

¹Control, Sensor, Network, and Perception (CSNAP) Laboratory, Electrical and Computer Engineering Department, Temple University, Philadelphia, PA ²Radiology Department, Temple University Hospital, Philadelphia, PA

Tactile Imaging Probe (TIP)

Tactile Imaging Probe (TIP) is developed for breast cancer screening in remote regions, which can complement the current subjective method of clinical breast examination. It estimates the size and stiffness of suspicious lesions to come up with the malignancy information.

Fig. 1: TIP, Direct Compression Prototype

Table 1: TIP Preliminary Results

Sample	TRUE		Size E	Deformatio	
	Size, mm	YM, kPa	Size, mm	Error, %	Index (10^6
1	12.00	271	10.70	10.81	1.20
2	16.24	>250000	15.66	3.55	2.74
3	18.00	94	11.99	33.37	1.47
4	19.23	250000	18.93	1.54	3.42

TACTILE SENSORS FOR CLINICAL APPLICATIONS

V. Oleksyuk¹, S. Choi¹, D. Caroline², S. Pascarella² and Chang-hee Won¹

Smartphone-based Compression-Induced Sensor-Direct (SCIS-D)

Applications

Smartphone-based **Compression** Induced **Sensing-Direct (SCIS-D)** is the smartphone-based version of TIP developed to characterize the tissue's mechanical properties using a smartphone camera, its communication system, and the tactile sensor. SCIS-D is used for tumor characterization in breast cancer applications.

Sensing Principle and Design

Fig. 2: SCIS-D, Direct Compression Prototype

Preliminary DEMO Results

Table 2: SCIS-D Preliminary Results								
Sample	TRUE		Size Est	imation	Deformation	Score		
	Size (mm)	YM (kPa)	Size (mm)	Error (%)	Index (10^6)	JUUIC		
1	12.00	271	14.90	24.17	0.64	1.49		
2	16.24	>250000	19.10	17.61	6.35	4.93		
3	18.00	94	16.80	6.67	0.91	1.79		
4	19.23	250000	19.80	2.96	8.52	4.98		

Smartphone-based Compression-Induced Sensor-Indenter (SCIS-I)

(SCIS-I) is the new acquisition mode of SCIS, which measures the tissue recovery pattern from the compression against the tissue. The indirect sensing principle of SCIS-I designed to measure tissue elasticity changes due to the body fluid volume variation.

Fig. 3: SCIS-I, Indenter Compression Prototype

Ţ	Table	3: SCI	[S-]	I P 1	reli	in	nin	ar	y
S	ample	YM (kPa)			Pitting Depth (mm)				
	Ι	355.5	59		4.0225				
	II	266.3	37		4.6968				
	III	221.3	35		6.4557				
	IV	185.91			7.9984				
e ¹	Pitting I	Depth vs. You	ng's Mo	odulus		Rebounding Force Modulus			ce v lus
itting Depth (mn	8 6 4 2	•	•		8 6 2 2 8		•	•	
Ë	0 150 200 You	250 300 ng's Modulus (k	350 Pa)	400	0 9 1!	50	200 Yo	250 ung's Me	odu

Smartphone-based Compression Induced Sensing-Indenter

