryland-Baltimore County; Yale University; 
University of Georgia; Temple University; Emory University; and 
the University of California Irvine. Owing to the coronavirus disease 
2019 (COVID-19) pandemic, and related safety and social distancing 
policies, it was necessary to conduct the study remotely. All screen
ing, baseline and follow-up sessions were conducted via Zoom or 
Webex [i.e. Health Insurance Portability and Accountability 
Act-compliant secure videochat platforms], and all behavioural 
tasks were implemented over the internet, via an in-house bespoke 
software platform. Although remote, each participant was guided 
through tasks by research assistants supervising the sessions.

This work was approved by Northwestern University as the 
Institutional Review Board of record and acknowledged by the 
Institutional Review Boards of all other participating sites. 
Written informed consent was provided by all participants. All 
work was conducted in accordance with the Declaration of 
Helsinki.

Blocking task

In our food-allergy causal belief learning task, participants are 
asked to imagine that they are allergists and to learn the causes 
of allergic reactions in a fictitious patient. In each trial, they are 
shown a meal consisting of one or two different foods that the pa
tient had eaten and are then given feedback regarding whether that 
meal caused an allergy. Their task is to learn to predict the outcome 
of each meal. The task is divided into three phases: the learning 
phase (10 repetitions of each stimulus); the blocking phase (six re
petitions of each stimulus); and the test phase (six repetitions of 
each stimulus). The seven categories of stimuli are shown in 
Supplementary Table 1. Prior learning that one food (i.e. bananas) 
causes the allergy prevents (blocks) learning that another novel 
food (i.e. mushrooms) could also cause an allergy. In later trials, 

when participants receive feedback that mushrooms cause allergy, 
a prediction error brain response is observed.6 Each trial of the 
blocking task results in a response that ranges between −1 and 1, 
scaled by confidence.

Using the first trial of the testing phase, the blocking score was 
calculating as the response to the blocked cue (B2−), and the control 
score was calculated using the response to the blocking confirm
ation control cue (D1+).

Probabilistic reversal learning task

This three-option PRL task,15,16 wherein participants learn and up
date reward associations in light of variable outcomes, owing to an
ticipated but uncertain changes in reward between options 
(reversal events, expected volatility) and unanticipated changes 
in the underlying probabilities themselves (contingency transition, 
unexpected volatility), challenges participants to form and update 
beliefs about the value of each option and the volatility of the 
task environment. Participants choose between three decks of 
cards with hidden reward probabilities, selecting a deck on each 
turn and receiving positive or negative feedback (+100 or −50 
points, respectively). They are instructed to find the best deck, 
with the caveat that the best deck might change. Undisclosed 
to participants, reward probabilities switch among decks after 
selection of the highest probability option in 9 of 10 consecutive 
trials (‘reversal events’).16,17,19,28 There are 160 trials in total, with 
80 trials in each block (reward contingencies are detailed in the 
Supplementary material).

We calculated the win-switch rate (WSR; switches after win
ning/total wins) for each participant using their choices from the 
PRL, allowing us to measure the rate of erratic switching.

As before,15,16 we fitted an HGF to PRL behaviour, comprising a 
perceptual model, which captures participants’ task beliefs, and a 
response model that governs how beliefs are converted into choices 
(Fig. 1A). The perceptual model has three hierarchical layers of be
lief about the task. The layers interact and influence one another 
through learning rate parameters. At the highest level (Level 3), 
the model captures beliefs about changes in the task environment 
(how are values of the choices changing over time?). Level 2 charac
terizes beliefs on reward probabilities (i.e. the tendency of a choice 
to be rewarding). Level 1 characterizes task reward feedback 
(i.e. win or loss). These three levels of belief are then integrated 
and fed through a sigmoid response function to produce a decision 
(whether to stay with the same card deck or switch to a different 
one).

Blocking modelling

We adapted a reinforcement learning framework that separately 
tracks and updates values for different cues using a weight ma
trix.29 We chose to use an elemental representation for compound 
stimuli (one column in the weight matrix per cue). In a trial where 
multiple cues are present, weights for both present cues are up
dated. A single static learning rate parameter, α, is used for updat
ing all the cues. A flexible integration rule using free parameter γ 
allows for compound cue prediction ranging from additive to max
imum only.

Some individuals appear to engage in counterfactual learning: if 
they learn that the primary cue causes allergy and observe that the 
compound stimulus causes allergy, they then assume that the sec
ondary cue does not cause the allergy (they have no information 
about the secondary cue and thus should not learn about it). 
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We incorporate this into the model by adding an additional param
eter, λ, that sets the learning asymptote for the secondary cue. This 
can range from one (driving learning about the secondary cue to
wards the observed outcome attributed to the primary cue) to 
minus one (counterfactual learning about the secondary cue). An 
additional feature noted in the data was that individuals appeared 
to ‘forget’ the values of the cues when the task shifted to a new 
phase. Of note, there was no explicit separation between the 
phases, but the cues did change, signifying a new phase. To incorp
orate this feature into the model, we introduce a ‘forgetting’ param
eter that decays the weights on the first trial of a new phase, η. 
Detailed equations for weight updating and prediction are found 
in the Supplementary material.

