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ABSTRACT. We consider the Nernst-Planck equations describing the nonlinear time evolution of multiple ionic
concentrations in a two-dimensional incompressible fluid. The velocity of the fluid evolves according to either
the Euler or Darcy’s equations, both forced nonlinearly by the electric forces generated by the presence of
charged ions. We address the global well-posedness and Gevrey regularity of the resulting electrodiffusion
models in the periodic setting.
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1. INTRODUCTION

Electrodiffusion of ions in a fluid is governed by three main mechanisms: diffusion driven by the gradient
of the ionic concentrations, transport driven by the gradient of the electrical potential due to the presence
of ions, and transport due to the fluid. Mathematically, electrodiffusion is modeled by the Nernst-Planck
equations, which are mass-balance equations describing the time evolution of local ionic concentrations.
The equations relate the ionic fluxes to diffusion and transport by the electrical field and the fluid velocity.
In turn, the electrical field is determined nonlocally via a Poisson equation from the ionic concenrations.
Real world applications motivate studies of electrodiffusion phenomena. One such model is addressed in
[21] in the context of improving the performance and lifetime of batteries, which has direct applications to
the development of electric vehicles, portable electronics, etc. Other applications of electrodiffusion systems
arise in semiconductors [11, 20] and ion selective membranes [9].

The Nernst-Planck equations are given by

∂tci + u ⋅ ∇ci −Di∆ci =Dizi∇ ⋅ (ci∇Φ), i = 1, ..., n (1)

describing the time evolution of the ionic concentrations ci of n ionic species, with valences zi ∈ R and dif-
fusivities Di > 0 in a two-dimensional incompressible fluid. Above, the electrical potential Φ is determined
by the Poisson equation

−∆Φ = ρ =
n

∑
i=1

zici. (2)
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In this paper, we consider two electrodiffusion models distinguished by the choice of model used to
describe the fluid velocity: the velocity u and pressure p of the fluid obey either the Euler equations

∂tu + u ⋅ ∇u +∇p = −ρ∇Φ, ∇ ⋅ u = 0 (3)

or Darcy’s law
u +∇p = −ρ∇Φ, ∇ ⋅ u = 0. (4)

The model described by (1), (2) and (3) is called the Nernst-Plank-Euler system and will be referred to as
NPE, whereas the model described by (1), (2) and (4) is called the Nernst-Planck-Darcy system and will be
referred to as NPD. Physically, considering Euler equations amounts to considering a region of low viscosity
fluid far from any solid boundaries. On the other hand, Darcy’s law corresponds to creeping flow in a porous
medium, which is of physical interest, for example, when considering electrodiffusion in porous electrodes.
In this paper, we study the global well-posedness and Gevrey regularity of the NPE and NPD systems in the
periodic setting on the two-dimensional torus T2 = [0,2π]2.

The global well-posedness of the periodic NPE and NPD systems were addressed respectively in [13]
and [14] for two ionic species having valences 1 and -1 and equal diffusivities. The special structure of the
two-species NPE and NPD models yields energy estimates that facilitate the analysis. These same bounds
also yield precise information on the long time behavior of solutions. In fact, it is shown in [14] and [13]
that the the two ionic concentrations converge in L2 towards constant distributions (corresponding to their
initial spatial averages) exponentially quickly in time. In this paper, we are interested in the more general
models that model the time evolution of n ionic species with different valences and diffusivities. At this
level of generality, the ideas of [14] and [13] no longer apply. Instead, in this paper we adapt ideas from
[2] and [4] to obtain time dependent L2 bounds for the velocity and ionic concentrations, and we use them
to bootstrap to obtain higher regularity bounds, assuming sufficiently regular initial data. We thus establish
global well-posedness of solutions of NPE and NPD in all sufficiently regular Sobolev spaces.

We also consider the analyticity of solutions to the NPE and NPD models. Gevrey regularity techniques
were initiated by Foias and Temam in [10] to study the analyticity of solutions of the Navier-Stokes equa-
tions. Their idea uses Fourier series expansions, is restricted to Hilbert spaces, and requires Sobolev regular
initial regularity. In [12], Grujic and Kukavica introduced a simpler method to obtain the analyticity of the
Navier-Stokes system for Lp initial data based on a mild formulation of the complexified problem. Bardos
and Benachour proved in [3] the persistence of analyticity for the Euler equations on three-dimensional
bounded domains and obtained decaying rates for the radius of analyticity. Using the method of Gevrey
regularity, Levermore and Oliver obtained the same rates in [18] for the three-dimensional periodic Euler
equations. In [17], Kukavica and Vicol improved the aforementioned results and derived lower bounds for
the radius of analyticity for solutions of the three-dimensional Euler system that depend algebraically on
exp ∫

t
0 ∥∇u(s)∥L∞ ds.

The NPE and NPD models are closely related to the Nernst-Planck-Navier-Stokes (NPNS) system, where
the velocity of the fluid evolves according to Navier-Stokes equations forced nonlinearly by the electrical
force −ρ∇Φ. The NPNS system was investigated on bounded domains in [4], [7], [5], [6], [8], and on the
2D periodic torus in [1]. In [2], the authors adapted the technique of [12] to study the analyticity of the
periodic NPNS system, forced by body forces in the fluid and additional charge densities, for Lp initial data.
However, the idea of the proof applies to semi-linear parabolic equations and breaks down in the absence of
the fluid dissipation. In this paper, we use the ideas from [10] and [17] and provide quantitative estimates for
the growth in time of the Gevrey norms of the solution to both the NPE and NPD systems. These estimates
remain finite on all finite intervals, and thus our results imply global in time spatial analyticity of solutions.

The Nernst-Planck equations have a dissipative structure, which is taken advantage of to estimate the non-
linearities involving ionic concentration terms. The Euler equations, on the other hand, are inviscid and thus
nondissipative. Despite the inviscidity of the Euler system and the nonlinearties driving the time evolution
of the concentrations and velocity, we successfully adapt the ideas of [17] and establish the analyticity of
solutions of NPE via use of Fourier series techniques. The challenges arising from the analysis of the NPD
system are different though. NPD is effectively a system of n dissipative partial differential equations with
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n unknowns, namely the ionic concentrations c1, ..., cn, and the fluid velocity is computed from the charge
density ρ via the nonlocal and nonlinear relation

u = −P(ρ∇Φ) (5)

where P is the Leray-Hodge projector onto the space of divergence-free vector fields. Hence, the transport
terms u ⋅ ∇ci are effectively cubic, doubly nonlinear and doubly nonlocal in ci, giving rise to technical
difficulties especially at the level of the Gevrey regularity. We overcome the nonlocal challenges by making
use of the Poisson equation (2) obeyed by the potential Φ and the Fourier series expansions of the nonlocal
Leray projector and Riesz transform operators. In contrast, we prove a generalized Hölder-Young inequality
(cf Proposition 1) and use it to control the double nonlinearity. This gives bounds with cubic dependence on
the desired Gevrey norm, yielding local analytic solutions, which we then extend globally by establishing
uniform control of high regularity Sobolev norms of the solution.

This paper is organized as follows. In Section 2, we introduce the functional setting and notation con-
ventions that will be frequently used throughout the paper. In Section 3, we study the global well-posedness
of the NPE system on T2 × [0, T ]. Indeed, we first prove the existence of a unique local regular solution
provided that the initial velocity and ionic concentrations are at least Sobolev H3 regular, and then we show
that this local solution extends to a global regular solution on the time interval [0, T ]. In Section 4, we
show that the solution to the NPE system is Gevrey regular with a radius of analyticity that depends on the
Sobolev regularity of the solution on the whole time interval [0, T ] under the assumption that the initial data
is real analytic. In Section 5, we show the global well-posedness of the NPD system on T2 × [0, T ] and we
prove the existence of a global unique regular solution for at least SobolevH

3
2 regular initial concentrations.

Finally, we show in Section 6 that the solution to the NPD system is space analytic, for any initial data that
is more regular that Sobolev H2, with a radius of analyticity depending only on the initial regularity of the
velocity and concentrations.

2. FUNCTIONAL SETTINGS AND NOTATIONS

For 1 ≤ p ≤ ∞, we denote by Lp(T2) the Lebesgue spaces of measurable periodic functions f from T2

to R (or R2) such that

∥f∥Lp = (∫
T2

∥f∥pdx)
1/p

<∞ (6)

if p ∈ [1,∞) and
∥f∥L∞ = esssupT2 ∣f ∣ <∞ (7)

if p =∞. The L2(T2) inner product is denoted by (⋅, ⋅)L2 .
For s ∈ R, the fractional Laplacian Λs applied to a mean zero function f is defined as a Fourier multiplier

with symbol ∣k∣s, that is, for f given by

f = ∑
k∈Z2∖{0}

fke
ik⋅x, (8)

and obeying

∑
k∈Z2∖{0}

∣k∣2s∣fk∣2 <∞, (9)

we define
Λsf = ∑

k∈Z2∖{0}

∣k∣sfkeik⋅x. (10)

For τ > 0, s > 0, and functions f obeying

∑
k∈Z2∖{0}

e2τ ∣k∣s ∣fk∣2 <∞, (11)
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we define
eτΛs

f = ∑
k∈Z2∖{0}

eτ ∣k∣
s

fke
ik⋅x. (12)

We denote by P the Leray-Hodge projection onto the space divergence free vector fields. For a mean-free
periodic vector field v = (v1, v2) with Fourier series

v = ∑
j∈Z2∖{0}

vje
ij⋅x, (13)

Pv has the following Fourier representation

Pv = ∑
j∈Z2∖{0}

[vj − (vj ⋅ j)
j

∣j∣2
] eij⋅x. (14)

The operator P is bounded on Lp spaces for any p ∈ (1,∞).
For s > 0, we denote by Hs(T2) the Sobolev spaces of measurable periodic functions f from T2 to R (or

R2) obeying
∥f∥2

Hs = ∑
k∈Z2

(1 + ∣k∣s)2∣fk∣2 <∞. (15)

For a Banach space (X, ∥ ⋅∥X) and p ∈ [1,∞], we consider the Lebesgue spaces Lp(0, T ;X) of functions
f from X to R (or R2) satisfying

∫
T

0
∥f∥pXdt <∞ (16)

with the usual convention when p =∞.
Throughout the paper, C denotes a positive constant depending only on the parameters of the problem

(namely the diffusivities and valences of the ionic concentrations) and some universal constants, and it
changes from line to line along the proofs. The dependency on any other variable will be stated explicitly.
We also use the notation convention A ≲ B when A ≤ CB. Finally, we adopt the notation [Λm, v ⋅ ∇]w to
denote the commutator Λm(v ⋅ ∇w) − v ⋅ ∇Λmw.

