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ABSTRACT. We consider long time dynamics of solutions of 2D periodic Nernst-Planck-Navier-Stokes sys-
tems forced by body charges and body forces. We show that, in the absence of body charges, but in the presence
of fluid body forces, the charge density of the ions converges exponentially in time to zero, and the ion con-
centrations converge exponentially in time to equal time independent constants. This happens while the fluid
continues to be dynamically active for all time. In the general case of body charges and body forces, the
solutions converge in time to an invariant finite dimensional compact set in phase space.

1. INTRODUCTION

Electrodiffusion of ions in fluids, described by the Nernst-Planck-Navier-Stokes (NPNS) equations [12],
is a broad subject, extensively studied in the chemical-physics, bio-physics and engineering literature. From
mathematical point of view, the Nernst-Planck system without added charges and without fluid possesses
global smooth solutions which converge to unique stationary states in bounded domains in two dimensions
[2, 3, 10]. These results are obtained in situations in which boundaries are impermeable to the ions, where
the relevant blocking boundary conditions require the vanishing of the normal fluxes of ions through the
boundary. The NPNS system with blocking boundary conditions and with no applied voltage at the boundary
is globally well posed in 2D [15]. Furthermore, the NPNS system was proved to have globally smooth and
stable solutions in 2D with blocking boundary conditions and nonzero applied voltage [5]. In [16], weak
solutions in three dimensions were shown to exist for homogeneous Neumann boundary conditions for the
potential. Recently, in [11], the authors established the existence of weak solutions in the whole space,
Ω = R3. All these results concern situations without forcing in which there is a unique stable stationary
solution.

Numerical simulations [14, 17] and experiments [13] show that instabilities occur in regimes when the
system is forced. The lack of stability was suggested to lead to chaotic, and even turbulent behavior [9],
analogous to fluid turbulence.

In this paper we consider the issue of long time dynamics of solutions of the NPNS system with forcing
of two kinds: added charges and fluid body forces. Two ionic species, with concentrations c1 and c2, with
valences z1 = 1 and z2 = −1 respectively, and with equal diffusivities D > 0, evolve according the Nernst-
Planck equations

(∂t + u ⋅ ∇)ci =Ddiv(∇ci + zici∇Φ), (1)
i = 1,2. The ionic species concentrations ci(x, t) are nonnegative functions of the two variables, position x
and time t. The potential Φ obeys the Poisson equation

− ε∆Φ = ρ +N (2)

driven by the charge density
ρ = c1 − c2 (3)

and by the added charge density N , which we take smooth and time independent. The constant ε > 0
is proportional to the square of the Debye length. The velocity u of the fluid obeys the Navier-Stokes
equations

∂tu + u ⋅ ∇u − ν∆u +∇p = −(ρ +N)∇Φ + f (4)
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with the divergence free condition

∇ ⋅ u = 0. (5)

The variable p represents the pressure. The positive constant ν is the kinematic viscosity. The body forces f
are time independent, smooth, and divergence free. We consider the NPNS system in the two dimensional
periodic domain

T2
= [−π,π] × [−π,π] (6)

with periodic boundary conditions.
Our main results are as follows. In the absence of forcing of any kind (f = N = 0), we prove that solutions

are global and regular. The velocity converges exponentially in time to zero, the concentrations converge
exponentially in time to equal constant values and the charge density converges exponentially in time to
zero. In the case of body forces, but in the absence of added charge densities (f ≠ 0, N = 0), we prove that
the solutions are global, regular and the ionic concentrations still converge exponentially in time to equal
constant values, while the charge density converges exponentially in time to zero. This is interesting in
view of the fact that the Navier-Stokes evolution is forced and the velocity does not cease to be dynamically
active. In all cases of forced equations, including f ≠ 0 and N ≠ 0, we prove that all solutions converge in
time to a global attractor, which is an invariant compact set in phase space with finite Hausdorff and fractal
dimension.

The paper is organized as follows. Section 2 is devoted to preliminaries. We describe the asymptotic
behavior of eigenvalues of the dissipative operator A = (νA,−D∆,−D∆), where A is the Stokes operator
and ∆ is the Laplacian. We recall a Gronwall lemma that gives, under suitable assumptions, exponentially
decaying bounds. In section 3, we prove, as in [6], that

∫

T

0
∫
T2

(∣c1(x)∣
2
+ ∣c2(x)∣

2)dxdt < ∞, (7)

for all T > 0 is a necessary and sufficient condition for the persistence of global regular solutions of the
NPNS system (1)–(5). Under condition (7), the nonnegativity of the initial ionic concentrations is preserved
for all positive times. In section 4, we discuss the case where no body forces f are present in the fluid
and no added charge densities N take part in generating the electric field. We prove that the concentrations
decay exponentially in all Lp spaces (p ∈ [2;∞)) independently of the velocity u, implying, together with
the exponential decay of the Lp norms of u, the existence of a single point attractor. We prove further that
the solutions decay exponentially in H2. In section 5, we consider added body forces, and we establish that
the concentrations converge exponentially to equal constant steady states, and the charge density vanishes
in the limit of large times. We address the evolution of the system in a phase space corresponding to strong
solutions (H1). We show that there exists a compact set (a ball in a the stronger norm H2) which is an
absorbing ball. This means that starting from any initial data w0 in phase space, there exists a time t0,
depending locally uniformly on the norm of the initial data in the phase space, such that solution S(t)w0

belongs to the absorbing ball for times larger than t0. We study further the properties of the nonlinear
solution map S(t) corresponding to the NPNS system. We establish Lipschitz continuity of S(t) in various
norms, including a smoothing property for positive times (see Theorem 5). We prove the injectivity of the
solution map S(t) in Appendix A. Exponential decay of volume elements is proved in Appendix B. The
existence of a finite dimensional global attractor is thus established for the case N = 0, f ≠ 0. The global
attractor is a set which is invariant under the solution map, and such that all solutions converge to it as time
tends to infinity. In section 6 we treat the general case with an added charge density N . In this case the
concentrations and the charge density are no longer convergent in time, but we still obtain the properties of
existence of a compact absorbing ball, Lipschitz continuity and smoothing properties of the solution map.
The injectivity and decay of volume elements are valid as well, and we obtain the existence of a global
attractor with finite Hausdorff and fractal dimension.
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2. PRELIMINARIES

We consider the Hilbert space

H =H ⊕L2
⊕L2 (8)

where H is the space of L2 periodic vector fields which are divergence free and have mean zero. We define

Aw = (νAu,−D∆c1,−D∆c2) (9)

where ∆ is the Laplacian operator with periodic boundary conditions on T2, and A = P(−∆) is the Stokes
operator. Here, P denotes the Leray-Hopf projector. We recall that P and −∆ commute on T2. The domain
of definition of A is

D(A) = (H2
∩H) ⊕H2

⊕H2. (10)

By the spectral theorem for Hilbert spaces, and since 0 is not an eigenvalue, there is an orthonormal ba-
sis of H formed by a sequence of eigenvectors ωk of A with corresponding eigenvalues µk counted with
multiplicity such that 0 < µ1 ≤ µ2 ≤ ⋅ ⋅ ⋅ ≤ µk →∞.

Proposition 1. There exists a constant C > 0 such that µk ≥ Ck for all k ≥ 1.

Proof. We denote by {λj} the eigenvalues of −∆ with periodic boundary conditions on T2 counted with
multiplicity, 0 < λ1 ≤ λ2 ≤ . . . . There exists a constant c > 0 such that j ≤ cλj for all j ∈ N, and {νλj} and
{Dλj} are the eigenvalues of νA and D(−∆) respectively counted with multiplicity. We write

{µi ∶ i = 1, . . . ,N} = {νλi ∶ i = 1, . . . , j} ∪ {Dλi ∶ i = 1, . . . , k} (11)

and we note that if µN = νλj , then j ≤ c
νµN , whereas if µN = Dλk, then k ≤ c

DµN . Consequently,
N = j + k ≤ c ( 1

ν +
1
D
)µN , which completes the proof of the lemma.

We use the following Poincaré inequality for Lp spaces [8]:

Proposition 2. Let p = 2m, m ≥ 1, 0 ≤ α ≤ 2, and let q ∈ C∞ have zero mean on T2. Then

∫
T2
qp−1

(x)Λαq(x)dx ≥
1

p
∥Λα/2(qp/2)∥2

L2 + λ∥q∥
p
Lp (12)

holds, with an explicit constant λ > 0, which is independent of p.

We recall a uniform Gronwall lemma [1].

Lemma 1. Let y(t) ≥ 0 obey a differential inequality

d

dt
y + c1y ≤ F1 + F (t)

with initial datum y(0) = y0 with F1 a nonnegative constant, and F (t) ≥ 0 obeying

t+1

∫
t

F (s)ds ≤ g0e
−c2t + F2

where c1, c2, g0 are positive constants and F2 is a nonnegative constant. Then

y(t) ≤ y0e
−c1t + g0e

c1+c(t + 1)e−ct +
1

c1
F1 +

ec1

1 − e−c1
F2

holds with c = min{c1, c2}.
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3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We consider the system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u ⋅ ∇u +∇p = ν∆u − (ρ +N)∇Φ + f

∇ ⋅ u = 0

ρ = c1 − c2

−ε∆Φ = ρ +N

∂tc1 + u ⋅ ∇c1 =D∆c1 +D∇ ⋅ (c1∇Φ)

∂tc2 + u ⋅ ∇c2 =D∆c2 −D∇ ⋅ (c2∇Φ)

(13)

in T2 × [0,∞), where ν,D, ε are positive constants. The body forces f are smooth, divergence free, time
independent, and have mean zero. The added charge densityN is smooth and time independent. We assume
that the initial fluid velocity u0 has mean zero. We also assume that the initial concentrations c1(x,0) and
c2(x,0) have space averages c̄1 and c̄2 satisfying

c̄2 − c̄1 = N̄ (14)

where N̄ is the space average of the charge density N .

Remark 1. We note that ρ maintains a space average equal to −N̄ whereas u maintains a space average
equal to zero for all t ≥ 0. This follows by integrating the equations satisfied by ρ and u and by using

∫ (ρ +N)∇Φ = −
1

ε
∫ (ρ +N)∇Λ−2

(ρ +N) = −
1

ε
∫ Λ−1/2

(ρ +N)RΛ−1/2
(ρ +N) = 0 (15)

where the last equality holds because the Riesz operator R = ∇Λ−1 is antisymmetric.

We use the following convention regarding constants: we denote by C a positive constant that might
depend on the parameters of the problem or universal constants, CN a positive constant depending, in
addition, on the charge density N . Following the same pattern, we denote by CN,f a constant depending on
N and f . These constants may change from line to line along the proofs.

Theorem 1. (Local Solution) Suppose u0 ∈ H1 and ci(0) ∈ L2. Then, there exists T0 depending on
∥u0∥H1 , ∥ci(0)∥L2 and the parameters of the problem such that system (13) has a unique solution such
that u ∈ L∞(0, T ;H1) ∩L2(0, T ;H2) and ci ∈ L∞(0, T ;L2) ∩L2(0, T ;H1) on [0, T0].

