LONG TIME BEHAVIOR OF SOLUTIONS OF AN ELECTROCONVECTION MODEL IN \mathbb{R}^{2}

ELIE ABDO AND MIHAELA IGNATOVA

Abstract

We consider a two dimensional electroconvection model which consists of a nonlinear and nonlocal system coupling the evolutions of a charge distribution and a fluid. We show that the solutions decay in time in $L^{2}\left(\mathbb{R}^{2}\right)$ at the same sharp rate as the linear uncoupled system. This is achieved by proving that the difference between the nonlinear and linear evolution decays at a faster rate than the linear evolution. In order to prove the sharp L^{2} decay we establish bounds for decay in $H^{2}\left(\mathbb{R}^{2}\right)$ and a logarithmic growth in time of a quadratic moment of the charge density.

1. Introduction

We consider the electroconvection model

$$
\begin{gather*}
\partial_{t} q+u \cdot \nabla q+\Lambda q=0, \tag{1}\\
\partial_{t} u+u \cdot \nabla u+\nabla p-\Delta u=-q R q, \tag{2}\\
\nabla \cdot u=0 \tag{3}
\end{gather*}
$$

in \mathbb{R}^{2} describing the evolution of a surface charge density q in a two-dimensional incompressible fluid flowing with a velocity u and a pressure p. Here $\Lambda=(-\Delta)^{\frac{1}{2}}$ is the square root of the twodimensional Laplacian, and $R=\nabla \Lambda^{-1}$ is the two-dimensional Riesz transform. The initial data

$$
\begin{equation*}
u(\cdot, 0)=u_{0} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
q(\cdot, 0)=q_{0} \tag{5}
\end{equation*}
$$

are assumed to be regular enough and have good decay properties. The model is motivated by physical and numerical studies of electroconvection [9, 21, 22]. The nonlocal aspect of the evolution of the charge density and the nonlocal forcing on the Navier-Stokes equations in the model are due to the fact that the fluid and charges are confined to a thin two dimensional film. The global well-posedness of the system in bounded domains was obtained in [7] using commutator estimates and nonlocal nonlinear analysis. In [1], we investigated the long time dynamics of the model in two dimensions, with periodic boundary conditions and with applied voltage. When the fluid is forced by time-independent smooth mean zero body forces, we proved that the model (1)-(5) has a finite dimensional global attractor. In the absence of body forces, the charge density q converges exponentially in time to a unique limit due to the applied voltage, and the velocity u converges exponentially in time to zero. The rate of exponential decay depends on the periodic boundary conditions.

In this paper, we consider the time asymptotic behavior of solutions of (1)-(5) in \mathbb{R}^{2}, and adapt the Fourier splitting method [17, 18] of Schonbek to the present system. The method was initially used in [17] to prove decay of Leray weak solutions [14] of Navier-Stokes equations and to further decay studies for Navier-Stokes equations [3, 11, 18, 19, 23] and many other partial differential

[^0]equations (see for instance [4, 8, 10, 15, 24, 25]). Different approaches were employed as well to investigate the time decay [16] and space-time decay [2, 12, 13, 20] of higher-order derivatives of solutions to Navier-Stokes equations.

The electroconvection model (1)-(5) couples Navier-Stokes equations to a scalar equation for a surface charge density q, evolving via advection by u and diffusion by Λ. We obtain in Theorem 1 of section 2 the long time L^{2} decay of the type

$$
\|q\|_{L^{2}}=O\left(t^{-1}\right)
$$

and

$$
\|u\|_{L^{2}}=O\left(t^{-\frac{1}{2}}\right) .
$$

This rate of decay is sharp for the linear uncoupled system if the initial data have non vanishing finite L^{1} norms, because functions of the form $Q(t)=e^{-t \Lambda^{\alpha}} q_{0}$ obey

$$
\lim _{t \rightarrow \infty} t^{\frac{n}{\alpha}}\|Q(t)\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=C_{n, \alpha}\left(\int_{\mathbb{R}^{n}} q_{0} d x\right)^{2}
$$

for any $\alpha>0$ and $n \geq 1$. The fact that such a decay is sharp for the nonlinear evolution as well is a consequence of Theorem 4 of section 3 where we prove that $u-U$ with $U(t)=e^{t \Delta} u_{0}$ and $q-Q$ with $Q(t)=e^{-t \Lambda} q_{0}$ decay faster in L^{2} than u and q, respectively. Similar results were proved for critical SQG in [8]. The critical SQG velocity $u=R^{\perp} q$ decays in L^{2} like q, that is at the rate t^{-1}, which helps lower the size of the nonlinear term $u \cdot \nabla q$ in that equation. In our case, the velocity has slower decay in L^{2} due to the Navier-Stokes equation, namely of the order $t^{-\frac{1}{2}}$, and the nonlinear term is larger. The influence of the charge density q is felt by the Navier-Stokes velocity via the electric force $-q R q$. In order to obtain a key fast enough decay at low wave numbers for the difference $v=u-U$, we need to control a moment of $q, \int_{\mathbb{R}^{2}}|x|^{2}|q(x, t)|^{2} d x=M^{2}(t)$, in view of the inequality

$$
|\widehat{q R q}(\xi)| \leq C|\xi|\|q\|_{L^{2}} M(t)
$$

(see Lemma 3). We prove that

$$
M(t)=O(\sqrt{\log t})
$$

for long time, by analyzing the evolution of the quantity $a(x) q(x, t)$ with $a(x)=\sqrt{|x|^{2}+1}$. This analysis uses the boundedness of the commutator between Λ and multiplication by $a(x)$, which we establish in Lemma 1. In addition, in order to achieve the necessary sharp L^{2} bounds we have to obtain bounds for the decay of higher norms of both u and q. For instance, H^{1} norms of q are of the order

$$
\|\nabla q\|_{L^{2}}=O\left(t^{-1}\right)
$$

These bounds are obtained by somewhat involved nonlinear and nonlocal analysis, and they are no longer sharp compared to the generic t^{-2} linear behavior.

The paper is organized as follows. In section 2, we study the asymptotic behavior of solutions to the electroconvection model (1)-(5): we prove that the L^{2} norm of the surface charge density q decays in time to zero with a rate of order t^{-1} whereas the velocity u decays in time to zero with a rate of order $t^{-\frac{1}{2}}$. We also investigate the rate of decay of their higher-order derivatives, and we obtain decaying-in-time bounds in Hölder spaces $C^{0, \frac{1}{2}}$. In section 3, we prove that the differences $q-Q$ and $u-U$ decay to zero in L^{2} faster than q and u, with rates of order $t^{-1-\frac{3}{4}}$ and $t^{-\frac{3}{4}}$, respectively. In the Appendix, we present results on the existence and uniqueness of solutions to (1)-(5), based on the Banach fixed point theorem, the Aubin-Lions lemma and commutator estimates.

2. Long Time Behavior of Solutions

In this section, we consider the long-time behavior of solutions of the electroconvection model described by (1)-(5). We show that the charge density q and the velocity u converge to 0 in the H^{2} norm, and we investigate the rate of convergence.

For a function $f \in L^{1}\left(\mathbb{R}^{2}\right)$, we denote its Fourier transform by

$$
\begin{equation*}
\widehat{f}(\xi)=\int_{\mathbb{R}^{2}} f(x) e^{-i \xi \cdot x} d x \tag{6}
\end{equation*}
$$

Theorem 1. Let $u_{0} \in H^{1} \cap L^{1}$ be divergence-free and $q_{0} \in L^{4} \cap L^{1}$. There exist positive constants Γ_{0} and Γ_{0}^{\prime} depending only on the initial data and some universal constants such that the unique global-in-time solution (q, u) of (1)-(5) obeys

$$
\begin{equation*}
\|q(t)\|_{L^{2}}^{2} \leq \frac{\Gamma_{0}}{(t+1)^{2}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u(t)\|_{L^{2}}^{2} \leq \frac{\Gamma_{0}^{\prime}}{t+1} \tag{8}
\end{equation*}
$$

for all $t \geq 0$.
Proof: The proof is divided into several steps.
Step 1 (Basic energy estimates). We take the L^{2} inner product of equation (1) with $\Lambda^{-1} q$ and the L^{2} inner product of equation (2) with u. Then we add the resulting energy equalities. Integrating by parts, we have the cancellations

$$
\begin{equation*}
(u \cdot \nabla u, u)_{L^{2}}=(\nabla p, u)_{L^{2}}=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
\left(u \cdot \nabla q, \Lambda^{-1} q\right)_{L^{2}}+(q R q, u)_{L^{2}} & =-\left(u \cdot \nabla \Lambda^{-1} q, q\right)_{L^{2}}+(q R q, u)_{L^{2}} \\
& =-(u \cdot R q, q)_{L^{2}}+(q R q, u)_{L^{2}}=0 \tag{10}
\end{align*}
$$

due to the divergence-free condition (3). Thus, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\left\|\Lambda^{-\frac{1}{2}} q\right\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}\right)+\|q\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}=0 \tag{11}
\end{equation*}
$$

We integrate in time from 0 to t and we take the supremum over all positive times $t \geq 0$. We get

$$
\begin{equation*}
\sup _{t \geq 0}\left\{\left\|\Lambda^{-\frac{1}{2}} q(t)\right\|_{L^{2}}^{2}+\|u(t)\|_{L^{2}}^{2}+\int_{0}^{t} 2\left(\|q(s)\|_{L^{2}}^{2}+\|\nabla u(s)\|_{L^{2}}^{2}\right) d s\right\}=\left\|\Lambda^{-\frac{1}{2}} q_{0}\right\|_{L^{2}}^{2}+\left\|u_{0}\right\|_{L^{2}}^{2} \tag{12}
\end{equation*}
$$

ending the proof of Step 1.
Step 2 (Pointwise bounds for the Fourier transform of the charge density q). The Fourier transform of q evolves according to

$$
\begin{equation*}
\partial_{t} \widehat{q}(\xi, t)+(\widehat{u \cdot \nabla q})(\xi, t)+\widehat{\Lambda q}(\xi, t)=0 \tag{13}
\end{equation*}
$$

The fractional Laplacian Λ is a Fourier multiplier with symbol $|\xi|$, hence

$$
\begin{equation*}
\partial_{t} \widehat{q}+|\xi| \widehat{q}=-\widehat{u \cdot \nabla q} \tag{14}
\end{equation*}
$$

We estimate the Fourier transform of the nonlinear term

$$
\begin{equation*}
|\widehat{u \cdot \nabla q}|=|\widehat{\nabla \cdot(u q)}| \leq C|\xi|\|u\|_{L^{2}}\|q\|_{L^{2}} \tag{15}
\end{equation*}
$$

using the divergence-free condition (3), the boundedness of the Fourier transform of a function by its L^{1} norm, and the Cauchy-Schwarz inequality. This yields the differential inequality

$$
\begin{equation*}
\partial_{t} \widehat{q}+|\xi| \widehat{q} \leq C|\xi|\|u\|_{L^{2}}\|q\|_{L^{2}} . \tag{16}
\end{equation*}
$$

We multiply both sides by the integrating factor $e^{|\xi| t}$ and integrate in time from 0 to t. We obtain the bound

$$
\begin{equation*}
|\widehat{q}(\xi, t)| \leq\left|\widehat{q}_{0}(\xi)\right|+C|\xi| \int_{0}^{t}\|u(s)\|_{L^{2}}\|q(s)\|_{L^{2}} d s \tag{17}
\end{equation*}
$$

As a consequence of Step 1 and the Cauchy-Schwarz inequality, we get the pointwise bound

$$
\begin{equation*}
|\widehat{q}(\xi, t)| \leq\left\|q_{0}\right\|_{L^{1}}+C_{0}|\xi| \sqrt{t} \tag{18}
\end{equation*}
$$

where C_{0} is a time-independent constant depending only on $\left\|u_{0}\right\|_{L^{2}}$ and $\left\|\Lambda^{-\frac{1}{2}} q_{0}\right\|_{L^{2}}$. This finishes the proof of Step 2.