3. GLOBAL WELL-POSEDNESS OF THE NERNST-PLANCK-EULER SYSTEM

In this section, we address the global existence and uniqueness of solutions to the NPE system:

Theorem 1. (Global well-posedness and regularity of NPE) Let T > 0 be arbitrary and m ≥ 3. Assume that
the initial ionic concentrations ci(0) ∈ Hm are nonnegative, and the initial velocity u0 ∈ Hm is mean-zero
and divergence-free. Then the NPE system described by (1), (2) and (3) has a unique solution (u, c1, ..., cn)
on the time interval [0, T ] with the property that

(u, c1, ..., cn) ∈ (L∞(0, T ;Hm))n+1. (17)

The proof of Theorem 1 will be presented in this section. First, we note that the spatial averages of the
ionic concentrations are constant in time, that is

∫ ci(t)dx = ∫ ci(0)dx (18)

for all t ≥ 0 and all i ∈ {1, ..., n}. Moreover, the spatial average of the velocity vanishes at any positive time
t, a fact that follows from integrating the forced Euler equation (3) obeyed by u and noting that

∫ ρ∇Φdx = ∫ ρ∇Λ−2ρdx = ∫ Λ−2ρ∇ρdx = −∫ (∇Λ−2ρ)ρdx = −∫ ρ∇Φdx (19)

from which we conclude that the spatial integral of ρ∇Φ vanishes at any time t ≥ 0.
Now we proceed to prove Theorem 1. The proof is divided into several steps.
Step 1. Local well-posedness for Hm initial datum. We sketch a proof of local existence, with a focus

on obtaining a priori estimates. Rigorously, we may do the following computations for a mollified version
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of the NPE system [19]. We fix m > 2, and consider initial conditions in Hm. Then, we apply Λm to (1),
multiply the resulting equation by Λmci, and integrate by parts:

1

2

d

dt
∥Λmci∥2

L2 +Di∥Λm∇ci∥2
L2 = − (Λm(u ⋅ ∇ci),Λmci)L2 +Dizi (Λm∇ ⋅ (ci∇Φ),Λmci)L2 . (20)

Due to the fact that ∇ ⋅ u = 0, we have that (Λm(u ⋅ ∇ci),Λmci)L2 = ([Λm, u ⋅ ∇]ci,Λmci)L2 . So it follows
from commutator estimates [16] that

∣([Λm, u ⋅ ∇]ci,Λmci)L2 ∣ ≲(∥Λmu∥L2∥∇ci∥L∞ + ∥∇u∥L∞∥Λmci∥L2)∥Λmci∥L2

≲∥Λmu∥L2∥Λmci∥2
L2

≲1 + ∥Λmu∥4
L2 + ∥Λmci∥4

L2 ,

(21)

where the second line follows from the embedding Hm ↪ W 1,∞ which holds for m > 2. We estimate the
second term on the right hand side of (20) as follows

∣(Λm∇ ⋅ (ci∇Φ),Λmci)L2 ∣ = ∣(Λm(ci∇Φ),Λm∇ci)L2 ∣
≤ ∣(Λm((ci − c̄i)∇Φ),Λm∇ci)L2 ∣ + ∣(c̄iΛm∇Φ,Λm∇ci)L2 ∣
≲ (∥Λmci∥L2 + ∣c̄i∣) ∥Λm∇Φ∥L2∥Λm∇ci∥L2

≤ Di

2
∥Λm∇ci∥2

L2 +C
n

∑
j=1

∥Λmcj∥4
L2 +Cc̄4

i ,

(22)

where c̄i denotes the spatial average of the ionic concentration ci over T2. Above, we used the fact that
for m > 1, Hm is a Banach algebra so that ∥Λm((ci − c̄i)∇Φ)∥L2 ≲ ∥Λm(ci − c̄i)∥L2∥Λm∇Φ∥L2 . Putting
together (20)-(22), and summing in i, we have thus far

d

dt

n

∑
i=1

∥Λmci∥2
L2 +

n

∑
i=1

Di∥Λm∇ci∥2
L2 ≲ 1 + c̄4

i + ∥Λmu∥4
L2 +

n

∑
i=1

∥Λmci∥4
L2 . (23)

Next, we apply Λm to (3), multiply by Λmu, and integrate by parts to obtain

1

2

d

dt
∥Λmu∥2

L2 = − (Λm(u ⋅ ∇u),Λmu)L2 − (Λm(ρ∇Φ),Λmu)L2 . (24)

We estimate the terms on the right hand side of (24)

∣(Λm(u ⋅ ∇u),Λmu)L2 ∣ = ∣([Λm, u ⋅ ∇]u,Λmu)L2 ∣
≲ (∥Λmu∥L2∥∇u∥L∞ + ∥∇u∥L∞∥Λmu∥L2) ∥Λmu∥L2

≲1 + ∥Λmu∥4
L2

(25)

and
∣(Λm(ρ∇Φ),Λmu)L2 ∣ ≲∥Λmρ∥L2∥Λm∇Φ∥L2∥Λmu∥L2

≲1 + ∥Λmu∥4
L2 +

n

∑
i=1

∥Λmci∥4
L2 .

(26)

Again, in obtaining (25), we used the embedding Hm ↪ W 1,∞ for m > 2. Putting together (24)-(26) with
(23), we finally have that

d

dt
(
n

∑
i=1

∥Λmci∥2
L2 + ∥Λmu∥2

L2) ≲ 1 + c̄4
i + (

n

∑
i=1

∥Λmci∥2
L2 + ∥Λmu∥2

L2)
2

. (27)

Then from a Gronwall inequality, this last inequality gives us a time T ∗, depending on the Hm norms of the
initial data, and a local solution of NPE on [0, T ∗) such that

sup
t∈[0,T ∗)

(
n

∑
i=1

∥Λmci(t)∥2
L2 + ∥Λmu(t)∥2

L2) ≤ 2(
n

∑
i=1

∥Λmci(0)∥2
L2 + ∥Λmu(0)∥2

L2) . (28)



6 ELIE ABDO, FIZAY-NOAH LEE, AND WEINAN WANG

Uniqueness follows from similar energy estimates. Suppose (u, c1, ..., cn) and (ū, c̄1, ..., c̄n) are two local
Hm solutions to NPE on some common interval [0, T ∗). Without loss of generality, we assume that T ∗ is
taken small enough so that both solutions satisfy the local doubling inequality (28). Then, the differences
c̃i = ci − c̄i, Φ̃ = Φ − Φ̄, ũ = u − ū satisfy

∂tc̃i + u ⋅ ∇c̃i −Di∆c̃i =Dizi∇ ⋅ (ci∇Φ̃ + c̃i∇Φ̄) − ũ ⋅ ∇c̄i (29)

∂tũ + u ⋅ ∇ũ −∇p̃ = − ρ∇Φ̃ − ρ̃∇Φ̄ − ũ ⋅ ∇ū. (30)

We multiply the above equations by c̃i and ũ respectively, and integrate by parts to obtain

1

2

d

dt
∥c̃i∥2

L2 +Di∥∇c̃i∥2
L2 ≲(∥ci∥L∞∥∇Φ̃∥L2 + ∥c̃i∥L2∥∇Φ̄∥L∞ + ∥ũ∥L2∥c̄i∥L∞)∥∇c̃i∥L2

≤Di

2
∥∇c̃i∥2

L2 +G1(t)
⎛
⎝

n

∑
j=1

∥c̃j∥2
L2 + ∥ũ∥2

L2

⎞
⎠

(31)

and
1

2

d

dt
∥ũ∥2

L2 ≲(∥ρ∥L∞∥∇Φ̃∥L2 + ∥ρ̃∥L2∥∇Φ̄∥L∞ + ∥ũ∥L2∥∇ū∥L∞)∥ũ∥L2

≲G2(t)
⎛
⎝

n

∑
j=1

∥c̃j∥2
L2 + ∥ũ∥2

L2

⎞
⎠

(32)

where

G1(t) =C
⎛
⎝

n

∑
j=1

(∥cj∥2
L∞ + ∥c̄j∥2

L∞) + ∥∇Φ̄∥2
L∞

⎞
⎠

(33)

G2(t) =∥ρ∥L∞ + ∥∇Φ̄∥L∞ + ∥∇ū∥L∞ . (34)

Both G1(t) and G2(t) are controlled by the Hm norms of ci, c̄i, u, ū and thus integrable on [0, T ∗) due to
(28). Thus, adding (31) to (32) and integrating, we find

sup
t∈[0,T ∗)

(
n

∑
i=1

∥c̃i(t)∥2
L2 + ∥ũ(t)∥2

L2) ≲ (
n

∑
i=1

∥c̃i(0)∥2
L2 + ∥ũ(0)∥2

L2) eC ∫
T∗

0 G1(s)+G2(s)ds. (35)

The latter inequality proves uniqueness and continuous (in L2) dependence on initial conditions.
Step 2. Positivity of the ionic concentrations. Suppose (u, c1, ..., cn) is a solution of the NPE problem

with the property that each ionic concentration ci belongs to the Lebesgue space L2(0, T ;H2). Then the
positivity of ci(0) for i ∈ {1, ..., n} is preserved for all positive times, that is ci(x, t) ≥ 0 for all i ∈ {1, ..., n},
for a.e. x ∈ T2, and for all t ∈ [0, T ]. The proof can be found in [4].