We used maximum likelihood estimation to estimate model 
parameters for each individual using their choices. We assumed 
that the model prediction was used directly as the model response 
value and calculated the log-likelihood assuming a Gaussian distri
bution centred at r̂, using a variance computed using the mean dif
ference between model responses and the responses of a 
participants30 in order to reduce model complexity. Models were 
fitted using the mfit package,29 with a total of 25 initial parameter 
sets; the best-fitting parameter was chosen from these fits.

We used Bayesian model selection to deduce which model 
was more likely to have generated the data (protected exceedance 
probability31). Protected exceedance probabilities are given in 
Supplementary Table 2, along with the model variations tested. 
We tested versions that included removing the flexible integration 
rule, which removes γ (RW4 and RW5), removing the ‘forgetting’ 

parameter (RW3) and adding a decision noise parameter for the 
variance of the Gaussian in the log-likelihood (RW1). Ensuring 
that the entire model space can capture the key behavioural me
trics is crucial for modelling.32 RW2 was found to be the winning 
model.

Summary of modelling

In what follows, we will model choice behaviour (in the blocking 
and reversal learning tasks) using a reinforcement learning model 
and an HGF, respectively. Although these models have different 
functional forms, they both relate to our central thesis that delu
sions arise from aberrant predictive processing; specifically, a fail
ure to instantiate the precision of prediction errors that drive 
belief updating, learning and subsequent choice behaviour.

In brief, precision refers to the reliability or confidence afforded 
the neuronal representation of prediction errors, such that precise 
prediction errors exert a greater influence on inference and learn
ing. In the reinforcement learning models, we will consider three 
types of precision. First, we will consider the precision (α) of predic
tion errors that drive learning (in a Q-learning context). This formu
lation of precision highlights its role as a learning rate. Second, we 
will consider the precision (γ) of secondary cues, relative to primary 
cues. This reflects the key role of precision in (e.g. multisensory) in
tegration of various sources of evidence. Furthermore, we incorpor
ate λ, which gates the impact of blocking trials on beliefs about the 
blocking (primary) and blocked (secondary) cues, such that coun
terfactual inference can implement learning that the blocked cue 

Figure 1 Hierarchical Gaussian filter (HGF) model and parameters. (A) Schematic diagram of HGF adapted from Suthaharan et al.16 Computed beliefs 
are in grey circles and fitted parameters in orange circles. Beliefs are updated every trial and produce the choice of cards. (B) The parameter v3, which 
represents the rate of change for the volatility belief, is higher in individuals with high paranoia. (C) There was no difference in v3 when comparing by 
non-paranoid delusion-like belief conviction level. ***P ≤ 0.001, NS: P > 0.05. PDI-C = Peters et al. Delusions Inventory-conviction.
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does not cause the allergy (not merely that it causes allergy less). 
Finally, we will consider the precision (η) of latent dynamics in 
terms of a forgetting parameter. When dynamics have a low preci
sion (i.e. high variance), they are volatile.

This brings us to the key role of the HGF that models precision in 
terms of (inverse) volatility, within a hierarchical generative model. 
This hierarchical model clarifies how (precision-weighted) predic
tion errors at various levels of the hierarchy are used to estimate 
precision in a biologically plausible fashion.

Statistics

Statistical analyses were performed with an α of 0.05 and two-tailed 
P-values in Rstudio v.1.3.959.

Repeated-measures ANOVAs were used to analyse group differ
ences for WSR, HGF parameters, and the difference between block
ing and control scores. For post hoc testing, t-tests were used. Effect 
sizes (h2

p and Cohen’s d ) were computed using the effectsize package 
in R.

Results
Sample characteristics

Our final sample consisted of 452 individuals [clinical high risk 
(CHR) = 181, help-seeking control (HSC) = 161 and healthy control 
(HC) = 110; Supplementary Table 3]. Of those, 65 met the clinical 
cut-off for high paranoia using the R-GPTS, whereas the remaining 
387 were considered low paranoia. Given that the PDI does not have 
established cut-offs, we split the participants into groups based on 
the relative PDI-conviction (PDI-C) values as follows: anyone above 
the 75% quantile for the non-paranoid PDI conviction scores was la
belled as high PDI-C (n = 113), with anyone below that value labelled 
as low PDI-C (n = 339). These groupings are not distinct; there is 
overlap between the paranoia groups and the PDI groups. We 
note that the PDI is a tool used on the continuum from health to de
lusion. Strictly, the beliefs we focus on this report are delusion-like, 
particularly given that even our CHR participants are at risk of 
psychosis and not (yet) delusional. Nevertheless, studying 
delusion-like beliefs is relevant to delusions and common practice 
in the computational psychiatry of psychosis (e.g. see Schmack 
et al.25 and Teufel et al.33).