Proof. We start by taking the L2 inner product of the equation satisfied by u with −∆u. We use the identity

Tr(GTG2
) = 0 (16)

for the two-by-two traceless matrix G with entries Gij = ∂ui
∂xj

, and we obtain

1

2

d

dt
∥∇u∥2

L2 + ν∥∆u∥
2
L2 = ∫ (ρ +N)∇Φ ⋅∆u − ∫ f∆u. (17)

In view of Hölder’s, Ladyzhenskaya’s, Poincaré’s, and Young’s inequalities, we have

∫ (ρ +N)∇Φ ⋅∆u ≤ ∥ρ +N∥L2∥∇Φ∥L∞∥∆u∥L2

≤ C∥∆u∥L2[∥ρ∥L2 + ∥N∥L2][∥ρ∥L4 + ∥N∥L4]

≤
ν

4
∥∆u∥2

L2 +
D

8
∥∇ρ∥2

L2 +C∥ρ∥6
L2 +CN . (18)

and consequently, we obtain the differential inequality

d

dt
∥∇u∥2

L2 + ν∥∆u∥
2
L2 ≤

D

4
∥∇ρ∥2

L2 +C∥ρ∥6
L2 +CN,f (19)
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Let σ = c1 + c2. Then, σ and ρ obey the system
⎧⎪⎪
⎨
⎪⎪⎩

∂tσ + u ⋅ ∇σ =D∆σ +D∇ ⋅ (ρ∇Φ)

∂tρ + u ⋅ ∇ρ =D∆ρ +D∇ ⋅ (σ∇Φ).
(20)

Taking the L2 inner product of the first equation with σ and of the second equation with ρ, adding them, and
noting that

∣∫ ρ∆Φσ∣ ≤ C∥ρ∥L4∥σ∥L4∥ρ +N∥L2 ≤
D

2
[∥∇ρ∥2

L2 + ∥∇σ∥2
L2] +C∥σ∥4

L2 +C∥ρ∥4
L2 +CN (21)

by Ladyzhenskaya’s and Young’s inequalities, we obtain the differential inequality
d

dt
(∥σ∥2

L2 + ∥ρ∥2
L2) +D(∥∇σ∥2

L2 + ∥∇ρ∥2
L2) ≤ C[∥σ∥4

L2 + ∥ρ∥4
L2] +CN . (22)

Let
M(t) = ∥∇u∥2

L2 + ∥ρ∥2
L2 + ∥σ∥2

L2 . (23)
Adding (22) to (19), we obtain

M ′
(t) +

D

2
(∥∇σ(t)∥2

L2 + ∥∇ρ(t)∥2
L2) + ν∥∆u(t)∥

2
L2 ≤ CM(t)3

+CN,f . (24)

This latter differential inequality gives short time control of the desired norms. For uniqueness, suppose
(u1, c

1
1, c

1
2) and (u2, c

2
1, c

2
2) are two solutions of (13). Let ρ1 = c

1
1−c

1
2, ρ2 = c

2
1−c

2
2, σ1 = c

1
1+c

1
2, σ2 = c

2
1+c

2
2.

We write u = u1 − u2, ρ = ρ1 − ρ2 and σ = σ1 − σ2. Then u, ρ and σ obey the system
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂tu + u1 ⋅ ∇u1 − u2 ⋅ ∇u2 +∇(p1 − p2) = ν∆u − [ρ1∇Φ1 − ρ2∇Φ2]

∂tρ + u1 ⋅ ∇ρ1 − u2 ⋅ ∇ρ2 =D∆ρ +D∇ ⋅ (σ1∇Φ1 − σ2∇Φ2)

∂tσ + u1 ⋅ ∇σ1 − u2 ⋅ ∇σ2 =D∆σ +D∇ ⋅ (ρ1∇Φ1 − ρ2∇Φ2)

(25)

We take the L2 inner product of the first equation of (25) with u to obtain
1

2

d

dt
∥u∥2

L2 + ν∥∇u∥
2
L2 = −∫ (u1 ⋅ ∇u1 − u2 ⋅ ∇u2) ⋅ u dx − ∫ (ρ1∇Φ1 − ρ2∇Φ2) ⋅ u dx. (26)

We estimate the term

∣∫ (u1 ⋅ ∇u1 − u2 ⋅ ∇u2) ⋅ u dx∣ = ∣∫ [u ⋅ ∇u1 + u2 ⋅ ∇u] ⋅ u dx∣

≤ C∥u∥
3/2

L2 ∥∇u∥
1/2

L2 ∥∇u1∥
1/2

L2 ∥∆u1∥
1/2

L2 (27)

using Ladyzhenskaya’s inequality. In view of elliptic regularity

∥∇Φ∥L∞ ≤ C∥ρ∥L4 , (28)

we have

∣∫ (ρ1∇Φ1 − ρ2∇Φ2) ⋅ u dx∣ = ∣∫ [ρ∇Φ1 + ρ2∇Φ] ⋅ u dx∣

≤ C[∥∇Φ1∥L∞∥ρ∥L2∥u∥L2 + ∥ρ2∥L2∥ρ∥
1/2

L2 ∥∇ρ∥
1/2

L2 ∥u∥L2]. (29)

Now, we take the L2 inner product of the second equation of (25) with ρ, and we get
1

2

d

dt
∥ρ∥2

L2 +D∥∇ρ∥2
L2 = −∫ (u1 ⋅ ∇ρ1 − u2 ⋅ ∇ρ2)ρ +D∫ ∇ ⋅ (σ1∇Φ1 − σ2∇Φ2)ρ. (30)

We have

∣∫ (u1 ⋅ ∇ρ1 − u2 ⋅ ∇ρ2)ρ∣ = ∣∫ [u ⋅ ∇ρ1 + u2 ⋅ ∇ρ]ρ∣

≤ C∥∇ρ1∥L2∥u∥
1/2

L2 ∥∇u∥
1/2

L2 ∥ρ∥
1/2

L2 ∥∇ρ∥
1/2

L2 (31)
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and

∣∫ ∇ ⋅ (σ1∇Φ1 − σ2∇Φ2)ρ∣ ≤ C [∥∇Φ1∥L∞∥σ∥L2∥∇ρ∥L2 + ∥σ2∥L2∥ρ∥
1/2

L2 ∥∇ρ∥
3/2

L2 ] . (32)

Finally, we take the L2 inner product of the third equation of (25) with σ to obtain

1

2

d

dt
∥σ∥2

L2 +D∥∇σ∥2
L2 = −∫ (u1 ⋅ ∇σ1 − u2 ⋅ ∇σ2)σ +D∫ ∇ ⋅ (ρ1∇Φ1 − ρ2∇Φ2)σ. (33)

We estimate the first term on the right hand side of (33) as in (31). For the second term, as in (32), we have

∣∫ ∇ ⋅ (ρ1∇Φ1 − ρ2∇Φ2)σ dx∣ ≤ C [∥∇Φ1∥L∞∥ρ∥L2∥∇σ∥L2 + ∥ρ2∥L2∥ρ∥
1/2

L2 ∥∇ρ∥
1/2

L2 ∥∇σ∥L2] . (34)

Putting (26)–(34) together, and applying Young’s inequality, we obtain a differential inequality of the form

d

dt
[∥u∥2

L2 + ∥ρ∥2
L2 + ∥σ∥2

L2] ≤ CC(t) [∥u∥2
L2 + ∥ρ∥2

L2 + ∥σ∥2
L2] (35)

where

C(t) = ∥∇u1∥
2/3

L2 ∥∆u1∥
2/3

L2 + ∥∇ρ1∥
2
L2 + ∥∇σ1∥

2
L2 + ∥ρ1 +N∥

2
L3 + ∥σ2∥

4
L2 + ∥ρ2∥

4
L2 + 1. (36)

Since
t

∫

0

C(s)ds < ∞. (37)

for any t ∈ [0, T0], we obtain uniqueness.
Theorem 1 shows existence of local solutions. The calculations can be done rigorously using Galerkin

approximations. Namely, we consider an orthonormal basis of L2 consisting of the eigenfunctions {Φk}
∞
k=1

of the Stokes operator

−∆Φk +∇ξk = µkΦk (38)

with periodic boundary condition on T2, and such that

∇ ⋅Φk = 0 ∀k ∈ N. (39)

The functions Φk are C∞, divergence free, and have mean zero. We also consider an orthonormal basis of
L2 consisting of the eigenfunctions {wk}

∞
k=1 of the Laplacian operator

−∆wk = λkwk (40)

with periodic boundary condition on T2. The functions wk are C∞ and have mean zero. Let

un = Pnu =
n

∑
k=1

(u,Φk)HΦk (41)

and

cin = Pnci =
n

∑
k=1

(ci,wk)L2wk + c̄i =
n

∑
k=0

(ci,wk)L2wk (42)

be the Galerkin approximations of u and ci for i ∈ {1,2}. Here, c̄i is the constant average of ci over T2, and
w0 = 1/2π. We fix m and n, and we replace u, c1 and c2 in (13) by un, c1

n and c2
n respectively. We test the

equation for un with each of the functions Φi and the equations for c1
n and c2

n with each of the functions wi.
This gives a system of nonlinear ODE’s for the coefficients of the Galerkin approximations. A solution of
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this latter system exists if it is bounded in some norm. To show that, we multiply the equations of this latter
system by Φi and wi correspondingly and we sum. We obtain the approximate system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tun + Pn(un ⋅ ∇un) − ν∆un = −Pn((ρn + PnN)∇Φn) + Pnf
∂tc

1
n + Pn(un ⋅ ∇c1

n) −D∆c1
n =DPn(∇ ⋅ (c1

n∇Φn))

∂tc
2
n + Pn(un ⋅ ∇c2

n) −D∆c2
n =DPn(∇ ⋅ (c2

n∇Φn))

−ε∆Φn = ρn + PnN
ρn = c

1
n − c

2
n

(43)

with un(0) = Pnu0, c
i
n(0) = Pnci(0), i = 1,2. Since the Φk’s and the wk’s are C∞, the Galerkin appoxi-

mants are smooth functions, and so we can find a priori estimates by taking suitable scalar products in L2

and integrating in time. Then, we pass to the limit via the Aubin-Lions lemma.

Theorem 2. Let u0 ∈ H
1 and ci(0) ∈ H1. Let T > 0. Suppose (u, c1, c2) solves (13) on the interval [0, T ]

with
T

∫

0

(∥c1(t)∥
2
L2 + ∥c2(t)∥

2
L2)dt < ∞. (44)

Then, u ∈ L∞(0, T ;H1) ∩L2(0, T ;H2) and ci ∈ L∞(0, T ;H1) ∩L2(0, T,H2).

Proof. The following calculations can be done rigorously using Galerkin approximations.
The differential inequality (22) gives

d

dt
(∥σ∥2

L2 + ∥ρ∥2
L2) ≤ C(∥σ∥2

L2 + ∥ρ∥2
L2)

2
+CN . (45)

Thus, under the assumption (44), we obtain that ci ∈ L∞(0, T ;L2)∩L2(0, T ;H1). Moreover, the differential
inequality (19) allows us to conclude that u ∈ L∞(0, T ;H1) ∩L2(0, T ;H2).

Now, we taking the L2 inner product of the equation satisfied by ρ in (20) with −∆ρ, and we obtain the
equation

1

2

d

dt
∥∇ρ∥2

L2 +D∥∆ρ∥2
L2 = ∫ (u ⋅ ∇ρ)∆ρ −D∫ ∇ ⋅ (σ∇Φ)∆ρ. (46)

We estimate

∣∫ σ∆Φ∆ρ∣ ≤
1

4
∥∆ρ∥2

L2 +C∥σ∥2
L2∥∇σ∥

2
L2 +C∥∇ρ∥4

L2 +CN , (47)

∣∫ (∇σ ⋅ ∇Φ)∆ρ∣ ≤
1

4
∥∆ρ∥2

L2 +C∥∇ρ∥4
L2 +C∥∇σ∥4

L2 +CN (48)

and

∣∫ (u ⋅ ∇ρ)∆ρ∣ = ∣∫ ∇u∇ρ∇ρ∣ ≤
D

4
∥∆ρ∥2

L2 +C∥∇u∥2
L2∥∇ρ∥

2
L2 (49)

where we used elliptic regularity together with Ladyzhenskaya’s inequality and Poincaré’s inequality applied
to the mean zero function ρ +N .

Finally, we take the L2 inner product of the equation obeyed by σ in (20) with −∆σ to get
1

2

d

dt
∥∇σ∥2

L2 +D∥∆σ∥2
L2 = ∫ (u ⋅ ∇σ)∆σ −D∫ ∇ ⋅ (ρ∇Φ)∆σ (50)

and proceeding in the same fashion as above, we obtain

∣∫ ρ∆Φ∆σ∣ ≤
1

4
∥∆σ∥2

L2 +C∥ρ∥4
L2 +C∥∇ρ∥4

L2 +CN , (51)

∣∫ (∇ρ ⋅ ∇Φ)∆σ∣ ≤
1

4
∥∆σ∥2

L2 +C∥∇ρ∥4
L2 +CN (52)
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and

∣∫ (u ⋅ ∇σ)∆σ∣ ≤
D

4
∥∆σ∥2

L2 +C∥∇u∥2
L2∥∇σ∥

2
L2 . (53)

Putting (46)–(53) together, we conclude that ci ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) with bounds depending
on the initial data and T .

Remark 2. Note that if we assume that u0 ∈ H2 and ci(0) ∈ H2, then the regularity of the solutions is
upgraded to u ∈ L∞(0, T0;H2) ∩L2(0, T0;H3) and ci ∈ L∞(0, T0;H2) ∩L2(0, T0,H

3).