Step 3. A priori L2 uniform-in-time bounds. Suppose (u, c1, ..., cn) is a solution of the NPE problem
on the time interval [0, T ] such that ci(x, t) ≥ 0 for all i ∈ {1, ..., n}, for a.e. x ∈ T2, and for all t ∈ [0, T ].
Then there is a positive constant Γ depending on the initial data, the time T , the parameters of the problem,
and some universal constants, such that the following bound

sup
0≤t≤T

(∥u(t)∥L2 +
n

∑
i=1

∥ci(t)∥L2) + ∫
T

0

n

∑
i=1

Di∥∇ci(t)∥2
L2dt ≤ Γ (36)

holds. This a priori bound is proved in Proposition 2 of [2]. We omit the details here.
Step 4. A prioriH1 uniform-in-time bounds for the velocity u. The evolution of the vorticity ω = ∇⊥ ⋅u

is described by the equation
∂tω + u ⋅ ∇ω = −∇⊥ρ ⋅ ∇Φ. (37)

We take the L2 inner product of (37) with ω and we estimate. The nonlinear term in ω vanishes due to the
divergence-free condition obeyed by u. Elliptic estimates applied to the mean-free function ρ yield

∥∇Φ∥L∞ ≲ ∥ρ∥L4 ≲ ∥∇ρ∥L2 . (38)
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This gives the differential inequality

1

2

d

dt
∥ω∥2

L2 = −∫ ∇⊥ρ ⋅ ∇Φω dx ≤ ∥∇ρ∥L2∥∇Φ∥L∞∥ω∥L2 ≲ ∥∇ρ∥2
L2∥ω∥L2 , (39)

from which we conclude that
d

dt
∥ω∥L2 ≲ ∥∇ρ∥2

L2 (40)

so that

∥ω(t)∥L2 ≤ ∥ω0∥L2 +C ∫
t

0
∥∇ρ(τ)∥2

L2 dτ. (41)

In view of the boundedness of ρ in L2(0, T ;H1) obtained in Step 3, we conclude that ω belongs to
L∞(0, T ;L2). Since ∥∇u∣∣L2 ≲ ∥ω∥L2 , Step 4 is complete.

Step 5. A priori H2 uniform-in-time bounds for the ionic concentrations. Applying ∆ to (1), multi-
plying by ∆ci and integrating by parts, we find that the L2 norm of ∆ci evolves according to

1

2

d

dt
∥∆ci∥2

L2 +Di∥∇∆ci∥2
L2 = −∫ ∆(u ⋅ ∇ci)∆ci dx −Dizi∫ ∆∇ ⋅ (ci∇Φ)∆ci dx. (42)

For the nonlinear term in u, we integrate by parts and estimate using Sobolev and interpolation estimates.
We obtain

∣∫ ∆(u ⋅ ∇ci)∆ci dx∣ = ∣∫ ∇(u ⋅ ∇ci) ⋅ ∇∆ci dx∣

≤ (∥∇u∥L2∥∇ci∥L∞ + ∥u∥L4∥∇∇ci∥L4)∥∇∆ci∥L2

≲ ∥ω∥L2(∥∆ci∥L4 + ∥∆ci∥1/2

L2 ∥∇∆ci∥1/2

L2 )∥∇∆ci∥L2

≲ ∥ω∥L2∥∆ci∥
1
2

L2∥∇∆ci∥
3
2

L2

≤ Di

8
∥∇∆ci∥2

L2 +C∥ω∥4
L2∥∆ci∥2

L2 .

(43)

As for the second nonlinear term, we bound

∣−Dizi∫ ∆∇ ⋅ (ci∇Φ)∆ci dx∣ = ∣Dizi∫ ∆(ci∇Φ) ⋅ ∇∆ci dx∣

≲ ∥∇∆ci∥L2 [∥∆ci∥L2∥∇Φ∥L∞ + ∥ci∥L4∥∇ρ∥L4]

≤ Di

8
∥∇∆ci∥2

L2 +C∥∇ρ∥2
L2∥∆ci∥2

L2 +C∥ci∥2
L4∥∆ρ∥2

L2

(44)

using fractional product estimates [15]. Putting (42)–(44) together, we obtain the differential inequality

d

dt
∥∆ci∥2

L2 +Di∥∇∆ci∥2
L2 ≲ [∥ω∥4

L2 + ∥∇ρ∥2
L2] ∥∆ci∥2

L2 + ∥ci∥2
L4∥∆ρ∥2

L2 . (45)

Using the triangle inequality, we bound

∥∆ρ∥2
L2 ≲

n

∑
j=1

∥∆cj∥2
L2 . (46)

We sum over all indices i ∈ {1, ..., n}, and we obtain

d

dt
[
n

∑
i=1

∥∆ci∥2
L2] +

n

∑
i=1

Di∥∇∆ci∥2
L2

≲ [∥ω∥4
L2 + ∥∇ρ∥2

L2] [
n

∑
i=1

∥∆ci∥2
L2] + [

n

∑
i=1

∥ci∥2
L4] [

n

∑
i=1

∥∆ci∥2
L2] ,

(47)
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and from Gronwall’s inequality, we obtain
n

∑
i=1

∥∆ci(t)∥2
L2 +

n

∑
i=1
∫

t

0
Di∥∇∆ci(τ)∥2

L2 dτ

≤
n

∑
i=1

∥∆ci(0)∥2
L2 exp(C ∫

T

0
∥ω(τ)∥4

L2 + ∥∇ρ(τ)∥2
L2 +

n

∑
i=1

∥ci(τ)∥2
L4 dτ) .

(48)

From the above bounds, (36) and (41), we conclude that

ci ∈ L∞(0, T ;H2) ∩L2(0, T ;H3) (49)

for all i ∈ {1, ..., n} .
Step 6. A priori L∞ uniform-in-time bounds for the vorticity ω. We multiply the vorticity equation

(37) by ω∣ω∣p−2, integrate in the space variable over T2, and estimate the forcing term in the resulting
equation. We obtain

1

p

d

dt
∥ω∥pLp ≤ ∣∫ (∇⊥ρ ⋅ ∇Φ)ω∣ω∣p−2 dx∣ ≤ ∥ω∥p−1

Lp ∥∇ρ∥Lp∥∇Φ∥L∞ (50)

by Hölder’s inequality. In view of Morrey’s inequality

∥∇ρ∥Lp ≤ (4π2)
1
p ∥∇ρ∥L∞ ≤ C0(4π2)

1
p ∥∆ρ∥L4 ≤ C0(4π2)

1
p ∥∇∆ρ∥L2 (51)

where C0 is a constant independent of p. Therefore, we have

d

dt
∥ω∥Lp ≤ C0(4π2)

1
p ∥∇Φ∥L∞∥∇∆ρ∥L2 . (52)

We integrate in time from 0 to t and let p→∞. We obtain

∥ω(t)∥L∞ ≤ ∥ω0∥L∞ +C0∫
t

0
∥∇Φ(s)∥L∞∥∇∆ρ(s)∥L2ds (53)

for all t ≥ 0. In view of (48), we conclude that ω ∈ L∞(0, T ;L∞).
Step 7. A priori H3 uniform-in-time bounds for the velocity u. For this step we outline the argument

provided in [13]. We have

d

dt
∥∇∆u∥2

L2 ≲ ∥ω∥L∞ (1 + log(1 + ∥∇∆u∥L2)) ∥∇∆u∥L2

+ ∥ρ∥L∞∥∆ρ∥L2 + ∥∇Φ∥L∞∥∇∆ρ∥L2 ,
(54)

from which we conclude that

log (1 + log(1 + ∥∇∆u(t)∥L2)) ≤ log (1 + log(1 + ∥∇∆u0∥L2))

+C ∫
t

0
(∥ω(τ)∥L∞ + ∥ρ(τ)∥L∞∥∆ρ(τ)∥L2 + ∥∇Φ(τ)∥L∞∥∇∆ρ(τ)∥L2)dτ

(55)

for all t ∈ [0, T ]. This gives the double exponential bound

∥∇∆u(t)∥L2 ≲ (1 + ∥∇∆u0∥L2) exp(exp(∫
t

0
[∥ω(τ)∥L∞ + ∥∇∆ρ(τ)∥2

L2]dτ)) (56)

after applications of the Poincaré inequality. The regularity established in (48) allows us to conclude that
u ∈ L∞(0, T ;H3). We refer the reader to [13, (3.23)–(3.25)] for the details involved in the preceding
computations.

Step 8. A priori Hm uniform-in-time bounds for the ionic concentrations and velocity. We take the
scalar product in L2 of each ionic concentration equation (1) with Λ2mci and the vorticity equation (37) with
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Λ2m−2ω. We add the resulting energy equations and obtain

1

2

d

dt
[∥Λm−1ω∥2

L2 +
n

∑
i=1

∥Λmci∥2
L2] +

n

∑
i=1

Di∥Λm+1ci∥2
L2

= −∫ Λm−1(u ⋅ ∇ω)Λm−1ω dx − ∫ Λm−1(∇⊥ρ ⋅ ∇Φ)Λm−1ω dx

−
n

∑
i=1
∫ Λm(u ⋅ ∇ci)Λmci dx +

n

∑
i=1

Dizi∫ Λm∇ ⋅ (ci∇Φ)Λmci dx.

(57)

We estimate

∣∫ Λm−1(u ⋅ ∇ω)Λm−1ω dx∣ = ∣∫ [Λm−1, u ⋅ ∇]ωΛm−1ω dx∣

≤ ∥[Λm−1, u ⋅ ∇]ω∥L2∥Λm−1ω∥L2 ≲ (∥∇u∥L∞∥Λm−1ω∥L2 + ∥Λm−1u∥L4∥∇ω∥L4)∥Λm−1ω∥L2

≲ ∥∇∆u∥L2∥Λm−1ω∥2
L2

(58)

using standard commutator estimates (see [16]). We bound

∣∫ Λm−1(∇⊥ρ ⋅ ∇Φ)Λm−1ω dx∣

≲ ∥Λm−1ω∥L2 (∥Λmρ∥L2∥∇Φ∥L∞ + ∥Λm−1∇Φ∥L4∥∇ρ∥L4)

≤ ã(t)(∥Λm−1ω∥2
L2 +

n

∑
i=1

∥Λmci∥2
L2)

(59)

by applying fractional product estimates and continuous Sobolev embeddings. Above the coefficient ã(t) is
given by

ã(t) = C(∥∇Φ(t)∥L∞ + ∥∇ρ(t)∥L4). (60)

Using the fact that the fluid velocity u is divergence-free, integrating by parts, and applying fractional
product, interpolation, and Poincaré inequalities, we estimate

∣
n

∑
i=1
∫ Λm(u ⋅ ∇ci)Λmci dx∣ = ∣

n

∑
i=1
∫ Λm(uci) ⋅ ∇Λmci dx∣

≲
n

∑
i=1

∥Λm+1ci∥L2 (∥Λmu∥L2∥ci∥L∞ + ∥u∥L∞∥Λmci∥L2)

≲
n

∑
i=1

∥Λm+1ci∥L2 (∥Λm−1ω∥L2∥ci∥L∞ + ∥∆u∥L2∥Λmci∥L2)

≤
n

∑
i=1

Di

8
∥Λm+1ci∥2

L2 +C (
n

∑
i=1

∥ci∥2
L∞)∥Λm−1ω∥2

L2 +C∥∆u∥2
L2 (

n

∑
i=1

∥Λmci∥2
L2)

≤
n

∑
i=1

Di

8
∥Λm+1ci∥2

L2 +C (∥∆u∥2
L2 +

n

∑
i=1

∥ci∥2
L∞)(∥Λm−1ω∥2

L2 +
n

∑
i=1

∥Λmci∥2
L2) .

