ON ELECTROCONVECTION IN POROUS MEDIA
ELIE ABDO AND MIHAELA IGNATOVA

ABSTRACT. We consider the evolution of a surface charge densityaatarg with a two dimen-
sional fluid in a porous medium. In the momentum equationké&tolaw is replaced by Darcy’s
law balanced by the electrical forces. This results in aivacicalar equation, in which the trans-
port velocity is computed from the scalar charge densityavieonlinear and nonlocal relation. We
address the model in the whole sp&%eand in the periodic setting ofi>. We prove the global

existence and uniqueness of solutions in Besov spﬁgqsﬁor small initial data. We also obtain the
analyticity, regularity, and long-time behavior of soars.

1. INTRODUCTION

Electroconvection, the evolution of charge distributiam$luids, was investigated experimen-
tally and numerically in situations in which the fluid and s are confined to thin films [13,119,
[20]. The charge distribution is carried by the fluid and diffia due to the parallel component of
the electrical field. This results in a nonlocal transpottagpn for the charge densigy

Ohp+u-Vp+Ap=0 (2)

whereA = (—A)% is the square root of the two dimensional Laplacian anslthe fluid velocity.
The fluid is incompressible and is forced by electrical ferce

F=pE (2)
wherekF is the parallel component of the electrical field,
E = _V(I)7 (3)

with v the gradient inR?. The relationship between the electrical potendtahnd the charge
distribution confined to a two dimensional region is

2=A"p (4)

and we thus have
=—pRp (5)

with R = VA~! the Riesz transforms. In general, the fluid obeys Naviekexor related equations
driven by the forced’. The derivation of this system for the physical setup in lmmthdomains
was obtained in[]7], where global regularity and uniquer@ssolutions were obtained for the
coupling with Navier-Stokes equations.

In this paper we consider flow through a porous medium, in lviie dominant dissipation
mechanism is due not to the viscosity of the fluid, but ratbeart effective damping caused by
flow through pores. The Stokes operator is then replaced bywp. We consider a system in
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which the fluid equilibrates rapidly and the Reynolds numbéw, so that forces are balanced by
damping,

u+Vp=1F. (6)
This balance, together withl(5) and the requirement of inmassibility,
V-u=0, (7)
leads to

u=-P(pRp) (8)

whereP is the Leray-Hodge projector on divergence-free vectodsiel The electroconvection
situation described above leads to the active scalar egu@l) with constitutive law{(8), which
is the equation we study in this work. In comparison to thekn@j, the nonlinear advection
is missing, but also there is no viscosity, and because ohtimdinearity in the electrical force,
the velocity’s dependence of the charge density is moreutang The equation id.>°-critical,
and resembles critical SQGI [8], 9,110, 15] except for the dise law (8) which in this case
is nonlinear and doubly nonlocal. Global regularity of icat SQG was originally proved by
different methods in 4, 18] and was subsequently extehsstadied. In[16], the balance laWl(8)
was used to describe the solvent in a Nernst-Planck-Dasigsyof ionic diffusion in 2D and 3D.
An active scalar equation describing flow through porousiedth fractional dissipation and
linear nonlocal constitutive law was studied|in [5] and gibkegularity was obtained.

In this paper we show that the equatidh (L), (8) has globakveetutions. We describe local
existence and uniqueness results for strong solutions I8&eshow that solutions with small initial
data in Besov spaces slightly smaller thizm exist globally and are Gevrey regular.

This paper is organized as follows. In sectldn 2, we recalits about Besov spaces and
Littlewood-Paley decomposition. In sectidn 3, we provestdice of global in time weak solutions
of (@), (8) for initial data inZ2*°(R?) for somed > 0. If the initial data is inL»(R?) for p € (2, o],
then theL? norm of any solution of{{1)[{8) remains bounded in time. H thitial data isH?(IR?)
regular, then we obtain a unique local strong solution. ltise[4, we show that a global in
time solution exists provided that the initial data is sudintly small in Besov spaces that are
slightly smaller thanZ>=(R?). In sectior b we prove that solutions are Gevrey regular uade
smallness condition imposed on the initial data. In sed@ome study the regularity and long time
behavior of solutions for small initial data whereas in &atil, we show that Holder continuity
of the charge distribution is a sufficient condition for thaa®thness of solutions for arbitrary
initial data, a result that is similar to the situation for G(L1]. In sectior B, we treat the periodic
case, and we prove that the solution of the problem [1), (8gg®n the two dimensional torus
converges exponentially in time to zero. Finally, we cossit sectio P the subcritical Darcy’s
law electroconvection, and we show existence of global $imsalutions for arbitrary initial data.

2. PRELIMINARIES

For f € §’(R?), we denote the Fourier transform pby

—

FI©) = 7€) = o [, @) s*da ©

and its inverse byF—1.



Let ® be a nonnegative, nonincreasing, infinitely differengglbhdial function such thai(r) =
1forre[0,1] and®(r) =0forre[2, oo]. Let

‘I’(r)z@(%)—@(r). (10)
For eachyj € Z, let
U,(r) = (27r). (11)
We have
B(l) + 20, (6) =1 (12)
forall ¢ e R? and '
DRACIE (13)
for all ¢ e R% \ {0}. We define the homjogeneous dyadic blocks
A F() = 5 [ DT de = 7 [w,(1-DFO)] () (14)
and the lower frequency cutoff functions
Sif = 3 At (15)

We note that the Fourier transform of each dyadic block ismactly supported. More precisely,
we have

1
supp F (A, f) c 2/ [2 Z] (16)
forall j € Z.
LetS; (R?) be the set of all tempered distributions S’(R?) such that
lim S;u=0 (17)

]—)OO

in §’(R?%). For f € §; (R?), we denote the homogeneous Littlewood-Paley decomposifig by

f=240 (18)

JEZ

ForseR, 1 <p,q < oo, we denote the homogeneous Besov space

B (R2) = {f € SL(R) : [ g, 2y < oo} (19)
where
_ 1/q
1115, ) = (Z2ﬂsq||Ajf||§p(R2)) (20)
JEZ

and the inhomogeneous Besov space
By (R?) = {f e S'(R?) : | fllg;, ) < oo} (21)
where

1/q
11 0 = (2-sq||A_1f||Lp(Rz) IOELINN 22)
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with the usual modification whejp= oc. Here

Aaf=y [ (DT de =7 [2(-DFO)] (2) (23)

We note that the definition of the spa@,q is independent of the functiod@ which defines the
dyadic blocks. Indeed, any other dyadic partition yieldgquivalent norm.
If s>0,1<p,q< o0, then

B: (R?) = B; (R?) n LP(R?). (24)

Moreover, the normgf| s  (z2) and| f B2 T | fll » =2y are equivalent.
We also consider the foIIowmg time dependent homogeneessBspaces

(0,7 By, (R)) = { £ (1) € $}(B?) : | £

L (0.T;B5. (R?)) = 1f(-,%) B;yq(R2)”LT(O,T) < 00} (25)

and

L (0,7; B3 (R2)) = { F(£) € SLE) : [ 100,155, w29y < 0} (26)

where

1/q
”f L~/7‘(O,T;B§’Q(R2)) = (%2]&1”Ajf”qT(Q,T;LP(RQ))) .
je
We recall inequalities that are used in the paper (see ftarias [3 14, 21]).

