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Verbal labels influence children’s processing of decimal magnitudes 
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A B S T R A C T   

Verbal labels for math concepts influence multiple aspects of math learning. In this study, we examined the 
influence of point labels (e.g., 0.42 as “point four two”), decomposed labels (e.g., “four tenths and two hun-
dredths”), and common-unit labels (e.g., “forty-two hundredths”) on children’s processing and representation of 
decimal magnitudes. We randomly assigned 162 5th- and 6th-graders to briefly learn decomposed, common-unit, 
or point labels. Children then completed measures of decimal magnitude processing and representation. We 
found that the place-value labels (i.e., decomposed and common-unit labels) each showed unique advantages in 
reducing the whole-number bias, and common-unit labels also reduced componential processing. No difference 
was found in the ratio effect – which served as an index of the precision of decimal magnitude representation - 
among children from the three conditions. These findings add to our understanding of the role of verbal labels in 
math learning and have important implications for instructional practices.   

Introduction 

Proficiency in mathematics predicts success in school and beyond 
(Duncan et al., 2007; Ritchie & Bates, 2013). Competence with math is 
essential for learning many other school subjects, such as chemistry, 
physics, and engineering. Beyond school, strong math skills open the 
door to many sought-after jobs (Koedel & Tyhurst, 2012). In particular, 
knowledge of rational numbers, which includes fractions, decimals, and 
percentages, is often a stumbling block and gatekeeper to more 
advanced mathematics (Booth & Newton, 2012; DeWolf, Bassok, & 
Holyoak, 2015; Siegler et al., 2012; Wong, 2020). For example, fifth and 
sixth graders’ decimal knowledge predicts general math achievement 
after controlling for whole number knowledge (Schneider, Grabner, & 
Paetsch, 2009). However, mastering rational numbers poses great 
challenges to many children. After years of instruction, even many 
community-college students and pre-service teachers still struggle with 
the topic (Siegler & Lortie-Forgues, 2015; Stigler, Givvin, & Thompson, 
2010). Therefore, it is important to understand the cognitive processes 
that are involved in learning rational numbers. 

The current study focuses on one factor that may impact the pro-
cessing of rational numbers – the verbal labels of these numbers in our 
language. Verbal labels for math concepts play an important role in 
math learning. Labels that precisely describe the mathematical structure 
of a concept can facilitate children’s learning of that concept (Laski & 
Yu, 2014; Miller & Stigler, 1987; Miura, Okamoto, Vlahovic-Stetic, Kim, 

& Han, 1999; Paik & Mix, 2003). For example, all Chinese number labels 
have transparent base-ten structures, even for the numbers 11 and 12, 
whereas the English labels do not explicitly show the base-ten structures 
(e.g., the Chinese word for 11 translates to “ten one”). The transparency 
of Chinese number labels likely facilitates Chinese children’s learning of 
the base-ten system and contributes to their more advanced number 
knowledge than English-speaking children (Laski & Yu, 2014; Miller & 
Stigler, 1987). To cite another example, Korean fraction labels empha-
size the part-whole relationship between the numerator and the de-
nominator (e.g., the Korean word for 2/3 translates to “of three parts, 
two”). Possibly due to fraction labels being more mathematically 
meaningful in Korean than in English, Korean children demonstrate 
stronger competence with fractions than their English-speaking US 
counterparts (Miura et al., 1999; Paik & Mix, 2003). Paik and Mix 
(2003) further showed that English-speaking US children’s fraction 
performance improved after learning fraction labels that explicitly 
referred to the part-whole relations like those in Korean. 

Here, we examined the influence of verbal labels on children’s pro-
cessing and representation of decimal magnitudes. Understanding dec-
imal magnitudes is critical for learning more advanced math topics, such 
as algebra, and for overall math achievement (DeWolf et al., 2015; Hurst 
& Cordes, 2018b; Wong, 2020). Although in the U.S., decimals are 
formally introduced in math class in fifth grade (National Governors 
Association Center for Best Practices, 2010, 2010), many middle school 
students and even adults lack competence with decimals (DeWolf et al., 
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2015; Lortie-Forgues & Siegler, 2017; Tirosh, Fischbein, Graeber, & 
Wilson, 1999). Therefore, examining factors that can influence the 
processing and representation of decimal magnitudes is of particular 
interest. 