(61)
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Using elliptic regularity, we have

∣
n

∑
i=1

Dizi∫ Λm∇ ⋅ (ci∇Φ)Λmci dx∣ = ∣
n

∑
i=1

Dizi∫ Λm(ci∇Φ) ⋅ ∇Λmci dx∣

≲
n

∑
i=1

∥Λm+1ci∥L2 (∥Λmci∥L2∥∇Φ∥L∞ + ∥ci∥L4∥Λm∇Φ∥L4)

≲
n

∑
i=1

∥Λm+1ci∥L2 (∥Λmci∥L2∥∇ρ∥L2 + ∥ci∥L4∥Λmρ∥L2)

≤
n

∑
i=1

Di

8
∥Λm+1ci∥2

L2 +C (∥∇ρ∥2
L2 +

n

∑
i=1

∥ci∥2
L4)(

n

∑
i=1

∥Λmci∥2
L2) .

(62)

Putting (57)–(62) together, we obtain the differential inequality

d

dt
[∥Λm−1ω∥2

L2 +
n

∑
i=1

∥Λmci∥2
L2] ≲ a(t) [∥Λm−1ω∥2

L2 +
n

∑
i=1

∥Λmci∥2
L2] (63)

where

a(t) = ã(t) + ∥∇∆u(t)∥L2 + ∥∆u(t)∥2
L2 + ∥∇ρ(t)∥2

L2 +
n

∑
i=1

∥ci(t)∥2
L∞ (64)

is integrable over the time interval [0, T ] due to (48) and (56). Thus, applying Gronwall’s inequality to (63),
we obtain

∥Λm−1ω(t)∥2
L2 +

n

∑
i=1

∥Λmci(t)∥2
L2 ≤ [∥Λm−1ω0∥2

L2 +
n

∑
i=1

∥Λmci(0)∥2
L2] exp(C ∫

t

0
a(τ)dτ) (65)

This finishes the proof of Step 8.
Step 9. Extension of the local solution. The local solution can be extended to the time interval [0, T ],

a fact that follows from the uniform-in-time boundedness in Hm obtained in Step 8. This ends the proof of
Theorem 1.

4. GEVREY REGULARITY OF THE NERNST-PLANCK-EULER SYSTEM

In this section, we address the propagation of the Gevrey regularity for the NPE system:

Theorem 2. (Global analyticity of NPE) Let T > 0 be arbitrary andm > 4. Assume that the initial ionic con-
centrations ci(0) are nonnegative and real-analytic, and the initial velocity u0 is mean-zero, divergence-free,
and real-analytic. Then the NPE system described by (1), (2) and (3) has a unique solution (u, c1, ..., cn) on
[0, T ] such that for each time t ∈ (0, T ), the functions u, c1, ..., cn are real analytic in the spatial variable
with uniform radius of analyticity τ(t), depending on the Hm norm of the solution (u, c1, ..., cn) up to time
t.

In order to prove Theorem 2, we start by taking the scalar products in D(eτΛ) of the equation obeyed by
the ionic concentration ci with Λ2mci and of the equation obeyed by ω = ∇⊥ ⋅ u with Λ2m−2ω. We add the
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resulting energy equalities, and we obtain

1

2

d

dt
[
n

∑
i=1

∥eτΛΛmci∥2
L2 + ∥eτΛΛm−1ω∥2

L2] +
n

∑
i=1

Di∥eτΛΛm+1ci∥2
L2

= τ ′(t)
n

∑
i=1

∥eτΛΛm+
1
2 ci∥2

L2 + τ ′(t)∥eτΛΛm−
1
2ω∥2

L2

−
n

∑
i=1

(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2

+
n

∑
i=1

Dizi(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2

+
n

∑
i=1

Dizic̄i(eτΛΛm∆Φ, eτΛΛm(ci − c̄i))L2

− (u ⋅ ∇ω,Λ2m−2e2τΛω)L2 − (∇⊥ ⋅ [ρ∇Φ],Λ2m−2e2τΛω)L2 .

(66)

Here c̄i denotes the spatial average of the ionic concentration ci over T2. We recall that this latter quantity
is time-independent and amounts to the the initial mean of ci.

In order to control the nonlinear terms, we need the following lemmas.

Lemma 1. [17] The following estimate

∣(u ⋅ ∇ω,Λ2m−2e2τΛω)L2 ∣

≲ (τ∥∇u∥L∞ + τ2∥Λm−1ω∥L2 + τ2∥eτΛΛm−1ω∥L2) ∥eτΛΛm−
1
2ω∥2

L2

(∥∇u∥L∞∥Λm−1eτΛω∥L2 + (1 + τ)∥Λm−1ω∥2
L2) ∥Λm−1eτΛω∥L2

(67)

holds for any m > 4.

Lemma 2. Let i ∈ {1, ..., n}. The following estimate

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣

≤ Di

8
∥Λm+1eτΛci∥2

L2 +C∥Λ1+εu∥2
L2∥ΛmeτΛci∥2

L2 +C∥Λm−1u∥2
L2∥Λ2+εeτΛci∥2

L2

+Cτ2∥Λ2+εeτΛu∥2
L2∥ΛmeτΛci∥2

L2 +Cτ2∥ΛmeτΛu∥2
L2∥Λ2+εeτΛci∥2

L2 .

(68)

holds for any m > 0 and ε > 0. Consequently, we have

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣

≤ Di

8
∥Λm+1eτΛci∥2

L2 +C∥Λm−1u∥2
L2∥ΛmeτΛci∥2

L2 +Cτ2∥ΛmeτΛci∥2
L2∥Λm−

1
2 eτΛω∥2

L2

(69)

for any m > 2.

Proof. We set
u = ∑

j∈Z2∖{0}

uje
ij⋅x, (70)

u∗ = ∑
j∈Z2∖{0}

u∗j e
ij⋅x, u∗j = eτ ∣j∣uj , (71)

ci − c̄i = ∑
j∈Z2∖{0}

(ci)jeij⋅x, (72)

and
(ci − c̄i)∗ = ∑

j∈Z2∖{0}

(ci)∗j eij⋅x, (ci)∗j = eτ ∣j∣(ci)j . (73)
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Then

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣ = 4π2
RRRRRRRRRRR
∑

j+k+l=0

(uj ⋅ k)(ci)k(ci)le2τ ∣l∣∣l∣2m
RRRRRRRRRRR
. (74)

Since j + k + l = 0, we have ∣l∣ ≤ ∣k∣ + ∣j∣, which implies that eτ ∣l∣ ≤ eτ ∣k∣eτ ∣j∣, and so

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣ ≤ 4π2 ∑
j+k+l=0

eτ ∣j∣∣uj ⋅ k∣∣(ci)∗k ∣∣(ci)
∗
l ∣∣l∣

2m. (75)

Using the estimate ex ≤ e + xex, that holds for any x ≥ 0, and the estimate ∣l∣m−1 ≲ (∣k∣m−1 + ∣j∣m−1), that
holds for all j, k, l ∈ Z2 with j + k + l = 0, we bound

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣

≲ ∑
j+k+l=0

(e + τ ∣j∣eτ ∣j∣)∣uj ∣∣(ci)∗k ∣∣(ci)
∗
l ∣∣k∣∣l∣

m+1(∣k∣m−1 + ∣j∣m−1). (76)

Using Young’s convolution inequality and Plancherel identity, we obtain

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣
≲ ∥uj∥`1∥∣k∣m(ci)∗k∥`2∥∣l∣

m+1(ci)∗l ∥`2 + ∥∣j∣m−1uj∥`2∥∣k∣(ci)∗k∥`1∥∣l∣
m+1(ci)∗l ∥`2

+ τ∥∣j∣u∗j ∥`1∥∣k∣m(ci)∗k∥`2∥∣l∣
m+1(ci)∗l ∥`2 + τ∥∣j∣

mu∗j ∥`2∥∣k∣(ci)∗k∥`1∥∣l∣
m+1(ci)∗l ∥`2

≲ ∥Λ1+εu∥L2∥Λmc∗i ∥L2∥Λm+1c∗i ∥L2 + ∥Λm−1u∥L2∥Λ2+εc∗i ∥L2∥Λm+1c∗i ∥L2

+ τ∥Λ2+εu∗∥L2∥Λmc∗i ∥L2∥Λm+1c∗i ∥L2 + τ∥Λmu∗∥L2∥Λ2+εc∗i ∥L2∥Λm+1c∗i ∥L2

(77)

which gives the desired estimate (68). The bound (69) is a consequence of Young’s inequality and the bound

∥ΛmeτΛu∥L2 = ∥ΛΛm−1eτΛu∥L2 ≲ ∥∇Λm−1eτΛu∥L2 ≲ ∥Λm−1eτΛ∇⊥ ⋅ u∥L2 ≲ ∥Λm−
1
2 eτΛω∥L2 (78)

that holds in view of the divergence-free condition obeyed by the velocity u. This ends the proof of Lemma 2.

Lemma 3. Let i ∈ {1, ..., n}. The following estimate

Di∣zi∣∣(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2 ∣

≤ Di

8
∥Λm+1eτΛci∥2

L2 +C∥Λm−1ρ∥2
L2∥Λ1+εeτΛci∥2

L2 +C∥Λερ∥2
L2∥ΛmeτΛci∥2

L2

+Cτ2∥Λ1+εeτΛci∥2
L2∥ΛmeτΛρ∥2

L2 +Cτ2∥Λ1+εeτΛρ∥2
L2∥ΛmeτΛci∥2

L2

(79)

holds for any m > 0 and ε > 0. Consequently, we have

Di∣zi∣∣(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2 ∣

≤ Di

8
∥Λm+1eτΛci∥2

L2 +C∥Λm−1ρ∥2
L2∥ΛmeτΛci∥2

L2 +Cτ2∥ΛmeτΛρ∥2
L2∥Λm+

1
2 eτΛci∥2

L2

(80)

for any m > 1.