Probabilistic reversal learning

Paranoia was, again,16,28 associated with erratic win-switching on 
PRL, replicating prior work [F(1,450) = 16.05, P < 0.0001, h2

p = 0.03; 
Fig. 2A]. In contrast, several measures of depression and hallucina
tions were unrelated to WSR (Supplementary Table 4). Probabilistic 
reversal learning involves decision-making under uncertainty 
about which option to choose and whether the options have recent
ly changed or even reversed in their value. By studying people’s 
choices with computational modelling, we can infer the latent pro
cesses (or beliefs) that led to those choices. This rests on the prem
ise that people form and update a number of beliefs about the 
properties of the task, which help to guide their choices.

HGF model analysis revealed that paranoia and win-switch be
haviour manifest as poor learning from volatility, as before; specif
ically, as less flexible belief-updating in response to volatility 
[captured by the v3 parameter, see the ‘Materials and methods’ sec
tion; F(1,448) = 17.71, P < 0.0001, h2

p = 0.04; Fig. 1B; no other model 
parameters were significantly different]. We note that previous 
model parameter recovery has been suboptimal. Here, we 

broadened the prior distributions on model parameters 
(Supplementary Table 5) and achieved much more satisfactory par
ameter recovery at Level 3 [Supplementary Table 6 and 
Supplementary Fig. 1; note that recovery of some parameters at 
Level 2 is poor; initial beliefs about rewards (m2

0) and phasic learning 
rate (κ), given that these parameters also influence what happens at 
Level 3, we should be cautious in interpreting our Level 3 findings]. 
As before, paranoia is the purview of Level 3. Participants’ learning 
about task changes (meta-volatility learning rate) was significantly 
related to their paranoia. It was not significantly related to 
delusion-like beliefs more broadly [F(1,448) = 3.37, P = 0.07, h2

p <  
0.01; again, no other parameters were significantly different].

Kamin blocking

Blocking was also impaired in people with high paranoia 
[Paranoia × Cue type: F(1,450) = 5.85, P < 0.001, h2

p = 0.03; Fig. 3B] 
and in people with high conviction in non-paranoid delusion-like 
beliefs [PDI-C × Cue type: F(1,450) = 3.81, P < 0.01, h2

p = 0.02; Fig. 3C]. 
This would suggest, by the traditionally used metric of the differ
ence between the control cue and blocked cue, that both paranoia 
and non-paranoid delusion-like belief conviction are associated 
with impaired blocking, but the contributions of the two responses 
vary depending on belief content. Both were associated with in
creased responding of ‘allergy’ for the blocked cue [paranoia: 
t(450) = 2.67, P < 0.01, Cohen’s d = 0.36, 95% confidence interval 
(CI): (0.07, 0.45); PDI-C: t(450) = 3.1, P < 0.01, Cohen’s d = 0.33, 95% 
CI: (0.09, 0.4); Fig. 3B–E]. However, the responses to the control cue 
were different between the two cases: control cue learning was in
tact in people who had high conviction in their non-paranoid 
delusion-like beliefs [high PDI-C versus low PDI-C: t(450) = −0.92, 
P = 0.36, Cohen’s d = −0.1, 95% CI: (−0.18, 0.06); Fig. 3C and G]; in 
paranoid people, control learning was also impaired [high versus 
low paranoia: t(450) = −2.6, P = 0.01, Cohen’s d = −0.35, 95% CI: 
(−0.34, 0.05); Fig. 3B and F]. Looking only at the control-blocked 
cue difference does not allow for differentiating these two patterns. 
Neither control cue score nor blocked cue score was associated with 
depression or hallucinations (Supplementary Table 3).

Computational model of blocking

On surveying the literature, we were surprised by the absence of 
individual-level model fitting to human Kamin blocking behaviour
al data, particularly in tasks with binary outcomes.34 This is notable 
because the blocking phenomenon was the impetus to create the 
Rescorla–Wagner (RW) learning rule; given that blocking empha
sizes that there is more to learning than contiguity between the 
cue and the outcome, the outcome must be surprising for learning 
to occur.35 We set out to estimate model parameters from partici
pant behaviour and to relate those parameters to paranoia and 
other non-paranoid delusional beliefs.