Step 3 (Decaying bound for the L^{2} norm of the charge density). The L^{2} norm of q evolves according to

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|q\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{1}{2}} q\right\|_{L^{2}}^{2}=0 \tag{19}
\end{equation*}
$$

In view of Parseval's identity and the fact that $\Lambda^{\frac{1}{2}}$ is a Fourier multiplier with symbol $|\xi|^{\frac{1}{2}}$, we have

$$
\begin{equation*}
\left\|\Lambda^{\frac{1}{2}} q\right\|_{L^{2}}^{2}=\| \widehat{\Lambda^{\frac{1}{2}} q\left\|_{L^{2}}^{2}=\int_{\mathbb{R}^{2}}|\xi \| \widehat{q}(\xi, t)|^{2} d \xi . . . \text {. }{ }^{2} .\right.} \tag{20}
\end{equation*}
$$

We bound the dissipation from below

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|\xi \left\|\left.\widetilde{q}(\xi, t)\right|^{2} d \xi \geq \int_{|\xi|>\rho(t)}|\xi \| \widetilde{q}(\xi, t)|^{2} d \xi\right.\right. \tag{21}
\end{equation*}
$$

where $\rho(t)$ is the function defined on $[0, \infty)$ by

$$
\begin{equation*}
\rho(t)=\frac{r}{2(t+1)} \tag{22}
\end{equation*}
$$

for some positive constant r to be determined later. We note that

$$
\begin{align*}
\int_{|\xi|>\rho(t)}|\xi||\widetilde{q}(\xi, t)|^{2} d \xi & \geq \rho(t) \int_{|\xi|>\rho(t)}|\widehat{q}(\xi, t)|^{2} d \xi \\
& =\rho(t) \int_{\mathbb{R}^{2}}|\widetilde{q}(\xi, t)|^{2} d \xi-\rho(t) \int_{|\xi| \leq \rho(t)}|\widehat{q}(\xi, t)|^{2} d \xi \\
& =\rho(t)\|q\|_{L^{2}}^{2}-\rho(t) \int_{|\xi| \leq \rho(t)}|\widehat{q}(\xi, t)|^{2} d \xi \tag{23}
\end{align*}
$$

where we used Parseval's identity. Consequently, we obtain the energy inequality

$$
\begin{equation*}
\frac{d}{d t}\|q\|_{L^{2}}^{2}+2 \rho(t)\|q\|_{L^{2}}^{2} \leq 2 \rho(t) \int_{|\xi| \leq \rho(t)}|\widetilde{q}(\xi, t)|^{2} d \xi \tag{24}
\end{equation*}
$$

By the pointwise bound (18) and Fubini's theorem for spherical coordinates, we estimate

$$
\begin{align*}
\int_{|\xi| \leq \rho(t)}|\widetilde{q}(\xi, t)|^{2} d \xi & \leq \int_{|\xi| \leq \rho(t)}\left(\left\|q_{0}\right\|_{L^{1}}+C_{0}|\xi| \sqrt{t}\right)^{2} d \xi=C \int_{0}^{\rho(t)} r\left(\left\|q_{0}\right\|_{L^{1}}+C_{0} r \sqrt{t}\right)^{2} d r \\
& \leq C \int_{0}^{\rho(t)} r\left(\left\|q_{0}\right\|_{L^{1}}^{2}+C_{0}^{2} r^{2} t\right) d r \leq \Gamma_{1}\left(\rho(t)^{2}+t \rho(t)^{4}\right) \tag{25}
\end{align*}
$$

where Γ_{1} depends only on the initial data. We obtain

$$
\begin{equation*}
\frac{d}{d t}\|q\|_{L^{2}}^{2}+2 \rho(t)\|q\|_{L^{2}}^{2} \leq 2 \Gamma_{1}\left(\rho(t)^{3}+t \rho(t)^{5}\right) \tag{26}
\end{equation*}
$$

for all $t \geq 0$. We multiply both sides of the inequality by the integrating factor

$$
\begin{equation*}
e^{2 \int_{0}^{t} \rho(s) d s}=e^{r \int_{0}^{t} \frac{1}{s+1} d s}=e^{r \ln (t+1)}=(t+1)^{r} \tag{27}
\end{equation*}
$$

and then we integrate in time from 0 to t. We get

$$
\begin{align*}
\|q(t)\|_{L^{2}}^{2} & \leq \frac{\left\|q_{0}\right\|_{L^{2}}^{2}}{(t+1)^{r}}+\frac{\Gamma_{2}}{(t+1)^{r}} \int_{0}^{t}\left(\frac{1}{(s+1)^{3}}+\frac{1}{(s+1)^{4}}\right)(s+1)^{r} d s \\
& \leq \frac{\left\|q_{0}\right\|_{L^{2}}^{2}}{(t+1)^{r}}+\frac{\Gamma_{2}}{(t+1)^{r}}\left(\frac{(t+1)^{r-2}}{r-2}-\frac{1}{r-2}+\frac{(t+1)^{r-3}}{r-3}-\frac{1}{r-3}\right) \\
& \leq \frac{\left\|q_{0}\right\|_{L^{2}}^{2}}{(t+1)^{r}}+\frac{\Gamma_{2}}{(r-2)(t+1)^{2}}+\frac{\Gamma_{2}}{(r-3)(t+1)^{3}} \tag{28}
\end{align*}
$$

for any $r>3$. Here Γ_{2} depends on r and the initial data. We choose $r=4$ and we obtain the bound

$$
\begin{equation*}
\|q\|_{L^{2}}^{2} \leq \frac{\Gamma_{3}}{(t+1)^{2}} \tag{29}
\end{equation*}
$$

where Γ_{3} is a positive constant depending only on the initial data. This completes the proof of (7) and Step 3.

Step 4 (Pointwise bounds for the Fourier transform of the velocity u). Applying the Leray Projector \mathbb{P} to equation (2), we have

$$
\begin{equation*}
\partial_{t} u+\mathbb{P}(u \cdot \nabla u)-\Delta u=-\mathbb{P}(q R q) \tag{30}
\end{equation*}
$$

where we used the incompressibility condition (3) and the fact that \mathbb{P} and $-\Delta$ are Fourier multipliers so they commute. Hence the Fourier transform of u obeys

$$
\begin{equation*}
\partial_{t} \widehat{u}+\mathbb{P}(\widehat{u \cdot \nabla u})-\widehat{\Delta u}=-\widehat{\mathbb{P}(q R q)} \tag{31}
\end{equation*}
$$

We estimate

$$
\begin{equation*}
|\mathbb{P} \widehat{(u \cdot \nabla u)}(\xi, t)| \leq C\left|\xi\left\|\left.\widehat{u}(\xi, t)\right|^{2} \leq C|\xi|\right\| u(t) \|_{L^{2}}^{2}\right. \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
|\widehat{\mathbb{P}(q R q)}(\xi, t)| \leq C\|(q R q)(t)\|_{L^{1}} \leq C\|q(t)\|_{L^{2}}^{2} \tag{33}
\end{equation*}
$$

in view of the boundedness of the Riesz transforms on $L^{2}\left(\mathbb{R}^{2}\right)$. We obtain

$$
\begin{equation*}
\partial_{t} \widehat{u}+|\xi|^{2} \widehat{u} \leq C|\xi|\|u\|_{L^{2}}^{2}+C\|q\|_{L^{2}}^{2} \tag{34}
\end{equation*}
$$

and hence

$$
\begin{equation*}
|\widehat{u}(\xi, t)| \leq\left\|u_{0}\right\|_{L^{1}}+C|\xi| \int_{0}^{t}\|u(s)\|_{L^{2}}^{2} d s+C \int_{0}^{t}\|q(s)\|_{L^{2}}^{2} d s \tag{35}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{2}$ and $t \geq 0$. In view of the bound (12), we get

$$
\begin{equation*}
|\widehat{u}(\xi, t)| \leq \Gamma_{4}+C|\xi| \int_{0}^{t}\|u(s)\|_{L^{2}}^{2} d s \tag{36}
\end{equation*}
$$

where Γ_{4} is a positive constant depending only on the initial data. This completes the proof of Step 4.

Step 5 (Decaying bounds for the L^{4} norm of q). The evolution of the L^{4} norm of q is described by the energy equality

$$
\begin{equation*}
\frac{1}{4} \frac{d}{d t}\|q\|_{L^{4}}^{4}+\int_{\mathbb{R}^{2}} q^{3} \Lambda q d x=0 \tag{37}
\end{equation*}
$$

In view of the Córdoba-Córdoba inequality [6], the dissipation is bounded from below

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} q^{3} \Lambda q d x \geq \frac{1}{2}\left\|\Lambda^{\frac{1}{2}}\left(q^{2}\right)\right\|_{L^{2}}^{2} \tag{38}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} q^{3} \Lambda q d x \geq c\|q\|_{L^{8}}^{4} \tag{39}
\end{equation*}
$$

due to Gagliardo-Nirenberg inequalities. Using interpolation inequalities in L^{p} spaces and the uniform boundedness of the L^{2} norm of the charge density q by $\left\|q_{0}\right\|_{L^{2}}$, we have the bound

$$
\begin{equation*}
\|q\|_{L^{4}} \leq\|q\|_{L^{2}}^{\frac{1}{3}}\|q\|_{L^{8}}^{\frac{2}{3}} \leq\left\|q_{0}\right\|_{L^{2}}^{\frac{1}{3}}\|q\|_{L^{8}}^{\frac{2}{3}} \tag{40}
\end{equation*}
$$

from which we conclude that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} q^{3} \Lambda q d x \geq C\left\|q_{0}\right\|_{L^{2}}^{-2}\|q\|_{L^{4}}^{6} \tag{41}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{d}{d t}\|q\|_{L^{4}}^{4}+\frac{C}{\left\|q_{0}\right\|_{L^{2}}^{2}}\|q\|_{L^{4}}^{6} \leq 0 \tag{42}
\end{equation*}
$$

Letting $y=\|q\|_{L^{4}}^{4}$, we obtain the Bernouilli ordinary differential inequality

$$
\begin{equation*}
\frac{d y}{d t}+\frac{C}{\left\|q_{0}\right\|_{L^{2}}^{2}} y^{\frac{3}{2}} \leq 0 \tag{43}
\end{equation*}
$$

We apply a change of variable given by $u=y^{-\frac{1}{2}}$ and we get

$$
\begin{equation*}
\frac{-2}{u^{3}} \frac{d u}{d t}+\frac{C}{\left\|q_{0}\right\|_{L^{2}}^{2}} \frac{1}{u^{3}} \leq 0 \tag{44}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{d u}{d t} \geq \frac{C}{2\left\|q_{0}\right\|_{L^{2}}^{2}} \tag{45}
\end{equation*}
$$

Integrating in time from 0 to t, we arrive at the bound

$$
\begin{equation*}
\|q\|_{L^{4}}^{-2} \geq\left\|q_{0}\right\|_{L^{4}}^{-2}+\frac{C}{\left\|q_{0}\right\|_{L^{2}}^{2}} t \geq \Gamma_{5}(1+t) \tag{46}
\end{equation*}
$$

where Γ_{5} is a constant depending on the initial data. Consequently, we obtain

$$
\begin{equation*}
\|q\|_{L^{4}} \leq \frac{1}{\sqrt{\Gamma_{5}}} \frac{1}{(1+t)^{\frac{1}{2}}} \tag{47}
\end{equation*}
$$

for all $t \geq 0$.
Step 6 (Decaying bound for the L^{2} norm of the velocity). The L^{2} norm of the velocity evolves according to

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}=-\int_{\mathbb{R}^{2}} q R q \cdot u d x \tag{48}
\end{equation*}
$$

In view of Hölder's inequality, the boundedness of the Riesz transforms on $L^{4}\left(\mathbb{R}^{2}\right)$, and Ladyzhenskaya's interpolation inequality, we bound

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}} q R q \cdot u\right| \leq C\|q\|_{L^{2}}\|q\|_{L^{4}}\|u\|_{L^{2}}^{\frac{1}{2}}\|\nabla u\|_{L^{2}}^{\frac{1}{2}} \tag{49}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2} \leq C\|q\|_{L^{2}}^{\frac{4}{3}}\|q\|_{L^{4}}^{\frac{4}{3}}\|u\|_{L^{2}}^{\frac{2}{3}} \tag{50}
\end{equation*}
$$

By Parseval's identity, we have

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{L^{2}}^{2}+\int_{\mathbb{R}^{2}}|\xi|^{2}|\widehat{u}(\xi, t)|^{2} d \xi \leq C\|q\|_{L^{2}}^{\frac{4}{3}}\|q\|_{L^{4}}^{\frac{4}{3}}\|u\|_{L^{2}}^{\frac{2}{3}} . \tag{51}
\end{equation*}
$$

For a positive function $\rho_{1}(t)$ continuous on $[0, \infty)$, we have

$$
\begin{align*}
\int_{\mathbb{R}^{2}}|\xi|^{2}|\widehat{u}(\xi, t)|^{2} d \xi & \geq \int_{|\xi|>\rho_{1}(t)}|\xi|^{2}|\widehat{u}(\xi, t)|^{2} d \xi \geq \rho_{1}(t)^{2} \int_{|\xi|>\rho_{1}(t)}|\widehat{u}(\xi, t)|^{2} d \xi \\
& \geq \rho_{1}(t)^{2}\left(\int_{\mathbb{R}^{2}}|\widehat{u}(\xi, t)|^{2} d \xi-\int_{|\xi| \leq \rho_{1}(t)}|\widehat{u}(\xi, t)|^{2} d \xi\right) \\
& =\rho_{1}(t)^{2}\|u\|_{L^{2}}^{2}-\rho_{1}(t)^{2} \int_{|\xi| \leq \rho_{1}(t)}|\widehat{u}(\xi, t)|^{2} d \xi . \tag{52}
\end{align*}
$$

Consequently, we obtain the energy inequality

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{L^{2}}^{2}+\rho_{1}(t)^{2}\|u\|_{L^{2}}^{2} \leq C\|q\|_{L^{2}}^{\frac{4}{3}}\|q\|_{L^{4}}^{\frac{4}{3}}\|u\|_{L^{2}}^{\frac{2}{3}}+\rho_{1}(t)^{2} \int_{|\xi| \leq \rho_{1}(t)}|\widehat{u}(\xi, t)|^{2} d \xi \tag{53}
\end{equation*}
$$

Using (36), we have

$$
\begin{align*}
& \int_{|\xi| \leq \rho_{1}(t)}|\widehat{u}(\xi, t)|^{2} d \xi \leq C \int_{0}^{\rho_{1}(t)} r\left(\Gamma_{4}^{2}+C r^{2}\left\{\int_{0}^{t}\|u(s)\|_{L^{2}}^{2} d s\right\}^{2}\right) d r \\
& \leq \Gamma_{6} \rho_{1}(t)^{2}+C \rho_{1}(t)^{4}\left(\int_{0}^{t}\|u(s)\|_{L^{2}}^{2} d s\right)^{2} \tag{54}
\end{align*}
$$

and thus

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{L^{2}}^{2}+\rho_{1}(t)^{2}\|u\|_{L^{2}}^{2} \leq \Gamma_{6} \rho_{1}(t)^{4}+C \rho_{1}(t)^{6}\left(\int_{0}^{t}\|u(s)\|_{L^{2}}^{2} d s\right)^{2}+C\|q\|_{L^{2}}^{\frac{4}{3}}\|q\|_{L^{4}}^{\frac{4}{3}}\|u\|_{L^{2}}^{\frac{2}{3}} \tag{55}
\end{equation*}
$$