Remark 3. Under the conditions of Theorem 2, if ci(0) ≥ 0, then ci(t) ≥ 0 for 0 ≤ t ≤ T (see [5]).

4. NPNS SYSTEM WITHOUT BODY FORCES NOR CHARGE DENSITIES

In this section, we treat the case where f = N = 0. We consider the system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u ⋅ ∇u +∇p = ν∆u − ρ∇Φ

∇ ⋅ u = 0

ρ = c1 − c2

−ε∆Φ = ρ

∂tc1 + u ⋅ ∇c1 =D∆c1 +D∇ ⋅ (c1∇Φ)

∂tc2 + u ⋅ ∇c2 =D∆c2 −D∇ ⋅ (c2∇Φ)

(54)

in T2 × [0,∞). We prove global regularity and asymptotic behavior of solutions. We start with a priori L2

bounds.

Proposition 3. Let u0 ∈ H,ci(0) ∈ L
2. We assume that ci(t) ≥ 0 holds for all t ≥ 0. Then, there exists an

absolute constant C > 0 such that

∥σ(t) − σ̄∥2
L2 + ∥ρ(t)∥2

L2 ≤ (2∥σ0∥
2
L2 + 2∥σ̄∥2

L2 + ∥ρ0∥
2
L2)e

−2CDt (55)

holds for all t ≥ 0. Moreover,
t+T

∫
t

(∥∇ρ(s)∥2
L2 + ∥∇σ(s)∥2

L2 +
1

ε
∥ρ(s)∥3

L3)ds ≤
1

2D
(2∥σ0∥

2
L2 + 2∥σ̄∥2

L2 + ∥ρ0∥
2
L2)Te

−2CDt (56)

holds for any t ≥ 0, T > 0.

Proof. We recall that σ and ρ obey
⎧⎪⎪
⎨
⎪⎪⎩

∂tσ + u ⋅ ∇σ =D∆σ +D∇ ⋅ (ρ∇Φ)

∂tρ + u ⋅ ∇ρ =D∆ρ +D∇ ⋅ (σ∇Φ).
(57)

We take the L2 inner product of the first equation of system (57) with σ and of the second equation with ρ,
we add them and we use the fact that

∫ ρ∆Φσ = −
1

ε
∫ σ(ρ)2 (58)

and that ci ≥ 0 for i = 1,2, to obtain the differential inequality
d

dt
(∥σ − σ̄∥2

L2 + ∥ρ∥2
L2) + 2D(∥∇σ∥2

L2 + ∥∇ρ∥2
L2) +

2D

ε
∥ρ∥3

L3 ≤ 0. (59)

In view of Poincaré’s inequality, we get (55). Going back to (59) and integrating, we obtain (56).

Theorem 3. Let u0 ∈ H1 be divergence free, and let ci(0) ∈ H1 be nonnegative ci(0) ≥ 0. Let T >

0. Then there exists a unique solution (u, c1, c2) satisfying u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) and ci ∈
L∞(0, T ;H1) ∩L2(0, T,H2). Moreover ci(t) ≥ 0 holds on [0, T ].
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Proof. By the local existence theorem (Theorem 1) there exists T0 > 0 depending only on the norms of
initial data in H1 such that the solution exists and belongs to H1. The condition (44) holds, and therefore,
by Remark 3 ci(t) ≥ 0. The inequality (59) is valid on [0, T0]. By Theorem 2 the solution is bounded inH1.
We apply the local existence theorem again, starting from T0, and deduce that the solution can be extended
for T1 > T0. The inequality (59) holds on [0, T1]. Because the inequality (59) holds as long as ci ≥ 0,
reasoning by contradiction we see that the solution extends to the whole interval [0, T ].

Corollary 1. Under the assumptions of Proposition 3 there exists a positive constant a = a(D,ν) depending
on D and ν, and a positive constant A = A(∥ρ0∥L2 , ∥σ0∥L2 , ∥u0∥L2) depending on ∥ρ0∥L2 , ∥σ0∥L2 , ∥u0∥L2 ,
the parameters of the problem and universal constants, such that

∥u(t)∥L2 ≤ Ae−at (60)

holds for all t ≥ 0.

Proof. We take the L2 inner product of the first equation in (54) with u, and we get
1

2

d

dt
∥u∥2

L2 + ν∥∇u∥
2
L2 = −∫ ρ∇Φ ⋅ u. (61)

We estimate

∣∫ ρ∇Φ ⋅ u dx∣ ≤ ∥ρ∥L2∥∇Φ∥L∞∥u∥L2 ≤ C∥ρ∥L2∥ρ∥L3∥u∥L2 (62)

and thus, we obtain the differential inequality
d

dt
∥u∥L2 + ν∥u∥L2 ≤ C∥ρ∥L2∥ρ∥L3 . (63)

By Proposition 3 and Lemma 1, using (56), we obtain (60).

Remark 4. In the case f = N = 0, the global attractor exists and is the singleton (0, σ̄/2, σ̄/2). That is, for
all initial data, the solution (u, c1, c2) converges to (0, σ̄/2, σ̄/2).

Proposition 4. Let u0 ∈ H1 and ci(0) ∈ H1. Let p > 2. Then, there exist positive constants a1, a2 de-
pending on D, ε, σ̄, and λ (the constant in Proposition 2), and positive constants Cp1(∥ρ0∥Lp , ∥σ0∥L2) and
Cp2(∥σ0∥Lp , ∥ρ0∥L2) depending on the corresponding initial data, σ̄, p and universal constants, such that

∥ρ(t)∥Lp ≤ C
p
1e

−a1t (64)

and
∥σ(t) − σ̄∥Lp ≤ C

p
2e

−a2t (65)
hold for all t ≥ 0.

Proof. The equation (57) for ρ is equivalent to

∂tρ + u ⋅ ∇ρ +
Dσ̄

ε
ρ −D∆ρ =D∇ ⋅ ((σ − σ̄)∇Φ). (66)

Taking the L2 inner product of equation (66) with ρ∣ρ∣p−2 gives
1

p

d

dt
∥ρ∥pLp +

Dσ̄

ε
∥ρ∥pLp +D(p − 1)∫ ∣∇ρ∣2∣ρ∣p−2dx = −D(p − 1)∫ (σ − σ̄)∇Φ ⋅ ∣ρ∣p−2

∇ρ. (67)

By Hölder’s inequality with exponents 2, p, 2p/(p-2), followed by Young’s inequality, we get

∣∫ (σ − σ̄)∇Φ ⋅ ∣ρ∣p−2
∇ρ∣ ≤ ∥∇Φ∥L∞∥∣ρ∣

p−2
2 ∇ρ∥L2∥σ − σ̄∥Lp∥∣ρ∣

p−2
2 ∥

L
2p
p−2

≤
1

2
∥∣ρ∣

p−2
2 ∇ρ∥2

L2 +
1

2
∥∇Φ∥

2
L∞∥σ − σ̄∥2

Lp∥ρ∥
p−2
Lp . (68)

In view of the Gagliardo-Nirenberg inequality, we have

∥σ − σ̄∥Lp ≤ Cp∥σ − σ̄∥
p−2
p

H1 ∥σ − σ̄∥
2
p

L2 (69)
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where Cp is a constant that depends on p. Therefore, we get the differential inequality

d

dt
∥ρ∥2

Lp +
2Dσ̄

ε
∥ρ∥2

Lp ≤ C
2
pD(p − 1)∥∇Φ∥

2
L∞∥σ − σ̄∥

2(p−2)
p

H1 ∥σ − σ̄∥
4
p

L2 . (70)

If p = 3, then elliptic regularity, an application of Young’s inequality with exponents 3, 3/2 and Poincaré
inequality imply that

∥∇Φ∥
2
L∞∥σ − σ̄∥

2
3

H1∥σ − σ̄∥
4
3

L2 ≤ C (∥ρ∥3
L3∥σ − σ̄∥L2 + ∥∇σ∥2

L2∥σ − σ̄∥
2
L2) . (71)

In view of (56), (70) and Lemma 1, we obtain (64) for p = 3.
Now, we go back to the differential inequality (70). We estimate

∥∇Φ∥
2
L∞∥σ − σ̄∥

2(p−2)
p

H1 ∥σ − σ̄∥
4
p

L2 ≤ C∥ρ∥2
L3∥∇σ∥

2
L2 (72)

where we have used elliptic regularity and Poincaré’s inequality. Therefore, (70) and an application of
Lemma 1 give (64) for any p > 2.

Next, we note that the equation satisfied by σ − σ̄ is given by

∂t(σ − σ̄) + u ⋅ ∇(σ − σ̄) =D∆(σ − σ̄) +D∇ ⋅ (ρ∇Φ). (73)

We take the L2 inner product of equation (73) with (σ − σ̄)∣σ − σ̄∣p−2 and we get the equation

1

p

d

dt
∥σ − σ̄∥pLp −D∫ ∣σ − σ̄∣p−2

(σ − σ̄)∆(σ − σ̄)dx = −D∫ ρ∇Φ ⋅ ∇((σ − σ̄)∣σ − σ̄∣p−2
)dx (74)

By Hölder’s inequality with exponents 2, p, 2p/(p-2), followed by Young’s inequality, we obtain

∣∫ ρ∇Φ ⋅ ∇((σ − σ̄)∣σ − σ̄∣p−2
)dx∣ ≤ (p − 1)∥∇Φ∥L∞∥ρ∥Lp∥∣σ − σ̄∣

p−2
2 ∥

L
2p
p−2

∥∣σ − σ̄∣
p−2
2 ∇(σ − σ̄)∥L2

≤ (p − 1) [
1

2
∥∣σ − σ̄∣

p−2
2 ∇(σ − σ̄)∥2

L2 +
1

2
∥∇Φ∥

2
L∞∥ρ∥2

Lp∥σ − σ̄∥
p−2
Lp ] .

Thus, we have the differential inequality

1

p

d

dt
∥σ − σ̄∥pLp +

D(p − 1)

2
∫ ∣∇(σ − σ̄)∣2∣σ − σ̄∣p−2dx ≤

D(p − 1)

2
∥∇Φ∥

2
L∞∥ρ∥2

Lp∥σ − σ̄∥
p−2
Lp . (75)

We note that

D(p − 1)∫ ∣∇(σ − σ̄)∣2∣σ − σ̄∣p−2dx = −D∫ ∣σ − σ̄∣p−2
(σ − σ̄)∆(σ − σ̄) ≥Dλ∥σ − σ̄∥pLp (76)

if p is an even number greater than 2. This follows from Proposition 2. Thus, for any even number p > 2,

d

dt
∥σ − σ̄∥2

Lp +Dλ∥σ − σ̄∥
2
Lp ≤D(p − 1)∥ρ∥2

L3∥ρ∥
2
Lp . (77)

In view of Lemma 1, we obtain (65) for any even number p > 2. An Lp estimate when p is not even can be
obtained by an application of Hölder’s inequality.