Initially, we sought a computational model of the blocking phe
nomenon that could capture the spectrum of responses to the 
blocked cue (Fig. 4). Of course, prediction error is a key component 
for explaining Kamin blocking35 and delusions.3,4 Aberrant predic
tion errors can drive attention and learning towards the redundant 
stimulus.6 However, we sought to capture the full range of behav
ioural responses that people evince across the task phases to ex
plore the various possibilities for how cues integrated and 
updated to produce the observed range of behaviour responses.36

Furthermore, we aimed for a more comprehensive account of aber
rant prediction error; how exactly is the signal aberrant? What are 
the consequences of aberrant prediction error?
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We began with a classical RW model, in which each cue has an 
associated weight that is used to generate the response in a trial.29

The weight matrix is updated using the classic RW learning rule 
(Fig. 4), resulting in only the weights corresponding to cues that 
are present in a given trial being updated. For trials with a single 
cue, the weight associated with that cue is simply the model- 
generated response. Trials in which multiple cues appear concur
rently present a more complex situation; two cues are combined 
to produce the overall estimation for the compound stimulus. An 
assumption of the classical RW model is that associative strengths 
(in our model, the weights) of cues are additive35; however, in a task 
where additivity is not pretrained (outcomes are binary), attribut
ing causal power to the cue that is more likely to cause the allergy 
(cue-1) and disregarding the other cue (cue-2) might be more appro
priate.37,38 Rather than making an assumption regarding cue inte
gration, we use a flexible cue integration rule that allows for a 
range of cue combination ranging from additivity (cue-1 + cue-2) 
to maximum cue[max(cue-1, cue-2)] only38 (Fig. 4).

Our choice of a flexible cue integration rule necessitates the use 
of non-selective prediction errors in the updating of the cues in a 
compound trial.39 If individuals are using only one cue (primary 
cue) in their responses, we avoid the assumption that both cue va
lues (primary and secondary) are updated in the same way. To al
low for the range of observed behaviour, we modify how the 
outcome is attributed to the secondary (non-causal) cue; indivi
duals can attribute the outcome entirely to the primary cue, 

meaning that the secondary cue is not updated. In this way, we 
can still see the classical blocking effect (where learning about 
the novel cue is ‘blocked’ by the fact that the already-known cue 
causes the allergy) even if participants are not actually adding the 
values of the stimuli.40 Given that outcomes are not additive in 
this framework, we believe that this is more appropriate to model 
the blocking effect. Additionally, this framework provides the 
chance to describe the behaviour of individuals who neither display 
blocking nor associate the blocked cue with the known cue: we and 
others have observed that blocked cues (Fig. 3B and C) can be rated 
as preventative of the outcome (rather than merely less causal).36

This suggests that learning about one cue could engender counter
factual inference about another cue,41,42 as in retrospective revalu
ation43 or blocking attributable to propositional inference.21 The 
behaviour of interest here (blocking) was assessed with only a sin
gle trial in the test phase, whereas the model was fitted to the entir
ety of the task (154 trials). To assess how well the model captured 
the behaviour of interest, we computed model blocking scores 
(the response of the model to the blocked cue at the beginning of 
Phase 3) and compared the correlation with the behavioural block
ing scores of the participants. The model performed well, particu
larly for estimating scores to the blocked cue in addition to the 
control cue [blocked cue: r = 0.62, P < 0.0001, 95% CI: (0.56, 0.67); 
control cue: r = 0.54, P < 0.0001, 95% CI: (0.47, 0.60); Fig. 5].

Given that both those with higher paranoia and those with high 
conviction non-paranoid delusion-like beliefs overlearned about 

Figure 2 Win-switch rates in the probabilistic reversal learning (PRL) task. (A) Schematic diagram of the PRL task. Participants choose the best option 
between three decks of cards that leads to a probabilistic reward. (B) Win-switching was enhanced in participants with high paranoia. 
(C) Win-switching was not different when comparing clinical phenotype groups (CHR = clinical high risk; HC = healthy control; HSC = help-seeking 
control). (D) Win-switching was higher in individuals with high non-paranoid delusional conviction. PDI-C = Peters et al. Delusions 
Inventory-conviction. **P ≤ 0.01; ***P ≤ 0.001; NS: P > 0.05.
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the blocked cue (Fig. 3B and C), we examined the computational 
correlates of those two behaviours independently. In people with 
high conviction in non-paranoid delusion-like beliefs (n = 113), λ, 
which controls the direction of updating of the blocked cue by set
ting the learning asymptote for only the secondary cue, was ele
vated in individuals with high conviction in non-paranoid 
delusions [F(1,449) = 5.75, P = 0.016, h2

p = 0.01; Fig. 6]. This results in 
the secondary cue being driven towards the observed outcome at
tributed to the primary cue. This is the same parameter that allows 
for counterfactual reasoning: individuals with negative λ values up
date the secondary stimulus towards the unobserved outcome 
(no allergy, minus one). In contrast, participants with high paranoia 
(n = 65) had significantly lower learning rates [α: F(1,449) = 11.95, 
P < 0.001, h2

p = 0.03; Fig. 7]. Of note, the learning rate parameter is 
used in updating all stimuli throughout the task, resulting in im
pairments in learning across all stimuli. Individuals with high para
noia also had increased η values, reflecting increased ‘forgetting’ of 
cue weights when new phases of the task begin [F(1,449) = 4.69, 
P = 0.03, h2

p = 0.01; Fig. 7]. Plots of learning trajectories for the block
ing and control cue patterns are shown in Figs 6 and 7, demonstrat
ing the impact of these parameter differences on the learning 
trajectories for the blocking and control cue patterns.