Multiplying by the integrating factor $e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}$, and integrating in time from 0 to t, we obtain

$$
\begin{align*}
&\|u(t)\|_{L^{2}}^{2} \leq \frac{\left\|u_{0}\right\|_{L^{2}}^{2}}{e_{0}^{\int_{0}^{t} \rho_{1}(s)^{2} d s}}+\frac{\Gamma_{6}}{e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}} \int_{0}^{t} e^{\int_{0}^{s} \rho_{1}(\tau)^{2} d \tau} \rho_{1}(s)^{4} d s \\
&+\frac{C}{e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}} \int_{0}^{t}\left(e^{\int_{0}^{s} \rho_{1}(\tau)^{2} d \tau} \rho_{1}(s)^{6}\right)\left(\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau\right)^{2} d s \\
&+\frac{C}{e_{0}^{\int_{0}^{t} \rho_{1}(s)^{2} d s}} \int_{0}^{t}\|q\|_{L^{2}}^{\frac{4}{3}}\|q\|_{L^{4}}^{\frac{4}{3}}\|u\|_{L^{2}}^{\frac{2}{3}} \int_{0}^{s} \rho_{1}(\tau)^{2} d \tau \tag{56}\\
&
\end{align*}
$$

In view of (12), (29) and (47), we estimate

$$
\begin{equation*}
\int_{0}^{t}\|q\|_{L^{2}}^{\frac{4}{3}}\|q\|_{L^{4}}^{\frac{4}{3}}\|u\|_{L^{2}}^{\frac{2}{3}} e^{\int_{0}^{s} \rho_{1}(\tau)^{2} d \tau} d s \leq \Gamma_{7} \int_{0}^{t} \frac{e^{\int_{0}^{s} \rho_{1}(\tau)^{2} d \tau}}{(s+1)^{2}} d s \tag{57}
\end{equation*}
$$

for any $t \geq 0$, and so

$$
\begin{align*}
\|u(t)\|_{L^{2}}^{2} & \leq \frac{\left\|u_{0}\right\|_{L^{2}}^{2}}{e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}}+\frac{\Gamma_{6}}{e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}} \int_{0}^{t} e^{\int_{0}^{s} \rho_{1}(\tau)^{2} d \tau} \rho_{1}(s)^{4} d s \\
& +\frac{C}{e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}} \int_{0}^{t}\left(e^{\int_{0}^{s} \rho_{1}(\tau)^{2} d \tau} \rho_{1}(s)^{6}\right)\left(\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau\right)^{2} d s \\
& +\frac{\Gamma_{7}}{e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}} \int_{0}^{t} \frac{e^{\int_{0}^{s} \rho_{1}(\tau)^{2} d \tau}}{(s+1)^{2}} d s \tag{58}
\end{align*}
$$

for any $t \geq 0$.
In order to obtain the sharp decaying bound for the velocity u, we need the following three sub-steps:

Step 6.1 (Logarithmic decaying bound for the L^{2} norm of the velocity). We take $\rho_{1}(t)=(e+$ $t)^{-\frac{1}{2}}[\ln (e+t)]^{-\frac{1}{2}}$. In this case, the integrating factor is given by

$$
\begin{equation*}
e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}=e^{\int_{0}^{t} \frac{1}{(e+s) \ln (e+s)} d s}=e^{\ln [\ln (e+t)]}=\ln (e+t) \tag{59}
\end{equation*}
$$

and so (58) becomes

$$
\begin{align*}
& \|u(t)\|_{L^{2}}^{2} \leq \frac{\left\|u_{0}\right\|_{L^{2}}^{2}}{\ln (e+t)}+\frac{\Gamma_{6}}{\ln (e+t)} \int_{0}^{t} \frac{1}{(e+s)^{2} \ln (e+s)} d s \\
& +\frac{C\left\|u_{0}\right\|_{L^{2}}^{2}}{\ln (e+t)} \int_{0}^{t} \frac{s^{2}}{(e+s)^{3}[\ln (e+s)]^{2}} d s+\frac{\Gamma_{7}}{\ln (e+t)} \int_{0}^{t} \frac{\ln (e+s)}{(s+1)^{2}} d s . \tag{60}
\end{align*}
$$

in view of the uniform boundedness of $\|u\|_{L^{2}}$ by $\left\|u_{0}\right\|_{L^{2}}$. We note that

$$
\begin{equation*}
\int_{0}^{t} \frac{s^{2}}{(e+s)^{3}[\ln (e+s)]^{2}} d s \leq \int_{0}^{t} \frac{1}{(e+s)[\ln (e+s)]^{2}} d s=1-\frac{1}{\ln (e+t)} \leq 1 \tag{61}
\end{equation*}
$$

for any $t \geq 0$. Therefore,

$$
\begin{equation*}
\|u(t)\|_{L^{2}}^{2} \leq \frac{\Gamma_{8}}{\ln (e+t)} \tag{62}
\end{equation*}
$$

for all $t \geq 0$, where Γ_{8} is a constant depending only on the initial data.
Step 6.2 (Almost sharp decaying bound for the L^{2} norm of the velocity). In order to improve the logarithmic decay (62), we take $\rho_{1}(t)=r^{\frac{1}{2}}(t+1)^{-\frac{1}{2}}$ for some r to be chosen later. In this case, the integrating factor is given by

$$
\begin{equation*}
e^{\int_{0}^{t} \rho_{1}(s)^{2} d s}=e^{r \int_{0}^{t} \frac{1}{(s+1)} d s}=e^{r \ln (t+1)}=(t+1)^{r} \tag{63}
\end{equation*}
$$

and so (58) becomes

$$
\|u(t)\|_{L^{2}}^{2} \leq \frac{\left\|u_{0}\right\|_{L^{2}}^{2}}{(t+1)^{r}}+\frac{\Gamma_{9}}{(t+1)^{r}} \int_{0}^{t} \frac{(s+1)^{r}}{(s+1)^{2}} d s+\frac{C}{(t+1)^{r}} \int_{0}^{t} \frac{(s+1)^{r}}{(s+1)^{3}}\left(\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau\right)^{2} d s
$$

for all $t \geq 0$. Here Γ_{9} is a constant depending only on the initial data and r. We have

$$
\begin{equation*}
\frac{\Gamma_{9}}{(t+1)^{r}} \int_{0}^{t} \frac{(s+1)^{r}}{(s+1)^{2}} d s=\frac{\Gamma_{9}}{(r-1)(t+1)^{r}}\left((t+1)^{r-1}-1\right) \leq \frac{\Gamma_{9}}{(r-1)(t+1)} \tag{64}
\end{equation*}
$$

for any $r>1$. Moreover, applying the Cauchy-Schwarz inequality in the time variable yields

$$
\begin{equation*}
\left(\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau\right)^{2} \leq s \int_{0}^{s}\|u(\tau)\|_{L^{2}}^{4} d \tau \tag{65}
\end{equation*}
$$

so that

$$
\begin{align*}
\frac{C}{(t+1)^{r}} \int_{0}^{t} \frac{(s+1)^{r}}{(s+1)^{3}}\left(\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau\right)^{2} d s & \leq \frac{C}{(t+1)^{r}}\left(\int_{0}^{t}(s+1)^{r-2} d s\right)\left(\int_{0}^{t}\|u(s)\|_{L^{2}}^{4} d s\right) \\
& \leq \frac{C}{(r-1)(t+1)}\left(\int_{0}^{t}\|u(s)\|_{L^{2}}^{4} d s\right) \tag{66}
\end{align*}
$$

for any $r>1$. Taking $r=2$ and using (62) give

$$
\begin{equation*}
\|u(t)\|_{L^{2}}^{2} \leq \frac{\Gamma_{10}}{t+1}+\frac{\Gamma_{10}}{t+1} \int_{0}^{t} \frac{\|u(s)\|_{L^{2}}^{2}}{\ln (e+s)} d s \tag{67}
\end{equation*}
$$

and so

$$
\begin{equation*}
(t+1)\|u(t)\|_{L^{2}}^{2} \leq \Gamma_{10}+C^{\prime} \Gamma_{10} \int_{0}^{t} \frac{(s+1)\|u(s)\|_{L^{2}}^{2}}{(s+e) \ln (e+s)} d s \tag{68}
\end{equation*}
$$

for any $t \geq 0$. By Gronwall's inequality, we obtain

$$
\begin{align*}
& (t+1)\|u(t)\|_{L^{2}}^{2} \leq \Gamma_{10}+C^{\prime} \Gamma_{10}^{2} \int_{0}^{t} \frac{e^{\int_{s}^{t} \frac{1}{(e+\tau) \ln (e+\tau)} d \tau}}{(e+s) \ln (e+s)} d s \\
& =\Gamma_{10}+C^{\prime} \Gamma_{10}^{2} \int_{0}^{t} \frac{\ln (e+t)}{(e+s)[\ln (e+s)]^{2}} d s \leq \Gamma_{10}+C^{\prime} \Gamma_{10}^{2} \ln (e+t) \tag{69}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\|u(t)\|_{L^{2}}^{2} \leq \frac{\Gamma_{11} \ln (t+e)}{t+1} \tag{70}
\end{equation*}
$$

for any $t \geq 0$, where Γ_{11} is a constant depending only on the initial data.
Step 6.3 (Sharp decaying bound for the L^{2} norm of the velocity). Finally, we prove (8). We take $\rho_{1}(t)=\sqrt{2}(t+1)^{-\frac{1}{2}}$ as in the previous sub-step, and we obtain the bound

$$
\begin{equation*}
\|u(t)\|_{L^{2}}^{2} \leq \frac{\left\|u_{0}\right\|_{L^{2}}^{2}}{(t+1)^{2}}+\frac{\Gamma_{12}}{t+1}+\frac{C}{(t+1)^{2}} \int_{0}^{t} \frac{1}{s+1}\left(\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau\right)^{2} d s \tag{71}
\end{equation*}
$$

for all $t \geq 0$. We note that

$$
\begin{equation*}
\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau \leq \Gamma_{13} \int_{0}^{s} \frac{\ln (\tau+e)}{\tau+1} d \tau \leq C \Gamma_{13} \int_{0}^{s} \frac{\ln (\tau+e)}{\tau+e} d \tau \leq \Gamma_{14}[\ln (s+e)]^{2} \tag{72}
\end{equation*}
$$

and so

$$
\begin{equation*}
\int_{0}^{t} \frac{1}{s+1}\left(\int_{0}^{s}\|u(\tau)\|_{L^{2}}^{2} d \tau\right)^{2} d s \leq \Gamma_{15} \int_{0}^{t} \frac{1}{\sqrt{s+1}} d s \tag{73}
\end{equation*}
$$

for all $t \geq 0$. Therefore,

$$
\begin{equation*}
\|u(t)\|_{L^{2}}^{2} \leq \frac{\Gamma_{16}}{t+1} \tag{74}
\end{equation*}
$$

for all $t \geq 0$, where Γ_{16} is a positive constant depending only on the initial data. This ends the proof of Theorem 1 .

Now we study the rate of convergence of the gradients of the charge density and the velocity.
Theorem 2. Let $u_{0} \in H^{1} \cap L^{1}$ be divergence-free such that $\nabla u_{0} \in L^{1}$. Let $q_{0} \in H^{1} \cap L^{1}$ such that $\nabla q_{0} \in L^{1}$. There exist positive constants K_{0} and K_{0}^{\prime} depending only on the initial data and some universal constants such that the unique global-in-time solution (q, u) of (1)-(5) obeys

$$
\begin{equation*}
\|\nabla u(t)\|_{L^{2}}^{2} \leq \frac{K_{0}}{t+1} \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla q(t)\|_{L^{2}}^{2} \leq \frac{K_{0}^{\prime}}{(t+1)^{2}} \tag{76}
\end{equation*}
$$

for all $t \geq 0$.
Proof: The proof is divided into 5 steps.
Step 1 (Pointwise bounds for the Fourier transform of ∇u). The Fourier transform of the gradient of u satisfies

$$
\begin{equation*}
\left.\partial_{t} \widehat{\nabla u}+\nabla \mathbb{P}(u \cdot \nabla u)-\widehat{\nabla \Delta u}=-\nabla \widehat{\mathbb{P}(q R} q\right) \tag{77}
\end{equation*}
$$

yielding the differential inequality

$$
\begin{equation*}
\partial_{t} \widehat{\nabla u}+|\xi|^{2} \widehat{\nabla u} \leq|\xi|^{2}\|u\|_{L^{2}}^{2}+|\xi|\|q\|_{L^{2}}^{2} . \tag{78}
\end{equation*}
$$

Integrating in time from 0 to t, and using (12), we obtain

$$
\begin{equation*}
|\widehat{\nabla u}(\xi, t)| \leq\left\|\nabla u_{0}\right\|_{L^{1}}+K_{1}|\xi|+K_{2}|\xi|^{2} t \tag{79}
\end{equation*}
$$

where K_{1} and K_{2} are positive constants depending only on the initial data.
We note that the pointwise estimate (79) is not the sharpest. Indeed, one can use the decaying bounds for the L^{2} norms of the velocity and the surface charge density derived in Theorem 1 instead of using (12), and this will result in a bound whose growth in t is slower when $t \geq 1$. However, this will not improve the decay in the upcoming step, so we disregard this observation.