Proposition 1. Let f € §; (R?).
(1) (Bernstein’s inequality) Let < p < 0. Letk be a nonnegative integer. Then
|Sl|11; 10%0; fl e 2y € Cu27* A fll o2y (27)

holds for allj € Z.
(2) Letl <p<g<oo. Then

18 fllzagey < C2GDNA, flomey (28)
holds for allj € Z. Moreover, the continuous Besov embedding

B (R2) o B ) (ge) (29)

P1,91

holds forl <p; <py <00, 1< ¢ < g < 0 ands e R.
(3) Letl <p<oo,t>0,a>0. Then

le~tA” Aj fllzege) < CeC 12" AjfllLeee) (30)

holds for all j € Z. Here A« is the fractional Laplacian of ordetv defined as a Fourier
multiplier with symbol¢|®.
(4) Let R = (Ry, Ry) be the Riesz transform, i.e., fére {1,2}, R, = 0,A~!. For each
€ [1,00], there is a positive constant > 0 depending only op (independent of) such
that

1A Rf o2y € ClA; fllr ) (31)
holds for allj € Z. Hence, fors e R and1 < p, g < oo, R is bounded frorrB;q(R?) to itself.

The following decomposition formula holds.



Proposition 2. Let f, g € S/ (R?). Then
Aj(fg) = Y Dj(SkafArg)+ D, Aj(SkgArf)

k2j-2 k2j-2
= > Aj(SkaagArf) + Y, Nj(SkfArg) (32)
k>j-2 k>j-2

holds for anyj € Z.

The proof is based on Bony’s paraproduct, and is presentégdpendix A.
Throughout this papet’ (or C;,i = 1,2,...) denotes a positive constant that may change from
line to line in the proofs.
3. WELL-POSEDNESS INLEBESGUE SPACES

We consider the transport and nonlocal diffusion equation

op+u-Vp+Ap=0 (33)
in the whole spac®&?, where
u=-P(pRp). (34)
The initial data are
p(x,0) = po(x). (35)

HerelP is the Leray-Hodge projectaf, = (—A)% is the fractional Laplacian, anfl = VA~ is the
2D vector of Riesz transforms.

Definition 1. A solutionp of the initial value problenf33)-33) is said to be a weak solution on
[0,T7] if

peL=(0,T; L*(R?)) n L*(0,T; H (R?)) (36)
andp obeys

t t 1 1
(p(1):®)z2 = (0, ®)12 = [ (p,u- V@) pads+ [ (A3, A3®)12ds =0 (37)

for all ime-independent test functiomse A3 (R?) and a.e.t € [0, 7].
Fore € (0,1], let J. be the standard mollifier operatdrf = J. * f, and letp be the solution of
Ops+u-Vp +Ap-—€eAp =0 (38)
where
T = —J.P(p Rp) (39)
with smoothed out initial data
Po = Jepo (40)
Remark 1. We note thaP and.J. commutes, hend@# is divergence free.

Theorem 1. LetT > 0 be arbitrary. Letp, € L?(R?). Then for each € (0, 1], the mollified initial
value problen{38)-(40) has a solutiorpc on [0, T'] satisfying

1 b 1
Sl O+ [ 1837 (5) s < S ool (41)
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for all ¢ € [0,7"]. Moreover, the sequendg!/”} - has a subsequence that converges strongly in
L2(0,7T; L?(R?)) and weakly in.2(0, T H: (R?)) to a functionp obeying

1 bt 1

SIo@E + [ 1A3p() 3ads < ool (42)
fora.e.t € [0,T]. If py € L?>*9(R?) for some) > 0, thenp is a weak solution of83)~(35)on [0, T].

The proof is found in Appendix B.
As a consequence of the Cordoba-Cérdoba inequality fh2]L» norm of any solution of the
equation[(3B)+(34) is bounded by the norm of the initial data for any € (2, oo]:

Proposition 3. Letp > 2 and py € L?(R?). Suppose is a smooth solution of83)~(35) on [0, T'].
Then

lo()]ze < llpoll e (43)
holds for allt € [0, T7].

Proof: We multiply (33) byp|p|r~2 and we integrate in the space variable. We obtain the differ-
ential inequality

d

E”p”LP <0. (44)
This gives[(4B).
Remark 2. Weak solutions also obey

lpC )z < llpoll L (45)
a fact that can be proved by using a De Giorgi methodolf@gy

Definition 2. A weak solution of (33)-38)is said to be a strong solution d, 7] if it obeys
peL™(0,T; H2(R?)) n L*(0,T: H? (R?)). (46)

Theorem 2. Let py € H?(R?). Then there existg; > 0 depending only otfpo| = such that a
unique strong solution of83)~(35) exists on0, 7p].

The proof is found in AppendixIC.

4. EXISTENCE OFGLOBAL SOLUTIONS IN BESOV SPACES

In this section, we show the existence of a global in timetsmilin Besov spaces for sufficiently
small initial data. The proof uses methods[df[2, 6].

.2
Theorem 3. Let1 < p < co. Letp, € B}, (R?) be sufficiently small. We consider the functional
spacek), defined by

E,= {f(t) eSHR) I flls, = If1_ 2 +IFl 2 < oo}. (47)
Ltoon,l Lth,l
Then(@3)35) has a unique global in time solutigne £,,.

Proof: Let p(9) = 0. For each positive integer, let p(™) be the solution of

in R?, where
ul'=D = P(p"D Rp(D), (49)



with initial data
8 = p™(-,0) = po. (50)
We write p( in the integral form,

t
P () = e pp — /(; e ING . (4D pD) (5) s

tApo _ B(Un_l, pn—l) (51)
whereB is the bilinear form defined by
t
B(v,0) = f e =ING . (10) (s)ds. (52)
0

See[6] for a similar approach.
Step 1Fix a positive integer. We show that

10"l < Cillooll 2+ Callp™ D3, (53)

L2
P
Bp

We start by estimating=**p, in £,. We applyA; and we take thé> norm. In view of the bound
(30), we have

le”™ Ajpolle < Ce™ 2 | Ajpol v, (54)
hence
le™%polm, = le™ ol _ 2 +le” mpoll 21 < Clipoll 2 (55)
pl pl pl
Now, we estimate the ter#i(u (1), p(n- 1)) in E,. First, we note that
1B(utD, pt=D) | o < Cllul"=1 pl" 1)II 2+ (56)

P
p,1

Indeed, we apply\; to B(u("1, p(»-1)) and we estimate. On one hand,

¢ B .
A e L(t-s)27 ||Ag (u(n—l)p(n—l))(s) ”Lpds Lo
t

<C2\A; (u(=D p(n=1) ||Lng (57)

1A;B(u, p DY | o o < C27

in view of Bernstein’s inequality (27) and the bound|(30). kvealtiply by 9% and we take thé!
norm. We obtain the bound

1B (a1, pt=D)]

Ly

< Cllu=Dp=D| (58)

L LlBP

SRS

B
On the other hand,

t v
”AjB(U("_l),p(n_l))”L%LP <C H[ 27e=¢ L(t-s)27 ||Aj(u(n_1)p(n_l))(S)”Lpds

<cf (f Per (I¥y ()dt) 1A, (D p@=DY ()| ods
< CJA; (utD plr= 1))”Lt1LP (59)

t

wherey ; denotes the characteristic function of the BetMultiplying by 2j(%+1) and taking the
¢! norm yields the bound

1B, o) 5 < CluDpln) (60)