One possibility is that people with paranoia simply did not 
comprehend the blocking task. We show that all the behavioural 

and computational analyses survive when we covary for the wide 
range achievement test score (a predictor of full-scale IQ; all ana
lyses reported in Supplementary Table 7). Furthermore, for the 
PRL there was no significant difference in the number of points 
achieved between participants with high and low paranoia. These 
findings militate against the lack of comprehension explanation.

Dissociating paranoia and other delusion-like beliefs

Finally, we sought to demonstrate selectivity of these effects to 
delusion-like belief contents and with regard to other symptoms. 
Specificity claims can be made by fractionating the sample into 
people high on one dimension and low on the others and vice 
versa.44 The challenge with the present data is that people who 
are paranoid often report more other delusion-like beliefs with 
high conviction, likewise hallucination-like percepts,45 and people 
with more psychosis-like symptoms often have lower mood. In 
addition, there are potentially multiple comparisons problems 
when many associations are computed. We turned to Bayesian 
Gaussian graphical models, a conservative approach to establish
ing all (un)conditional dependencies or partial correlations (ρ) 
between a set of variables.46 For each node within the Bayesian 
Gaussian graphical model, we calculate the probability of one of 
three hypotheses: probability for the null hypothesis, ρ = 0 [P(H0)]; 

Figure 3 Kamin blocking task and behavioural results. (A) Schematic diagram of blocking and control trial types throughout the task. In Phase 1, the 
blocking stimulus (banana) causes the allergy (red outline). The blocking stimulus is then paired with a novel stimulus (mushrooms) in Phase 2, and the 
compound causes allergy. The blocking score is then determined using the response to the blocked cue (mushrooms) on the first trial of Phase 3. To 
produce the control score, a control cue (avocado) does not cause allergy (green outline) in Phase 1 and is then paired with a novel cue (peppers) in 
Phase 2; the compound causes allergy. The control score is the response to the novel control cue (peppers) in Trial 1 of Phase 3. (B) Individuals with 
high paranoia have lower control scores in comparison to participants with low paranoia and to impaired blocking (higher responses to the blocked 
cue). Error bars show the standard error of the mean (SEM). (C) Participants with high non-paranoid delusion-like belief conviction have impaired block
ing (increased responding to the blocked cue) but have intact responding to the control cue. Error bars show the SEM. (D–G) Averaged responses for 
different trial types over the course of the task. Error bars show the SEM. Each trial type was shown 10 times in Phase 1 and six times in Phases 2 
and 3. Phase 2 then occurs at the 11th time the trial type appears. Blocking trials were calculated using the first trial from Phase 3, which is the 17th 
time the trial type is shown. (D) Mean responses to the blocking confirmation trials (A2+, A2B2+ and B2−) over the course of the task for participants 
with high or low paranoia. (E) Mean responses to the blocking confirmation trials (A2+, A2B2+ and B2−) over the course of the task for participants 
with high or low non-paranoid delusional conviction. (F) Mean responses to the blocking confirmation control (C1−, C1D1+ and D1+) cues split by para
noia level. (G) Mean responses to the blocking confirmation control (C1−, C1D1+ and D1+) cues split by non-paranoid delusion-like belief conviction level. 
PDI-C = Peters et al. Delusions Inventory-conviction. **P ≤ 0.01; NS: P > 0.05.
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probability for Hypothesis 1, ρ > 0 [P(H1)]; and probability for 
Hypothesis 2, ρ < 0 [P(H2)]. We fit two models, the first with para
noia, PDI and the Kamin blocking computational model parameters 
(α, λ and η); and the second model with the same variables and with 
the addition of depression and hallucinations.

Computational model parameters derived from blocking behav
iour were differentially associated with paranoia versus non- 
paranoid delusion-like beliefs. Paranoia [but not non-paranoid 
delusion-like beliefs; P(H0) = 0.856] was associated with lower learn
ing rates [α; P(H2) = 0.901], whereas non-paranoid delusion-like be
liefs [P(H1) = 0.898], but not persecutory paranoia [P(H0) = 0.89], 

were related to non-selective learning about the blocked cue 
(λ; Fig. 8A). Hallucinations and depression did not account for the as
sociation between λ and PDI-non-paranoid conviction [P(H1) =  
0.901]; however, adding these additional symptoms into the model 
removed the connection between α and paranoia [P(H2) = 0.800; 
Supplementary Fig. 2A].