Proposition 5. Let u0 ∈H
2, ci(0) ∈H

2. Then, there exist positive constants c3, c4, c5, c6 depending onD, ε
and ν, and positive constants C3,C4,C5,C6 depending on the initial data ∥u0∥H2 , ∥c1(0)∥H2 , ∥c2(0)∥H2 ,
σ̄ and universal constants, such that

∥∇u(t)∥2
L2 ≤ C3e

−c3t, (78)

∥∇ρ(t)∥2
L2 + ∥∇σ(t)∥2

L2 ≤ C4e
−c4t, (79)

∥∆u(t)∥2
L2 ≤ C5e

−c5t, (80)
and

∥∆ρ(t)∥2
L2 + ∥∆σ(t)∥2

L2 ≤ C6e
−c6t (81)

hold for all t ≥ 0.
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Proof. We take the L2 inner product of the equation satisfied by u in (54) with −∆u, and we apply Hölder’s
and Young’s inequalities to get

d

dt
∥∇u∥2

L2 + ν∥∆u∥
2
L2 ≤ C∥ρ∥2

L3∥ρ∥
2
L2 (82)

and so we obtain (78) by an application of Lemma 1.
Now, we take the L2 inner product of equation (66) obeyed by ρ with −∆ρ and we estimate

∣∫ (σ − σ̄)∆Φ∆ρ∣ ≤ C∥∆ρ∥L2∥ρ∥
1/2

L2 ∥∇ρ∥
1/2

L2 ∥σ − σ̄∥
1/2

L2 ∥∇σ∥
1/2

L2 , (83)

∣∫ (∇σ ⋅ ∇Φ)∆ρ∣ ≤ C∥∆ρ∥L2∥∇σ∥L2∥ρ∥L3 (84)

and

∣∫ (u ⋅ ∇ρ)∆ρ∣ ≤ C∥∇ρ∥
1/2

L2 ∥∆ρ∥
3/2

L2 ∥∇u∥L2 (85)

in view of Ladyzhenskaya’s inequality. This gives

d

dt
∥∇ρ∥2

L2 +D∥∆ρ∥2
L2 ≤ C [(∥ρ∥2

L2 + ∥∇u∥4
L2)∥∇ρ∥

2
L2 + (∥ρ∥2

L3 + ∥σ − σ̄∥2
L2)∥∇σ∥

2
L2] . (86)

Next, we take the L2 inner product of the equation satisfied by σ, and proceeding as above, we obtain

d

dt
∥∇σ∥2

L2 +D∥∆σ∥2
L2 ≤ C [(∥ρ∥2

L2 + ∥ρ∥2
L3)∥∇ρ∥

2
L2 + ∥∇u∥4

L2∥∇σ∥
2
L2] . (87)

Adding (87) to (86) and using (56), we obtain (79).
Then, we apply −∆ to the equation obeyed by u in (54) and we take the L2 inner product of the resulting

equation with −∆u. We obtain

1

2

d

dt
∥∆u∥2

L2 + ν∥∇∆u∥2
L2 = −∫ ∆(u ⋅ ∇u) ⋅∆u − ∫ ∆(ρ∇Φ) ⋅∆u. (88)

In view of Ladyzehsnkaya’s inequality, we have

∣∫ ∆(u ⋅ ∇u) ⋅∆u∣ ≤ C∥∇∆u∥L2∥∇u∥L2∥∆u∥L2 . (89)

Moreover,

∣∫ ∆(ρ∇Φ) ⋅∆u∣ ≤ C∥∇∆u∥L2(∥ρ∥L2∥∇ρ∥L2 + ∥ρ∥L3∥∇ρ∥L2). (90)

Here we have used the fact that the Riesz transforms are bounded in L4, so

∥∇∇Φ∥L4 =
1

ε
∥∇∇Λ−2ρ∥L4 ≤ C∥ρ∥L4 . (91)

Consequently, we obtain

d

dt
∥∆u∥2

L2 + ν∥∇∆u∥2
L2 ≤ C [∥∇u∥2

L2∥∆u∥
2
L2 + ∥ρ∥2

L2∥∇ρ∥
2
L2 + ∥ρ∥2

L3∥∇ρ∥
2
L2] . (92)

In view of (82) and Lemma 1, we deduce (80).
Finally, we apply −∆ to the equations satisfied by ρ and σ in (57) and we take the L2 inner product of the

resulting equations with −∆ρ and −∆σ respectively. We obtain

1

2

d

dt
∥∆ρ∥2

L2 +
Dσ̄

ε
∥∆ρ∥2

L2 +D∥∇∆ρ∥2
L2 =D∫ ∆∇ ⋅ ((σ − σ̄)∇Φ)∆ρ − ∫ ∆(u ⋅ ∇ρ)∆ρ (93)

and
1

2

d

dt
∥∆σ∥2

L2 +D∥∇∆σ∥2
L2 =D∫ ∆∇ ⋅ (ρ∇Φ)∆σ − ∫ ∆(u ⋅ ∇σ)∆σ. (94)
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We estimate

∣∫ ∆(u ⋅ ∇ρ)∆ρ∣ ≤ ∥∇∆ρ∥L2∥∇u∥L4∥∇ρ∥L4

≤ C∥∇∆ρ∥L2∥∇u∥
1/2

L2 ∥∆u∥
1/2

L2 ∥∇ρ∥
1/2

L2 ∥∆ρ∥
1/2

L2 (95)

and similarly

∣∫ ∆(u ⋅ ∇σ)∆σ∣ ≤ C∥∇∆σ∥L2∥∇u∥
1/2

L2 ∥∆u∥
1/2

L2 ∥∇σ∥
1/2

L2 ∥∆σ∥
1/2

L2 . (96)

Now, we have

∣∫ ∆((σ − σ̄)∆Φ)∆ρ∣ ≤ ∥∇∆ρ∥L2 [∥∇σ∥L4∥∆Φ∥L4 + ∥σ − σ̄∥L4∥∇∆Φ∥L4]

≤ C∥∇∆ρ∥L2 [∥∇σ∥
1/2

L2 ∥∆σ∥
1/2

L2 ∥∇ρ∥L2 + ∥∇σ∥L2∥∇ρ∥
1/2

L2 ∥∆ρ∥
1/2

L2 ] (97)

whereas

∣∫ ∆(∇(σ − σ̄) ⋅ ∇Φ)∆ρ∣ ≤ ∥∇∆ρ∥L2 [∥∇∇σ∥L2∥∇Φ∥L∞ + ∥∇σ∥L4∥∇∇Φ∥L4]

≤ C∥∇∆ρ∥L2 [∥∆σ∥L2∥ρ∥L3 + ∥∇σ∥
1/2

L2 ∥∆σ∥
1/2

L2 ∥∇ρ∥L2] . (98)

Here, we have used the fact that the Riesz transforms are bounded in L2, and so

∥∇∇σ∥L2 = ∥∇Λ−1
∇Λ−1∆σ∥L2 ≤ C∥∆σ∥L2 (99)

Similarly, we have the bounds

∣∫ ∆(ρ∆Φ)∆σ∣ ≤ C∥∇∆σ∥L2 [∥∇ρ∥
1/2

L2 ∥∆ρ∥
1/2

L2 ∥∇ρ∥L2 + ∥∇ρ∥L2∥∇ρ∥
1/2

L2 ∥∆ρ∥
1/2

L2 ] (100)

and

∣∫ ∆(∇ρ ⋅ ∇Φ)∆σ∣ ≤ C∥∇∆σ∥L2 [∥∆ρ∥L2∥ρ∥L3 + ∥∇ρ∥
1/2

L2 ∥∆ρ∥
1/2

L2 ∥∇ρ∥L2] (101)

Putting (93)–(101) together, and applying Young’s and Poincaré’s inequalities, we have the differential
inequality

d

dt
(∥∆ρ∥2

L2 + ∥∆σ∥2
L2) +D(∥∇∆ρ∥2

L2 + ∥∇∆σ∥2
L2)

≤ C [(∥∆u∥2
L2 + ∥∇ρ∥2

L2 + ∥∇σ∥2
L2)∥∆ρ∥

2
L2 + (∥∆u∥2

L2 + ∥∇ρ∥2
L2)∥∆σ∥

2
L2] (102)

Consequently, (81) follows from (86), (87), and Lemma 1.
We denote by C0,γ the space of γ-Hölder continuous functions on T2 with the norm

∥v∥C0,γ = ∥v∥L∞ + sup
x,y∈T2,x≠y

∣v(x) − v(y)∣

∣x − y∣γ
. (103)

Corollary 2. Let u0 ∈H
2, ci(0) ∈H

2. Then, there exists a positive constant c8 depending on D, ε, ν, and a
positive constant C8 depending on ∥u0∥H2 , ∥ci(0)∥H2 , ∥ci(0)∥H2 , σ̄ and universal constants, such that

∥u(t)∥C0,1/2 + ∥ρ(t)∥C0,1/2 + ∥σ(t) − σ̄∥C0,1/2 ≤ C8e
−c8t (104)

holds for all t ≥ 0.

Proof. The estimate (104) follows from the bound

∥v∥C0,1/2 ≤ C∥v∥W 1,4 ≤ C[∥v∥L4 + ∥∇v∥L4] ≤ C[∥v∥
1/2

L2 ∥∇v∥
1/2

L2 + ∥∇v∥
1/2

L2 ∥∆v∥
1/2

L2 ], (105)

which holds for all v ∈W 1,4(T2) with mean zero, and from Proposition 5.
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Remark 5. In Proposition 4, we assumed that u0 ∈ H1, ci(0) ∈ H1 which guarantee by Theorem 3 the
global existence of solutions and the nonnegativity of the concentrations ci, and obtained the exponential
decay of the Lp norm of ρ and σ− σ̄. In Corollary 2, we have assumed higher regularity of the initial data to
get the exponential decay of the L∞ norm of u, ρ and σ − σ̄. However, if we assume in this latter corollary
that the initial data are only in H1, then from (86), (87), and (82) we deduce the existence of t0 such that

∥∆u(t0)∥
2
L2 + ∥∆ρ(t0)∥

2
L2 + ∥∆σ(t0)∥

2
L2 < ∞ (106)

and so we obtain (81) and (80) for all t ≥ t0. We also note that the constants Cp1 and Cp2 in Proposition 4
are independent of u, depending only on the Lp norm of the c1(0) and c2(0), whereas the constants C4 and
C6 in Proposition 5 depend on the H2 norm of all initial data.

5. ADDED BODY FORCES

In this section, we consider the Navier-Stokes equations driven the electrical force and a smooth, mean
zero, divergence free body force,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u ⋅ ∇u +∇p = ν∆u − ρ∇Φ + f

∇ ⋅ u = 0

ρ = c1 − c2

−ε∆Φ = ρ

∂tc1 + u ⋅ ∇c1 =D∆c1 +D∇ ⋅ (c1∇Φ)

∂tc2 + u ⋅ ∇c2 =D∆c2 −D∇ ⋅ (c2∇Φ)

(107)

in T2 × [0,∞), with u0, c1(0), c2(0) ∈ H
1. We assume that u0 has mean zero, and c1(0) and c2(0) have

equal mean. We take ci(0) ≥ 0, and by Theorem 3 which is valid in this case as well, the concentrations ci
are nonnegative for all time t > 0.

Proposition 6. Let p ≥ 2. u0, c1(0), c2(0) ∈ H
1 There exist positive constants a1, a2 depending on D, ε, σ̄,

and λ (the constant in Proposition 2), and positive constants Cp1(∥ρ0∥Lp , ∥σ0∥L2) and Cp2(∥σ0∥Lp , ∥ρ0∥L2)

depending on the corresponding initial data, σ̄, p and universal constants, such that

∥ρ(t)∥Lp ≤ C
p
1e

−a1t (108)

and
∥σ(t) − σ̄∥Lp ≤ C

p
2e

−a2t (109)
hold for all t ≥ 0. Furthermore,

t+T

∫
t

(∥∇ρ(s)∥2
L2 + ∥∇σ(s)∥2

L2 +
1

ε
∥ρ(s)∥3

L3)ds ≤
1

2D
(2∥σ0∥

2
L2 + 2∥σ̄∥2

L2 + ∥ρ0∥
2
L2)Te

−2CDt (110)

holds for any t ≥ 0, T > 0.

The proof follows along the lines of the proofs of Propositions 3 and 4. Indeed, multiplying the ρ and
σ − σ̄ equations by ρ∣ρ∣p−2 and (σ − σ̄)∣σ − σ̄∣p−2 respectively, the terms involving u cancel out and we
conclude that the estimates for the Lp norms of ρ and σ (108) and (109) hold for any p ≥ 2. In particular,
(44) is satisfied.

The following proposition shows that adding a body force to the Navier-Stokes equation does not change
the exponential decay of the H2 norms of ρ and σ − σ̄ but results in the velocity u being bounded in H2.

Proposition 7. Let u0 ∈ H
2, ci(0) ∈ H

2. Then, there exist positive constants c′3, c
′
4, c

′
5, c

′
6 depending on D,

ε and ν, and positive constants C ′
3 and C ′

5 depending on the initial data ∥u0∥H2 , ∥c1(0)∥H2 , ∥c2(0)∥H2 and
σ̄, and positive constants C ′

4 and C ′
6 depending in addition on the forces f , and positive constants R3 and

R5 depending on f such that
∥∇u(t)∥2

L2 ≤ C
′
3e
−c′3t +R3, (111)
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∥∇ρ(t)∥2
L2 + ∥∇σ(t)∥2

L2 ≤ C
′
4e
−c′4t, (112)

∥∆u(t)∥2
L2 ≤ C

′
5e
−c′5t +R5, (113)

and
∥∆ρ(t)∥2

L2 + ∥∆σ(t)∥2
L2 ≤ C

′
6e
−c′6t (114)

hold for all t ≥ 0.
Moreover, there exists a positive constant L > 0 depending on ∥u0∥H1 , ∥c1(0)∥H1 , ∥c2(0)∥H1 , f and

universal constants such that
t

∫

0

(∥∆u(s)∥2
L2 + ∥∆ρ(s)∥2

L2 + ∥∆σ(s)∥2
L2)ds ≤ L (115)

for all t ≥ 0.