Step 2 (Decaying bound for the L^{2} norm of ∇u). We take the L^{2} inner product of equation (2) with $-\Delta u$ and we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\nabla u\|_{L^{2}}^{2}+\|\Delta u\|_{L^{2}}^{2}=\int_{\mathbb{R}^{2}} q R q \cdot \Delta u \tag{80}
\end{equation*}
$$

The nonlinear term $(u \cdot \nabla u, \Delta u)_{L^{2}}$ vanishes due to the fact that the matrix $M^{t} M^{2}$ has a zero trace where M is the two-by-two traceless matrix whose entries are given by $M_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$ and M^{t} is its transpose. In view of Hölder's inequality with exponents 4,4,2, the boundedness of the Riesz transforms on $L^{4}\left(\mathbb{R}^{2}\right)$ and Young's inequality, we obtain

$$
\begin{equation*}
\frac{d}{d t}\|\nabla u\|_{L^{2}}^{2}+\|\Delta u\|_{L^{2}}^{2} \leq C\|q\|_{L^{4}}^{4} \tag{81}
\end{equation*}
$$

Using the L^{4} estimate (47), we have

$$
\begin{equation*}
\|q\|_{L^{4}}^{4} \leq K_{3}(1+t)^{-2} \tag{82}
\end{equation*}
$$

where K_{3} depends on the initial data. We note that the initial charge density is assumed to be in H^{1} and so it belongs to L^{4} due to the Sobolev embedding of $H^{1}\left(\mathbb{R}^{2}\right)$ into $L^{4}\left(\mathbb{R}^{2}\right)$. Going back to (81), we have

$$
\begin{equation*}
\frac{d}{d t}\|\nabla u\|_{L^{2}}^{2}+\|\Delta u\|_{L^{2}}^{2} \leq C K_{3}(t+1)^{-2} \tag{83}
\end{equation*}
$$

For $t \in[0, \infty)$, we let

$$
\begin{equation*}
\rho_{2}(t)=r^{\frac{1}{2}}(t+1)^{-\frac{1}{2}} \tag{84}
\end{equation*}
$$

for some $r>0$ to be chosen later. By Parseval's identity, we get

$$
\begin{equation*}
\frac{d}{d t}\|\nabla u\|_{L^{2}}^{2}+\rho_{2}(t)^{2}\|\nabla u\|_{L^{2}}^{2} \leq C K_{3}(1+t)^{-2}+\rho_{2}(t)^{2} \int_{|\xi| \leq \rho_{2}(t)}|\widehat{\nabla u}(\xi, t)|^{2} d \xi \tag{85}
\end{equation*}
$$

In view of the pointwise bound (79), we have

$$
\begin{equation*}
\frac{d}{d t}\|\nabla u\|_{L^{2}}^{2}+\rho_{2}(t)^{2}\|\nabla u\|_{L^{2}}^{2} \leq K_{4}(t+1)^{-2}+K_{5} \rho_{2}(t)^{2}\left[\rho_{2}(t)^{2}+\rho_{2}(t)^{4}+\rho_{2}(t)^{6} t^{2}\right] \tag{86}
\end{equation*}
$$

for $t \geq 0$. We multiply by the integrating factor $(t+1)^{r}$ and then we integrate in time from 0 to t. We obtain

$$
\begin{align*}
\|\nabla u\|_{L^{2}}^{2} & \leq \frac{\left\|\nabla u_{0}\right\|_{L^{2}}^{2}}{(t+1)^{r}}+\frac{K_{4}}{(t+1)^{r}} \int_{0}^{t} \frac{(s+1)^{r}}{(s+1)^{2}} d s \\
& +\frac{K_{6}}{(t+1)^{r}} \int_{0}^{t}(1+s)^{r}\left(\frac{1}{(1+s)^{2}}+\frac{1}{(1+s)^{3}}\right) d s \tag{87}
\end{align*}
$$

where K_{6} depends only on the initial data. We can take any $r>2$ and we obtain the bound (75).
Step 3 (Bounds for $\int_{0}^{t}(s+1)^{\gamma}\|\Delta u(s)\|_{L^{2}}^{2} d s$ where $\gamma \neq 1$ is a real number). Let $\gamma \neq 1$. The differential inequality (81) yields

$$
\begin{equation*}
\frac{d}{d t}\left((t+1)^{\gamma}\|\nabla u\|_{L^{2}}^{2}\right)-\gamma(t+1)^{\gamma-1}\|\nabla u\|_{L^{2}}^{2}+(t+1)^{\gamma}\|\Delta u\|_{L^{2}}^{2} \leq C(t+1)^{\gamma}\|q\|_{L^{4}}^{4} \tag{88}
\end{equation*}
$$

for all $t \geq 0$. Integrating in time from 0 to t and using (47) and (75), we obtain

$$
\begin{align*}
\int_{0}^{t}(s+1)^{\gamma}\|\Delta u\|_{L^{2}}^{2} d s & \leq\left\|\nabla u_{0}\right\|_{L^{2}}^{2}+\left(\gamma K_{0}+K_{7}\right) \int_{0}^{t}(s+1)^{\gamma-2} d s \\
& =\left\|\nabla u_{0}\right\|_{L^{2}}^{2}+\frac{\gamma K_{0}+K_{7}}{\gamma-1}\left[(t+1)^{\gamma-1}-1\right] \tag{89}
\end{align*}
$$

for some positive constant K_{7} depending on $\left\|q_{0}\right\|_{L^{2}}$ and $\left\|q_{0}\right\|_{L^{4}}$.
Step 4 (Pointwise bounds for the Fourier transform of ∇q). The Fourier transform of the gradient of q satisfies

$$
\begin{equation*}
\partial_{t} \widehat{\nabla q}+\nabla \widehat{(u \cdot \nabla q)}+\widehat{\nabla \Lambda q}=0 \tag{90}
\end{equation*}
$$

hence

$$
\begin{equation*}
\partial_{t} \widehat{\nabla q}+|\xi| \widehat{\nabla q} \leq|\xi|^{2}\|u\|_{L^{2}}\|q\|_{L^{2}} \tag{91}
\end{equation*}
$$

Using (12), we obtain the pointwise bound

$$
\begin{equation*}
|\widehat{\nabla q}(\xi, t)| \leq\left\|\nabla q_{0}\right\|_{L^{1}}+K_{8}|\xi|^{2} \sqrt{t} \tag{92}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{2}$ and $t \geq 0$. Here K_{8} depends only on the initial data.
Step 5 (Decaying bound for the L^{2} norm of ∇q). The L^{2} norm of the gradient of q evolves according to the energy equality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\nabla q\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2}=(u \cdot \nabla q, \Delta q)_{L^{2}} \tag{93}
\end{equation*}
$$

In view of the Ladyzhenskaya interpolation inequality

$$
\begin{equation*}
\|\nabla u\|_{L^{4}} \leq C\|\nabla u\|_{L^{2}}^{\frac{1}{2}}\|\Delta u\|_{L^{2}}^{\frac{1}{2}} \tag{94}
\end{equation*}
$$

and the interpolation inequality [1]

$$
\begin{equation*}
\|\nabla q\|_{L^{\frac{8}{3}}}^{2} \leq C\|q\|_{L^{4}}^{\frac{1}{2}}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{\frac{3}{2}}, \tag{95}
\end{equation*}
$$

we estimate the nonlinear term

$$
\begin{equation*}
\left|(u \cdot \nabla q, \Delta q)_{L^{2}}\right| \leq\|\nabla u\|_{L^{4}}\|\nabla q\|_{L^{\frac{8}{3}}}^{2} \leq C\|\nabla u\|_{L^{2}}^{\frac{1}{2}}\|\Delta u\|_{L^{2}}^{\frac{1}{2}}\|q\|_{L^{4}}^{\frac{1}{2}}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{\frac{3}{2}} \tag{96}
\end{equation*}
$$

Applying Young's inequality, we obtain

$$
\begin{equation*}
\frac{d}{d t}\|\nabla q\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2} \leq C\|\nabla u\|_{L^{2}}^{2}\|\Delta u\|_{L^{2}}^{2}\|q\|_{L^{4}}^{2} \tag{97}
\end{equation*}
$$

In view of (75) and (82), we have

$$
\begin{equation*}
\frac{d}{d t}\|\nabla q\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{1}{2}} \nabla q\right\|_{L^{2}}^{2} \leq \frac{K_{9}}{(t+1)^{2}}\|\Delta u\|_{L^{2}}^{2} \tag{98}
\end{equation*}
$$

for all $t \geq 0$. Here K_{9} depends only the initial data. Letting

$$
\begin{equation*}
\rho_{3}(t)=r(t+1)^{-1} \tag{99}
\end{equation*}
$$

we split the dissipation term,

$$
\begin{equation*}
\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2} \geq \rho_{3}(t)\|\nabla q\|_{L^{2}}^{2}-\rho_{3}(t) \int_{|\xi| \leq \rho_{3}(t)}|\widehat{\nabla q}(\xi, t)|^{2} d \xi \tag{100}
\end{equation*}
$$

yielding the differential inequality

$$
\begin{equation*}
\frac{d}{d t}\|\nabla q\|_{L^{2}}^{2}+\rho_{3}(t)\|\nabla q\|_{L^{2}}^{2} \leq \frac{K_{9}}{(t+1)^{2}}\|\Delta u\|_{L^{2}}^{2}+\rho_{3}(t) \int_{|\xi| \leq \rho_{3}(t)}|\widehat{\nabla q}(\xi, t)|^{2} d \xi \tag{101}
\end{equation*}
$$

In view of the pointwise bound for $\widehat{\nabla q}$ given by (92), we have

$$
\begin{equation*}
\int_{|\xi| \leq \rho_{3}(t)}|\widehat{\nabla q}(\xi, t)|^{2} d \xi \leq K_{10}\left(\rho_{3}(t)^{2}+\rho_{3}(t)^{6} t\right) \tag{102}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{d}{d t}\|\nabla q\|_{L^{2}}^{2}+\rho_{3}(t)\|\nabla q\|_{L^{2}}^{2} \leq \frac{K_{9}}{(t+1)^{2}}\|\Delta u\|_{L^{2}}^{2}+K_{10}\left(\rho_{3}(t)^{3}+\rho_{3}(t)^{7} t\right) \tag{103}
\end{equation*}
$$

We multiply both sides by $(t+1)^{r}$ and we integrate in time from 0 to t. We obtain

$$
\begin{align*}
\|\nabla q(t)\|_{L^{2}}^{2} & \leq \frac{\left\|\nabla q_{0}\right\|_{L^{2}}^{2}}{(t+1)^{r}}+\frac{K_{11}}{(t+1)^{r}} \int_{0}^{t}(s+1)^{r-2}\|\Delta u(s)\|_{L^{2}}^{2} d s \tag{104}\\
& +\frac{K_{12}}{(t+1)^{r}} \int_{0}^{t}\left[(s+1)^{r-3}-(s+1)^{r-6}\right] d s . \tag{105}
\end{align*}
$$

In view of (89) applied with $\gamma=r-2$, we have

$$
\begin{equation*}
\int_{0}^{t}(s+1)^{r-2}\|\Delta u(s)\|_{L^{2}}^{2} d s \leq\left\|\nabla u_{0}\right\|_{L^{2}}^{2}+\frac{(r-2) K_{0}+K_{7}}{r-3}\left[(t+1)^{r-3}-1\right] \tag{106}
\end{equation*}
$$

for any $r \neq 3$, and so

$$
\begin{equation*}
\frac{K_{11}}{(t+1)^{r}} \int_{0}^{t}(s+1)^{r-2}\|\Delta u(s)\|_{L^{2}}^{2} d s \leq \frac{K_{13}}{(t+1)^{3}} \tag{107}
\end{equation*}
$$

for any $r>3$. Here K_{13} depends on the initial data and r. Putting (104) and 107) together and choosing $r=6$ give the desired decay (76). This completes the proof of Theorem 2 .

Now we establish decaying bounds for higher order derivatives. We need the following proposition.

Proposition 1. Let $u_{0} \in H^{1} \cap L^{1}$ be divergence-free such that $\nabla u_{0} \in L^{1}$. Let $q_{0} \in H^{1} \cap L^{1}$ such that $\nabla q_{0} \in L^{1}$. Let $\beta>3$. There exist a positive universal constant C and positive constants c_{1}, c_{2}, and c_{3} depending only on the initial data such that the solution q of (1)-(5) obeys

$$
\begin{equation*}
\int_{0}^{t}(s+1)^{\beta}\left\|\Lambda^{\frac{3}{2}} q(s)\right\|_{L^{2}}^{2} d s \leq\left\|\nabla q_{0}\right\|_{L^{2}}^{2}+C\left\|\nabla u_{0}\right\|_{L^{2}}^{2}+C \frac{(\beta-2) c_{1}+c_{2}}{\beta-3}(t+1)^{\beta-3}+\frac{\beta c_{3}}{\beta-2}(t+1)^{\beta-2} \tag{108}
\end{equation*}
$$

for all $t \geq 0$.
Proof: In view of the differential inequality (97), we have

$$
\begin{equation*}
\frac{d}{d t}(t+1)^{\beta}\|\nabla q\|_{L^{2}}^{2}-\beta(t+1)^{\beta-1}\|\nabla q\|_{L^{2}}^{2}+(t+1)^{\beta}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2} \leq C(t+1)^{\beta}\|\nabla u\|_{L^{2}}^{2}\|\Delta u\|_{L^{2}}^{2}\|q\|_{L^{4}}^{2} . \tag{109}
\end{equation*}
$$

Integrating in time from 0 to t, using the bounds (47) and (75) and applying (89) with $\gamma=\beta-2$, we obtain (108).