Finally, we subjected the PRL modelling data to the same proced
ure. We found that v3, the meta-volatility learning rate, was corre
lated specifically with paranoia [P(H2) = 1.0] and not PDI [P(H0) =  
0.433] (except via the connection between paranoia and PDI). 
Subjecting these results to the same test of specificity, we found 

Figure 4 Schematic diagram of the modelling framework to model responses to the blocking task. Single and compound stimuli are updated differ
ently. The prediction (r̂) is used as the choice in this model.

Figure 5 Comparison of behavioural blocking and control scores and model-estimated scores using cue weights from the model. (A) Behavioural 
blocking and model blocking scores were strongly correlated. (B) Control score and model control scores were also correlated. ***P ≤ 0.001.
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that they were robust to inclusion of hallucinations and depression 
[v3-paranoia: P(H2) = 1.0; v3-PDI: P(H2) = 0.714; v3-depression: 
P(H0) = 0.801; v3-hallucinations: P(H0) = 0.594; Supplementary Fig. 
2B]. These results represent a dissociation of the roles of computa
tional parameters in delusion-like beliefs with different contents: 
within the blocking task, λ was associated with non-paranoid 
delusion-like thinking and not paranoia, whereas within the PRL 
task, the meta-volatility learning rate was associated with paranoia 
and not with non-paranoid delusion-like beliefs (Fig. 8B).

Discussion
Our data reveal two separate routes to delusion-like beliefs with dif
ferent contents. One route involves aberrant responses to volatility 
and learning about change, which impairs belief formation about 
all cues and relates to paranoia (but not other delusion-like beliefs). 
The other route entails impairment to selective learning, leaving re
sponses to control cues intact, but specifically augmenting responses 
to redundant cues. This learning pattern was associated with high 
conviction in non-paranoid delusion-like beliefs (but not paranoia).

Our data suggest that weaker blocking (learning about the cau
sal status of the blocked cue) can arise in multiple circumstances. 
First, with broadly imprecise association formation, poorer learn
ing about the blocking cue can leave room for learning about the 
cue that should be blocked. This occurs in people with a low learn
ing rate; their prediction errors are incorrectly and inefficiently ca
librated to what they learn. This mechanism is associated with high 
paranoia. Second, some people learn well about the blocking cue (A) 
and the other cues, including the matched control stimuli. These 
people learn about the blocked cue because of errant prediction er
ror impacting the ways in which they update the elements of com
pound stimuli, biasing their beliefs towards the redundant 

stimulus. These people tended to have high conviction in their non- 
paranoid delusion-like beliefs. The computational model also al
lowed for counterfactual inference for compound trials (A causes 
the allergy, therefore B does not cause the allergy), providing an op
tion for beliefs about the blocked cue to extend towards prevention 
of the allergy, as seen in the behaviour. However, people more con
vinced of their non-paranoid delusion-like beliefs were less likely to 
engage in this counterfactual updating. This is consistent with prior 
data suggesting that delusion-like ideation is related to associative 
learning rather than propositional inference.21

There was internal consistency across the task results. 
Participants who learned the PRL erratically also had poor learning 
(about the blocked and control cues) in the Kamin task [WSR versus 
control score: r = −0.19, P < 0.0001, 95% CI: (−0.28, −0.1)]. This was 
also manifest as a lower learning rate, and these learning rates 
were significantly correlated across tasks, and both correlated 
with paranoia [α versus v3: r = 0.202, P < 0.001, 95% CI: (0.11, 0.29)].

Interestingly, in both tasks we found a better differentiation in 
symptom-based groups (paranoia and PDI conviction) rather than 
syndrome-based groups (phenotypes). This supports the idea that 
computerized screening might be better at detecting specific dis
functions or symptoms instead of whole diagnosis groups. Also, 
this aligns with some precision psychiatry scopes focusing on di
mensions of individuals instead of broad diagnosis groups.1

Prior work with Kamin blocking tasks has related weaker blocking 
to distress regarding delusion-like beliefs,6 negative symptoms47 or 
disorganization48 or has found no relationship between blocking 
and psychosis-like symptoms.49 There are at least three different 
reasons for these differences: (i) the studies had smaller samples; 
(ii) their largely healthy participants might not have been experien
cing sufficient conviction in their delusion-like beliefs to yield a de
tectable association; and (iii) the tasks used either emphasized 
spatial cognition and explicit reward48 or used linguistic stimuli,47,49

Figure 6 Model parameters by non-paranoid delusion-like belief conviction levels. (A) Learning rate (α) was not significantly different between groups. 
(B) The integration rule parameter (γ) was also not significantly different between the groups. (C) The learning asymptote parameter (λ) for the second
ary cue was significantly higher in the high PDI-C group, reflecting less counterfactual learning and a higher degree of similarity in updating between 
the secondary and primary stimuli. (D) There was no significant difference in cue decay at the onset of a new phase. (E–H) Time series for averaged 
model cue weights. Error bars show the standard error of the mean. (E) Weights for the blocking cue were similar for the two groups. (F) There was 
greater separation during Phase 3 for the weight of the blocked cue; the weight increased during A2B2+ pairing for the high PDI-C group. (G and H) 
Weights for the control cues were similar when grouping by PDI-C level. *P ≤ 0.05; NS: P > 0.05.
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which might have loaded more heavily on other cognitive processes 
more relevant for negative symptoms and disorganization.50