We note that the estimate (115) requires only that u0, c1(0), c2(0) ∈ H
1. No additional regularity of the

initial data is required.
The proof is similar to the proof of Proposition 5. We omit the details.

Corollary 3. Let u0 ∈ H
2, ci(0) ∈ H

2. Then, there exist positive constants c′8 and c′9 depending on D, ε, ν,
and a positive constant C ′

8 depending on ∥u0∥H2 , ∥ci(0)∥H2 , ∥ci(0)∥H2 , and σ̄, a positive constant C ′
9

depending in addition on the body forces f , and a positive constant R9 depending on f such that

∥u∥C0,1/2 ≤ C
′
8e
−c′8t +R9 (116)

and
∥ρ(t)∥C0,1/2 + ∥σ(t) − σ̄∥C0,1/2 ≤ C

′
9e
−c′9t (117)

holds for all t ≥ 0.

This follows from Proposition 7, see the proof of Corollary 2.

Theorem 4. (Absorbing Ball) Let u0, c1(0), c2(0) ∈ H1 such that u0 and (c1 − c2)(0) have mean zero.
Suppose that (u, c1, c2) solves (107). Then, there exists an R > 0 depending on f , and t0 > 0 depending on
∥u0∥H1 , ∥c1(0)∥H1 , ∥c2(0)∥H1 and the parameters of the problem, such that

∥∆u(t)∥2
L2 + ∥∆c1(t)∥

2
L2 + ∥∆c2(t)∥

2
L2 ≤ R (118)

holds for all t ≥ t0.

Proof. In view of equation (115), there exists τ ∈ [0,1] such that

∥∆u(t0)∥
2
L2 + ∥∆ρ(t0)∥

2
L2 + ∥∆σ(t0)∥L2 ≤ L. (119)

Thus, the result follows from equations (113), (114), and from the parallelogram law

∥∆ρ∥2
L2 + ∥∆σ∥2

L2 = 2∥∆c1∥
2
L2 + 2∥∆c2∥

2
L2 . (120)

Let V =H1 ∩H ⊕H1 ⊕H1 ⊂ H. Let V ′ be the convex subset of V consisting of vectors (u, c1, c2) such
that u is divergence free with mean zero and c1 ≥ 0, c2 ≥ 0 a.e. with ∫ c1 = ∫ c2. Let

S(t) ∶ V ′ ↦ V ′ (121)

be the solution map
S(t)(u0, c1(0), c2(0)) = (u(t), c1(t), c2(t)) (122)

corresponding to system (107). As a consequence of Theorem 3, because the solution is absolutely con-
tinuous as a function of time with values in V ′, it follows that S(t) is well-defined on V ′ for every t ≥ 0.
Moreover, the uniqueness of solutions implies that

S(t + s)w0 = S(t)(S(s)w0) (123)

for all t, s ≥ 0, i.e., S(t) is a semigroup. We proceed to investigate other properties of the map S(t).
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We consider the natural topology onH

∥w∥
2
H = ∥u∥2

L2 + ∥c1∥
2
L2 + ∥c2∥

2
L2 (124)

and the natural topology on V ′

∥w∥
2
V ′ = ∥u∥2

H1 + ∥c1∥
2
H1 + ∥c2∥

2
H1 . (125)

We address the continuity of the map S(t).

Theorem 5. (Continuity) Let w0
1 = (u1(0), c

1
1(0), c

1
2(0)),w

0
2 = (u2(0), c

2
1(0), c

2
2(0)) ∈ V ′. Let t > 0.

There exist constants K1(t), K2(t) and K3(t), locally uniformly bounded as functions of t ≥ 0, and locally
bounded as initial data w0

1,w
0
2 are varied in V ′, such that S(t) is Lipschitz continuous inH obeying

∥S(t)w0
1 − S(t)w

0
2∥

2
H ≤K1(t)∥w

0
1 −w

0
2∥

2
H, (126)

S(t) is Lipschitz continuous in V ′ obeying

∥S(t)w0
1 − S(t)w

0
2∥

2
V ′ ≤K2(t)∥w

0
1 −w

0
2∥

2
V ′ , (127)

and S(t) is Lipschitz continuous for t > 0 fromH to V ′ obeying

t∥S(t)w0
1 − S(t)w

0
2∥

2
V ′ ≤K3(t)∥w

0
1 −w

0
2∥

2
H. (128)

Proof. We write S(t)w0
1 = (u1(t), c

1
1(t), c

1
2(t)) and S(t)w0

2 = (u2(t), c
2
1(t), c

2
2(t)). Let ρ1 = c1

1 − c
1
2,

ρ2 = c
2
1 − c

2
2, σ1 = c

1
1 + c

1
2, σ2 = c

2
1 + c

2
2. We write u = u1 − u2, ρ = ρ1 − ρ2 and σ = σ1 − σ2.

We note that u, ρ and σ obey system (25). Following the proof of uniqueness in Theorem 1, we obtain a
differential inequality of the form

d

dt
[∥u∥2

L2 + ∥ρ∥2
L2 + ∥σ∥2

L2] + ν∥∇u∥
2
L2 +D∥∇ρ∥2

L2 +D∥∇σ∥2
L2 ≤ k1(t) [∥u∥

2
L2 + ∥ρ∥2

L2 + ∥σ∥2
L2] (129)

where

k1(t) = C[∥∇u1∥
2/3

L2 ∥∆u1∥
2/3

L2 + ∥∇ρ1∥
2
L2 + ∥∇σ1∥

2
L2 + ∥ρ1∥

2
L3 + ∥σ2∥

4
L2 + ∥ρ2∥

4
L2 + 1]. (130)

Letting

K1(t) = 4 exp

⎧⎪⎪
⎨
⎪⎪⎩

t

∫

0

k1(s)ds

⎫⎪⎪
⎬
⎪⎪⎭

, (131)

we obtain (126).
Now, we take the L2 inner product of the three equations of system (25) with −∆u, −∆ρ and −∆σ

respectively, and we add them. We obtain the differential inequality

d

dt
[∥∇u∥2

L2 + ∥∇ρ∥2
L2 + ∥∇σ∥2

L2] + ν∥∆u∥
2
L2 +D∥∆ρ∥2

L2 +D∥∆σ∥2
L2

≤ C [∥u1 ⋅ ∇u1 − u2 ⋅ ∇u2∥
2
L2 + ∥u1 ⋅ ∇ρ1 − u2 ⋅ ∇ρ2∥

2
L2 + ∥u1 ⋅ ∇σ1 − u2 ⋅ ∇σ2∥

2
L2]

+C [∥ρ1∇Φ1 − ρ2∇Φ2∥
2
L2 + ∥∇ ⋅ (σ1∇Φ1 − σ2∇Φ2)∥

2
L2 + ∥∇ ⋅ (ρ1∇Φ1 − ρ2∇Φ2)∥

2
L2] . (132)

We estimate

∥u1 ⋅ ∇u1 − u2 ⋅ ∇u2∥
2
L2 = ∥u ⋅ ∇u1 + u2 ⋅ ∇u∥

2
L2 ≤ C[∥∇u1∥

2
L4∥∇u∥

2
L2 + ∥u2∥

2
L∞∥∇u∥2

L2], (133)

∥u1 ⋅ ∇ρ1 − u2 ⋅ ∇ρ2∥
2
L2 = ∥u ⋅ ∇ρ1 + u2 ⋅ ∇ρ∥

2
L2 ≤ C[∥∇ρ1∥

2
L4∥∇u∥

2
L2 + ∥u2∥

2
L∞∥∇ρ∥2

L2] (134)

and

∥u1 ⋅ ∇σ1 − u2 ⋅ ∇σ2∥
2
L2 = ∥u ⋅ ∇σ1 + u2 ⋅ ∇σ∥

2
L2 ≤ C[∥∇σ1∥

2
L4∥∇u∥

2
L2 + ∥u2∥

2
L∞∥∇σ∥2

L2] (135)

using Poincaré and Ladyzhenskaya’s interpolation inequalities. Using in addition elliptic regularity, we have

∥ρ1∇Φ1 − ρ2∇Φ2∥
2
L2 = ∥ρ∇Φ1 + ρ2∇Φ∥

2
L2 ≤ C[∥∇Φ1∥

2
L∞ + ∥ρ2∥

2
L2]∥∇ρ∥

2
L2 . (136)
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We also estimate

∥∇ ⋅ (σ1∇Φ1 − σ2∇Φ2)∥
2
L2 = ∥σ∆Φ1 + σ2∆Φ +∇σ ⋅ ∇Φ1 +∇σ2 ⋅ ∇Φ∥

2
L2

≤ C[∥ρ1∥
2
L∞∥σ∥2

L2 + ∥∇Φ1∥
2
L∞∥∇σ∥2

L2]

+C(∥σ2∥
2
L∞ + ∥∇σ2∥

2
L2)∥∇ρ∥

2
L2 (137)

and

∥∇ ⋅ (ρ1∇Φ1 − ρ2∇Φ2)∥
2
L2 = ∥ρ∆Φ1 + ρ2∆Φ +∇ρ ⋅ ∇Φ1 +∇ρ2 ⋅ ∇Φ∥

2
L2

≤ C[∥ρ1∥
2
L∞ + ∥ρ2∥

2
L∞ + ∥∇Φ1∥

2
L∞ + ∥∇ρ2∥

2
L2]∥∇ρ∥

2
L2 . (138)

In view of (129), we obtain a differential inequality of the form
d

dt
[∥u∥2

H1 + ∥ρ∥2
H1 + ∥σ∥2

H1] ≤ k2(t)[∥u∥
2
H1 + ∥ρ∥2

H1 + ∥σ∥2
H1] (139)

where

k2(t) = k1(t) +C[∥∇u1∥
2
L4 + ∥∇ρ1∥

2
L4 + ∥∇σ1∥

2
L4 + ∥∇ρ2∥

2
L2 + ∥∇σ2∥

2
L2]

+C[∥u2∥
2
L∞ + ∥σ2∥

2
L∞ + ∥ρ2∥

2
L∞]. (140)

Letting

K2(t) = 4 exp

⎧⎪⎪
⎨
⎪⎪⎩

t

∫

0

k2(s)ds

⎫⎪⎪
⎬
⎪⎪⎭

, (141)

we obtain (127).
The derivation of (128) is a little different. The sum of the equations resulting from taking L2 inner

product of the u, ρ and σ equations with −∆u, −∆ρ and −∆σ respectively gives
1

2

d

dt
[∥∇u∥2

L2 + ∥∇ρ∥2
L2 + ∥∇σ∥2

L2] + ν∥∆u∥
2
L2 +D∥∆ρ∥2

L2 +D∥∆σ∥2
L2

= ∫ (u ⋅ ∇u1 + u2 ⋅ ∇u) ⋅∆u + ∫ (u ⋅ ∇ρ1 + u2 ⋅ ∇ρ)∆ρ + ∫ (u ⋅ ∇σ1 + u2 ⋅ ∇σ)∆σ

+ ∫ (ρ∇Φ1 + ρ2∇Φ) ⋅∆u −D∫ (∇ ⋅ (σ∇Φ1 + σ2∇Φ))∆ρ −D∫ (∇ ⋅ (ρ∇Φ1 + ρ2∇Φ))∆σ. (142)