Theorem 3. Let $u_{0} \in H^{2} \cap L^{1}$ be divergence-free such that $\nabla u_{0} \in L^{1}$ and $\Delta u_{0} \in L^{1}$. Let $q_{0} \in H^{2} \cap L^{1}$ such that $\nabla q_{0} \in L^{1}$ and $\Delta q_{0} \in L^{1}$. There exist positive constants M_{0} and M_{0}^{\prime} depending only on the initial data and some universal constants such that the unique global-in-time solution (q, u) of (1)-(5) obeys

$$
\begin{equation*}
\|\Delta u(t)\|_{L^{2}}^{2} \leq \frac{M_{0}}{t+1} \tag{110}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\Delta q(t)\|_{L^{2}}^{2} \leq \frac{M_{0}^{\prime}}{(t+1)^{2}} \tag{111}
\end{equation*}
$$

for all $t \geq 0$.

Proof: The Fourier transform of Δu obeys

$$
\begin{equation*}
\partial_{t} \widehat{\Delta u}+|\xi|^{2} \widehat{\Delta u} \leq C|\xi|^{3}\|u\|_{L^{2}}^{2}+C|\xi|^{2}\|q\|_{L^{2}}^{2} . \tag{112}
\end{equation*}
$$

Consequently, it satisfies the pointwise bound

$$
\begin{equation*}
|\widehat{\Delta u}(\xi, t)| \leq\left\|\Delta u_{0}\right\|_{L^{1}}+M_{1}|\xi|^{3} t+M_{2}|\xi|^{2} \tag{113}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{2}$ and all $t \geq 0$. Here M_{1} and M_{2} are positive constants depending only on the initial data. The L^{2} norm of Δu evolves according to the energy equality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\Delta u\|_{L^{2}}^{2}+\|\nabla \Delta u\|_{L^{2}}^{2}=-\int_{\mathbb{R}^{2}} \Delta(q R q) \cdot \Delta u d x-\int_{\mathbb{R}^{2}} \Delta(u \cdot \nabla u) \cdot \Delta u d x \tag{114}
\end{equation*}
$$

Integrating by parts, using (3), and applying Ladyzhenskaya's interpolation inequality, we estimate the second term on the right hand side in (114) as

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}} \Delta(u \cdot \nabla u) \cdot \Delta u d x\right| \leq C\|\nabla u\|_{L^{2}}\|\Delta u\|_{L^{2}}\|\nabla \Delta u\|_{L^{2}} \tag{115}
\end{equation*}
$$

In view of the boundedness of the Riesz transforms on L^{4} and the continuous embedding of $\dot{H}^{\frac{1}{2}}$ in L^{4}, we obtain for the first term on the right hand side in (114)

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}} \Delta(q R q) \cdot \Delta u d x\right| \leq C\|q\|_{L^{4}}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}\|\nabla \Delta u\|_{L^{2}} \tag{116}
\end{equation*}
$$

From (114)-116) and using Young's inequality, we obtain the energy inequality

$$
\begin{equation*}
\frac{d}{d t}\|\Delta u\|_{L^{2}}^{2}+\|\nabla \Delta u\|_{L^{2}}^{2} \leq C\|q\|_{L^{4}}^{2}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{2}}^{2}\|\Delta u\|_{L^{2}}^{2} \tag{117}
\end{equation*}
$$

In view of Parseval's identity, we have

$$
\begin{equation*}
\frac{d}{d t}\|\Delta u\|_{L^{2}}^{2}+\rho_{2}(t)^{2}\|\Delta u\|_{L^{2}}^{2} \leq C\|q\|_{L^{4}}^{2}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{2}}^{2}\|\Delta u\|_{L^{2}}^{2}+\rho_{2}(t)^{2} \int_{|\xi| \leq \rho_{2}(t)}|\widehat{\Delta u}(\xi, t)|^{2} d \xi \tag{118}
\end{equation*}
$$

where ρ_{2} is the function defined by (84). The decay bounds (82) and (75) together with the pointwise bound for the Fourier transform of Δu given by (113) yield

$$
\begin{equation*}
\frac{d}{d t}\|\Delta u\|_{L^{2}}^{2}+\rho_{2}(t)^{2}\|\Delta u\|_{L^{2}}^{2} \leq \frac{M_{3}}{t+1}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2}+\frac{M_{4}}{t+1}\|\Delta u\|_{L^{2}}^{2}+M_{5} \rho_{2}(t)^{2}\left[\rho_{2}(t)^{2}+\rho_{2}(t)^{8} t^{2}+\rho_{2}(t)^{6}\right] \tag{119}
\end{equation*}
$$

for all $t \geq 0$, where M_{3}, M_{4} and M_{5} are positive constants depending only on the initial data. Multiplying by the integrating factor and integrating in time from 0 to t, we obtain

$$
\begin{align*}
& \|\Delta u\|_{L^{2}}^{2} \leq \frac{\left\|\Delta u_{0}\right\|_{L^{2}}^{2}}{(t+1)^{r}}+\frac{M_{3}}{(t+1)^{r}} \int_{0}^{t}(s+1)^{r-1}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2} d s \\
& +\frac{M_{4}}{(t+1)^{r}} \int_{0}^{t}(s+1)^{r-1}\|\Delta u\|_{L^{2}}^{2} d s+\frac{M_{5}}{(t+1)^{r}} \int_{0}^{t}\left[(s+1)^{r-2}+(s+1)^{r-3}+(s+1)^{r-4}\right] d s \tag{120}
\end{align*}
$$

We choose $r=5$. In view of the bound (89) applied with $\gamma=r-1$ and Proposition 1 applied with $\beta=r-1$, we obtain (110).

The Fourier transform of the Laplacian of q satisfies

$$
\begin{equation*}
\partial_{t} \widehat{\Delta q}+|\xi| \widehat{\Delta q} \leq|\xi|^{3}\|u\|_{L^{2}}\|q\|_{L^{2}} \tag{121}
\end{equation*}
$$

and hence

$$
\begin{equation*}
|\widehat{\Delta q}(\xi, t)| \leq\left\|\Delta q_{0}\right\|_{L^{1}}+M_{8}|\xi|^{3} \sqrt{t} \tag{122}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{2}$ and $t \geq 0$. Here M_{8} depends only on the initial data. Now, we establish decaying estimate for $\|\Delta q\|_{L^{2}}^{2}$ which evolves according to

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\Delta q\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{5}{2}} q\right\|_{L^{2}}^{2}=2 \int_{\mathbb{R}^{2}}(\nabla u \cdot \nabla(\nabla q)) \Delta q d x+\int_{\mathbb{R}^{2}}(\Delta u \cdot \nabla q) \Delta q d x \tag{123}
\end{equation*}
$$

In view of the Gagliardo-Nirenberg interpolation inequality

$$
\begin{equation*}
\|\Delta q\|_{L^{2}} \leq C\left\|\Lambda^{\frac{5}{2}} q\right\|_{L^{2}}^{\frac{4}{5}}\|q\|_{L^{2}}^{\frac{1}{5}}, \tag{124}
\end{equation*}
$$

the Sobolev embedding inequality

$$
\begin{equation*}
\|\Delta q\|_{L^{4}} \leq C\left\|\Lambda^{\frac{5}{2}} q\right\|_{L^{2}} \tag{125}
\end{equation*}
$$

and the bound

$$
\begin{equation*}
\|\nabla \nabla q\|_{L^{2}}=\left\|\nabla \Lambda^{-1} \nabla \Lambda^{-1} \Delta q\right\|_{L^{2}} \leq C\|\Delta q\|_{L^{2}} \tag{126}
\end{equation*}
$$

that follows from the boundedness of the Riesz transforms on L^{2}, we obtain

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|\Delta q\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{5}{2}} q\right\|_{L^{2}}^{2} & \leq C\|\nabla u\|_{L^{4}}\|\Delta q\|_{L^{2}}\|\Delta q\|_{L^{4}}+C\|\Delta u\|_{L^{2}}\|\nabla q\|_{L^{4}}\|\Delta q\|_{L^{4}} \\
& \leq C\|\nabla u\|_{L^{2}}^{\frac{1}{2}}\|\Delta u\|_{L^{2}}^{\frac{1}{2}}\left\|\Lambda^{\frac{5}{2}} q\right\|_{L^{2}}^{\frac{9}{5}}\|q\|_{L^{2}}^{\frac{1}{5}}+C\|\Delta u\|_{L^{2}}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}\|\Delta q\|_{L^{4}} \\
& \leq \frac{1}{2}\left\|\Lambda^{\frac{5}{2}} q\right\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{2}}^{5}\|\Delta u\|_{L^{2}}^{5}\|q\|_{L^{2}}^{2}+C\|\Delta u\|_{L^{2}}^{2}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2} . \tag{127}
\end{align*}
$$

Consequently,

$$
\begin{align*}
& \frac{d}{d t}\|\Delta q\|_{L^{2}}^{2}+\rho_{2}(t)^{2}\|\Delta q\|_{L^{2}}^{2} \leq C\|\nabla u\|_{L^{2}}^{5}\|\Delta u\|_{L^{2}}^{5}\|q\|_{L^{2}}^{2} \tag{128}\\
& \quad+C\|\Delta u\|_{L^{2}}^{2}\left\|\Lambda^{\frac{3}{2}} q\right\|_{L^{2}}^{2}+\rho_{2}(t)^{2} \int_{|\xi| \leq \rho_{2}(t)^{2}}|\widehat{\Delta q}(\xi, t)|^{2} d \xi
\end{align*}
$$

where ρ_{2} is defined by (84). In view of the estimates (77, (75) and (110), Proposition 1 applied with $\beta=r-1$, and the pointwise bound for the Fourier transform of Δq given by (122), we obtain (111). This ends the proof of Theorem 3 .

Let $C^{0, \frac{1}{2}}$ be the space of bounded $1 / 2$-Hölder continuous functions on \mathbb{R}^{2} with

$$
\begin{equation*}
\|f\|_{C^{0, \frac{1}{2}}}=\|f\|_{L^{\infty}}+\sup _{x, y \in \mathbb{R}^{2}, x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\frac{1}{2}}} . \tag{129}
\end{equation*}
$$

In view of the continuous Sobolev embedding of $W^{1,4}$ into $C^{0, \frac{1}{2}}$, the Ladyzhenskaya interpolation inequality, and Theorems 1, 2, and 3, we obtain the following statement.

Corollary 1. Let $u_{0} \in H^{2} \cap L^{1}$ be divergence-free such that $\nabla u_{0} \in L^{1}$ and $\Delta u_{0} \in L^{1}$. Let $q_{0} \in H^{2} \cap L^{1}$ such that $\nabla q_{0} \in L^{1}$ and $\Delta q_{0} \in L^{1}$. There exist positive constants A_{0} and A_{0}^{\prime} depending only on the initial data and some universal constants such that the unique global-in-time solution (q, u) of (11)-(5) obeys

$$
\begin{equation*}
\|u(t)\|_{C^{0, \frac{1}{2}}}^{2} \leq \frac{A_{0}}{t+1} \tag{130}
\end{equation*}
$$

and

$$
\begin{equation*}
\|q(t)\|_{C^{0, \frac{1}{2}}}^{2} \leq \frac{A_{0}^{\prime}}{(t+1)^{2}} \tag{131}
\end{equation*}
$$

for all $t \geq 0$.

3. DECOMPOSITION OF THE SOLUTION

In this section, we decompose the charge density q and the velocity u solutions of (1)-(5) in the sum of solutions Q and U of the linear equations

$$
\begin{equation*}
\partial_{t} Q+\Lambda Q=0 \tag{132}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{t} U-\Delta U=0 \tag{133}
\end{equation*}
$$

with initial datum $Q(0)=q_{0}$ and $U(0)=u_{0}$ and remainders. We study the decays of the remainders $q-Q$ and $u-U$ in L^{2} and we show that they are faster than the decays of the L^{2} norms of q and u respectively. The solutions of (132) and (133) are given explicitly by

$$
\begin{equation*}
Q(t)=\int_{\mathbb{R}^{2}} K_{t}^{1}(x-w) q_{0}(w) d w \tag{134}
\end{equation*}
$$

and

$$
\begin{equation*}
U(t)=\int_{\mathbb{R}^{2}} K_{t}^{2}(x-w) u_{0}(w) d w \tag{135}
\end{equation*}
$$

where K_{t}^{s} is the kernel defined by its Fourier transform

$$
\begin{equation*}
\mathcal{F}\left(K_{t}^{s}\right)(\xi)=e^{-|\xi|^{s} t} . \tag{136}
\end{equation*}
$$

The following proposition describes the decay of ∇Q and ∇U in L^{∞}.
Proposition 2. Suppose $q_{0} \in L^{1}$ such that $\int_{\mathbb{R}^{2}}\left|\xi \| \widehat{q_{0}}(\xi)\right| d \xi<\infty$ and $u_{0} \in L^{1}$ such that $\int_{\mathbb{R}^{2}}\left|\xi \| \widehat{u_{0}}(\xi)\right| d \xi<$ ∞. Then there exist positive constants R_{0} and R_{0}^{\prime} depending only on the initial data such that the solutions Q and U of the linear equations (132) and (133) satisfy

$$
\begin{equation*}
\|\nabla Q(t)\|_{L^{\infty}} \leq \frac{R_{0}}{(t+1)^{3}} \tag{137}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla U(t)\|_{L^{\infty}} \leq \frac{R_{0}^{\prime}}{(t+1)^{\frac{3}{2}}} \tag{138}
\end{equation*}
$$

for all $t \geq 0$.
Proof: In view of Parseval's identity and the translation property of the Fourier transform, we have

$$
\begin{equation*}
\nabla Q(x)=\nabla K_{t}^{1} * q_{0}(x)=\int_{\mathbb{R}^{2}} \nabla K_{t}^{1}(x-w) q_{0}(w) d w=\int_{\mathbb{R}^{2}} e^{-2 \pi i x \cdot \xi} \widehat{\nabla K_{t}^{1}}(\xi) \widehat{q_{0}}(\xi) d \xi \tag{139}
\end{equation*}
$$