Ltpr’l LlBP
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Combining [58) and(80), we obtain (56). Accordingly, ouringoal is to show that

a0t 1)II e i (61)

L2,
P
p,1

which gives[(5B). In order to establish the boulnd (61), wethealecompositio (32)

A (um D pr Dy = 3 A (SuI ALY+ 3 A (S p DAY (62)

k2j-2 k>j-2
We apply theL! L» norm, we use the bound

12 flle < Clf e (63)

that holds for anyf € §; whereC' is a positive universal constant independent,aind we obtain

||Aj(u(”‘1)0("‘l))||Lng <C Z ”Sku(n_l)”L't”L“ ||Akp("‘1)||Ltle
k>j-2

+C ) ||Sk+1,0(n_l)||L';°L°°||Aku(n_1)||Lng~ (64)

k>j-2

In view of Bernstein’s inequality (28), we have

[Sker "D oz < 3 1A oo < C 327 |2V o1 < O Mz 9
1<k 1<k p,l

We show below that

1Seu D ere < ClA" D (66)
t p,1
and
18D g0 < Clp" D] ( ) ||Amp<"-1>||w). (67)
L?Bp,l m>k—2

Using the bounds (66) and (67), we obtain

||Aj(u(n_1)10(n_l))||Ltle SC||P(n_1)||2 _ { > 1Akt 1)||L1LP ) ||Am,0(n_l)||Ltle
k>j-2 k>j-2m>k-2
(68)

We multiply (68) by2j(%”) and we take thé' norm. In view of Young’s convolution inequality,
we have in the first term

Z Z 2j(%+1)”Akp(n—l)”LtleZZ Z 2—(k—j)(%+1)2k(%+1)”Akp(n—l)”L%Lp

el k2j-2 JeZ k2j-2
- ( > 27+) )(Z 2G)]a 00 1>||L1m) <Ol 3. (69)
j=-2 JEL ;1
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For the second summation on the right hand sidé _df (68), why dubini’s theorem and then we
estimate as i (89). Thus, we have

PIDIEDY 2j(§+1)||AmP(n_l)||Lt1Lp

JEL k>j-2m>k-2

S DN M Al b L G TN P

JeL m2j—4 j—2<k<m+2

_ Z Z (m . 5)2—(m—j)(%+1)2m(%+1)”Amp(n—l)”Ltle

jelm>j—4

ey 3 206G A, p oD

jeZmz2j—4
+5 Z Z 2—(m—j)(%+1)2m(%+1)”Amp(n—l) ”Lle
jeLm25—-4 !
<Clp" ) (70)
LiBy,
Here, we have used the fact that= < €2z for all z € R. Putting [69) and{70) together, we

obtain [61).
We end the proof of Step 1 by showing the estimdtek (66)[afd F®F eacH ¢ Z, we use again

paraproducts to decompodg(p("-D Rp(»-1)) as
Az(p(" 1)Rp(" 1) Z Ay( m+1p( -DA Rp(n 1) Z Al(Sme("_l)Amp("_l)). (71)

m>l-2 m2l-2

In view of the boundedness of the Riesz transfdrmh (31) andéfiaition of the Leray projector as

P=I+R®R, (72)
we bound
1Sk D popm € 3 1AL o <C 3 25 AU oo
I<k-1 I<k-1
<C Y 25 AP Rp™ D) oo (73)
I<k-1

for anyp € [1, oo] and using the paraproduct decomposit(od (71), we obtain

2 _ .
1Sk D e pe <C S 2% S [Sma1p V| 1o e [ A Rp V| e 1

I<k-1 m>l-2

2
+C 2% 3 1S Bp " i = Amp T g 1 (74)

I1<k-1 m>l-2
We note that

e R s I (75)
as shown in[(65). Moreover, in view df (31), we have o
|SmBp" | Lo < <Z 1 1A Rp" Do < C <Z 1225||AZRP("_1)||L§°LP
<O Y 2 ApD e < Ol p 1)II (76)

L2
P
z<m-1 pl
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Now we use the assumption thak oo which implies that% > (0 and so we can apply Young’s
convolution inequality to obtain

2 _
|SKu™ | o e < Cllp" | 2 { > 2% Y A 1)||L;°Lp}
LB, \i<k-1

m2l-2

—(m=1)2 ~m?2 n— n—
=Clp" D) e {Z S 27 DEmT| A, I)HL;"'LP}SC”p( Dz, (@7
LBy 1 lick=1m>1-2 eB)

which proves[(66). We proceed to shdwl(67). Using the pachmrodecompositiori (71) and the
bound[(31), we have

Ak 1y 1e < ClAL(P" D Rp D)L 1o
<C Y 18man" iz r= | AmBRp" | 11

m>k—2

+C Y 18 Rp " Vi1 180mp" Dl a0

m>k—2

<Ol ) ( S A0 ||W) 79)
Lg p,1 \m>k-2
yielding (67). This ends the proof of Step 1.
Step 2.We show that there exists an 0 sufficiently small such that i€, |po|| .z < ¢, then the
BP,
sequencgp(™} " converges to a unique solutiprof (33)—[35) obeyind oz, < 2e.
First, choose aa > 0 such that’;(2¢)? < ¢, whereC is the constant if(33), and suppose that

Cillpoll .2 <e. Then an inductive argument yields
B

10" s, < 2¢ (79)

forall n > 1. Indeed,

lpV e, < C ||p0||B% <e<2e (80)
in view of (§3). Suppose that
o™k, < 2e. (81)
Then
Ip™ |5, < €+ Cy(2€)® <€+ €= 2. (82)

Therefore, we obtairi (79)
Now, we show that the sequenge™} ™ is Cauchy. Indeed, the differenpé” — p(»-1) obeys

(p(n) - p(n—l))(t) = /: e~ (t=9)Ay . [u(n)(p(n) - p(n—l)) - (u(n—l) - u(n))p(n—l)] (s)ds
= B(u™, p® — pr=1) Z B (D) — () pln-D)y, (83)
As in Step 1 and using (¥9), it can be shown that
12 = p" g, < [B(u™, p = p0 D) g, + [B(u®™D —ul, pr=D) | g,
<C()p" D = p" A, (84)

whereC'(¢) is a constant depending erobeyingC'(¢) < 1 for a sufficiently smalk. Therefore,
the sequencép(™}""  is Cauchy inE, and converges to a solutignof (33)-(3%). Uniqueness
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follows from a similar estimate t@ (84). This finishes thegdrof Step 2. Therefore the proof of
TheorenB is complete.

5. ANALYTICITY OF SOLUTIONS IN BESOV SPACES

In this section, we prove that solutions bf{38)4(35) arditain Besov spaces.
.2
Theorem 4. Letp € (1,00). Leta € (0,3). Letp, € B? (R?) be sufficiently small. Then the
unique solutiorp € E, of (33)+(33), obtained in Theorefm 3, obeys1p ¢ E, for all ¢ > 0, where
A is the Fourier multiplier with symbaé|; = |£1] + |€2]-

Proof: The main step in the proof is to show that if

(1) == [N (up) (5)ds, (85)

then

atA1

||eatA1p||Ep < anpo ”B% + C4||€ p”%p- (86)
p,1

First, we note that the operatett*1-22tA js a Fourier multiplier that is bounded di# spaces
for p e (1, 00). The proof of this latter statement is similar to the prooEemma 2 in[[2], and this
is based on the fact thattA1-22tA js uniformly bounded by 1.