In order to get (128), we let w(t) = (u(t), ρ(t), σ(t)), and we show that w obeys a differential inequality
of the type

d

dt
∥w∥

2
H1 ≤ Z1(t)∥w∥

2
H1 +Z2(t)∥w∥

2
L2 (143)

such that
∥w(t)∥2

L2 ≤ Z3(t)∥w0∥
2
L2 (144)

and
t

∫

0

∥w(s)∥2
H1ds ≤ C(Z4(t) + 1)∥w0∥

2
L2 (145)

where Z1(t), Z3(t) and Z4(t) are locally bounded functions in time, Z2(t) is a locally integrable function
in time, and C is a positive constant. Then, multiplying (143) by t and integrating by parts in time from 0 to
t, we obtain

t∥w(t)∥2
H1 ≤ C

′
(Z5(t) + 1)∥w0∥

2
L2 (146)

where Z5(t) is a locally bounded function in time, and C ′ > 0 is a positive constant.
We start by integrating (129). Using (126), we obtain

t

∫

0

(∥∇u(s)∥2
L2 + ∥∇ρ(s)∥2

L2 + ∥∇σ(s)∥2
L2)ds ≤ C

⎡
⎢
⎢
⎢
⎢
⎣

1 +

t

∫

0

k1(s)K1(s)ds

⎤
⎥
⎥
⎥
⎥
⎦

∥w0
1 −w

0
2∥

2
L2 . (147)
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This is the analogue of (145). Then, we estimate

∣∫ (u ⋅ ∇u1 + u2 ⋅ ∇u) ⋅∆u∣ ≤ C∥u∥
1/2

L2 ∥∇u∥
1/2

L2 ∥∇u1∥
1/2

L2 ∥∆u1∥
1/2

L2 ∥∆u∥L2

+C∥u2∥
1/2

L2 ∥∇u2∥
1/2

L2 ∥∇u∥
1/2

L2 ∥∆u∥
3/2

L2 , (148)

∣∫ (u ⋅ ∇ρ1 + u2 ⋅ ∇ρ)∆ρ∣ ≤ C∥u∥
1/2

L2 ∥∇u∥
1/2

L2 ∥∇ρ1∥
1/2

L2 ∥∆ρ1∥
1/2

L2 ∥∆ρ∥L2

+C∥u2∥
1/2

L2 ∥∇u2∥
1/2

L2 ∥∇ρ∥
1/2

L2 ∥∆ρ∥
3/2

L2 (149)

and

∣∫ (u ⋅ ∇σ1 + u2 ⋅ ∇σ)∆σ∣ ≤ C∥u∥
1/2

L2 ∥∇u∥
1/2

L2 ∥∇σ1∥
1/2

L2 ∥∆σ1∥
1/2

L2 ∥∆σ∥L2

+C∥u2∥
1/2

L2 ∥∇u2∥
1/2

L2 ∥∇σ∥
1/2

L2 ∥∆σ∥
3/2

L2 . (150)

In view of the fact that
∥∇Φ∥L4 ≤ C∥ρ∥L2 , (151)

we have
∣∫ (ρ∇Φ1 + ρ2∇Φ) ⋅∆u∣ ≤ C[∥ρ1∥L3∥ρ∥L2∥∆u∥L2 + ∥ρ2∥L4∥ρ∥L2∥∆u∥L2] (152)

Moreover,

∣∫ (∇ ⋅ (σ∇Φ1 + σ2∇Φ))∆ρ∣ ≤ C[∥σ∥
1/2

L2 ∥∇σ∥
1/2

L2 ∥∇ρ1∥L2 + ∥σ2∥L∞∥ρ∥L2]∥∆ρ∥L2

+C[∥ρ1∥L3∥∇σ∥L2 + ∥∇σ2∥L2∥∇ρ∥L2]∥∆ρ∥L2 (153)

and

∣∫ (∇ ⋅ (ρ∇Φ1 + ρ2∇Φ))∆σ∣ ≤ C[∥∇ρ∥L2∥∇ρ1∥L2 + ∥ρ2∥L∞∥ρ∥L2]∥∆σ∥L2

+C[∥ρ1∥L3∥∇ρ∥L2 + ∥∇ρ2∥L2∥∇ρ∥L2]∥∆σ∥L2 . (154)

We apply Young’s inequality and we use (129) to obtain
d

dt
[∥u∥2

H1 + ∥ρ∥2
H1 + ∥σ∥2

H1]

≤ C[k1 + ∥∇u1∥
2
L2∥∆u1∥

2
L2 + ∥∇ρ1∥

2
L2∥∆ρ1∥

2
L2 + ∥∇σ1∥

2
L2∥∆σ1∥

2
L2]∥u∥

2
L2

+C[k1 + ∥∇ρ1∥
2
L2 + ∥∇ρ2∥

2
L2 + ∥σ2∥

2
L∞ + ∥ρ2∥

2
L∞](∥ρ∥2

L2 + ∥σ∥2
L2)

+C(1 + ∥∇u2∥
4
L2 + ∥∇ρ1∥

2
L2 + ∥∇ρ2∥

2
L2 + ∥∇σ2∥

2
L2)(∥∇u∥

2
L2 + ∥∇ρ∥2

L2 + ∥∇σ∥2
L2). (155)

This is a differential inequality of type (143), with w(t) = (u(t), ρ(t), σ(t)) satisfying (144) and (145).
Therefore, we obtain (128).

We proceed to show that the solution map S(t) is injective on V ′.

Theorem 6. (Backward Uniqueness) Let w0
1,w

0
2 ∈ V ′. If there exists T > 0 such that S(T )w0

1 = S(T )w0
2,

then w0
1 = w

0
2.

The proof is given in Appendix A below.
Now, we fix M > 0, and we let VM to be the subset of V ′ consisting of vectors (u, c1, c2) such that

u is divergence free with mean zero and c1 and c2 are nonnegative functions a.e. with equal space av-
erages less than or equal to M . As a consequence of Theorem 4, there exists R1 > 0 depending only
on f such that for any initial data w0 = (u0, c1(0), c2(0)) ∈ VM , there exists t0 > 0 depending on
∥u0∥H1 , ∥c1(0)∥H1 , ∥c2(0)∥H1 and the parameters of the problem such that

S(t)w0 ∈ B
M
R1

= {w = (u, c1, c2) ∈ VM ∶ ∥u∥H2 + ∥c1 − c̄1∥H2 + ∥c2 − c̄2∥H2 ≤ R1} (156)

holds for all t ≥ t0.
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Remark 6. We note that there exists T > 0 depending only on R1 and M and the parameters of the problem
such that

S(t)BM
R1

⊂ BM
R1

(157)
for all t ≥ T .

Remark 7. BMR1
is compact in H because the space averages of all the concentrations c1 and c2 such that

(u, c1, c2) ∈ VM are uniformly bounded by M .

Remark 8. The set VM is convex. Consequently, BMR1
is a convex set, and so it is connected.

The properties of the map S(t) listed and proved above, together with the connectedness and compactness
properties of BMR1

, imply the existence of a global attractor.

Theorem 7. (Global Attractor) Let
XM = ⋂

t>0

S(t)BMR1
(158)

Then:
(a) XM is compact inH.
(b) S(t)XM =XM for all t ≥ 0.
(c) If Z is bounded in VM in the norm of of V , and S(t)Z = Z for all t ≥ 0, then Z ⊂XM .
(d) For every w0 ∈ VM , lim

t→∞
distH(S(t)w0,XM) = 0.

(e) XM is connected.

The proof is omitted and follows the proof of the analogous result in [4].
We end this section by showing that XM has finite fractal dimension. The abstract formulation of the

system is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + νAu +B(u,u) + P(ρ∇Φ) = f,

∂tc1 + u ⋅ ∇c1 −D∆c1 −D∇ ⋅ (c1∇Φ) = 0,

∂tc2 + u ⋅ ∇c2 −D∆c2 +D∇ ⋅ (c2∇Φ) = 0,

−ε∆Φ = ρ,

ρ = c1 − c2

(159)

where P is the Leray-Hopf projector, A = P(−∆) is the Stokes operator, and B(u, v) = P(u.∇v).
We consider a solution w̃ = S(t)w̃0 = (ũ(t), c̃1(t), c̃2(t)) of (159) with initial data w̃0 in BMR1

. We
consider the linearization of S(t) along w̃(t)

w0 ↦ w(t) = S′(t, w̃)w0 (160)

viewed as an operator onH. The function w(t) = (u(t), c1(t), c2(t)) solves

∂tw +Aw +L(w̃)w = 0 (161)

where
Aw = (νAu,−D∆c1,−D∆c2) (162)

and
L(w̃)w = (L1(w̃)w,L2(w̃)w,L3(w̃)w) (163)

with
L1(w̃)w = B(ũ, u) +B(u, ũ) + P(ρ∇Φ̃ + ρ̃∇Φ)), (164)

L2(w̃)w = u ⋅ ∇c̃1 + ũ ⋅ ∇c1 −D∇ ⋅ (c1∇Φ̃ + c̃1∇Φ), (165)

L3(w̃)w = u ⋅ ∇c̃2 + ũ ⋅ ∇c2 +D∇ ⋅ (c2∇Φ̃ + c̃2∇Φ). (166)
We consider the scalar product in ∧nH given by

(w1 ∧ ... ∧wn, y1 ∧ ... ∧ yn)∧nH = det(wi, yj)H (167)
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and the volume elements given by

Vn(t) = ∥w1(t) ∧ ... ∧wn(t)∥∧nH. (168)

We note that the monomial w1(t) ∧ ... ∧wn(t) evolves according to the equation

∂t(w1(t) ∧ ... ∧wn(t)) + (A +L(w̃))n(w1(t) ∧ ... ∧wn(t)) = 0 (169)

where

(A +L(w̃))n(w1(t) ∧ ... ∧wn(t)) = (A +L(w̃))w1 ∧ ... ∧wn + ... +w1 ∧ ... ∧ (A +L(w̃))wn. (170)

Thus, the volume element evolves according to the ODE

d

dt
Vn +Trace((A +L(w̃))Qn)Vn = 0 (171)

where Qn is the orthogonal projection inH onto the linear space spanned by the vectors w1, ...,wn.

Theorem 8. (Decay of Volume Elements) There exists a positive integer N0 depending on R1 and M such
that for any w̃0 ∈ BR1 , and for any n ≥ N0, and for any w1(0), ...,wn(0) ∈ H

∥S′(t, w̃)w1(0) ∧ ... ∧ S
′
(t, w̃)wn(0)∥ΛnH ≤ Vn(0)e

−cnt (172)

holds for any t ≥ t0 with t0 depending on R1.

The proof is given in Appendix B.
As a consequence, and following the proof of the similar result in [4], we conclude that

Theorem 9. The global attractor XM has a finite fractal dimension inH.

We end this section with the following result:

Theorem 10. The global attractor XM has a finite fractal dimension in V .

Proof. Since BMR1
is bounded inH2, we conclude by Rellich compactness theorem that S(t)BM

R1
is compact

in V for all t ≥ T , see Remark 6. Hence, the property (128), together with the fact that XM has a finite
fractal dimension inH, allows us to conclude that XM has a finite fractal dimension in V .

6. ADDED BODY FORCES AND ADDED CHARGE DENSITY

In this section, we consider the general case

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u ⋅ ∇u +∇p = ν∆u − (ρ +N)∇Φ + f

∇ ⋅ u = 0

ρ = c1 − c2

−ε∆Φ = ρ +N

∂tc1 + u ⋅ ∇c1 =D∆c1 +D∇ ⋅ (c1∇Φ)

∂tc2 + u ⋅ ∇c2 =D∆c2 −D∇ ⋅ (c2∇Φ)

(173)

where the body forces f are smooth, divergence-free, time independent, and have mean zero, and the added
charge density N is smooth and time independent. We assume that u0 has mean zero, and that the initial
concentrations c1(x,0) and c2(x,0) have space averages c̄1 and c̄2 satisfying c̄2−c̄1 = N̄ . We consider initial
data (u0, c1(0), c2(0)) ∈ H

1. We also assume that the initial concentrations are nonnegative functions and
we recall that this property is preserved for all positive times t by Theorem 3, which holds in this case as
well.
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Proposition 8. Let u0 ∈H and ci(0) ∈ L2 . Then, there exists C > 0 such that

∥σ(t) − σ̄∥2
L2 + ∥ρ(t) − ρ̄∥2

L2 ≤ (∥σ0 − σ̄∥
2
L2 + ∥ρ0 − ρ̄∥

2
L2)e

−Dt
+ ∥σ̄∥2

L2 +C∥N∥
6
L6 (174)

holds for all t ≥ 0. Moreover,
t+T

∫
t

(∥∇ρ(s)∥2
L2 + ∥∇σ(s)∥2

L2 +
1

ε
∥ρ(s)∥3

L3)ds ≤
1

D
((∥σ0 − σ̄∥

2
L2 + ∥ρ0 − ρ̄∥

2
L2)e

−Dt

+C(T + 1)(∥σ̄∥2
L2 + ∥N∥

6
L6) (175)

holds for any t ≥ 0, T > 0.