Proof. We set ci and c∗i as in (72) and (73) respectively. We write the Fourier series of ρ as

ρ = ∑
k∈Z2∖{0}

ρke
ik⋅x, (81)

and we set
ρ∗ = ∑

k∈Z2∖{0}

ρ∗ke
ik⋅x, ρ∗k = e

τ ∣k∣ρk. (82)

The gradient of the potential Φ has a Fourier expansion given by

∇Φ = ∇(−∆)−1ρ = i ∑
k∈Z2∖{0}

k

∣k∣2
ρke

ik⋅x. (83)
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We have

(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2 = −4π2 ∑
j+k+l=0

(ci)jρk(ci)l
l ⋅ k
∣k∣2

∣l∣2me2τ ∣l∣, (84)

hence
∣(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2 ∣

≲ ∑
j+k+l=0

∣(ci)∗j ∣∣(ci)∗l ∣(e + τ ∣k∣e
τ ∣k∣)∣ρk∣∣k∣−1∣l∣m+1(∣k∣m + ∣j∣m) (85)

using the triangle inequality ∣l∣ ≤ ∣k∣ + ∣j∣. In view of Young’s convolution inequality, we estimate the
following four terms

Di∣zi∣ ∑
j+k+l=0

e∣(ci)∗j ∣∣(ci)∗l ∣∣ρk∣∣l∣
m+1∣k∣m−1 ≲ ∥∣l∣m+1(ci)∗l ∥`2∥∣k∣

m−1ρk∥`2∥(ci)∗j ∥`1

≤ Di

32
∥Λm+1eτΛci∥2

L2 +C∥Λ1+εeτΛci∥2
L2∥Λm−1ρ∥2

L2 ,

(86)

Di∣zi∣ ∑
j+k+l=0

e∣(ci)∗j ∣∣(ci)∗l ∣∣ρk∣∣l∣
m+1∣k∣−1∣j∣m ≲ ∥∣l∣m+1(ci)∗l ∥`2∥∣j∣

m(ci)∗j ∥`2∥∣k∣−1ρk∥`1

≤ Di

32
∥Λm+1eτΛci∥2

L2 +C∥Λερ∥2
L2∥ΛmeτΛci∥2

L2 ,

(87)

Di∣zi∣ ∑
j+k+l=0

τ ∣(ci)∗j ∣∣(ci)∗l ∣∣ρ
∗
k ∣∣l∣

m+1∣k∣m ≲ τ∥∣l∣m+1(ci)∗l ∥`2∥∣k∣
mρ∗k∥`2∥(ci)

∗
j ∥`1

≤ Di

32
∥Λm+1eτΛci∥2

L2 +Cτ2∥Λ1+εeτΛci∥2
L2∥ΛmeτΛρ∥2

L2 ,

(88)

and
Di∣zi∣ ∑

j+k+l=0

τ ∣(ci)∗j ∣∣(ci)∗l ∣∣ρ
∗
k ∣∣l∣

m+1∣j∣m ≲ τ∥∣l∣m+1(ci)∗l ∥`2∥∣j∣
m(ci)∗j ∥`2∥ρ∗k∥`1

≤ Di

32
∥Λm+1eτΛci∥2

L2 +Cτ2∥Λ1+εeτΛρ∥2
L2∥ΛmeτΛci∥2

L2 .

(89)

Putting (85)–(89) together, we obtain the desired estimate (79). The bound (80) follows from (79) and
continuous embeddings of Sobolev spaces. This completes the proof of Lemma 3.

Lemma 4. Let i ∈ {1, ..., n}. The following estimate

Di∣zi∣∣c̄i(0)∣∣(eτΛΛm∆Φ, eτΛΛm(ci − c̄i))L2 ∣

≤ Di

8
∥Λm+1eτΛci∥2

L2 +C ∣c̄i(0)∣2∥ΛmeτΛρ∥2
L2

(90)

holds for any m > 0.

Proof. Under the same settings of the previous lemmas, we have

Di∣zi∣∣c̄i(0)∣∣(eτΛΛm∆Φ, eτΛΛm(ci − c̄i))L2 ∣ ≲ ∣c̄i(0)∣ ∑
k∈Z2∖{0}

e2τ ∣k∣∣k∣2m∣ρk∣∣(ci)k∣

≲ ∣c̄i(0)∣∥∣k∣m+1(ci)∗k∥`2∥∣k∣
m−1ρ∗k∥`2 ≤

Di

8
∥Λm+1eτΛci∥2

L2 +C ∣c̄i(0)∣2∥Λm−1eτΛρ∥2
L2

≤ Di

8
∥Λm+1eτΛci∥2

L2 +C ∣c̄i(0)∣2∥ΛmeτΛρ∥2
L2 .

(91)

Here we used the fact ρ−k coincides with the complex conjugate of ρk, which follows from the real-
valuedness of ρ. This finishes the proof of Lemma 4.
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Lemma 5. The following estimate

∣(∇⊥ ⋅ [ρ∇Φ],Λ2m−2e2τΛω)L2 ∣

≲ ∥Λm−1ρ∥L2∥Λ1+εeτΛρ∥2
L2 + ∥Λερ∥L2∥ΛmeτΛρ∥2

L2 + ∥Λm−1eτΛω∥2
L2∥Λm−1ρ∥L2

+ ∥Λm−1eτΛω∥2
L2∥Λερ∥L2 + ∥ΛmeτΛρ∥2

L2 + τ2∥Λ1+εeτΛρ∥2
L2∥Λm−1eτΛω∥2

L2

(92)

holds for any m ≥ 1 and any ε > 0. Consequently, we have

∣(∇⊥ ⋅ [ρ∇Φ],Λ2m−2e2τΛω)L2 ∣

≲ ∥Λm−1ρ∥L2∥ΛmeτΛρ∥2
L2 + ∥Λm−1ρ∥L2∥Λm−1eτΛω∥2

L2 + ∥ΛmeτΛρ∥2
L2

+ τ2∥ΛmeτΛρ∥2
L2∥Λm−

1
2 eτΛω∥2

L2

(93)

for any m > 1.

Proof. We set ρ and ρ∗ as in the previous lemmas, and we set

ω = ∑
l∈Z2∖{0}

ωle
il⋅x, ω∗ = ∑

l∈Z2∖{0}

ω∗l e
il⋅x, ω∗l = e

τ ∣l∣ωl. (94)

We have

∣(eτΛΛm−1∇⊥ ⋅ [ρ∇Φ], eτΛΛm−1ω)L2 ∣ = 4π2
RRRRRRRRRRR
∑

j+k+l=0

ρjρkωl
l⊥ ⋅ k
∣k∣2

∣l∣2m−2e2τ ∣l∣
RRRRRRRRRRR

≤ ∑
j+k+l=0

∣ρj ∣∣ρk∣∣ωl∣∣k∣−1∣l∣2m−1e2τ ∣l∣

≲ ∑
j+k+l=0

∣ρ∗j ∣(e + τ ∣k∣eτ ∣k∣)∣ρk∣∣ω∗l ∣∣k∣
−1∣l∣m−1 (∣k∣m + ∣j∣m) .

(95)

We estimate the following two sums

∑
j+k+l=0

e∣ρ∗j ∣∣ρk∣∣ω∗l ∣∣k∣
−1∣l∣m−1 (∣k∣m + ∣j∣m)

≲ ∥∣l∣m−1ω∗l ∥`2∥∣k∣
m−1ρk∥`2∥ρ∗j ∥`1 + ∥∣l∣m−1ω∗l ∥`2∥∣j∣

mρ∗j ∥`2∥∣k∣−1ρk∥`1

≲ ∥Λm−1eτΛω∥L2∥Λm−1ρ∥L2∥Λ1+εeτΛρ∥L2 + ∥Λm−1eτΛω∥L2∥ΛmeτΛρ∥L2∥Λερ∥L2

(96)

and

∑
j+k+l=0

τ ∣ρ∗j ∣∣k∣eτ ∣k∣∣ρk∣∣ω∗l ∣∣k∣
−1∣l∣m−1 (∣k∣m + ∣j∣m)

≲ τ∥∣l∣m−1ω∗l ∥`2∥∣k∣
mρ∗k∥`2∥ρ

∗
j ∥`1 + τ∥∣l∣m−1ω∗l ∥`2∥∣j∣

mρ∗j ∥`2∥ρ∗k∥`1

≲ τ∥Λm−1eτΛω∥L2∥ΛmeτΛρ∥L2∥Λ1+εeτΛρ∥L2 + τ∥Λm−1eτΛω∥L2∥ΛmeτΛρ∥L2∥Λ1+εeτΛρ∥L2 .

(97)

Putting (95)–(97) together and applying Young’s inequality, we obtain the bound (92) for any m ≥ 1 and
ε > 0. The bound (93) is a direct consequence of (92). This ends the proof of Lemma 5.

We put (66), (67), (69), (80), (90), and (93) together. Setting

y(t) =
n

∑
i=1

∥eτΛΛmci∥2
L2 + ∥eτΛΛm−1ω∥2

L2 , (98)

B̃(t) = τ ′(t) +Cτ∥∇u∥L∞ +Cτ2∥Λm−1ω∥L2 +Cτ2∥eτΛΛm−1ω∥L2 +Cτ2
n

∑
i=1

∥ΛmeτΛci∥2
L2 , (99)

and

B(t) = ∥Λm−1ρ∥L2 + ∥Λm−1ρ∥2
L2 + χ n

∑
i=1

ci(0)≠0
(∥Λm−1u∥2

L2 + 1) + ∥∇u∥L∞ +
n

∑
i=1

∣c̄i(0)∣2, (100)
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where χ n

∑
i=1

ci(0)≠0
is the characteristic function of the singleton set {

n

∑
i=1
ci(0) ≠ 0}, we obtain the energy

differential inequality

1

2

d

dt
y(t) ≤ B̃(t) [

n

∑
i=1

∥eτΛΛm+
1
2 ci∥2

L2 + ∥eτΛΛm−
1
2ω∥2

L2]

+CB(t)y(t) +C(1 + τ)∥Λm−1ω∥2
L2

√
y(t)

(101)

for any m > 4. Above the characteristic function is introduced to explicitly indicate terms that would be
absent if we assumed the absence of ions so that the NPE system reduces to the Euler equations (c.f. Remark
1).