Verbal labels for decimals 

One decimal can be labeled in several different ways. Adults usually 
label decimals using point labels, which label the individual digits in a 
decimal without referring to their place values. For example, the deci-
mal 0.428 can be labeled as “point four two eight”. However, place- 
value labels are recommended in formal decimal instruction (National 
Governors Association Center for Best Practices, 2010). Place-value la-
bels specify the place value of each digit in a decimal (i.e., decomposed 
labels) or the place value of the right-most digit in a decimal (i.e., 
common-unit labels). For example, for 0.428, the decomposed label is 
“four tenths, two hundredths, and eight thousandths”, and the common- 
unit label is “four hundred and twenty-eight thousandths”. 

The two types of place-value labels, decomposed labels and common- 
unit labels, have been treated as interchangeable in prior research 
(Loehr & Rittle-Johnson, 2016; Malone, Loehr, & Fuchs, 2017; Rittle- 
Johnson, Siegler, & Alibali, 2001). Indeed, both of these place-value 
labels share properties that may facilitate decimal processing. On a 
conceptual level, both decomposed labels and common-unit labels 
provide an explicit connection between decimals and fractions. Given 
that fractions are introduced before decimals (National Governors As-
sociation Center for Best Practices, 2010), this verbal connection to 
fractions may facilitate children’s understanding of decimals. On a more 
perceptual level, in both types of place-value labels, the decimal digits (i. 
e., digits to the right of the decimal point) all have “th” at the end, 
whereas labels for whole number digits (i.e., digits to the left of the 
decimal point) do not. As compared to the decimal point that separates 
whole-number and decimal digits and is highlighted by point labels, the 
“th” at the end of decimal digits may be more helpful for children 
learning to differentiate between whole-number and decimal digits. 

However, decomposed labels and common-unit labels also have 
important differences. We argue that, rather than being interchange-
able, these two types of place-value labels have strengths and weak-
nesses that may lead to unique effects on different aspects of decimal 
processing. We focus on two key aspects of decimal processing that have 
been identified in prior literature as showing individual and develop-
mental differences - whole-number bias and componential versus ho-
listic processing - and examine whether some labels lead to more 
advanced decimal processing (i.e., weaker whole-number bias and 
stronger holistic processing) than others. We also explore whether 
decimal labels improve the mental representations of decimal magni-
tudes. Below, we describe each aspect of decimal processing and decimal 
magnitude representation. We discuss the properties of decomposed 
labels and common-unit labels that we expect to facilitate or impede 
children’s processing and representation of decimal magnitudes, 
compared to each other and compared to point labels. 

Decimal labels and whole-number bias 

Whole-number bias is the tendency to overgeneralize whole number 
knowledge to decimals, which leads to confusion about decimal mag-
nitudes (Ni & Zhou, 2005). Likely due to children’s extensive exposure 
to whole numbers before learning decimals, errors yielded by whole- 
number bias are very common on decimal tasks among children (Des-
met, Grégoire, & Mussolin, 2010; Durkin & Rittle-Johnson, 2015; Ren & 
Gunderson, 2019, 2021). One type of error concerns the role of zero in 
decimals. Adding a zero to the end of a whole number (i.e., a trailing 
zero) increases the magnitude by ten times (e.g., 2 vs. 20) whereas 
adding a zero at the beginning of a whole number (i.e., a leading zero) 
does not change its magnitude (e.g., 2 vs. 02). In contrast, adding a 
trailing zero to a decimal does not change its magnitude (e.g., 0.2 vs. 