Proof. We recall that σ and ρ obey
⎧⎪⎪
⎨
⎪⎪⎩

∂tσ + u ⋅ ∇σ =D∆σ +D∇ ⋅ (ρ∇Φ)

∂tρ + u ⋅ ∇ρ =D∆ρ +D∇ ⋅ (σ∇Φ).
(176)

We take the L2 inner product of the equations obeyed by σ and ρ with σ and ρ respectively, we add, and use
the fact that

∫ ρ∆Φσ = −
1

ε
∫ σ(ρ)2

−
1

ε
∫ Nρσ (177)

to get the equation

1

2

d

dt
(∥σ∥2

L2 + ∥ρ∥2
L2) +D(∥∇σ∥2

L2 + ∥∇ρ∥2
L2) +

D

ε
∫ σ(ρ)2

= −
D

ε
∫ Nρσ. (178)

We estimate

∣
D

ε
∫ Nρσ∣ ≤

D

ε
∥N∥L6∥ρ∥L3∥σ∥L2 ≤

D

2ε
∥ρ∥3

L3 +
D

4
∥σ∥2

L2 +C∥N∥
6
L6

≤
D

2ε
∥ρ∥3

L3 +
D

2
∥σ − σ̄∥2

L2 +
D

2
∥σ̄∥2

L2 +C∥N∥
6
L6 (179)

in view of Hölder’s and Young’s inequalities. We obtain the differential inequality

1

2

d

dt
(∥σ − σ̄∥2

L2 + ∥ρ − ρ̄∥2
L2) +

D

2
(∥∇σ∥2

L2 + ∥∇ρ∥2
L2) +

D

2ε
∥ρ∥3

L3 ≤
D

2
∥σ̄∥2

L2 +C∥N∥
6
L6 . (180)

In view of Poincaré inequality, we get

d

dt
(∥σ − σ̄∥2

L2 + ∥ρ − ρ̄∥2
L2) +D(∥σ − σ̄∥2

L2 + ∥ρ − ρ̄∥2
L2) ≤D∥σ̄∥2

L2 +C∥N∥
6
L6 . (181)

This gives (174). Integrating (180), we obtain (175).

Proposition 9. Let u0 ∈ H1, ci(0) ∈ H1. Then, there exist positive constants M1,M2,M3,M4 and M5

depending on the initial data and the parameters of the problem, and positive constants ξ1, ξ2, and ξ3

depending on f,N and σ̄ such that

∥∇u∥2
L2 ≤M1(∥∇u0∥L2 , ∥σ0∥L2 , ∥ρ0∥L2)e−Dt + ξ1(f,N, σ̄), (182)

∥ρ∥2
L3 ≤M2(∥ρ0∥L3 , ∥σ0∥L2)e−Dt + ξ2(f,N, σ̄), (183)

and
∥∇ρ∥2

L2 + ∥∇σ∥2
L2 ≤M3(∥∇ρ0∥L2 , ∥∇σ0∥L2 , ∥ρ0∥L3 , ∥∇u0∥L2)e−Dt + ξ3(f,N, σ̄) (184)

hold for any t ≥ 0. Moreover,
t+T

∫
t

(∥∆ρ∥2
L2 + ∥∆σ∥2

L2)ds ≤M4(∥∇ρ0∥L2 , ∥∇σ0∥L2 , ∥ρ0∥L3 , ∥∇u0∥L2)e−Dt + ξ3 (f,N, σ̄) (T + 1) (185)
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and
t+T

∫
t

∥∆u∥2
L2ds ≤M5(∥∇u0∥L2 , ∥σ0∥L2 , ∥ρ0∥L2)e−Dt + ξ1(f,N, σ̄)(T + 1) (186)

hold for any t ≥ 0, T > 0.

Proof. The proof is similar to that of Proposition 5. We briefly sketch the main ideas. Taking the L2 inner
product of the u-equation with −∆u leads to the differential inequality

d

dt
∥∇u∥2

L2 + ν∥∆u∥
2
L2 ≤ C∥ρ∥6

L2 +C∥ρ∥3
L3 +Cf,N . (187)

An application of Lemma 1 gives (186). Integrating (187) gives (186).
Taking the L2 inner product of the ρ-equation (66) with ρ∣ρ∣ and estimating the resulting terms gives

1

2

d

dt
∥ρ∥2

L3 +
Dσ̄

ε
∥ρ∥2

L3 ≤ C∥σ − σ̄∥
2/3

H1∥σ − σ̄∥
4/3

L2 ∥ρ∥2
L3 +CN

≤ C∥ρ∥3
L3 +C∥∇σ∥2

L2∥σ − σ̄∥
4
L2 +CN . (188)

Thus, Lemma 1 gives (183).
Finally, taking the L2 inner product of the ρ-equation (66) and of the σ-equation with −∆ρ and −∆σ

respectively, adding the resulting equations, and estimating the obtained terms give the differential inequality

d

dt
(∥∇ρ∥2

L2 + ∥∇σ∥2
L2) +D(∥∆ρ∥L2 + ∥∆σ∥2

L2) ≤ C(∥∇u∥4
L2 + ∥ρ∥2

L3)(∥∇ρ∥
2
L2 + ∥∇σ∥2

L2)

+C∥σ − σ̄∥2
L2∥∇σ∥

2
L2

+C∥ρ∥2
L2∥∇ρ∥

2
L2 +CN (189)

Lemma 1 gives (184). Integrating (189) gives (185).

Proposition 10. Let u0 ∈ H2, ci(0) ∈ H
2. Then, there exist positive constants M6 and M7 depending on

the initial data and the parameters of the problem, and positive constants ξ4 and ξ5 depending on f,N and
σ̄ such that

∥∆u∥2
L2 ≤M6(∥∆u0∥L2 , ∥∇σ0∥L2 , ∥∇ρ0∥L2)e−Dt + ξ4(f,N, σ̄) (190)

and
∥∆ρ∥2

L2 + ∥∆ρ∥2
L2 ≤M7(∥∆ρ0∥L2 , ∥∆σ0∥L2 , ∥∇u0∥L2)e−Dt + ξ5(f,N, σ̄) (191)

hold for all t ≥ 0.

Proof. The proof follows the derivation of (80) and (81) in Proposition 5. We omit the details.
Let V

′′
be the convex subset of V = H1 ⊕H ⊕H1 ⊕H1 consisting of vectors (u, c1, c2) such that u is

divergence free with mean zero and c1 and c2 are non-negative functions a.e. whose difference has a space
average equal to −N̄ . We define the solution map

O(t) ∶ V
′′
↦ V

′′
(192)

corresponding to system (173) by

O(t)(u0, c1(0), c2(0)) = (u(t), c1(t), c2(t)). (193)

For each M > 0, we consider the convex subset V ′M of V
′′

consisting of vectors (u, c1, c2) such that u is
divergence free with mean zero and c1 and c2 are non-negative functions a.e. whose space averages are less
than or equal to M and whose difference has a space average equal to −N̄ . By Proposition 10, there exists
R2 > 0 depending on the body forces f , the added charge density N , and the positive constant M , such that
for any w0 = (u0, c1(0), c2(0)) ∈ V

′
M , there exists t′0 > 0 depending on ∥u0∥H1 , ∥c1(0)∥H1 , ∥c2(0)∥H1 such

that
O(t)w0 ∈ B

M
R2

= {w = (u, c1, c2) ∈ V
′
M ∶ ∥u∥H2 + ∥c1 − c̄1∥H2 + ∥c2 − c̄2∥H2 ≤ R2} (194)
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for all t ≥ t′0. We note that the map O(t) has the same properties as the map S(t), namely the existence
of a compact absorbing ball, continuity properties (cf. Theorem 5) and injectivity (cf. Theorem 6). The
existence of a global attractor is proved as in Theorem 7 and its finite dimensionality follows from decay of
volume elements (Theorem 8) like in Theorems 9 and 10. The proofs of these theorems are similar to the
proofs of the respective results for N = 0, and are omitted.

Theorem 11. There exists a global attractor X which is compact in V ′′ and has finite fractal dimension,
such that

lim
t→∞

distV(O(t)w0,X) = 0 (195)

holds uniformly for w0 in bounded sets in V ′′.

7. APPENDIX A

We give the proof of the backward uniqueness property of the solution map S(t).
Letw(t) = S(t)w0

1−S(t)w
0
2 = (u(t), c1(t), c2(t)) and w̃(t) = 1

2(S(t)w
0
1+S(t)w

0
2) = (ũ(t), c̃1(t), c̃2(t)).

Let ρ = c1 − c2, ρ̃ = c̃1 − c̃2, Φ = 1
εΛ

−2ρ and Φ̃ = 1
εΛ

−2ρ̃.
We note that w(t) obeys the equation

∂tw +Aw +L(w̃)w = 0 (196)

where
Aw = (νAu,−D∆c1,−D∆c2) (197)

and
L(w̃)w = (L1(w̃)w,L2(w̃)w,L3(w̃)w) (198)

with
L1(w̃)w = B(ũ, u) +B(u, ũ) + P(ρ∇Φ̃ + ρ̃∇Φ)), (199)

L2(w̃)w = u ⋅ ∇c̃1 + ũ ⋅ ∇c1 −D∇ ⋅ (c1∇Φ̃ + c̃1∇Φ), (200)

L3(w̃)w = u ⋅ ∇c̃2 + ũ ⋅ ∇c2 +D∇ ⋅ (c2∇Φ̃ + c̃2∇Φ). (201)
We consider the evolution of the norm

E0 = ∥u∥2
L2 + ∥c1∥

2
L2 + ∥c2∥

2
L2 = ∥w∥

2
H (202)

obtained by taking the inner product inH of equation (196) with (u, c1, c2) = w, and we note that E0 obeys
the equation

1

2

d

dt
E0 +E1 + (L(w̃)w,w)H = 0 (203)

where
E1 = ν∥A

1
2u∥2

H +D∥∇c1∥
2
L2 +D∥∇c2∥

2
L2 = (w,Aw)H. (204)

We observe that
1

2

d

dt
log (

1

E0
) =

E1

E0
+

(L(w̃)w,w)H

E0
(205)

Let
Y (t) = log (

1

E0
) (206)

and so
1

2

d

dt
Y (t) =

E1

E0
+

(L(w̃)w,w)H

E0
. (207)

We proceed to show that Y (t) cannot reach the value +∞ in finite time. We start by noting that the
derivative of E1/E0 obeys

d

dt

E1

E0
= E−1

0

d

dt
E1 −

E1

E0

d

dt
logE0 = E

−1
0

d

dt
E1 +

E1

E0

d

dt
Y. (208)
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Taking the inner product of equation (196) inH with Aw leads to

1

2

d

dt
E1 + ∥Aw∥

2
H + (L(w̃)w,Aw)H = 0 (209)

which implies that

1

2

d

dt

E1

E0
= −

∥Aw∥2
H + (L(w̃)w,Aw)H

E0
+
E1

E0
(
E1 + (L(w̃)w,w)H

E0
) (210)

Since
E2

1

E2
0

−
∥Aw∥2

H

E0
= −

XXXXXXXXXXXX

(A −
E1

E0
)

w

E
1/2
0

XXXXXXXXXXXX

2

H

, (211)

we obtain
1

2

d

dt

E1

E0
= −E−1

0 ∥(A −E1E
−1
0 )w∥

2
H −E

−1
0 (L(w̃)w, (A −E1E

−1
0 )w)

H
. (212)

Now, we claim that
∣(L(w̃)w,w)H∣ ≤ A1(t)E1 +A0(t)E0 (213)

with
T

∫

0

(A0(t) +A1(t))dt < ∞. (214)

To prove this claim, we note first that

(B(ũ, u), u)L2 = (ũ ⋅ ∇c1, c1)L2 = (ũ ⋅ ∇c2, c2)L2 = 0. (215)

Since u has mean zero, an application of Ladyzhenskaya’s inequality followed by Poincaré’s inequality
gives

∣(B(u, ũ), u)L2 ∣ ≤ ∥∇ũ∥L2∥u∥2
L4 ≤ C∥∇ũ∥L2∥∇u∥2

L2 ≤ C∥∇ũ∥L2E1. (216)

Using in addition elliptic regularity and the fact that ρ has mean zero, we obtain