On one hand,

$$
\begin{equation*}
\|\nabla Q\|_{L^{\infty}} \leq C\left\|\widehat{q_{0}}\right\|_{L^{\infty}} \int_{\mathbb{R}^{2}}\left|\xi\left\|\widehat{K_{t}^{1}}(\xi) \mid d \xi \leq C\right\| q_{0}\left\|_{L^{1}} \int_{0}^{\infty} r^{2} e^{-r t} d r \leq C\right\| q_{0} \|_{L^{1}} t^{-3}\right. \tag{140}
\end{equation*}
$$

and so

$$
\begin{equation*}
t^{3}\|\nabla Q\|_{L^{\infty}} \leq C\left\|q_{0}\right\|_{L^{1}} \tag{141}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\|\nabla Q\|_{L^{\infty}} \leq C \int_{\mathbb{R}^{2}}\left|\xi\left\|\widehat{K_{t}^{1}}(\xi)\right\| \widehat{q_{0}}(\xi)\right| d \xi \leq C \int_{\mathbb{R}^{2}}\left|\xi \| \widehat{q_{0}}(\xi)\right| d \xi \tag{142}
\end{equation*}
$$

for all $t \geq 0$. Hence

$$
\begin{equation*}
(1+t)^{3}\|\nabla Q\|_{L^{\infty}} \leq 4\left(1+t^{3}\right)\|\nabla Q\|_{L^{\infty}} \leq C\left(\left\|q_{0}\right\|_{L^{1}}+\int_{\mathbb{R}^{2}}\left|\xi \| \widehat{q_{0}}(\xi)\right| d \xi\right) \tag{143}
\end{equation*}
$$

for all $t \geq 0$, yielding (137). Similarly, we have

$$
\begin{equation*}
(1+t)^{\frac{3}{2}}\|\nabla U\|_{L^{\infty}} \leq C\left(1+t^{\frac{3}{2}}\right)\|\nabla U\|_{L^{\infty}} \leq C\left(\left\|u_{0}\right\|_{L^{1}}+\int_{\mathbb{R}^{2}}\left|\xi \| \widehat{u_{0}}(\xi)\right| d \xi\right) \tag{144}
\end{equation*}
$$

for all $t \geq 0$, yielding (138).
Remark 1. The assumptions $\int_{\mathbb{R}^{2}}\left|\xi \| \widehat{q_{0}}(\xi)\right| d \xi<\infty$ and $\int_{\mathbb{R}^{2}}|\xi| \widehat{u_{0}}(\xi) \mid d \xi<\infty$ are required to obtain the uniform-in-time boundedness of the L^{∞} norms ∇Q and ∇U for small times $t \in(0,1)$. This imposed regularity can be dropped since we are interested in studying the long-time behavior of solutions.

Next, we consider the pointwise behavior of the Fourier transforms of the differences $q-Q$ and $u-U$. We need first the following lemmas.

Lemma 1. For $f \in L^{2}\left(\mathbb{R}^{2}\right)$ and $x \in \mathbb{R}^{2}$, we let

$$
\begin{equation*}
T f(x)=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} \frac{\sqrt{|y|^{2}+1}-\sqrt{|x|^{2}+1}}{|x-y|^{3}} f(y) d y . \tag{145}
\end{equation*}
$$

There exists a universal constant $C>0$ (independent of f) such that

$$
\begin{equation*}
\|T f\|_{L^{2}} \leq C\|f\|_{L^{2}} \tag{146}
\end{equation*}
$$

Proof: We write

$$
\begin{equation*}
T f(x)=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon}(a(y)-a(x)) k(x-y) f(y) d y . \tag{147}
\end{equation*}
$$

where $a(x)$ is the function defined on \mathbb{R}^{2} by

$$
\begin{equation*}
a(x)=\sqrt{|x|^{2}+1} \tag{148}
\end{equation*}
$$

and $k(x)$ is the function defined on $\mathbb{R}^{2} \backslash\{0\}$ by

$$
\begin{equation*}
k(x)=\frac{1}{|x|^{3}} . \tag{149}
\end{equation*}
$$

We note that k is homogeneous of degree -3 . Moreover, the gradient of a is given by

$$
\begin{equation*}
\nabla a(x)=\left(\frac{x_{1}}{\sqrt{|x|^{2}+1}}, \frac{x_{2}}{\sqrt{|x|^{2}+1}}\right) \tag{150}
\end{equation*}
$$

and satisfies $\|\nabla a\|_{L^{\infty}} \leq 1$. Therefore, T is a well-defined operator and bounded on L^{2} (see page 435 in Section 2 of [5]).

Using Lemma 1, we study the evolution of $\left(\sqrt{|x|^{2}+1}\right) q(x)$ in $L^{2}\left(\mathbb{R}^{2}\right)$.
Lemma 2. Let $u_{0} \in H^{1} \cap L^{1}$ be divergence-free such that $\nabla u_{0} \in L^{1}$. Let $q_{0} \in H^{1} \cap L^{1}$ such that $\nabla q_{0} \in L^{1}$. Furthermore, suppose that $\int_{\mathbb{R}^{2}}|x|^{2} q_{0}(x)^{2} d x<\infty$. Then there exists a positive constant $R_{1}>0$ depending only on the initial data such that

$$
\begin{equation*}
\left\|\left(\sqrt{|\cdot|^{2}+1}\right) q(\cdot, t)\right\|_{L^{2}} \leq R_{1} \ln (t+1)+\left\|\left(\sqrt{|\cdot|^{2}+1}\right) q_{0}(\cdot)\right\|_{L^{2}} \tag{151}
\end{equation*}
$$

holds for all $t \geq 0$.

Proof: Let $a(x)=\sqrt{|x|^{2}+1}$. The evolution of $a q$ is described by

$$
\begin{equation*}
\partial_{t}(a q)+a u \cdot \nabla q+a \Lambda q=0 \tag{152}
\end{equation*}
$$

Multiplying by $a q$ and integrating in the space variable over \mathbb{R}^{2}, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|a q\|_{L^{2}}^{2}+\int_{\mathbb{R}^{2}}(a \Lambda q) a q=-\int_{\mathbb{R}^{2}}(a u \cdot \nabla q) a q . \tag{153}
\end{equation*}
$$

The cancellation

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}(u \cdot \nabla(a q)) a q=0 \tag{154}
\end{equation*}
$$

holds due to (3), so we can rewrite the nonlinear term as

$$
\begin{equation*}
-\int_{\mathbb{R}^{2}}(a u \cdot \nabla q) a q=\int_{\mathbb{R}^{2}}(u \cdot \nabla a) q^{2} a . \tag{155}
\end{equation*}
$$

By Hölder's inequality, Ladyzhenskaya's interpolation inequality, and the decaying bounds for the L^{2} norms of $q, u, \nabla u$ and ∇q given by (77), (8), (75) and (76), respectively, we estimate

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{2}}(u \cdot \nabla a) q^{2} a\right| \leq\|\nabla a\|_{L^{\infty}}\|q\|_{L^{4}}\|u\|_{L^{4}}\|a q\|_{L^{2}} \\
& \quad \leq C\|q\|_{L^{2}}^{\frac{1}{2}}\|\nabla q\|_{L^{2}}^{\frac{1}{2}}\|u\|_{L^{2}}^{\frac{1}{2}}\|\nabla u\|_{L^{2}}^{\frac{1}{2}}\|a q\|_{L^{2}} \leq R_{2}(t+1)^{-\frac{3}{2}}\|a q\|_{L^{2}} \tag{156}
\end{align*}
$$

for some constant R_{2} depending only on the initial data. Now we write the linear term as the sum

$$
\begin{align*}
\int_{\mathbb{R}^{2}}(a \Lambda q) a q & =\int_{\mathbb{R}^{2}} a q \Lambda(a q)+\int_{\mathbb{R}^{2}}(a q)[a \Lambda q-\Lambda(a q)] \\
& =\left\|\Lambda^{\frac{1}{2}}(a q)\right\|_{L^{2}}^{2}+\int_{\mathbb{R}^{2}}(a q)[a \Lambda q-\Lambda(a q)] \tag{157}
\end{align*}
$$

By the Cauchy-Schwarz inequality, we bound

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}}(a q)[a \Lambda q-\Lambda(a q)]\right| \leq\|a q\|_{L^{2}}\|a \Lambda q-\Lambda(a q)\|_{L^{2}} \tag{158}
\end{equation*}
$$

The pointwise formula for the fractional Laplacian of order 1 yields

$$
\begin{align*}
(a \Lambda q-\Lambda(a q))(x) & =C \int_{\mathbb{R}^{2}}\left[\frac{a(x) q(x)-a(x) q(y)}{|x-y|^{3}}-\frac{a(x) q(x)-a(y) q(y)}{|x-y|^{3}}\right] d y \\
& =C \int_{\mathbb{R}^{2}} \frac{a(y)-a(x)}{|x-y|^{3}} q(y) d y \tag{159}
\end{align*}
$$

where C is positive universal constant. As a consequence of Lemma 1 and (7), we obtain

$$
\begin{equation*}
\|a \Lambda q-\Lambda(a q)\|_{L^{2}} \leq C\|q\|_{L^{2}} \leq C(t+1)^{-1} \tag{160}
\end{equation*}
$$

Therefore, the L^{2} norm of $a q$ obeys the energy inequality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|a q\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{1}{2}}(a q)\right\|_{L^{2}} \leq\left[R_{2}(t+1)^{-\frac{3}{2}}+C(t+1)^{-1}\right]\|a q\|_{L^{2}} \tag{161}
\end{equation*}
$$

SO

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|a q\|_{L^{2}}^{2} \leq R_{3}(t+1)^{-1}\|a q\|_{L^{2}} \tag{162}
\end{equation*}
$$

for some positive constant R_{3} depending only on the initial data. Dividing both sides of the inequality by $\|a q\|_{L^{2}}$, we get

$$
\begin{equation*}
\frac{d}{d t}\|a q\|_{L^{2}} \leq R_{3}(t+1)^{-1} \tag{163}
\end{equation*}
$$

Integrating in time from 0 to t, we obtain (151).

The following lemma is needed to obtain a growth in $|\xi|$ for the Fourier transform of $\mathbb{P}(q R q)$.
Lemma 3. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$ such that $\int_{\mathbb{R}^{2}}|x|^{2} f(x)^{2} d x<\infty$. Then

$$
\begin{equation*}
\mid \overline{P(f R f})(\xi)|\leq C| \xi \left\lvert\,\|f\|_{L^{2}}\left(\int_{\mathbb{R}^{2}}|x|^{2}|f(x)|^{2} d x\right)^{\frac{1}{2}}\right. \tag{164}
\end{equation*}
$$

where \mathbb{P} is the Leray projector and $R=\left(R_{1}, R_{2}\right)$ is the Riesz transform vector on \mathbb{R}^{2}.
Proof: The Leray projector is a Fourier multiplier with a symbol denoted by $m(\xi)$. We have

$$
\begin{equation*}
\widehat{\mathbb{P}(f R f})(\xi)=m(\xi) \widehat{f R f}(\xi) \tag{165}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{2}$. We note that $m(\xi)$ is bounded uniformly in ξ. Now, the Fourier transform of $f R f$ at ξ is given by

$$
\begin{equation*}
\widehat{f R f}(\xi)=\int_{\mathbb{R}^{2}} f(x) R f(x) e^{-i \xi \cdot x} d x \tag{166}
\end{equation*}
$$

for $\xi \in \mathbb{R}^{2}$. Since the Riesz transform is antisymmetric, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} f(x) R f(x) d x=0 \tag{167}
\end{equation*}
$$

and so we can write $\widehat{f R f}$ at ξ as

$$
\begin{equation*}
\widehat{f R f}(\xi)=\int_{\mathbb{R}^{2}} f(x) R f(x)\left(e^{-i \xi \cdot x}-1\right) d x . \tag{168}
\end{equation*}
$$

Using the identity

$$
\begin{equation*}
\left|e^{-i \xi \cdot x}-1\right| \leq|\xi||x| \tag{169}
\end{equation*}
$$

that holds for all $x, \xi \in \mathbb{R}^{2}$, we estimate

$$
\begin{equation*}
|\widehat{f R f}(\xi)| \leq|\xi| \int_{\mathbb{R}^{2}}|x\|f(x)\| R f(x)| d x \leq|\xi|\|R f\|_{L^{2}}\left(\int_{\mathbb{R}^{2}}|x|^{2}|f(x)|^{2} d x\right)^{\frac{1}{2}} \tag{170}
\end{equation*}
$$

in view of the Cauchy-Schwarz inequality. This gives the pointwise estimate (164).
As a consequence of lemmas 2 and 3, we obtain the following statement.
Proposition 3. Let $u_{0} \in H^{1} \cap L^{1}$ be divergence-free such that $\nabla u_{0} \in L^{1}$ and $q_{0} \in H^{1} \cap L^{1}$ such that $\nabla q_{0} \in L^{1}$. Furthermore, suppose that $\int_{\mathbb{R}^{2}}|x|^{2} q_{0}(x)^{2} d x<\infty$. Let (q, u) be the solution of (1)-(5). Let $\zeta=q-Q$ and $v=u-U$. Then there exist positive constants R_{4}, R_{5} and R_{6} depending only on the initial data such that the Fourier transforms of ζ and v satisfy the pointwise bounds

$$
\begin{equation*}
|\widehat{\zeta}(\xi, t)| \leq R_{4}|\xi| \tag{171}
\end{equation*}
$$

and

$$
\begin{equation*}
|\widehat{v}(\xi, t)| \leq R_{5}|\xi| \ln (t+1)+R_{6}|\xi| \ln ^{2}(t+1) \tag{172}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{2}$ and $t \geq 0$.
Proof: The Fourier transform of ζ obeys

$$
\begin{equation*}
\partial_{t} \widehat{\zeta}+|\xi| \widehat{\zeta}=-\widehat{u \cdot \nabla q} \leq|\xi|\|u\|_{L^{2}}\|q\|_{L^{2}} . \tag{173}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
|\widehat{\zeta}(\xi, t)| \leq \int_{0}^{t}|\xi|\|u\|_{L^{2}}\|q\|_{L^{2}} \leq R_{4}|\xi| \tag{174}
\end{equation*}
$$

in view of the decaying bounds (7) and (8). The Fourier transform of v evolves according to

$$
\begin{equation*}
\partial_{t} \widehat{v}+|\xi|^{2} \widehat{v}=-\mathbb{P}(\widehat{(u \cdot \nabla u)}-\widehat{\mathbb{P}(q R q)} . \tag{175}
\end{equation*}
$$