If τ is such that B̃(t) ≤ 0 (so that in particular τ ′ ≤ 0), then the latter inequality reduces to

d

dt

√
y(t) ≲ B(t)

√
y(t) + (1 + τ(0))∥Λm−1ω∥2

L2 . (102)

Therefore, we obtain
√
y(t) ≤ g(t){

√
y(0) +C(1 + τ(0))∫

t

0
∥Λm−1ω(s)∥2

L2g(s)−1ds} ∶= A(t) (103)

for any t ∈ [0, T ], where

g(t) = C ∫
t

0
B(s)ds. (104)

In light of (103), a sufficient condition for B̃(t) to be nonpositive is that

τ ′(t) +Cτ∥∇u∥L∞ +Cτ2∥Λm−1ω∥L2 +Cτ2Ã(t) ≤ 0 (105)

where
Ã(t) = A(t) + χ n

∑
i=1

ci(0)≠0
A(t)2. (106)

Hence, it suffices to choose

τ(t) = 1

g(t) ( 1
τ(0) +C ∫

t
0 (∥Λm−1ω(s)∥L2 + Ã(s))g−1(s)ds)

. (107)

This completes the proof of Theorem 2.

Remark 1. If the initial ionic concentrations are taken to be zero, then their spatial averages vanish at all
positive times, and so they are identically zero on T2 × [0,∞). In this case, the NPE problem reduces to
the two-dimensional periodic non-forced Euler system and yields the spatial analyticity of its solution. In
other words, Theorem 2 generalizes the result obtained in [17] in the 2D situation. In particular, the Gevrey
bound (103) and the radius of analyticity (107) coincides with the ones derived in [17].

5. GLOBAL WELL-POSEDNESS OF THE NERNST-PLANCK-DARCY SYSTEM

In this section, we prove Theorem 3, concerning the global existence and uniqueness of solutions to the
NPD system:

Theorem 3. (Global well-posedness and regularity of NPD) Let T > 0 be arbitrary and m ≥ 3
2 . Assume

that the initial ionic concentrations ci(0) ∈ Hm are nonnegative. Then the NPD system described by (1),
(2) and (4) has a unique solution (c1, ..., cn) on the time interval [0, T ] with the property that

(c1, ..., cn) ∈ (L∞(0, T ;Hm))n. (108)
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The proof of Theorem 3 is divided into several steps.
Step 1. Existence of a unique local-in-time solution for Hm initial datum. As in Section 3, we focus

on obtaining a priori estimates. We fix m ≥ 3
2 . We apply Λm to (1), multiply the resulting equation by Λmci,

and integrate by parts to obtain
1

2

d

dt
∥Λmci∥L2 +Di∥Λm∇ci∥2

L2 = − (Λm(u ⋅ ∇ci),Λmci)L2 +Dizi(Λm∇ ⋅ (ci∇Φ),Λmci)L2

= − ([Λm, u ⋅ ∇]ci,Λmci)L2 −Dizi(Λm(ci∇Φ),Λm∇ci)L2 .
(109)

We estimate the first integral on the right hand side of (109) as follows

∣([Λm, u ⋅ ∇]ci,Λmci)L2 ∣ ≲(∥Λmu∥L2∥∇ci∥L∞ + ∥∇u∥L4∥Λmci∥L4)∥Λmci∥L2 . (110)

Then using ∥∇ci∥L∞ ≲ ∥Λm∇ci∥L2 for m > 1 and ∥Λmci∥L4 ≲ ∥Λm∇ci∥L2 , we obtain

∣([Λm, u ⋅ ∇]ci,Λmci)L2 ∣ ≤Di

2
∥Λm∇ci∥2

L2 +C(∥Λmu∥2
L2 + ∥∇u∥2

L4)∥Λmci∥2
L2 . (111)

Now, recalling from (4) that u = −P(ρ∇Φ) where P is the Leray projection onto the space of divergence-free
vectors, we have ∥Λmu∥L2 ≤ ∥Λm(ρ∇Φ)∥L2 and thus

∥Λmu∥L2 ≲ ∥Λmρ∥L2∥Λm∇Φ∥L2 ≲
n

∑
j=1

∥Λmcj∥2
L2 (112)

which holds due to the Banach algebra property of Hm for m > 1. Similarly, we have

∥∇u∥L4 ≲ ∥Λmu∥L2 ≲ ∥Λmρ∥L2∥Λm∇Φ∥L2 ≲
n

∑
j=1

∥Λmcj∥2
L2 (113)

where the first inequality holds for m ≥ 3
2 . Then, taking (112),(113) and returning to (111), we have

∣([Λm, u ⋅ ∇]ci,Λmci)L2 ∣ ≤Di

2
∥Λm∇ci∥2

L2 +C
⎛
⎝

n

∑
j=1

∥Λmcj∥2
L2

⎞
⎠

3

. (114)

Now we estimate the second integral on the right hand side of (109):

∣Dizi(Λm(ci∇Φ),Λm∇ci)L2 ∣ ≤Di

2
∥Λm∇ci∥2

L2 +C∥Λm(ci∇Φ)∥2
L2

≤Di

2
∥Λm∇ci∥2

L2 +C (∥Λmci∥2
L2 + c̄2

i ) ∥Λm∇Φ∥2
L2

≤Di

2
∥Λm∇ci∥2

L2 +C
⎛
⎝

n

∑
j=1

∥Λmcj∥2
L2

⎞
⎠

2

+Cc̄4
i

(115)

Thus, summing (109) in i and using (114) and (115), we obtain

d

dt
(
n

∑
i=1

∥Λmci∥2
L2) ≲ (

n

∑
i=1

∥Λmci∥2
L2)

2

+ (
n

∑
i=1

∥Λmci∥2
L2)

3

+ c̄4
i (116)

from which it follows that for a short time T ∗ depending on the Hm norms of the initial data of ci, there is
a local solution of NPD on [0, T ∗) satisfying

sup
t∈[0,T ∗)

n

∑
i=1

∥Λmci(t)∥2
L2 ≤ 2

n

∑
i=1

∥Λmci(0)∥2
L2 . (117)

The uniqueness of local solutions follows from similar energy estimates. Suppose (c1, ..., cn) and (c̄1, ..., c̄n)
are two local Hm solutions to NPD on some common interval [0, T∗), where T ∗ is taken small enough so
that both solutions satisfy (117). Then, the differences c̃i = ci − c̄i satisfy

∂tc̃i + u ⋅ ∇c̃i −Di∆c̃i =Dizi∇ ⋅ (ci∇Φ̃ + c̃i∇Φ̄) − ũ ⋅ ∇c̄i. (118)
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Multiplying the above by c̃i and integrating by parts, we obtain exactly as in (31)

1

2

d

dt
∥c̃i∥2

L2 +Di∥∇c̃i∥2
L2 ≤

Di

2
∥∇c̃i∥2

L2 +G1(t)
⎛
⎝

n

∑
j=1

∥c̃j∥2
L2 + ∥ũ∥2

L2

⎞
⎠

(119)

with G1(t) uniformly bounded on [0, T ∗)(c.f. (33)). Next, we estimate, using ũ = −P(ρ∇Φ − ρ̄∇Φ̄)

∥ũ∥L2 ≲ ∥ρ̃∥L2∥∇Φ∥L∞ + ∥∇Φ̃∥L2∥ρ̄∥L∞ ≲ G3(t)
n

∑
j=1

∥c̃j∥L2 (120)

where
G3(t) = ∥∇Φ∥L∞ + ∥ρ̄∥L∞ (121)

is uniformly bounded on [0, T ∗). Therefore, from (119), we obtain after summing in i

d

dt

n

∑
i=1

∥c̃i∥2
L2 ≲ G1(t) (1 + (G3(t))2)

n

∑
i=1

∥c̃i∥2
L2 . (122)

Then, applying Gronwall’s inequality, we obtain

sup
t∈[0,T ∗)

n

∑
i=1

∥c̃i(t)∥2
L2 ≤

n

∑
j=1

∥c̃i(0)∥2
L2e

C ∫
T∗

0 G1(s)(1+G3(s))
2 ds. (123)

Uniqueness follows from this last inequality.
Step 2. Positivity of the ionic concentrations. Suppose (c1, ..., cn) is a solution of the NPD problem

with the property that each ionic concentration ci belongs to the Lebesgue space L2(0, T ;H2). Then the
positivity of ci(0) for i ∈ {1, ..., n} is preserved for all positive times, that is ci(x, t) ≥ 0 for all i ∈ {1, ..., n},
for a.e. x ∈ T2, and for all t ∈ [0, T ]. The proof of this statement can be found in [4].

Step 3. A priori L2 uniform-in-time bounds. Suppose (c1, ..., cn) is a solution of the NPD problem on
the time interval [0, T ] such that ci(x, t) ≥ 0 for all i ∈ {1, ..., n}, for a.e. x ∈ T2, and for all t ∈ [0, T ]. Then
there is a positive constant Γ depending on the initial data, the time T , the parameters of the problem, and
some universal constants, such that the following bound

sup
0≤t≤T

n

∑
i=1

∥ci(t)∥L2 + ∫
T

0
(∥u∥2

L2 +
n

∑
i=1

Di∥∇ci(t)∥2
L2)dt ≤ Γ (124)

holds. This can be obtained by following the proof of Proposition 2 in [2]. We omit the details here.
Step 4. A priori L4 uniform-in-time bounds. We multiply the i-th ionic concentration equation (1) by

c3
i and integrate the resulting equation over T2. We obtain

1

4

d

dt
∥ci∥4

L4 +
3Di

4
∥∇c2

i ∥2
L2 =Dizi∫ ∇ ⋅ (ci∇Φ)c3

i dx = −3Dizi∫ ci∇Φc2
i ⋅ ∇ci dx

≲ ∥ci∥2
L4∥∇Φ∥L∞∥∇c2

i ∥L2

≤ C∥ci∥4
L4∥∇Φ∥2

L∞ + 3Di

4
∥∇c2

i ∥2
L2 .