The present data represent a key step forwards in the prediction 
error account of delusions. Hitherto, the account has been dispar
aged for failing to explain the contents of delusion by two-factor 
theorists who insist that prediction error processing deficits are ei
ther insufficient to explain delusions or that the prediction error 
deficit is the purview of reasoning problems.51 Our prior work on 
Kamin blocking has challenged the reasoning account21; aberrant 
prediction errors and not propositional reasoning during causal in
ferences relate to delusion-like beliefs. Here, we show that paranoia 
and other delusions have distinct correlates in learning 

mechanisms downstream of the prediction error dysfunction. 
This might sound like a two-factor explanation; however, we sug
gest that the domain of the delusion (social, regarding the self, 
etc.) might be in the data.52 For example, given a specific prediction 
error dysfunction that encourages erratic belief updating, paranoia 
may result, perhaps because we attempt to palliate that particular 
type of uncertainty by blaming other people.15 Humans find uncer
tainty highly aversive,53 and they have a need to reconcile it, even if 
the solution is errant.54 Here, we show that paranoia arises under 
domain general volatility beliefs, which, given that other humans 
are often causes and that their intentions are hard to infer, such 
volatility is often ascribed to them. It is also reassuring to have an 

Figure 7 Model parameters by paranoia level. (A) Learning rate (α) was significantly lower in individuals with high paranoia. (B) The integration rule 
parameter (γ) was not significantly different between the paranoia groups. (C) The learning asymptote parameter for the secondary cue (λ) was not sig
nificantly different between paranoia groups. (D) Individuals with high paranoia had a lower value for the ‘forgetting’ parameter, reflecting a greater 
decay in cue weights in between phases. (E–H) Time series for averaged model cue weights split by high and low paranoia. Error bars show standard 
error of the mean. (E) Weights for the blocking cue are lower across the entire task for the high-paranoia group. (F) There is separation during Phase 3 for 
the weight of the blocked cue; the weight increased during A2B2+ pairing for the high-paranoia group. (G and H) Weights for the control cues; individuals 
with high paranoia struggled to learn all the cues, reflected in the lower cue weight for D1+. *P ≤ 0.05; ***P ≤ 0.001; NS: P > 0.05.

Figure 8 Bayesian Gaussian graphical model44 visualization shows that the relationships between model parameters and delusional content [para
noia versus non-paranoid delusion-like belief conviction (PDI)] can be dissociated. Continuous values are used for paranoia and PDI rather than groups. 
(A) Paranoia was associated with the learning rate (α), whereas PDI was associated with the learning asymptote of the secondary cue (λ). A green edge 
represents a positive partial correlation and a red edge a negative partial correlation. (B) Only paranoia was associated with the learning rate for vola
tility (v3 averaged over blocks) in the hierarchical Gaussian filter (HGF) model.
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enemy on which to blame experiences of uncertainty and contin
gency55 (in our prior work with patients with schizophrenia, this 
contention was supported by the significant associations between 
paranoia, task-related volatility beliefs and worry19). This conten
tion also finds support in our observation that when the world be
came more uncertain during the COVID-19 pandemic, paranoia, 
conspiracy theories and erratic PRL behaviour all increased,16 and 
participants reported feeling sabotaged by the inanimate card 
decks in PRL.16 If the timing and impact of prediction error are in
stead focused on situations where potential causes are correlated 
and contiguous, such that appropriate and inappropriate conclu
sions are confounded, aberrant prediction error can drive attention 
and learning towards the inappropriate conclusion. Examination of 
blocking and belief updating in neuropsychological patients with 
monothematic delusions or paranoia consequent to brain lesions 
will test these hypotheses.

Given that the present results were gathered in people who are not 
(yet) delusional, they bear replication in people with confirmed delu
sional beliefs. However, there is evidence linking delusions to aberrant 
prediction error in our prior work and from meta-analyses. 
Furthermore, unusual thought content56,57 (delusion-like beliefs) 
and suspiciousness58,59 (paranoia) portend conversion to a first epi
sode of psychotic illness from the clinical high risk state. In ongoing 
work, we are assessing whether the present behavioural and compu
tational metrics can enhance the prediction of conversion to delusions 
and psychotic illness, in addition to the trajectories of those states.60

It is notable that these tasks and computational parameters do 
not distinguish phenotype groups and instead cleave to paranoia 
and other delusion-like beliefs. Criteria for CHR-P syndrome include 
several paths involving a combination of symptoms (e.g. unusual 
thoughts, suspiciousness, grandiosity, unusual perceptions, disorga
nized communication) and also include consideration of timing and 
symptom frequency, in addition to factors such as relationship to a 
relative with a psychotic disorder and deterioration of social and 
role functioning. Tasks and models that capture those other symp
toms, combined with the present delusion-relevant metrics, will be 
likely to delineate the phenotype groups better. Nevertheless, the 
present tasks and models have utility in distinguishing delusion-like 
beliefs with different contents, with theoretical implications.