Accordingly, forj € Z, we have

||6atA1 6—tAAij ”LP _ ”6atA1—2atAe(2a—1)tAAij”Lp < C«e—ct2j ”Aij”LP (87)

and so
||6atA1 6—tA

pole, <Clpo IIB (88)

2
P
p,1

Now we estimate .
M B(u, p) = 2™ [ e~ (=INy . (up)(s)ds (89)
0
in E,. We start by writing=2**1 B(u, p) as

t
eatAl B(u, U) — A ea(t—s)A1 €—2a(t—s)A€(2a—1)(t—s)A€asA1 V- (e—asAl ae—asAl /5) (S)dS (90)

where
a(s) = e*Muy(s) (91)
and
A(s) = e*Np(s). (92)
Using the uniform boundedness of the operatsft:-22*A on L? spaces fop € (1, 00), Bern-
stein’s inequality, and the bourld {30), we get

[ B(u, v) s, < Clle®™ (e MacMp) | 5. (93)
p,1

Decomposing\; (e~Aige=2sh1p) as
Aj (6—ozsA1 ﬁe_a8A1 ﬁ) — Z Aj [(6—048A1 Skﬁ) (6—ozsA1 Ak[))]
k>j-2

+ YA [(e‘O‘SA1 Sk+1ﬁ) (e‘“SAlAkﬂ)] , (94)

k>j-2
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we have
H6a5A1Aj ( asAlue—asAl )”Lle < C Z ”eocsA1 ( —a5A1S U) (e—asA1Akp~)

k>j-2

+C Z ||6asA1 (e—asA1 Sk+1p) (e—asA1 Ak'&)

k>j—2

It is shown in [2] that the bilinear operatét, (f, g) defined by
Bu(f,g) = e (e7™ ferhig) (96)

HL}LP

(95)

”Ltle‘

obeys
|Bu(f, ) ee < ClZ0f Z39 o (97)

whereC' > 0 is a positive constant depending only gnz} andZ2 are bounded linear operators
on LP for p € (1, 00) such that their norms are independentofFor simplicity, we drop the index
w, and we writeZ! for Z} andZ? for Z2.

Consequently,

||easA1 Aj (Q_QSAlﬂe_QSAlﬁ) ” <C Z IIZISkiZZzAkﬁIILng
k>j—2
+C Z ||lek+1ﬁ22Akﬁ”L%Lp. (98)

k>j-2

L}LP

Now we proceed as in Step 1 of the proof of Theofém 3. Indeed,

1 Z* Skl e < ka2 P2 Arple o < CKZRQ NAipllizre < ClAIL . (99)
If we show that
Iiluser <Ol ( 3 180l (100)
and _
|1Z* Sk per= < C||P||2 o5 (101)
then the rest follows as in Step 1 of Theoriem 3. "
Hence, we proceed to prove the bourids [100) (101). Welnatte
i = ey = eMP(pRp) = e MP(em M pem M Rp). (102)
We decomposé\; (e~sM pe~sM Rp) as
AN R = B A () (AR
+ Z JAY) [(e‘“SAlAmﬁ) (e‘O‘SA1 SmRﬁ)] ) (203)
m>l-2

In view of the boundedness of the operatgisandP, we estimate

~ 2 ~ 2 as —asAy ~ —as ~
”leku”LgoLeo SC Z 2lP||Alu||L§°Lp SC Z 2lP||Al [6 A1(€ Alpe AlRp)] ||L;>°Lp

I<k-1 I<k-1

SC Z Z 2l;||Bas(Sm+1/57AmRﬁ)”L§°LP+C Z Z 2l;||Bas(SmR157Am15)”L§°LP

I<k-1m2[-2 I<k-1m2[-2
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whereB,(f,g) is defined in[(96). This implies that

|2 Skitllr=<C 3 3 272 S D) (Z2° A Rp) o1

I<k—-1m>l-2

+C Y Y (2 S BA) (22 D) o (104)

I<k—-1m>l-2

Now we proceed as if (¥6) anld {77) and we obtain](101). Finakyestimate
|Aka] L1z, < ClAge™ [(e*™ 5) (e **™ Rp)] i 1o
<C Y fers M [(em M8 p) (™M A RE) | 11

m>k—2
+C Y e (e M S Rp) (67N Ap) | 1 1o
m>k—2
=C Y N1Bas(Smarp, AnBRp) | pipe +C Y |Bas(SmBp, Avp)|l 11 1o
m>k—-2 m>k—2
<C Y NZ2' Smapllipr=Z2*AnRpl i +C Y, 12 SmRp| L= 22 Anpll i 1o
m>k—-2 m>k—2
<ol s ( 5 ||Amﬁ||L;Lp) (105)
Lt p,1 \m>k-2

which proves[(100). This ends the proof of Theofém 4.

6. REGULARITY OF SOLUTIONS FORSMALL INITIAL DATA

In this section, we consider the regularity of solutiond38)-[35) for small initial data.
We use the following lemma:

Lemmal. LetjeZ,t >0, a€[0,1),c> 0. Then there is a positive constafit> 0 that depends
on « but does not depend gior ¢ such that the estimate

t .
f 91 e=e(t=5) g g < OO (106)
0
holds.

Proof: We split the given integral into the sum

t ; L ; t .
[ 2 gmelt=9)2 g=ar(g = [ * i gmelt=)2 gmagg 4 [ 2 pmelt=9)2 g g (107)
0 0 L

2

Using the fact thakie—<(-:)2" < C (¢ - s)~! for all s € [0, £], we estimate
fo el gy < O fo (= s) L5 ds < O fo T s < Ot (108)
Using the fact that— < 22t~ for all s € [£, ], we estimate
Lt 2ie=e(t=5)2 g=ajs < C1 =@ /j e=clt=9)2 g = Ot~ [1 - 6_2%161"] < C . (109)
3 5

Adding (108) and[(1d9), we obtain _(106).
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Theorem 5. Leta € [0,1),8 > 0. Letp, € B (R?*) n B% %(R?) be sufficiently small. Then
there is a positive constaiit > 0 depending on the initial data such that the unique solufiari

(33)-(39) satisfies
sup £ lo@gz < C. (110)

Proof: We consider the approximating initial value probldml] (48B)(whose solution is given
by
p (t) = e po = B(ut"™, pn). (111)

First, we estimate
19298 e A A po | e < C1%e™ 298| Apo| pe < C279925 | A po | £ < C'llpo ”BE;:; (112)

in view of (30) and the bound~e~* < C that holds for all: > 0.
We show that

sup {#B(u® . o) (1) g _f < ClO D sup {10 (Dl _}. (113)
>0 ’ LeBP, >0 ,

We start by applying); to B(u("~1), p»~1)), we use the paraproduct decomposition

A D pry = 5 AG(Sul T AT+ 3 A (S pD A, (114)

k2j-2 k>j-2
and we obtain
Ajg(u(n—l)yp(n—l)) = BLj(u("‘l),p("‘l)) +Bz,j(u("‘1),p("‘1)) (115)
where
By (utr D, pr D) = [ty 2z, Aj<sku<n—lmkp<"-1>>] (s)ds,  (116)
and

t
By j(ut), pr1)) = fo e‘(t‘s)Av-[ 3 Aj(SkH,O(”_l)Aku("_l))](s)ds. (117)

k>j-2
In view of Bernstein’s inequality (27), the boun@s](30) d68)( and Lemma&l1, we estimate