∣(P(ρ∇Φ̃ + ρ̃∇Φ), u)L2 ∣ ≤ ∥u∥L4∥ρ∥L4∥∇Φ̃∥L2 + ∥u∥L4∥ρ̃∥L2∥∇Φ∥L4

≤ C∥∇u∥L2(∥∇c1∥L2 + ∥∇c2∥L2)(∥∇Φ̃∥L2 + ∥ρ̃∥L2)

≤ C (1 + ∥∇Φ̃∥
2
L2 + ∥ρ̃∥2

L2)E1. (217)

Now, we estimate

∣(u ⋅ ∇c̃1, c1)L2 ∣ = ∣(u ⋅ ∇c1, c̃1)L2 ∣ ≤ C∥∇u∥L2∥∇c1∥L2∥c̃1∥L4 ≤ C(1 + ∥c̃1∥
2
L4)E1, (218)

∣(u ⋅ ∇c̃2, c2)L2 ∣ ≤ C(1 + ∥c̃2∥
2
L4)E1, (219)

∣(∇ ⋅ (c1∇Φ̃ + c̃1∇Φ), c1)L2 ∣ ≤ C(∥c1∥L2∥∇Φ̃∥L∞∥∇c1∥L2 + ∥c̃1∥L2∥∇c1∥L2(∥∇c1∥L2 + ∥∇c2∥L2))

≤ C(∥∇Φ̃∥
2
L∞ + ∥c̃1∥L2 + ∥c̃1∥

2
L2 + 1)E1 +E0 (220)

and
∣(∇ ⋅ (c2∇Φ̃ + c̃2∇Φ), c2)L2 ∣ ≤ C(∥∇Φ̃∥

2
L∞ + ∥c̃2∥L2 + ∥c̃2∥

2
L2 + 1)E1 +E0 (221)

This ends the proof of the first claim.
Next, we claim that

∥L(w̃)w∥
2
H ≤ B1(t)E1 +B0(t)E0 (222)

with
T

∫

0

(B0(t) +B1(t))dt < ∞. (223)
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Since u and ρ have mean zero, then elliptic regularity together with an application of Hölder, Ladyzhen-
skaya, Poincaré and Young inequalities gives

∥B(ũ, u) +B(u, ũ)∥2
L2 ≤ C(∥ũ∥2

L∞∥∇u∥2
L2 + ∥∇u∥2

L2∥∇ũ∥
2
L4) ≤ C(∥ũ∥2

L∞ + ∥∇ũ∥2
L4)E1, (224)

∥P(ρ∇Φ̃ + ρ̃∇Φ)∥
2
L2 ≤ C(∥∇ρ∥2

L2∥∇Φ̃∥
2
L∞ + ∥ρ̃∥2

L2∥∇ρ∥
2
L2) ≤ C(∥∇Φ̃∥

2
L∞ + ∥ρ̃∥2

L2)E1, (225)

∥u ⋅ ∇c̃1 + ũ ⋅ ∇c1∥
2
L2 ≤ C(∥∇u∥2

L2∥∇c̃1∥
2
L4 + ∥ũ∥2

L∞∥∇c1∥
2
L2) ≤ C(∥∇c̃1∥

2
L4 + ∥ũ∥2

L∞)E1, (226)

∥u ⋅ ∇c̃2 + ũ ⋅ ∇c2∥
2
L2 ≤ C(∥∇c̃2∥

2
L4 + ∥ũ∥2

L∞)E1, (227)

∥∇ ⋅ (c1∇Φ̃ + c̃1∇Φ)∥
2
L2 = ∥c1∆Φ̃ +∇c1∇Φ̃ + c̃1∆Φ +∇c̃1∇Φ∥

2
L2

≤ C(∥c1∥L2∥∇c1∥L2∥ρ̃∥L2∥∇ρ̃∥L2 + ∥∇c1∥
2
L2∥∇Φ̃∥

2
L∞)

+C(∥c̃1∥
2
L4∥ρ∥L2∥∇ρ∥L2 + ∥∇c̃1∥

2
L2∥∇ρ∥

2
L2)

≤ C(∥ρ̃∥2
L2∥∇ρ̃∥

2
L2 + ∥∇Φ̃∥

2
L∞ + ∥c̃1∥

2
L4 + ∥∇c̃1∥

2
L2)E1 +E0, (228)

and

∥∇ ⋅ (c2∇Φ̃ + c̃2∇Φ)∥
2
L2 ≤ C(∥ρ̃∥2

L2∥∇ρ̃∥
2
L2 + ∥∇Φ̃∥

2
L∞ + ∥c̃2∥

2
L4 + ∥∇c̃2∥

2
L2)E1 +E0. (229)

Thus, the second claim is proved.
As a consequence of the above claims and Schwarz inequality, we deduce the differential inequalities

d

dt

E1

E0
≤ 2B1(t)

E1

E0
+ 2B0(t) (230)

and
d

dt
Y (t) ≤ (2A1(t) + 1)

E1

E0
+ 2A0(t) (231)

which imply that Y (t) ∈ L∞(0, T ). This ends the proof.

8. APPENDIX B

We give the proof of the exponential decay of volume elements.
For each t, choose an orthonormal basis bi = (vi, r

1
i , r

2
i ) of the linear span of w1, ...,wn. Then

Trace((A +L(w̃))Qn) =
n

∑
i=1

(Abi, bi)H +
n

∑
i=1

(L(w̃)bi, bi)H. (232)

We note that

Trace(AQn) =
n

∑
i=1

(Abi, bi)H =
n

∑
i=1

[(νAvi, vi)H + (−D∆r1
i , r

1
i )L2 + (−D∆r2

i , r
2
i )L2] ≥ µ1+...+µn (233)

where µi are eigenvalues of A in H. By Proposition 1, there exists a constant C such that µk ≥ Ck for all
k ≥ 1. It follows that Trace(AQn) ≥ C0n

2 for some positive constant C0.
Let ρi = r1

i − r
2
i and Φi =

1
εΛ

−2ρi. In view of Hölder’s inequality, Ladyzhenskaya’s inequality, elliptic
regularity and the fact that ∥bi∥H = 1 for all i, we have the bounds

∣
n

∑
i=1

(B(vi, ũ), vi)L2∣ ≤
n

∑
i=1

∥vi∥
2
L4∥∇ũ∥L2 ≤ C∥∇ũ∥L2n1/2

(
n

∑
i=1

∥∇vi∥
2
L2)

1/2

, (234)
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RRRRRRRRRRR

n

∑
i=1

(P(ρi∇Φ̃+ρ̃∇Φi), bi)L2

RRRRRRRRRRR

≤
n

∑
i=1

(∥∇Φ̃∥L∞∥ρi∥L2∥bi∥L2 + ∥∇Φi∥L∞∥ρ̃∥L2∥bi∥L2)

≤
n

∑
i=1

(2∥∇Φ̃∥L∞ +C∥ρ̃∥L2(∥r1
i ∥L4 + ∥r2

i ∥L4))

≤
n

∑
i=1

(2∥∇Φ̃∥L∞ +C∥ρ̃∥L2∥∇r1
i ∥

1/2

L2 +C∥ρ̃∥L2∥∇r2
i ∥

1/2

L2 )

≤ 2∥∇Φ̃∥L∞n +C∥ρ̃∥L2n3/4
⎡
⎢
⎢
⎢
⎢
⎣

(
n

∑
i=1

∥∇r1
i ∥

2
L2)

1/4

+ (
n

∑
i=1

∥∇r2
i ∥

2
L2)

1/4⎤
⎥
⎥
⎥
⎥
⎦

, (235)

∣
n

∑
i=1

(vi ⋅ ∇c̃1, r
1
i )L2∣ ≤

n

∑
i=1

∥vi∥L4∥r1
i ∥L4∥∇c̃1∥L2 ≤

n

∑
i=1

C∥∇vi∥
1/2

L2 ∥∇r1
i ∥

1/2

L2 ∥∇c̃1∥L2

≤ C∥∇c̃1∥L2n1/2
(
n

∑
i=1

∥∇vi∥
2
L2)

1/4

(
n

∑
i=1

∥∇r1
i ∥

2
L2)

1/4

(236)

and

∣
n

∑
i=1

(vi ⋅ ∇c̃2, r
2
i )L2∣ ≤ C∥∇c̃2∥L2n1/2

(
n

∑
i=1

∥∇vi∥
2
L2)

1/4

(
n

∑
i=1

∥∇r2
i ∥

2
L2)

1/4

. (237)

Now, using the triangle inequality, we have

∣
n

∑
i=1

[−(∇ ⋅ (r1
i∇Φ̃ + c̃1∇Φi), r

1
i )L2 + (∇ ⋅ (r2

i∇Φ̃ + c̃2∇Φi), r
2
i )L2]∣

≤ ∣
n

∑
i=1

[(r1
i∇Φ̃,∇r1

i )L2 − (r2
i∇Φ̃,∇r2

i )L2]∣

+ ∣
n

∑
i=1

[((c̃1 − c̃1)∇Φi,∇r
1
i )L2 − ((c̃2 − c̃2)∇Φi,∇r

2
i )L2 + (c̄∇Φi,∇(r1

i − r
2
i ))L2]∣ (238)

where c̄ = c̃1 = c̃2, and using the same inequalities as above, we obtain

RRRRRRRRRRR

n

∑
i=1

[(r1
i∇Φ̃,∇r1

i )L2−(r2
i∇Φ̃,∇r2

i )L2]

RRRRRRRRRRR

≤
n

∑
i=1

[∥∇Φ̃∥L∞∥∇r1
i ∥L2 + ∥∇Φ̃∥L∞∥∇r2

i ∥L2]

≤ ∥∇Φ̃∥L∞n
1/2

⎡
⎢
⎢
⎢
⎢
⎣

(
n

∑
i=1

∥∇r1
i ∥

2
L2)

1/2

+ (
n

∑
i=1

∥∇r2
i ∥

2
L2)

1/2⎤
⎥
⎥
⎥
⎥
⎦

(239)

and

∣
n

∑
i=1

((c̃1 − c̃1)∇Φi,∇r
1
i )L2∣ ≤

n

∑
i=1

∥∇r1
i ∥L2∥∇Φi∥L∞∥c̃1 − c̃1∥L2

≤
n

∑
i=1

C∥∇r1
i ∥L2∥∇ρi∥

1/2

L2 ∥c̃1 − c̃1∥L2 ≤
n

∑
i=1

C∥∇r1
i ∥L2 (∥∇r1

i ∥
1/2

L2 + ∥∇r2
i ∥

1/2

L2 ) ∥c̃1 − c̃1∥L2

≤ Cn1/4
∥c̃1 − c̃1∥L2 (

n

∑
i=1

∥∇r1
i ∥

2
L2)

3/4

+Cn1/4
∥c̃1 − c̃1∥L2 (

n

∑
i=1

∥∇r2
i ∥

2
)

1/4

(
n

∑
i=1

∥∇r1
i ∥

2
L2)

1/2

, (240)
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∣
n

∑
i=1

((c̃2 − c̃2)∇Φi,∇r
2
i )L2∣ ≤ Cn1/4

∥c̃2 − c̃2∥L2 (
n

∑
i=1

∥∇r2
i ∥

2
L2)

3/4

+Cn1/4
∥c̃2 − c̃2∥L2 (

n

∑
i=1

∥∇r1
i ∥

2
)

1/4

(
n

∑
i=1

∥∇r2
i ∥

2
L2)

1/2

(241)

and

∣
n

∑
i=1

(c̄∇Φi,∇(r1
i − r

2
i ))L2∣ =

n

∑
i=1

c̄

ε
∥∇Λ−1

(r1
i − r

2
i )∥

2
L2 ≤

n

∑
i=1

Cc̄∥r1
i − r

2
i ∥

2
L2 ≤ 4Cc̄n. (242)

Since w̃0 ∈ B
M
R1

, there exists t0 depending on R1 such that w̃(t) = S(t)w̃0 ∈ B
M
R1

for all t ≥ t0.
Combining the bounds (234)–(242) and applying Young’s inequality give

1

t

t

∫

0

Trace((A +L(w̃))Qn)ds ≥
1

4
Trace(AQn) −C1c̄n −C2C(R1)n

≥ n(
1

4
C0n −C1c̄ −C2C(R1)) (243)

for all t ≥ t0. Here, C1,C2 are universal positive constants, C(R1) is a constant depending on R1, and
0 ≤ c̄ ≤M . Thus, choosing

n ≥
4

C0
(1 +C1M +C2C(R1)) (244)

ends the proof.
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