(125)

Elliptic regularity yields the bound

∥∇Φ∥L∞ ≲ ∥ρ∥L4 ≲ ∥∇ρ∥L2 . (126)

Therefore, the L4 norm of ci obeys
d

dt
∥ci∥4

L4 ≲ ∥ci∥4
L4∥∇ρ∥2

L2 . (127)

Integrating in time from 0 to t and using the boundedness of ρ in L2(0, T ;H1) given by (124), we conclude
that the ionic concentrations are uniformly bounded on the space L∞(0, T ;L4):

∥ci(t)∥L4 ≤ ∥ci(0)∥L4 exp(C ∫
t

0
∥∇ρ(τ)∥2

L2 dτ) . (128)

This finishes the proof of Step 4.
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Step 5. A priori H1 uniform-in-time bounds. The gradient of the i-th ionic concentration evolves
according to the energy equality

1

2

d

dt
∥∇ci∥2

L2 +Di∥∆ci∥2
L2 = (u ⋅ ∇ci,∆ci)L2 −Dizi(∇ ⋅ (ci∇Φ),∆ci)L2 . (129)

Using the boundedness of the Leray projector on L4, we have

∥u∥L4 ≲ ∥ρ∇Φ∥L4 ≤ ∥ρ∥L4∥∇Φ∥L∞ , (130)

hence
∣(u ⋅ ∇ci,∆ci)L2 ∣ ≲ ∥u∥L4∥∇ci∥L4∥∆ci∥L2 ≲ ∥ρ∥L4∥∇Φ∥L∞∥∇ci∥L4∥∆ci∥L2

≲ ∥ρ∥L4∥∇Φ∥L∞∥∇ci∥1/2

L2 ∥∆ci∥3/2

L2

≤ Di

8
∥∆ci∥2

L2 +C∥ρ∥4
L4∥∇Φ∥4

L∞∥∇ci∥2
L2 .

(131)

Now we estimate
∣Dizi(∇ ⋅ (ci∇Φ),∆ci)L2 ∣ ≲ (∥∇ci∥L2∥∇Φ∥L∞ + ∥ci∥L4∥ρ∥L4) ∥∆ci∥L2

≲ (∥∇ci∥L2∥ρ∥L4 + ∥ci∥L4∥ρ∥L4) ∥∆ci∥L2

≤ Di

8
∥∆ci∥2

L2 +C∥ρ∥2
L4∥∇ci∥2

L2 +C∥ci∥2
L4∥ρ∥2

L4

(132)

Putting (129)–(132) together, we obtain the differential inequality
d

dt
∥∇ci∥2

L2 +Di∥∆ci∥2
L2 ≲ (∥ρ∥4

L4∥∇Φ∥4
L∞ + ∥ρ∥2

L4)∥∇ci∥2
L2 + ∥ci∥2

L4∥ρ∥2
L4 . (133)

Summing over i ∈ {1, ..., n}, and bounding the L4 norm of the density ρ by the sum of the L2 norms of
gradients of the ionic concentrations ci, the latter energy inequality reduces to

d

dt

n

∑
i=1

∥∇ci∥2
L2 +

n

∑
i=1

Di∥∆ci∥2
L2 ≲ (∥ρ∥4

L4∥∇Φ∥4
L∞ + ∥ρ∥2

L4 +
n

∑
i=1

∥ci∥2
L4)

n

∑
i=1

∥∇ci∥2
L2 . (134)

By Gronwall’s inequality, we obtain
n

∑
i=1

∥∇ci(t)∥2
L2 ≤

n

∑
i=1

∥∇ci(0)∥2
L2 exp(∫

t

0
(∥ρ(τ)∥4

L4∥∇Φ(τ)∥4
L∞ + ∥ρ(τ)∥2

L4 +
n

∑
i=1

∥ci(τ)∥2
L4)dτ) (135)

for all t ≥ 0, and so due to (128) and (134), the ionic concentrations belong to the space

L∞(0, T ;H1) ∩L2(0, T ;H2). (136)

This completes the proof of Step 5.
Step 6. A priori Hm uniform-in-time bounds. We multiply the equation obeyed by the i-th ionic

concentration (1) by Λ2mci, and we integrate over the torus T2. Integrating by parts, we obtain
1

2

d

dt
∥Λmci∥2

L2 +Di∥Λm+1ci∥2
L2 = −(Λm−1(u ⋅ ∇ci),Λm+1ci)L2 −Dizi(Λm(ci∇Φ),Λm∇ci)L2 . (137)

Using fractional product estimates, the boundedness of the Leray projector on L4, the Ladyzhenskaya’s
interpolation inequality, the Poincaré inequality, and the continuous embedding of H1 in L8, we estimate

∥Λm−1u∥L4 = ∥Λm−1P(ρ∇Φ)∥L4 ≤ ∥Λm−1(ρ∇Φ)∥L4

≲ ∥Λm−1ρ∥L4∥∇Φ∥L∞ + ∥ρ∥L8∥Λm−1∇Φ∥L8

≲ ∥ρ∥L4∥Λmρ∥L2 + ∥∇ρ∥L2∥Λmρ∥L2

≲ ∥∇ρ∥L2∥Λmρ∥L2 .

(138)

In view of the continuous embedding of H2 in L∞ and the algebra property of H2, we have

∥u∥L∞ ≲ ∥∆P(ρ∇Φ)∥L2 ≲ ∥∆ρ∥L2∥∆∇Φ∥L2 ≲ ∥∆ρ∥L2∥∇ρ∥L2 . (139)
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Consequently, we bound the nonlinear term in u as follows

∣(Λm−1(u ⋅ ∇ci),Λm+1ci)L2 ∣ ≤ ∥Λm+1ci∥L2∥Λm−1(u ⋅ ∇ci)∥L2

≲ ∥Λm+1ci∥L2 (∥Λm−1u∥L4∥∇ci∥L4 + ∥u∥L∞∥Λmci∥L2)
≲ ∥Λm+1ci∥L2 (∥∆ci∥L2∥∇ρ∥L2∥Λmρ∥L2 + ∥∆ρ∥L2∥∇ρ∥L2∥Λmci∥L2) .

(140)

Now we estimate

∣(Λm(ci∇Φ),Λm∇ci)L2 ∣ ≲ ∥Λm+1ci∥L2 (∥Λmci∥L2∥∇Φ∥L∞ + ∥ci∥L4∥Λm∇Φ∥L4)
≲ ∥Λm+1ci∥L2 (∥Λmci∥L2∥∇ρ∥L2 + ∥ci∥L4∥Λmρ∥L2) .

(141)

This gives the energy inequality

d

dt
∥Λmci∥2

L2 +Di∥Λm+1ci∥2
L2

≲ ∥∆ci∥2
L2∥∇ρ∥2

L2∥Λmρ∥2
L2 + ∥∆ρ∥2

L2∥∇ρ∥2
L2∥Λmci∥2

L2 + ∥∇ρ∥2
L2∥Λmci∥2

L2 + ∥ci∥2
L4∥Λmρ∥2

L2.

(142)

Finally, we use the triangle inequality to bound

∥Λmρ∥2
L2 ≲

n

∑
j=1

∥Λmcj∥2
L2 , (143)

sum over all indices i ∈ {1, ..., n}, integrate in time from 0 to t, exploit the regularity obtained in (136), and
conclude that the ionic concentrations satisfy

n

∑
i=1

∥Λmci(t)∥2
L2 dτ ≤ eL(t)

n

∑
i=1

∥Λmci(0)∥2
L2 (144)

where

L(t) = C
⎛
⎝

sup
τ∈[0,t)

∥∇ρ(τ)∥2
L2

⎞
⎠
(
n

∑
i=1
∫

t

0
∥∆ci(τ)∥2

L2 dτ)+∫
t

0
∥∇ρ(τ)∥2

L2 dτ +
n

∑
i=1
∫

t

0
∥ci(τ)∥2

L4 dτ. (145)

Thus for all i ∈ {1, ..., n}, ci belongs to the space L∞(0, T ;Hm).
Step 7. Extension of the local solution. The local solution can be extended to the time interval [0, T ],

a fact that follows from the uniform-in-time boundedness in Hm obtained in Step 6. This ends the proof of
Theorem 3.

6. GEVREY REGULARITY OF THE NERNST-PLANCK-DARCY SYSTEM

In this section, we address the propagation of the Gevrey regularity for the NPD system:

Theorem 4. (Global analyticity of NPD) Let T > 0 be arbitrary and m > 2. Assume that the initial ionic
concentrations ci(0) ∈Hm are nonnegative. Then the NPD system described by (1), (2) and (4) has a unique
solution (c1, ..., cn) on [0,T] such that for each time t ∈ (0, T ), the functions c1, ..., cn are real analytic in
the spatial variable with uniform radius of analyticity

τ(t) = 1

2
min{D1, ...,Dn}min{t, T0/2} (146)

where T0 > 0 depends only on parameters, the Hm norms of ci(0), and lower regularity Sobolev norms of
ci up to time T .
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In order to prove Theorem 4, we take the scalar products in D(eτΛ) of the equation obeyed by the ionic
concentration ci with Λ2mci. We obtain

1

2

d

dt
[
n

∑
i=1

∥eτΛΛmci∥2
L2] +

n

∑
i=1

Di∥eτΛΛm+1ci∥2
L2 − τ ′(t)

n

∑
i=1

∥eτΛΛm+
1
2 ci∥2

L2

= −
n

∑
i=1

(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2

+
n

∑
i=1

Dizi(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2

+
n

∑
i=1

Dizic̄i(eτΛΛm∆Φ, eτΛΛm(ci − c̄i))L2 ,

(147)

where c̄i is the average of ci over T2.
In order to control the nonlinear terms, we need the following proposition and lemmas.

Proposition 1. Let {a1[k]}
k∈Zd , {a2[k]}

k∈Zd , . . . ,{an[k]}k∈Zd be sequences of real numbers. Then the
following estimate

RRRRRRRRRRR
∑

k1+⋅⋅⋅+kn=0

a1[k1]a2[k2] . . . an[kn]
RRRRRRRRRRR
≤ C∥a1∥`2(Zd)∥an∥`2(Zd)

n−1

∏
j=2

∥aj∥`1(Zd) (148)

holds.