2B, (u" D, p0 ) < O [ <>[ > ||sku<n—1>||po||Akp<n-1>||po]ds

t
0 k>j-2

<Ol DNy, {fo (eros) (mz_Q2_(’“‘”68‘“2’“5||Aw<“-1> ||L°°) ds}
<Dy sup (D g} f gielt=5)2 g-a
t 721 >0 <) Jo
e A G s P S (118)
hence

1929 By, (u® D, pn D) | < C”p(n_l)”%fB;l sup {ta”P(n_l)”Bi W}. (119)
1> ’
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Now, we estimat@’?|| By ; (u("1, p(»~1)| .. We note first that

> 5" A e <O Y s PP AL(p" D Rp D) | -
k2j-2 k2j-2

<C Yy 5“2”( AT P ||AlRp<"-1>||Lw)

k>j-2 1>2k-2

+C Y 5“2”( S 1SR IIAm‘"‘”HLw)

k2j—2 I>k-2

<Cllp" Dz, k;zl;zﬁl_j 752210 A1 p D | o

=Clp" Dlgepy, 20 2 2720 A 0D

12j—4 j-2<k<l+2

= Clp D gy ¥ (1= j+5)27 D02 A oD

I12j-4
<Ol Dy, sup {10l - (120)

Here, we have used the boundedness of the Leray projectoesovBspaces, the paraproduct
decomposition[(41), the bound (65), Fubini’s theorem, andng’s convolution inequality. This
implies

QJB”BZJ(u(n—l)’p(n—l))”LooS(jgyﬁgjf e—c(t=5)2’ Z ||Sk+1p("‘1)||Lw||Aku("‘1)||Lw]dS
0 k>j-2
t .
< (n=1))12 o ,(n=1) . [ j —c(t-s)27 .~
<CIP Doy sup {110 g, f [ 2 sds
—af| ,(n=1) 12 all ,(n=1)| .

<Orep DRy, sup {215 D] g}, (121)

hence
120 Bo (w0, oD e < Ol PRy sup {1 D} (122)
s > ’

Putting [119) and(122) together, we obtadin (113). Theegfor
supt |0 (Dl < Callonlgpe + Callo" Dy sup {1000} (123)
t>0 ’ ’ t 721 >0 ’

Now, we use the smallness of the initial data and we proceédl BiseoreniB. We omit further
details.

We recall the following relationship between the inhomagmrs Besov spadgs, ., and Holder
spaces:

Remark 3. For s € R* \ N, the inhomogeneous Besov spétg,, (R?) coincides with the Eider
spaceClsls-[5](R?) of bounded functiong whose derivatives of ordes| < s are bounded and
satisfy

10 f () = 0 f(y)] < Cla = yf*~*] (124)
for |z —y| < 1 (see[3]).

As a consequence, we obtain the following regularity result
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Corollary 1. Lets > 1 be an integer. Lep, € L=(R?) n B} (R*) n Biji(R% be sufficiently
small. Letp be the unique solution qB3)(35). ThenD7p e L>>(R?) for || < s, and itsL*> norm
is uniformly bounded in time. Moreover, fpr] < s, D7p is Holder continuous with a uniform in
time Holder bound.

Proof: In view of (24), the bound(45), and Theorém 5 applied with 0 andj = s + 3, we
have

Io() ot + Ili=} <O+ Imli-) (125)

where(' is a constant depending only on the initial data. Rerhark 3ptetes the proof of Corol-
lary[.

We consider the long time behavior of derivatives of sohsiof (33)-[(35) for sufficiently small
initial data in Besov spaces:

Corollary 2. Lets > 1 be an integer. Lefi € (0,1). Letp, € L=(R?) n B}, (R?) n B9, (R?) be
sufficiently small. Lep be the unique solution d83)(35). Then

o1 <ot

00,00

Lim {|.D7p(t) | + [D7p(t)]s} =0 (126)
for all |y| < s, where
D7 - D7
(D7 ()]s = sup 1Dp(y) 5 p(@)l (127)
O<|z—y|<1 |.I' - y|

Proof: We show thap(-,¢) € H2(R?) in order to apply Remaik 2. Indeed,
Loz de < [T lo®llsg dt=C [T S22 |Ap(0) et
' ' JEZ

= O Y 18p(1) 112 = Clollzy iz, < o0 (128)

JEZ
in view of the continuous Besov embeddihg](29) and the maretonvergence theorem. BBQ{2
coincides with the Sobolev spaég. Thus,

lp(t) || m2 < oo (129)

fora.e.t € (0,00), and s(-,t) € H? for a.e.t € [0, o).
In view of RemarkB and Theorelm 5 applied with- § and3 = s + §, we obtain

1D p() = + [Dp(8)]5 < Cllp() | pess.
ool ) (130)

1
< t Ss+ t oo S —_— _—
<C{lp0 g, + Il < € ( TGN
where in the last inequality we used a time decay estimafle [E2tingt — oo, we obtain[(126).

7. REGULARITY OF SOLUTIONS FORARBITRARY INITIAL DATA

In this section, we prove that any solution of(38)4(35) isosth for arbitrary initial data, pro-
vided that it satisfies a certain regularity condition.

Theorem 6. Let p be a weak solution of33)-(35) on [0, o). Let0 < ¢y < t < oco. If
pe L= ([to, t]; C*(R?)), (131)

for somed € (0, 1), then
p e C=((t, ] x R?). (132)
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Proof: We sketch the main ideas. Let us note first that
ue L= ([to, t]; C°(R?)). (133)
where
= -P(pRp). (134)
Indeed, for any € [to,t], we have
lu(s)llcs < Cllo(s)Rp(s)llcs
<Cllp(s)e=1Ro(s) L= + Cllp(s)le=1Ro(s)llcs + CllRo(s) | L= o(s)]cs
< Clo(s)]Zs (135)

in view of the boundedness of the Leray projector and Rieszsforms on the Holder spacg.
Consequently, the Holder regularity @fmposed in[(1311) give$ (183).
Next, we show that
p e L=([to,t]; Bl (R*) n C° (R?)) (136)
and
we L ([to,t]; BY (R?) n C* (R?)) (137)

foranyp > 2 andé; = o (1 - %) Indeed, for any € [to,t], we have
()5, = 5up (2918,0(5)1ur) 5 s (29180 2 () )
je

<) ss ) 7 1o <€ Up()lles)' S 1ot I (138)

and similarly

2

u() g < C (T s ) 7 Bul) e <€ (Ju(les) F (7. (139)

The last inequality holds in view of the boundedness of thexy.@rojector on’? followed by an
application of Holder’s inequality with exponentst. The interpolation inequality

lo(s) e < lo() 2 10(s) )5 (140)

together with[(13B) and (I1B1) givds (136) ahd (137).