This combination of PRL and blocking tasks could also have 
translational utility. Amphetamine can engender psychosis-like 
states in humans.61 In rodents, amphetamine administration 
weakens blocking12 and induces erratic win-switching behav
iour.28,62 These neuropsychopharmacological tools could facilitate 
development of targeted treatments for paranoia and delusions.63

Furthermore, the underlying circuitry of these effects could be un
covered; lesions to the mediodorsal thalamus in rodents induce 
weaker blocking,64 and similar lesions in primates engender erratic 
win-switch behaviour.65 The locus coeruleus projection to the med
ial prefrontal cortex drives erratic switching behaviour,66 and med
ial prefrontal activity weakens blocking in rodents11 and humans.67

Finally, volatility priors68 and aberrant prediction errors3 engage 
the dorsolateral prefrontal cortex. Triangulating the shared and un
ique mechanisms of these behavioural effects will deepen our un
derstanding of the similarities and differences between paranoia 
and other delusions.45

Although the models we fitted to each task shared many fea
tures, and each was the best-fitting model for that task, in future 
we might fit identical models to both tasks. We thought that unwise 
here, because the Kamin task is deterministic (and thus would not 
engage the volatility and meta-volatility learning integral to the 
HGF and necessary for modelling the PRL task), and it involves 

learning about many cues concurrently. We and others have 
handled such complexity by adding arms to the HGF (e.g. for social 
and non-social stimuli), but the number necessary for the blocking 
task seems unwieldy. Nevertheless, a common modelling frame
work might facilitate the discovery of underlying mechanisms. 
We note that recovery of the v3 parameter from PRL was significant, 
but could have been more compelling. Furthermore, some of the 
parameters at Level 2 had poor recovery [initial beliefs about re
wards (m2

0) and phasic learning rate (κ); these did not differ between 
groups, and we did not consider them further in our symptom con
tent analyses]. Given that these parameters also influence what 
happens at Level 3, we should be cautious in interpreting our find
ings (Supplementary Table 6). The possibility remains that a better 
model might be identified. For example, adding a mean-reverting 
value to the volatility belief might identify CHR68 and first episode 
psychosis,69 and volatility beliefs can be recovered well from such 
models.69 In these cases, the second level of the model is some
times fixed.68 Fixing parameters (or changing parameter ranges, 
as observed here) can alter the specific parameters related to an ill
ness or symptom, because behavioural variance will be assumed by 
the parameters that remain and whose values can vary, hence the 
focus on v3 here (versus m3

0 previously16). Furthermore, the tasks 
upon which these psychosis-sensitive model effects are based dif
fer markedly from the present task.68 This PRL task is extremely 
volatile from the start, has more response options to track, and in
jects unexpected uncertainty midway through. Finally, models 
with different structure sometimes fit different groups of partici
pants better69 (although in the study by Hauke et al.69 CHR and con
trols did not differ, as we observed). That is not the approach taken 
here, where we emphasize the continuum of delusion-like belief. 
Nevertheless, future work should take these approaches and ought 
to reconcile the present findings with other work on HGF, psychosis 
and delusion-like belief, despite task and sample differences.

Recent meta-analysis of prediction error functional imaging 
studies localized domain general prediction errors to the midbrain, 
striatum, insula and prefrontal cortex.2 Precision weighting and so
cial prediction error shared territory in the insula.2 We predict that 
non-paranoid delusions would involve aberrant frontostriatal pre
diction errors, and paranoia would involve errant precision weight
ing of prediction error in the insula. Within meso-accumbal 
dopamine pathways, states and rates of change of state are coded 
in medial and lateral ventral tegmental area dopamine neurons, re
spectively.70 This division might prove relevant for non-paranoid 
and paranoid delusion-like beliefs.

Crucially, cognitive behavioural therapy for psychosis may not 
alleviate all delusions,71 but specific worry interventions do mollify 
paranoia,20,72 and worry mediates the relationship between para
noia and learning from volatility.19 The quantitative behavioural 
metrics we have identified might serve as predictors or correlates 
of therapeutic responses. A successful therapy for paranoia, but 
perhaps not for other delusions, reinforces our claim that the psy
chological processes underlying paranoid and other delusion-like 
beliefs might be dissociable. However, our data suggest that aber
rant prediction errors underlie both, and the differential impact 
of those errors on subsequent processing, learning rates and cue 
combination provide the distinct contents of delusion-like beliefs.

Data availability
The data and model likelihood functions that support this paper are 
available at https://github.com/rosarossig/capr_project/.
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