Proof. We have

∑
k1+⋅⋅⋅+kn=0

a1[k1]a2[k2] . . . an[kn]

= ∑
k1,...,kn−1∈Zd

a1[k1]a2[k2] . . . an−1[kn−1]an[−k1 − k2 − ⋅ ⋅ ⋅ − kn−1]

= ∑
k1∈Zd

a1[k1] (a2 ∗ ⋅ ⋅ ⋅ ∗ an) [−k1]

(149)

where ∗ denotes the convolution operation. By Hölder’s inequality, we estimate
RRRRRRRRRRR
∑

k1+⋅⋅⋅+kn=0

a1[k1]a2[k2] . . . an[kn]
RRRRRRRRRRR
≤ C∥a1∥`2(Zd)∥a2 ∗ ⋅ ⋅ ⋅ ∗ an∥`2(Zd) (150)

which, after several applications of Young’s convolution inequality, bounds as
RRRRRRRRRRR
∑

k1+⋅⋅⋅+kn=0

a1[k1]a2[k2] . . . an[kn]
RRRRRRRRRRR
≤ C∥a1∥`2(Zd)∥an∥`2(Zd)

n−1

∏
j=2

∥aj∥`1(Zd). (151)

This completes the proof of Proposition 1.

Lemma 6. Let i ∈ {1, ..., n}. The following estimate
n

∑
i=1

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣

≤
n

∑
i=1

Di

8
∥eτΛΛm+1ci∥2

L2 +C (
n

∑
i=1

∥eτΛΛmci∥2
L2)

3 (152)

holds for any m > 2.

Proof. We set ci and c∗i as in (72) and (73) respectively. We write the Fourier expansion of ρ

ρ = ∑
v∈Z2∖{0}

ρve
iv⋅x, (153)
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from which we obtain the Fourier expansion of ρ∇Φ

ρ∇Φ = i ∑
v,z∈Z2∖{0}

z

∣z∣2
ρzρve

i(v+z)⋅x = i ∑
j∈Z2∖{0}

⎡⎢⎢⎢⎢⎣
∑

z∈Z2∖{0,j}

z

∣z∣2
ρzρj−z

⎤⎥⎥⎥⎥⎦
eij⋅x. (154)

In view of the divergence free-condition obeyed by u, we have

u = −P(ρ∇Φ) (155)

where P is the Leray projection onto the space of divergence-free vectors. Consequently, the Fourier series
of u is given by

u = − ∑
j∈Z2∖{0}

[vj − (vj ⋅ j)
j

∣j∣2
] eij⋅x (156)

where
vj = ∑

z∈Z2∖{0,j}

i
z

∣z∣2
ρzρj−z. (157)

For j ∈ Z2 ∖ {0}, we denote by uj the Fourier coefficients of u, that is

uj = − [vj − (vj ⋅ j)
j

∣j∣2
] , (158)

and we obtain

(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 = 4π2i ∑
j+k+l=0

(uj ⋅ k)(ci)k(ci)l∣l∣2me2τl

= 4π2 ∑
j+k+l=0

∑
z∈Z2∖{0,j}

[z ⋅ k
∣z∣2

− z ⋅ j
∣z∣2

j ⋅ k
∣j∣2

]ρzρj−z(ci)k(ci)l∣l∣2me2τl

= 4π2 ∑
z+z̃+k+l=0

[z ⋅ k
∣z∣2

− z ⋅ (z + z̃)
∣z∣2

(z + z̃) ⋅ k
∣z + z̃∣2

]ρzρz̃(ci)k(ci)l∣l∣2me2τl.

(159)

We point out that the last sum is over all indices z, z̃, k, l ∈ Z2 such that z+ z̃+k+l = 0, z̃+z ≠ 0, z ≠ 0, k ≠ 0,
l ≠ 0 and z̃ ≠ 0. Using the fact that z + z̃ + k + l = 0, we have ∣l∣ ≤ ∣k∣ + ∣z∣ + ∣z̃∣, hence

∣(eτΛΛm(u ⋅ ∇(ci − c̄i)), eτΛΛm(ci − c̄i))L2 ∣
≲ ∑
z+z̃+k+l=0

∣ρ∗z ∣∣ρ∗z̃ ∣∣(ci)∗k ∣∣(ci)
∗
l ∣∣k∣∣z∣

−1∣l∣m+1(∣k∣m−1 + ∣z∣m−1 + ∣z̃∣m−1) (160)

where ρ∗z = eτ ∣z∣ρz and ρ∗z̃ = eτ ∣z̃∣ρz̃ . By making use of Proposition 1, we estimate the following three terms

∑
z+z̃+k+l=0

∣ρ∗z ∣∣ρ∗z̃ ∣∣(ci)∗k ∣∣(ci)
∗
l ∣∣k∣

m∣z∣−1∣l∣m+1 ≲ ∥∣l∣m+1(ci)∗l ∥`2∥∣k∣
m(ci)∗k∥`2∥∣z∣

−1ρ∗z∥`1∥ρ∗z̃∥`1

≲ ∥Λm+1eτΛci∥L2∥ΛmeτΛci∥L2∥ΛεeτΛρ∥L2∥Λ1+εeτΛρ∥L2 ,
(161)

∑
z+z̃+k+l=0

∣ρ∗z ∣∣ρ∗z̃ ∣∣(ci)∗k ∣∣(ci)
∗
l ∣∣k∣∣z∣

m−2∣l∣m+1 ≲ ∥∣l∣m+1(ci)∗l ∥`2∥∣z∣
m−2ρ∗z∥`2∥∣k∣(ci)∗k∥`1∥ρ

∗
z̃∥`1

≲ ∥Λm+1eτΛci∥L2∥Λm−2eτΛρ∥L2∥Λ2+εeτΛci∥L2∥Λ1+εeτΛρ∥L2 ,
(162)

∑
z+z̃+k+l=0

∣ρ∗z ∣∣ρ∗z̃ ∣∣(ci)∗k ∣∣(ci)
∗
l ∣∣k∣∣z∣

−1∣l∣m+1∣z̃∣m−1

≲ ∥∣l∣m+1(ci)∗l ∥`2∥∣z̃∣
m−1ρ∗z̃∥`2∥∣z∣−1ρ∗z∥`1∥∣k∣(ci)∗k∥`1

≲ ∥Λm+1eτΛci∥L2∥Λm−1eτΛρ∥L2∥Λ2+εeτΛci∥L2∥ΛεeτΛρ∥L2

(163)

for any m > 0 and any ε > 0. Putting (160)–(163) together and summing over all i ∈ {1, ..., n}, we obtain
(152) for any m > 2.
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Lemma 7. Let i ∈ {1, ..., n}. The following estimate
n

∑
i=1

Di∣zi∣∣(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2 ∣

≤
n

∑
i=1

Di

8
∥eτΛΛm+1ci∥2

L2 +C (
n

∑
i=1

∥eτΛΛmci∥2
L2)

2 (164)

holds for any m > 1.

Proof. Under the same setting introduced in the proof of Lemma 3, we have

∣(eτΛΛm∇ ⋅ [(ci − c̄i)∇Φ], eτΛΛm(ci − c̄i))L2 ∣ = 4π2
RRRRRRRRRRR
∑

j+k+l=0

(ci)jρk(ci)l
l ⋅ k
∣k∣2

∣l∣2me2τ ∣l∣
RRRRRRRRRRR

≲ ∑
j+k+l=0

∣(ci)∗j ∣∣ρ∗k ∣∣(ci)
∗
l ∣∣l∣

m+1∣k∣−1(∣k∣m + ∣j∣m)

≲ ∥∣l∣m+1(ci)∗l ∥`2 [∥∣k∣
m−1ρ∗k∥`2∥(ci)

∗
j ∥`1 + ∥∣j∣m(ci)∗j ∥`2∥∣k∣−1ρ∗k∥`1] ,

(165)

which gives the desired estimate (164) after applications of Plancherel’s identity and Young’s inequality.

Lemma 8. Let i ∈ {1, ..., n}. The following estimate
n

∑
i=1

Dizic̄i∣(eτΛΛm∆Φ, eτΛΛm(ci − c̄i))L2 ∣ ≤ C
n

∑
i=1

∥eτΛΛmci∥2
L2 (166)

holds for any m > 0. Here C is a positive constant depending on the parameters of the problem and the
initial spatial average of the ionic concentrations.

Proof. The proof follows from a direct application of the Cauchy-Schwarz inequality.
Now we complete the proof of Theorem 4. For fixed T > 0, it follows from (144) that

sup
t∈[0,T ]

n

∑
i=1

∥Λmci(t)∥2
L2 dτ ≤ eL(T )

n

∑
i=1

∥Λmci(0)∥2
L2 =∶ LT . (167)

Now, choosing τ(t) = 1
2 min{D1, ...,Dn} t, and putting (147), (152), (164) and (166) together, we obtain

the energy inequality
d

dt
[
n

∑
i=1

∥eτΛΛmci∥2
L2] ≲ [1 +

n

∑
i=1

∥eτΛΛmci∥2
L2]

3

(168)

from which we deduce the boundedness of the Gevrey norm
n

∑
i=1

∥eτΛΛmci∥2
L2 ≤ 2(1 +

n

∑
i=1

∥eτ(0)ΛΛmci(0)∥2
L2) = 2(1 +

n

∑
i=1

∥Λmci(0)∥2
L2) (169)

on a short time interval [0, T0], where T0 depends on the initial magnitude in L2 of eτΛΛmci, which is
simply the Hm norm of ci. In particular, we may choose T0 to just be a function of parameters and LT from
(167). This yields local Gevrey regularity. To extend Gevrey regularity to a longer interval, we take this
time τ(t) = 1

2 min{D1, ...,Dn}(t − T0
2 ) and obtain from (168) the following bound

n

∑
i=1

∥eτΛΛmci∥2
L2 ≤ 2(1 +

n

∑
i=1

∥eτ(T0/2)ΛΛmci(T0/2)∥2
L2) = 2(1 +

n

∑
i=1

∥Λmci(T0/2)∥2
L2) (170)

on the interval [T0/2, T0/2 + T1], where T1 depends on the Hm norms of ci at time T0/2. However, due
to the uniform bound (167), we may choose T1 = T0. Thus, we have Gevrey regularity on the interval
[0,3T0/2], and in the same manner we extend to the whole interval [0, T ]. Based on this construction, we
see that the radius of analyticity τ is bounded below by 1

2 min{D1, ...,Dn}t on the interval [0, T0] and then
bounded below by 1

2 min{D1, ...,Dn}T02 on [T0, T ]. This ends the proof of Theorem 4.
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