Now, we proceed as in [11]. We apply; to (33), we multiply the resulting equation by
plA;plP~2A;p, we integrate first in the space variables R? and then in time front, to t. We
obtain the bound

[8;p() e < Cem® A p(t0) | 1
t . ‘
+C ft e 0207207 ([ p(s) o () | o+ ) s ()] g ) ds (241)

(seel[11] for details). We multiply b2917 and we take thé> norm inj. This yields the bound
lo(®)] 5, < Csup {2276 0 (o) g,

+Csup (1= L sup {[p(s) oo [u(s) o+ luls)len o) g} (142)

JEL s€(to,t]
Therefore .
p(-.t) € B2L(R?). (143)
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for anyp > 2. In view of the continuous Besov embeddifigl(29), we have ¢imticuous inclusion
. . 25,-2
B2 (R?) & Bo (R) (144)
for anyp > 2. We choosg > 22 so that2d; - 2> 4;, hence
p(-,t) € B (R?) n C*(R?) (145)

whered, > §;. In fact, the spacial regularity (I45) holds at anin [, ¢] because the pointwise-in-
time estimate[(141) holds at those times as well. Now wetitetae above process infinitely many
times to upgrade the spacial regularity of the solution ardsimultaneously use the PDE133) to
upgrade their time regularity. This yields the desired stioess[(132), completing the proof of
Theorenib.

8. PERIODIC CASE

In this section, we consider the initial value probleml (3B} posed on the toru? with
periodic boundary conditions. We assume the initial ggthave zero mean. We prove existence
and regularity of solutions.

.2
Theorem 7. Let1 < p < oo. Letp, € B}, (T?) be sufficiently small. We consider the functional
spacekE, defined by

2\ _ / 2 . —
E,(T%) = {f(t) eD(T) Uy = U1yt o # U < oo} (146)

whereD((T?) is the dual space of

Do(T?) = {f eC=(12): [ fla)ds= 0}.
Then(@3)35) has a unique global in time solutigne £, (T?).

The proof of Theorerm]7 follows from the proof of Theorem 3. ‘
In view of the Besov embedding and Theofgm 7, we concludefthat B; | (T?) is sufficiently
small, then there is a constarit- 0 depending only on the initial data such that the unique swiut

p of (33)-(33) obeys
sup [9p(0)l2ey + [ 180(0) |zt < C. (147)

Using this latter estimate, we end this section by showitag the 22(T?) norm of A2p con-
verges exponentially in time to zero.
We use the following uniform Gronwall lemma [1]:

Lemma 2. Lety(t) > 0 obey a differential inequality

d

%yﬁ-ClySFl +F(t)

with initial datumy (0) = y, with F7 a nonnegative constant, ard(¢) > 0 obeying

t+1

f F(s)ds < goe™®" + Fy
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wherec, ¢z, gg are positive constants anil, is a nonnegative constant. Then

el

1
y(t) < yoe ™ + goe *(t+ 1)e™ + —F + :
& 1-e@

Fy
holds withc = min {¢y, 2 }.

Corollary 3. Letpy ¢ B;,l(w) be sufficiently small. Then there is a constéht 0 depending
only on the initial data such that the unique solutjoof (33)-(35) obeys

JAZ ()32 ey < Ce™! (148)
forall ¢t > 0.

Proof: We take the inner product ih?(T?) of (33) with Ap to obtain

1d, 1
§£”A2P(t)”i2(m) + ||Ap(t)||2L2(1r2) = /1;2(“' Vp)Apda. (149)

We estimate the nonlinear term

|[T2(U'VP)APd93 < Cllplz=cr2ylpl ey IV ollLacrzy [V ol 2212y

< Clples | Vollza oy Vol 2 r2)
1 5
< C”p”zz(ﬂa)” Vp”z2(1~2)||Ap”L2(’H'2) (150)

in view of the boundedness of the Leray projector and Rieswsforms o (T?), the continuous
embeddindgV14(T?) - L>(T?), and the Ladyzhenskaya interpolation inequality.
SinceH'!(T?) is continuously embedded itz (T?), we have

[A2 pll ey < ClAp] 2oy, (151)

yielding the differential inequality

d 1 1 1 5
SiIA2 Pllracrey + CollA2 pllzacrey < Collpl o o) [V AN L2 2y [ Bl 2222 (152)
We note that

le(t) ]| z2(r2) < Clpo ”L?(T?)Q_Ct (153)

for all ¢ > 0. Indeed, we multiplyL.(33) by and we integrate in the space variable. Then we use the
cancellation of the nonlinear term and the continuous emtingcbf /72 (T2) in L2(T2) to obtain

d
d—t”P(t)”L?(T?) +Clp(t)] 2(r2y <0 (154)

which gives[(I5B).
Now we go back to the differential inequalify (152). Using thounds[(147) an@ (153) together
with Lemmé&2, we obtairi (148).
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9. SUBCRITICAL PERIODIC CASE

In this section, we consider the subcritical case where tb&htion is given by\> for « «
(1,2], that is, we consider the equation

Op+u-Vp+Ap=0 (155)
posed oril?, where
-P(pRp). (156)
The initial data are given by
p(x,0) = po(2) (157)

and have zero mean.
Global weak solutions exist:

Theorem 8. Leta € (1,2]. LetT > 0 be arbitrary. Letp, € L2(T?). Then(I55)«1517) has a weak
solutionp on [0,7’] obeying

1 o 1

SIoO ey + [ INE () sy < S0l oo (158)
fort e [0,T].

The proof is similar to that of Theorelm 1, and so we omit theidiet
We note that the regularity of the initial data imposed in thigical case(a = 1), namely
po € L2+ for somed > 0, is not required in the subcritical case in view of the faettfhobeys

peL*0,T; H?(T?)). (159)
The following proposition is the analogue of Proposifibn 3:

Proposition 4. Let a € (1,2]. Letp > 2 andp, € LP(T?). Suppose is a smooth solution of
(@I58)-57)on[0,T]. Then
lp(E) | 2o (r2y < llpoll o (r2y (160)
holds for allt € [0,7]. Moreover, ifpy € L>(T?), then
lp() [ = 2y < ol L= (2 (161)
holds for allt € [0, T'].
The solution of the initial value problerin (TI55)=(157) witlide smooth data are globally regular.

Theorem 9. Leta € (1,2], s > 0. LetT > 0 be arbitrary. Letp, € H*(T?) n L>(T?). Then
there are positive constants;, C; andCs depending only offip, || .- (r2) such that the solution of
(I5B)~(156)with initial data p, exists and satisfies

IA°p(E) 22 (r2) < 1A poll 22y e (162)
and
LTINS () Byt < 1Ay + CllA" 0By (e = 1) (163)
fort e [0,T].
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Proof: Fix a smalle € (0,1) such thaty > e + 1. We multiply (I5%) byA?sp and we integrate in
the space variable ov&F. We obtain the equation

1d, ) s
S WAy + A5 gy = [W(u -V p)A pd. (164)

We estimate the nonlinear term. Integrating by parts amtguddlder’s inequality, we have

. 2s — =5 . s+<
|A2(u Vp)A* pdx |A2A 2V - (up)A**2 pdx
<A2  (up) |2 grzy | A2
In view of the commutator estimate
IA*(f o) o r2y € Clgllon o2y A fllzes o2y + CllA gl Los o2y | f | Loa (r2y (166)

that holds for any mean zero functiorisg € C=(T?),s > 0,p € (1,00) with ; =
ot ;%471’271’3 € (1, 00) (seel[10]), we estimate

p3
A5 (up) A5, 2

In view of the boundedness of the Riesz transforms (and hiéxeckeeray projector) oi.? (T?)
for p e (1, 00) and Propositionl4, we bound

1,12
p1 p2

+ Ollpll=ro IA2  ul p2rzy. (167)

L3 (T2)

< Cllpl

Lz S L (r2) 22y SOl (o) € Cllpolmry.  (168)