Thus

$$
\begin{equation*}
|\widehat{v}(\xi, t)| \leq C|\xi| \int_{0}^{t}\|u\|_{L^{2}}^{2} d s+C|\xi| \int_{0}^{t}\|q\|_{L^{2}}\left(\int_{\mathbb{R}^{2}}|x|^{2} q(x)^{2} d x\right)^{\frac{1}{2}} d s \tag{176}
\end{equation*}
$$

by Lemma 3 In view of Lemma 2 and the decaying estimates (7) and (8), we obtain (172).
Theorem 4. Let $u_{0} \in H^{1} \cap L^{1}$ be divergence-free such that $\nabla u_{0} \in L^{1}$. Let $q_{0} \in H^{1} \cap L^{1}$ such that $\nabla q_{0} \in L^{1}$. Furthermore, suppose that $\int_{\mathbb{R}^{2}}|x|^{2} q_{0}(x)^{2} d x<\infty, \int_{\mathbb{R}^{2}}\left|\xi \| \widehat{q}_{0}(\xi)\right| d \xi<\infty$, and $\int_{\mathbb{R}^{2}}\left|\xi \| \widehat{u_{0}}(\xi)\right| d \xi<\infty$. Let (q, u) be the solution of (1)-(5). Then there exist positive constants R_{7} and R_{8} depending only on the initial data such that the differences $q-Q$ and $u-U$ satisfy

$$
\begin{equation*}
\|q(t)-Q(t)\|_{L^{2}}^{2} \leq \frac{R_{7}}{(t+1)^{2+\frac{3}{2}}} \tag{177}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u(t)-U(t)\|_{L^{2}}^{2} \leq \frac{R_{8}}{(t+1)^{1+\frac{1}{2}}} \tag{178}
\end{equation*}
$$

for all $t \geq 0$.
Proof: Let $\zeta=q-Q$ and $v=u-U$. We have

$$
\begin{equation*}
\partial_{t} \zeta+\Lambda \zeta=-u \cdot \nabla q \tag{179}
\end{equation*}
$$

Taking the L^{2} inner product of equation (179) with ζ and using (3), we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\zeta\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{1}{2}} \zeta\right\|_{L^{2}}^{2}=\int_{\mathbb{R}^{2}}(u \cdot \nabla q) Q d x \leq\|u\|_{L^{2}}\|q\|_{L^{2}}\|\nabla Q\|_{L^{\infty}} . \tag{180}
\end{equation*}
$$

As a consequence of Theorem 1 and the bound (137), we obtain the energy inequality

$$
\begin{equation*}
\frac{d}{d t}\|\zeta\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{1}{2}} \zeta\right\|_{L^{2}}^{2} \leq \frac{R_{9}}{(t+1)^{4+\frac{1}{2}}} \tag{181}
\end{equation*}
$$

where R_{9} is a positive constant depending only on the initial data. For a fixed r, we let $\rho(t)=$ $r(t+1)^{-1}$. Then

$$
\begin{equation*}
\frac{d}{d t}\|\zeta\|_{L^{2}}^{2}+\rho(t)\|\zeta\|_{L^{2}}^{2} \leq \frac{R_{9}}{(t+1)^{4+\frac{1}{2}}}+\rho(t) \int_{|\xi| \leq \rho(t)}|\widehat{\zeta}(\xi, t)|^{2} d \xi \tag{182}
\end{equation*}
$$

Using (171), we estimate

$$
\begin{equation*}
\int_{|\xi| \leq \rho(t)}|\widehat{\zeta}(\xi, t)|^{2} d \xi \leq R_{10} \rho(t)^{4} \tag{183}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
\frac{d}{d t}\|\zeta\|_{L^{2}}^{2}+\rho(t)\|\zeta\|_{L^{2}}^{2} \leq \frac{R_{9}}{(t+1)^{4+\frac{1}{2}}}+R_{10} \rho(t)^{5} \tag{184}
\end{equation*}
$$

Multiplying by the factor $(s+1)^{r}$, integrating in the time variable s from 0 to t, and choosing any $r>4$, we obtain the desired bound (177). Now, v obeys

$$
\begin{equation*}
\partial_{t} v-\Delta v=-u \cdot \nabla u-q R q-\nabla p \tag{185}
\end{equation*}
$$

Taking the L^{2} inner product of this latter equation with v and using the fact that v is divergencefree, we get the energy equation

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|v\|_{L^{2}}+\|\nabla v\|_{L^{2}}^{2}=\int_{\mathbb{R}^{2}}(u \cdot \nabla u) \cdot U d x-\int_{\mathbb{R}^{2}}(q R q) \cdot v d x . \tag{186}
\end{equation*}
$$

We estimate

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}(u \cdot \nabla u) \cdot U d x \leq\|u\|_{L^{2}}^{2}\|\nabla U\|_{L^{\infty}} \leq \frac{R_{11}}{(t+1)^{1+\frac{3}{2}}} \tag{187}
\end{equation*}
$$

in view of the bounds (8) and (138), and

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}(q R q) \cdot v d x \leq C\|q\|_{L^{4}}^{2}\|v\|_{L^{2}} \leq C\|q\|_{L^{2}}\|\nabla q\|_{L^{2}}\|v\|_{L^{2}} \leq \frac{R_{12}}{(t+1)^{1+\frac{3}{2}}} \tag{188}
\end{equation*}
$$

in view of the decaying estimate $(7),(76)$ and (130). This yields the energy inequality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|v\|_{L^{2}}^{2}+\rho(t)\|v\|_{L^{2}}^{2} \leq \frac{R_{13}}{(t+1)^{1+\frac{3}{2}}}+\rho(t) \int_{|\xi| \leq \sqrt{\rho(t)}}|\widehat{v}(\xi, t)|^{2} d \xi \tag{189}
\end{equation*}
$$

where $\rho(t)=r(t+1)^{-1}$. Using the pointwise bound for the Fourier transform of v given by (172), we have

$$
\begin{equation*}
\int_{|\xi| \leq \sqrt{\rho(t)}}|\widehat{v}(\xi, t)|^{2} d \xi \leq R_{14}\left[\ln ^{2}(t+1)+\ln ^{4}(t+1)\right] \rho(t)^{2} \leq R_{15} \sqrt{t+1} \rho(t)^{2} \tag{190}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|v\|_{L^{2}}^{2}+\rho(t)\|v\|_{L^{2}}^{2} \leq \frac{R_{13}}{(t+1)^{1+\frac{3}{2}}}+R_{15} \sqrt{t+1} \rho(t)^{3} . \tag{191}
\end{equation*}
$$

We multiply both sides by $(s+1)^{r}$, we integrate from 0 to t, we choose any $r>3 / 2$, and we obtain (178).

4. Appendix: Existence and Uniqueness of Solutions

In this appendix, we prove the existence of weak and strong solutions for the electroconvection model (1)-(5).

Definition 1. A solution (q, u) of (1)-(5) is said to be a weak solution on $[0, T]$ if it solves (1)-(5) in the sense of distributions, u is divergence-free in the sense of distributions,

$$
\begin{equation*}
u \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right) \tag{192}
\end{equation*}
$$

and

$$
\begin{equation*}
q \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1 / 2}\right) \tag{193}
\end{equation*}
$$

Theorem 5. Let $u_{0} \in L^{2}$ be divergence-free, let $q_{0} \in L^{2}$. Let $T>0$ be arbitrary. There exists a weak solution (q, u) of the system (1)-(5) on $[0, T]$.

Proof. We briefly sketch the main ideas of the proof. For $0<\epsilon \leq 1$, we consider a viscous approximation of (1)-(5) given by

$$
\left\{\begin{array}{l}
\partial_{t} q^{\epsilon}+J_{\epsilon}\left(u^{\epsilon} \cdot \nabla q^{\epsilon}\right)+\Lambda q^{\epsilon}-\epsilon \Delta q^{\epsilon}=0 \tag{194}\\
\partial_{t} u^{\epsilon}+J_{\epsilon}\left(u^{\epsilon} \cdot \nabla u^{\epsilon}\right)-\Delta u^{\epsilon}+\nabla p^{\epsilon}=-J_{\epsilon}\left(q^{\epsilon} R q^{\epsilon}\right) \\
\nabla \cdot u^{\epsilon}=0
\end{array}\right.
$$

with smoothed out initial data, where J_{ϵ} is a standard mollifier operator, $u^{\epsilon}=J_{\epsilon} u, q^{\epsilon}=J_{\epsilon} q$ and $p^{\epsilon}=J_{\epsilon} p$. For each $\epsilon>0$, we consider the map

$$
\begin{equation*}
(q(t), u(t)) \mapsto \Phi_{\epsilon}((q, u))(t)=\left(e^{\epsilon t \Delta} J_{\epsilon} q_{0}-\mathcal{A}_{t}^{\epsilon}\left(q^{\epsilon}, u^{\epsilon}\right), e^{t \Delta} J_{\epsilon} u_{0}-\mathcal{B}_{t}^{\epsilon}\left(q^{\epsilon}, u^{\epsilon}\right)\right) \tag{195}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{A}_{t}^{\epsilon}\left(q^{\epsilon}, u^{\epsilon}\right)=\int_{0}^{t} e^{\epsilon(t-s) \Delta} J_{\epsilon}\left(u^{\epsilon} \cdot \nabla q^{\epsilon}\right)(s) d s+\int_{0}^{t} e^{\epsilon(t-s) \Delta} \Lambda q^{\epsilon}(s) d s \tag{196}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{t}^{\epsilon}\left(q^{\epsilon}, u^{\epsilon}\right)=\int_{0}^{t} e^{(t-s) \Delta} J_{\epsilon} \mathbb{P}\left(u^{\epsilon} \cdot \nabla u^{\epsilon}\right)(s) d s+\int_{0}^{t} e^{(t-s) \Delta} J_{\epsilon} \mathbb{P}\left(q^{\epsilon} R q^{\epsilon}\right)(s) d s \tag{197}
\end{equation*}
$$

There exists a time $T_{\epsilon}=T_{\epsilon}\left(\epsilon,\left\|u_{0}\right\|_{L^{2}},\left\|q_{0}\right\|_{L^{2}}\right)>0$ such that the map Φ_{ϵ} is a contraction on the Banach space

$$
\begin{equation*}
X_{T}=L^{\infty}\left(0, T ; \bar{B}_{L^{2}}\left(2\left\|q_{0}\right\|_{L^{2}}\right) \oplus L^{\infty}\left(0, T ; \bar{B}_{L_{\sigma}^{2}}\left(2\left\|u_{0}\right\|_{L^{2}}\right)\right.\right. \tag{198}
\end{equation*}
$$

where $\bar{B}_{L^{2}}(r)$ is the closed ball in L^{2}, and $\bar{B}_{L_{\sigma}^{2}}$ is the closed ball in the space of L^{2} divergence-free vectors. Consequently, Φ_{ϵ} has a fixed point $\left(q^{\epsilon}, u^{\epsilon}\right) \in X_{T_{\epsilon}}$ solving (194). This solution extends to the time interval $[0, T]$, and this can be obtained by establishing uniform-in-time bounds for $\left(q^{\epsilon}, u^{\epsilon}\right)$ on $[0, T]$. Indeed, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\left\|\Lambda^{-\frac{1}{2}} q^{\epsilon}\right\|_{L^{2}}^{2}+\left\|u^{\epsilon}\right\|_{L^{2}}^{2}\right)+\left\|q^{\epsilon}\right\|_{L^{2}}^{2}+\left\|\nabla u^{\epsilon}\right\|_{L^{2}}^{2}+\epsilon\left\|\Lambda^{\frac{1}{2}} q^{\epsilon}\right\|_{L^{2}}^{2}=0 \tag{199}
\end{equation*}
$$

as shown in (11). Hence the family of mollified velocities $\left(u^{\epsilon}\right)_{\epsilon}$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}\right) \cap$ $L^{2}\left(0, T ; H^{1}\right)$. On the other hand, the L^{2} norm of q^{ϵ} evolves according to

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|q^{\epsilon}\right\|_{L^{2}}^{2}+\left\|\Lambda^{\frac{1}{2}} q^{\epsilon}\right\|_{L^{2}}^{2}+\epsilon\left\|\nabla q^{\epsilon}\right\|_{L^{2}}^{2}=0 \tag{200}
\end{equation*}
$$

and so the family of mollified charge densities $\left(q^{\epsilon}\right)_{\epsilon}$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}\right) \cap$ $L^{2}\left(0, T ; H^{\frac{1}{2}}\right)$. The q^{ϵ} and u^{ϵ} equations imply that the sequence of time derivatives $\left(\partial_{t} q^{\epsilon}\right)_{\epsilon}$ and $\left(\partial_{t} u^{\epsilon}\right)_{\epsilon}$ are uniformly bounded in $L^{2}\left(0, T ; H^{-\frac{3}{2}}\right)$ and $L^{2}\left(0, T ; H^{-1}\right)$ respectively. By the AubinLions lemma, the sequence $\left(\left(q^{\epsilon}, u^{\epsilon}\right)\right)_{\epsilon}$ has a subsequence that converges strongly in $L^{2}\left(0, T ; L^{2}\right)$ to a weak solution (q, u) of (1)-(5). We omit further details.