By the commutator estimate (166), we have
A2 ]| 2 (r2y < CIA2* (pRp) | 2 (12)

< Clpll=(ry|A*2 A2, 2

L2 (12 LT% (1?)
< CllpollL= 2 1A= pll 22y + Cllpoll ooy [AT2 Pl a2 (169)
Hence
|42 (wp) |2 vy < Cllpolli - 1r2)||AS__+1p||L1 22y T C||P0||2°°(1r2)||As_%+lp||L2(11‘2)- (170)
In view of the continuous Sobolev embedding
He(T?) o L7= (T?), (171)
we obtain the bound
[A*72 " (wp) [l L2 (r2) < CllpollF o poy A2 pllr2 ey + Cllpolf e oy 1A 2 pll2rey. (172)
Using the Sobolev interpolation inequality
1A% Fllzzcezy < CIA® fll 2 may 1A%2 F11T2 oy (173)
that holds for any mean zero functigre H2(T?) andsl =(1-0)sg+0s9, 0 €[0,1], we estimate

21

1A= 2 plp2(rey < C (A P||L2(1rz)) * (||A 2pllz2(r2y) (174)

and
2(a—e-1) 2(e+1) 1

A F Dl s < O (IA%liagrs) (1A Epliarn)

(175)
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Consequently,

1A= (up) | r2(72) ||AS+%ﬂ||L2(T2)

2(e+1)

<C||ﬂ0||Leo(qrz)(||AP||L2(1r2)) - (||A 5 plle2(ry)

(a— 2
+ COllpol e 12y (10° P||L2(11‘2)) ‘ (||A )" (176)
By Young’s inequality, we end up with
| A ] < APl + 1A (177)

whereC,, is a constant depending on thee norm of the initial datap,.

Therefore, we obtain the differential inequality,
d s s+< s
E”A P||%2(1r2) + A +2p||2L2(1r2) <20, A P||%2(1r2) (178)
which gives[(16R) and (163).

We have shown existence of global smooth solutions in thergiidal case, provided that the
initial data is smooth enough. No smallness condition isdsgal on the size of the initial data.

Remark 4. The solutions in the subcritical case are unique. This isami@d by following the
same argument as for the uniqueness of local strong sokitiothe critical case (see the proof of
Theoreni R in Appendix| C).

Remark 5. The results obtained in Theordm 9 holds as well in the whodeesR? when the
initial data is smooth. The proof of Theorér 9 is mainly baseccommutator estimat€468)
which hold in the whole space (sge), the uniform boundedness of the norms of solutions to
the subcritical equation which is obtained R¥ (see Propositiofl3 and Remdrk 2), and periodic
Sobolev interpolation inequalities given {@73)which, in the whole space setting, becomes

If] Ho1(R?) S Cll /] Héo(R2)||f| }‘151(11%{2) (179)

for f € H*2(R?) ands; = (1 —0)sg + 0sg, 0 € [0,1]. Therefore, the differential inequaliL78)
becomes

d s s+< s
EHA P||%2(R2) +[A +2:0”%2(]1%2) <CYA P||%2(1r2) +C3 (180)
whereC? andCY are constants depending only on the initial data, yieldimg desired bounds.

APPENDIX A. PROOF OFPROPOSITIONZ

In this appendix, we prove Propositibh 2. Lgy € S;. Bony’s paraproduct gives the decompo-
sition
fg= Z Si-1fAjg + Z Si19A;f + Z AjfAzg. (181)
jez jeZ li-'l<1
We note that

> A fAg =Y AN+ Y AGFA g+ Y A fAg

li-7"I<1 JeL JeL jel
= Z AjfAjg+ Z AjfAj g+ Z A1 fAg
JEL JEL I/
=D (A f+ A1) Ag+ D A A g, (182)

JEL JEL
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This implies that

fg= %SjﬂfAjg + %Sngjf- (183)
Now we applyA;. In view of (18), we have
k<j-2= Aj(SkgApf) =0 (184)
and
k<j—3=A;(Sk1fArg) =0. (185)
Indeed,
F(A;(SkgArf)(€) = V(1) F (SkgArf)(§)
:\Ifj<|5|>{lkz / ws—y|>fg<g—ymum)ff(y)dy}
<k-13%
=u,(eDi X [ e s Fo(e - ) D FS )iy
< —1%S| 2%
= U ([€) Wi (€) (186)
where i
W©= Y [ wle-uDFolc-n)elu)FS )y (187)
Tk g2k

Fr:xl <k-1. Lety € R? be such thagi <yl < % and¥,(|¢-y|) # 0. This implies thafé —y| < %5
thus
215 2k5 k=15 25
<|e- <SS+« — = = 9k315, 188
El<lg=yl+lyl < =+~ <——+~ 5 (188)

Consequently, if¢| > 2¢-315, thenW,(]¢ —y|) = 0 for all [ < k£ - 1 and for ally satisfying% <yl <

2'fT5, and so¥,(¢) = 0. We conclude that the support &, is included in the closed ball centered
at0 with radius2c-315. But the support oft;(] - |) is included in the closed annulus centered at

with radii 2 and22. Therefore, ifk + 1 < j - 1, then2t-315 < 2++1 < 2i-1 and so
F(A;(SkgArf)) =0 (189)

which gives[[184). The property (1185) follows from a simig@gument. Therefore, we obtain the
decomposition

Aj(fg) = Y, Aj(SkafArg) + Y Aj(SkgArf). (190)

k>j-2 k>j-2
This ends the proof of Propositiéh 2.

APPENDIX B. PROOF OFTHEOREM(

Proof of Theorem[1: We take thel.? inner product of[(38) withy and we obtain
14
2 dt

Here we used the fact that is divergence free, which implies that
(@ - V£, p) 12 = 0. (192)

lp 72 + A2 p 72 + €l VAl Z2 = 0. (191)
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Integrating [(I91) in time from to ¢, we obtain [4l). Therefore, the familyp: e € (0,1]} is
uniformly bounded in.2(0,7’; Hz). Moreover, we have

(A, @) 2] = [(A2pF, A2®) o] < A2 % 12| A2 @] 12 < CJAZp° 12| B
€l(=Ap, @) 2| = €| (p°, —AP) 12| < Tl p[| 2] @]

(193)
(194)

57
H?2

57
H?2
and

(@ -V, @) 2] = (@95, VO) o] < [T 12 p |2V 2 < ClpZallo 22| @3 (195)

for all ® € H3. Here we used the boundedness of the Riesz operatdr oand the continuous
Sobolev embeddin@{% — L*. Therefore, we obtain the bound

~€ € € € € € € 1 €
[ - Vol -5 + 180 g + el A0 g < CUPNTalP L2 + 10 22 + A2 P 22).  (196)

In view of the continuous embeddingz - L*, we conclude that the familgd,p* : € € (0,1]}
is uniformly bounded inZ!(0,7; H~3). Now, we note that the inclusiof'z — L2 is compact

whereas the inclusiof? - H~3 is continuous. Let, be a decreasing sequence(in1] con-
verging to 0. By the Aubin-Lions lemma arid {41), the sequence}.. | has a subsequence that
converges strongly i?(0,7’; L?) and weakly inL2(0, T} H%) to some functiorp. By the lower
semi-continuity of the norms, we obtaln {42).