Definition 2. A weak solution (q, u) of (1)-(5) is said to be a strong solution on $[0, T]$ if

$$
\begin{equation*}
u \in L^{\infty}\left(0, T ; H^{1}\right) \cap L^{2}\left(0, T ; H^{2}\right) \tag{201}
\end{equation*}
$$

and

$$
\begin{equation*}
q \in L^{\infty}\left(0, T ; L^{4}\right) \cap L^{2}\left(0, T ; H^{1 / 2}\right) \tag{202}
\end{equation*}
$$

Theorem 6. Let $u_{0} \in H^{1}$ be divergence-free and $q_{0} \in L^{4}$. Let $T>0$ be arbitrary. There exists a unique strong solution (u, q) of the system (1)-(5) on $[0, T]$.

Proof. We take the L^{2} inner product of the equation satisfied by q^{ϵ} in (194) with $\left(q^{\epsilon}\right)^{3}$. In view of the divergence-free condition satisfied by u^{ϵ}, the nonlinear term vanishes, that is

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} u^{\epsilon} \cdot \nabla q^{\epsilon}\left(q^{\epsilon}\right)^{3} d x=0 \tag{203}
\end{equation*}
$$

By the Córdoba-Córdoba inequality ([6]), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left(q^{\epsilon}\right)^{3} \Lambda q^{\epsilon} d x \geq 0 \tag{204}
\end{equation*}
$$

and

$$
\begin{equation*}
-\int_{\mathbb{R}^{2}}\left(q^{\epsilon}\right)^{3} \Delta q^{\epsilon} d x \geq 0 \tag{205}
\end{equation*}
$$

Consequently, we obtain

$$
\begin{equation*}
\frac{1}{4} \frac{d}{d t}\left\|q^{\epsilon}\right\|_{L^{4}}^{4} \leq 0 \tag{206}
\end{equation*}
$$

which yields the boundedness of q in $L^{\infty}\left(0, T ; L^{4}\left(\mathbb{R}^{2}\right)\right)$ by the Banach Alaoglu theorem and the lower semi-continuity of the norm. The L^{2} norm of ∇u^{ϵ} obeys the energy inequality

$$
\begin{equation*}
\frac{d}{d t}\left\|\nabla u^{\epsilon}\right\|_{L^{2}}^{2}+\left\|\Delta u^{\epsilon}\right\|_{L^{2}}^{2} \leq C\left\|q^{\epsilon}\right\|_{L^{4}}^{4} \tag{207}
\end{equation*}
$$

as shown in (80), yielding the boundedness of u in $L^{\infty}\left(0, T ; H^{1}\right) \cap L^{2}\left(0, T ; H^{2}\right)$. Now we prove the uniqueness of strong solutions. Suppose $\left(q_{1}, u_{1}\right)$ and (q_{2}, u_{2}) are strong solutions of (1)-(5) with same initial data. Let $q=q_{1}-q_{2}, u=u_{1}-u_{2}$ and $p=p_{1}-p_{2}$. Then q satisfies

$$
\begin{equation*}
\partial_{t} q+\Lambda q=-u_{1} \cdot \nabla q-u \cdot \nabla q_{2} \tag{208}
\end{equation*}
$$

and u satisfies

$$
\begin{equation*}
\partial_{t} u-\Delta u+\nabla p=-q R q_{1}-q_{2} R q-u_{1} \cdot \nabla u-u \cdot \nabla u_{2} . \tag{209}
\end{equation*}
$$

We take the L^{2} inner product of (208) with $\Lambda^{-1} q$ and the L^{2} inner product of (209) with u. We add the resulting energy equalities. We have a cancellation

$$
\begin{equation*}
-\int_{\mathbb{R}^{2}}\left(u \cdot \nabla q_{2}\right) \Lambda^{-1} q d x-\int_{\mathbb{R}^{2}}\left(q_{2} R q\right) \cdot u d x=0 \tag{210}
\end{equation*}
$$

obtained from integration by parts. In view of the Ladyzhenskaya's interpolation inequality, we estimate

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}}\left(q R q_{1}\right) \cdot u d x\right| \leq C\|q\|_{L^{2}}\left\|q_{1}\right\|_{L^{4}}\|u\|_{L^{2}}^{\frac{1}{2}}\|\nabla u\|_{L^{2}}^{\frac{1}{2}} \leq \frac{1}{4}\|\nabla u\|_{L^{2}}^{2}+\frac{1}{4}\|q\|_{L^{2}}^{2}+C\left\|q_{1}\right\|_{L^{4}}^{4}\|u\|_{L^{2}}^{2} \tag{211}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}}\left(u \cdot \nabla u_{2}\right) \cdot u d x\right| \leq\|u\|_{L^{4}}^{2}\left\|\nabla u_{2}\right\|_{L^{2}} \leq \frac{1}{4}\|\nabla u\|_{L^{2}}^{2}+C\left\|\nabla u_{2}\right\|_{L^{2}}^{2}\|u\|_{L^{2}}^{2} . \tag{212}
\end{equation*}
$$

Now we write

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left(u_{1} \cdot \nabla q\right) \Lambda^{-1} q d x=\int_{\mathbb{R}^{2}}\left(\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)-u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right) \Lambda^{-\frac{1}{2}} q d x \tag{213}
\end{equation*}
$$

via integration by parts, and we show below that

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}}\left(\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)-u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right) \Lambda^{-\frac{1}{2}} q d x\right| \leq C\left\|u_{1}\right\|_{H^{2}}\|q\|_{L^{2}}\left\|\Lambda^{-\frac{1}{2}} q\right\|_{L^{2}} . \tag{214}
\end{equation*}
$$

Putting (210)-(214) together, we obtain the energy inequality

$$
\begin{equation*}
\frac{d}{d t}\left[\left\|\Lambda^{-\frac{1}{2}} q\right\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}\right] \leq C\left[\left\|u_{1}\right\|_{H^{2}}^{2}+\left\|\nabla u_{2}\right\|_{L^{2}}^{2}+\left\|q_{1}\right\|_{L^{4}}^{4}\right]\left[\left\|\Lambda^{-\frac{1}{2}} q\right\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}\right] \tag{215}
\end{equation*}
$$

from which we obtain uniqueness. Finally, we show that the estimate (214) holds by establishing the commutator estimate

$$
\begin{equation*}
\left\|\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)-u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right\|_{L^{2}} \leq C\left\|u_{1}\right\|_{H^{2}}\|q\|_{L^{2}} \tag{216}
\end{equation*}
$$

Indeed, let $w \in L^{2}\left(\mathbb{R}^{2}\right)$. By Parseval's identity, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left(\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)-u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right)(x) w(x) d x=\int_{\mathbb{R}^{2}} \mathcal{F}\left(\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)-u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right)(\xi) \mathcal{F} w(\xi) d \xi \tag{217}
\end{equation*}
$$

But

$$
\begin{equation*}
\mathcal{F}\left(\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)\right)(\xi)=\int_{\mathbb{R}^{2}}|\xi|^{-\frac{1}{2}}\left(\xi \cdot \mathcal{F} u_{1}(\xi-y)\right) \mathcal{F} q(y) d y \tag{218}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}\left(u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right)(\xi)=\int_{\mathbb{R}^{2}}|y|^{-\frac{1}{2}}\left(\xi \cdot \mathcal{F} u_{1}(\xi-y)\right) \mathcal{F} q(y) d y \tag{219}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{2}}\left(\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)-u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right)(x) w(x) d x\right| \\
& \left.\leq\left.\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \min \{|\xi|,|y|\}| | \xi\right|^{-\frac{1}{2}}-|y|^{-\frac{1}{2}}| | \mathcal{F} u_{1}(\xi-y)| | \mathcal{F} q(y) \| \mathcal{F} w(\xi) \right\rvert\, d y d \xi \tag{220}
\end{align*}
$$

where we used

$$
\begin{equation*}
\left|\xi \cdot \mathcal{F} u_{1}(\xi-y)\right| \leq \min \{|\xi|,|y|\}\left|\mathcal{F} u_{1}(\xi-y)\right| \tag{221}
\end{equation*}
$$

which holds due to the fact that the velocity is divergence-free. We note that

$$
\begin{equation*}
\min \{|\xi|,|y|\}\left||\xi|^{-\frac{1}{2}}-|y|^{-\frac{1}{2}}\right| \leq \frac{\min \{|\xi|,|y|\}}{|\xi|^{\frac{1}{2}}|y|^{\frac{1}{2}}}|\xi-y|^{\frac{1}{2}} \leq|\xi-y|^{\frac{1}{2}} \tag{222}
\end{equation*}
$$

for all $\xi, y \in \mathbb{R}^{2}$. Therefore,

$$
\begin{align*}
\left|\int_{\mathbb{R}^{2}}\left(\Lambda^{-\frac{1}{2}}\left(u_{1} \cdot \nabla q\right)-u_{1} \cdot \nabla \Lambda^{-\frac{1}{2}} q\right)(x) w(x) d x\right| & \leq\left\||\cdot| \frac{1}{2} \mathcal{F} u_{1}(.)\right\|_{L^{1}}\|q\|_{L^{2}}\|w\|_{L^{2}} \\
& \leq C\left\|u_{1}\right\|_{H^{2}}\|q\|_{L^{2}}\|w\|_{L^{2}} \tag{223}
\end{align*}
$$

by Hölder's inequality and Young's convolution inequality. This gives (216) completing the proof of Theorem 6

References

[1] E. Abdo, M. Ignatova, Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374, 58495875 (2021).
[2] C. Amrouche, V. Girault, M.E. Schonbek, T.P. Schonbek, Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations, SIAM J. Math. Anal. 31, 740-753 (2000).
[3] C. Bjorland, C.J. Niche, On the decay of infinite energy solutions to the Navier-Stokes equations in the plane, Physica D: Nonlinear Phenomena 240 (7), 670-674 (2011).
[4] C. Bjorland, M.E. Schonbek, On questions of decay and existence for the viscous camassa-holm equations, Ann. I. H. Poincaré-NA 25, 907-936 (2008).
[5] A.P. Calderón, Singular Integrals, Bull. Amer. Math. Soc. 72, 427-465 (1966).
[6] A. Córdoba, D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249, 511-528 (2004).
[7] P. Constantin, T. Elgindi, M. Ignatova, V. Vicol, On some electroconvection models, Journal of Nonlinear Science 27, 197-211 (2017).
[8] P. Constantin, J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30, 937-948 (1999).
[9] Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, J.R. de Bruyn, Annular electroconvection with shear, Phys. Rev. Lett. 80, 964-967 (1998).
[10] B. Dong, Y. Li, Large time behavior to the system of incompressible non-newtonian fluds in \mathbb{R}^{2}, J. Math. Anal. Appl. 298,667-676 (2004).
[11] R. Kajikiya, T. Miyakawa, On L^{2} decay of weak solutions of the Navier-Stokes equations in \mathbb{R}^{n}, Math. Z. 192, 135-148 (1986).
[12] I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Analysis: Theory, Methods and Applications 70 (6), 2466-2470 (2009).
[13] I. Kukavica, Space-time decay for Solutions of the Navier-Stokes equations, Indiana Univ. Math. J. 50, 205222(2001).
[14] J. Leray, Sur le mouvement d'un liquide visquex emplissant l'espace, Acta Math. 63, 193-248(1934).
[15] C.J. Niche, M.E. Schonbek, Decay of weak solutions to the $2 d$ dissipative quasi-geostrophic equation, Comm. Math. Phys. 276, 93-115 (2007).
[16] M. Oliver, E.S. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in \mathbb{R}^{n}, J. Funct. Anal. 172, 1-18 (2000).
[17] M.E. Schonbek, L^{2} decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88, 209-222 (1985).
[18] M.E. Schonbek, Uniform decay rated for parabolic conservations laws, Nonlinear Analysis: Theory, Methods and Applications 10, 943-956 (1986).
[19] M.E. Schonbek, M. Wiegner, On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126, 677-685 (1996).
[20] S. Takahashi, A weigthed equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal. 37, 751-789 (1999).
[21] P. Tsai, Z. Daya, S. Morris, Charge transport scaling in turbulent electroconvection, Phys. Rev E 72, 046311-112 (2005).
[22] P. Tsai, Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, Direct numerical simulation of supercritical annular electroconvection, Phys. Rev E 76, 1-11 (2007).
[23] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on \mathbb{R}^{n}, J. London Math. Soc. 35, 303-313 (1987).
[24] X. Zhao, Asymptotic behavior of solutions to a new hall-MHD system, Acta Applicandae Mathematicae 157, 205-216 (2018).
[25] C. Zhao, B. Li, Time decay rate of weak solutions to the generalized MHD equations in \mathbb{R}^{2}, Appl. Math. Comput. 292, 1-8 (2017).

Department of Mathematics, Temple University, Philadelphia, PA 19122
E-mail address: abdo@temple.edu
Department of Mathematics, Temple University, Philadelphia, PA 19122
E-mail address: ignatova@temple.edu

[^0]: Date: today.