For simplicity of notations, we assume thatonverges te strongly inZ.2(0, 7'; L?) and weakly

in L2(0,7; H?). We note that

t t t
(5(£), ®) 12 — (o, D)2 + [ (T VS, ) pads + [ (A3 S, A3®) 2ds +€[ (VpS, V@) 12ds = 0
0 0 0
] (197)
holds for all® € H> andt € [0,T]. Without loss of generality, we may assume thatonverges
topin L? fora.e.t € [0,T], and so

[(p°(£), @) 2 = (p(t), @) 2] < [lp° = pllr2| ]2 — O (198)
forall ® € H2 and a.et € [0,7]. By the weak convergence it? (0, 7; Hz ), we obtain
t 1 1 t 1 1
f (A2p°, A2P)2ds - [ (A2p,Az2D)2ds
0 0
for all ® € /2 and allt € [0,7°]. For the nonlinear term, we Iéte H2, t € [0,7] and we write

t t
[(ff-v;}e,@)pds—f(u-Vp,cb)Lst
0 0

=—f0t((pﬁ—p)u, V(I))mds—/O.t((?f—u)pﬁ,v(]f))pds
=1+ 1. (200)

-0 (199)

We note that .
\Ll<Cl2l,s [ lelzale® = plizds -0 (201)
"2 Jo
by the Lebesgue Dominated Convergence theorem/4-ore split it as

I = [Ot((JEP(p(RPG _Rp)))pgavq))[,2d8+ At((JGP((pe —P)RPG))pG,VCI))LQdS
= ]2,1 +IQ72. (202)
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In view of the boundedness of the Riesz transforni.dand the boundedness of the Leray operator

on L4/3, we have
t
(22| < Cl@] 3 fo Il L2 IP(p R (o = p)) | parsds
t
SC||(I’||Hgf0 lellzallplzalle® = pllzads

t 1/2 t 1/2
Y A I T R s s

by the Lebesgue Dominated Convergence theorem.

(203)

We note that we have not yet used the assumptionghatZ>+°. It will be needed to estimate
|I2.2|. Indeed, we multiply equatiof (B8) hy|y<|° and we integrate in the space variable. We use

the Cordoba-Cordoba inequalify [12]
LIz > 0
and we obtain the differential inequality
d
%Hpﬁ(t)nm <0.
Integrating in time fron? to ¢, we end up having the bound

lof () z2s < llpollz2+s
forall t € [0,7]. As a consequence,

t
|1272|SC||‘1>||Hgf [N zallpllzasa o = pll seaa ds
0

L2+35

SCII‘PIIHgIIpoIImwf [N zallpf —PIIEE“ ot pll““ds

)
2+48
<ol sl [ ||/f||%4) ([ 1 p||des)

t ) 1/2 9 o5 t 545
e Clls boolls ([ 1) ([ Mokads) ™ ([ 1o = sliads) ™ 0.

Here we used the interpolation inequality

I, s < Cllfllzz“ 1712 5

that holds for anyf € L*.

Thereforep is a weak solution of (33). This ends the proof of Theokém 1.

APPENDIX C. PROOF OFTHEOREM[2
Proof of Theorem[2: We apply-A = A? to (38) and we obtain
— O, ApPS =T - VAP = 2VUVVpS — AT -Vp© + A3p° + e AApS =0
We multiply (209) by-Apc and we integrate oveR?. In view of the fact that
(a/E ’ vApga ApE)L2 =0,

(204)

(205)

(206)

(207)

(208)

(209)

(210)
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we obtain
1 d é € € ~€ € € ~€ € €
§@||Apelliz + A2 p 72 + €| A% p )7 = —2(VE VY, Ap) 2 = (AT - VoS Ap)z. (211)
Using the product rule
fgllms < ClUfla=lgllee + Clglaslfll- (212)

that holds for anyf, g € H¢, s > 0, we estimate

[V [.s < Cll, 3 < CloRefl 3

<Clple=lBpl 5 + ClBRA L=l 5

<Clo, (213)
Here, we have used the continuous embed(ﬁﬁg — L4, the fact that the Leray projector is

bounded onH 2, and the boundedness of the Riesz transforms as operawnsHI% into L.
Similarly, we bound

|AT s < Cllp Rpf 5
<Clplz=lBpl 5 + ClRp = [ RO, 5
<Clpllz el (214)
Consequently,
1d

3 € ~€ € € ~€ € €
57t 1A N7 + 1A% o N7 < 20V | La |V o 1o | AP 22 + AT [ 14 | Vo [ all A 12

<Clo 2 s oM 1280° 22 (215)
and by Young’s inequality, we obtain

d 3 € € € € € €
pri vl AR ST PR Vo e AVl PRt el o et Vo VA POV V2
<C(1p M52 + 1o N152)- (216)
We note that
1o az = |1+ LP)F (o) Ol 2 < CIF Nz + ClAY 12
=Clp 2 + Cll AP 2 < Cllpollrz + Cll AP 12 (217)
in view of Plancherel’s theorem and the uniform boundedoégsin L? described by[(42). There-
fore, we obtain the differential inequality
d 3 ¢ €
g 1A L2+ 12 [ < CIA 2 + Cy (218)

whereC,,, is a positive constant depending only @nand some universal constants. This implies
that

d 3

7 Az +1) < Co (1Ap15: + 1) (219)
for some constant, depending only on the initial data. Diving both sides(lq}xApe 13, + 1)3 and
integrating in time fron? to ¢, we get

1 1
2 7 2 2 2
2(la®l7-+1)"  2(1Apol7. +1)

- CoTo (220)
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forall t € [0,T,]. We choose a positive timig, > 0 such that

T, < L ! (221)
200 (”ApQH%Q + 1)

and we conclude that
1Apol3. +1

2
V1= 2C6Ty (| 2po ]2 + 1)
forall ¢ € [0,Ty]. In view of the energy inequality (2118), we also have that

To
| IR @It < T (oo, To) (223)

whereI'(py, Tp) is a positive constant depending only on the initial data BndThis shows that
{pc: €€ (0,1]} is uniformly bounded in

L>=(0,T; H*(R?)) n L*(0,T; H3 (R?)). (224)

Passing to the limit on a subsequence and using the loweraa@ttinuity of norms, we conclude
that the weak solutiop, obtained in Theoref 1, is strong.

For uniqueness, suppose thatandp, are two strong solutions df (83) dA, 7] with the same
initial condition. Letp = p; — po, andu = u; — uy. Thenp obeys the equation

|20 ()7 < (222)

Op+u-Vpr+us-Vp+Ap=0. (225)
We take thel.? inner product withp and we obtain
1d
S g1l + A2l = —(u- Vi, p) e (226)

In view of the boundedness of the Riesz transformg£.6nwve have

|ullzs < [P(pRpy)|Ls + [|P(p2Rp)| L
<Clpla|Rprllz= + 2| = | Rpl| o2

< Cloles (loill 3 + o2l 3 ) (227)
Hence
(- Vo1, p) 2] < Jull |V s Il 2
1 2 2 2 2 2
<ol +C(Ial g +loal? g ) ol el (228)
Therefore,
d
Zlol3e < K@)l (229)
where
K(#)=C (Il g + o2l 5 ) Il (230)

We note thaf< (¢) is time-integrable ofi0, 7] sincep, andp, belong to the spacé> (0, Ty; H?(R?)).
This shows that for each> 0, p;(-,t) = p2(-,t) a.e. inR?, and so we obtain uniqueness. This
completes the proof of Theordm 2.
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