0.20) but adding a leading zero after the decimal point reduces the 
magnitude by ten times (e.g., 0.2 vs. 0.02). Misconceptions about the 
role of zero in decimals are prevalent among children (Desmet et al., 
2010; Durkin & Rittle-Johnson, 2012, 2015; Nesher & Peled, 1986; 
Sackur-Grisvard & Léonard, 1985). For example, in one study, 40% of 
fifth graders ignored the zero in the tenths place (e.g., treated 0.07 as 
0.7) when estimating decimals on number lines (Rittle-Johnson et al., 
2001). 

We expected decomposed labels to reduce role-of-zero mis-
conceptions, as compared to common-unit labels and to point labels. 
Decomposed labels emphasize the place value of each digit, including 
zeros. For example, the decomposed label for 0.070 is “zero tenths, 
seven hundredths, and zero thousandths”. These labels may help chil-
dren understand the meaning of both leading and trailing zeros and 
thereby reduce errors produced by ignoring them. In contrast, common- 
unit labels, which do not label leading zeros in decimals and only 
implicitly label trailing zeros (e.g., 0.070 as “seventy thousandths”), and 
point labels, which do not specify any place values, may not have this 
benefit. One study, in which children played a decimal-comparison card 
game, provides evidence consistent with this view (Loehr & Rittle- 
Johnson, 2016). In this study, third and fourth graders, who did not 
have much decimal knowledge, were randomly assigned to play the card 
game using decomposed labels, point labels, or no labels. Compared to 
children who used point labels or no labels, children who used decom-
posed labels made fewer errors on trials assessing role-of-zero knowl-
edge (e.g., comparing 0.3 and 0.30). However, to our knowledge, no 
study to date has directly compared the effect of decomposed labels and 
common-unit labels on reducing role-of-zero misconceptions. 

Another type of error driven by the whole-number bias is to assume 
that numbers with more digits are inevitably larger, a rule that is always 
correct for whole numbers, but not for decimals (e.g., assuming 0.53 is 
larger than 0.7 because the former has two digits and the latter has one). 
In decimal comparisons, this tendency yields a string-length-congruity 
effect: individuals are faster and more accurate at comparing decimals 
where the larger decimal has more digits (i.e., string-length congruent 
pairs such as 0.76 versus 0.5) than comparing decimals where the larger 
decimal has fewer digits (i.e., string-length incongruent pairs such as 
0.53 versus 0.7). This effect is present both among adults (Huber, Klein, 
Willmes, Nuerk, & Moeller, 2014; Varma & Karl, 2013) and children 
(Ren & Gunderson, 2019). For instance, in Ren and Gunderson (2019), 
sixth to eighth graders’ accuracy on string-length-congruent items was 
86%, compared to only 74% accuracy on string-length-incongruent 
items. Similarly, college students in Huber et al. (2014) had higher ac-
curacy and shorter reaction times when comparing string-length- 
congruent pairs than string-length-incongruent pairs. 

We expected decomposed labels to weaken the string-length- 
congruity effect, as compared to common-unit labels and point labels 
because decomposed labels are the least similar to whole-number labels. 
As compared to point labels, decomposed labels specify the place value 
of each decimal digit, which highlights the differences between decimal 
digits and whole number digits. Although common-unit labels also 
specify decimal place values, they are composed of a whole-number 
label and the place value of the smallest decimal digit (e.g., 0.53 is 
labeled “fifty-three hundredths”), which may reinforce the whole- 
number interpretation of decimals (e.g., that 0.53 is similar to “fifty- 
three”). Therefore, decomposed decimal labels are the most distinctive 
from whole-number labels and are likely to be the most helpful for 
children to distinguish decimals from whole numbers, thereby weak-
ening the string-length-congruity effect. In line with this view, Loehr and 
Rittle-Johnson (2016) found that third and fourth graders who played 
the decimal comparison card game using decomposed labels exhibited 
weaker string-length-congruity effect than those who used point labels 
or no labels. Again, no study to date has compared the effect of 
decomposed and common-unit labels. 
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Decimal labels and componential vs. holistic processing 

The three types of decimal labels may also influence the extent to 
which decimal magnitudes are processed componentially (i.e., sepa-
rately processing the magnitude of each digit) versus holistically (i.e., 
processing the overall magnitude of the decimal). Prior research sug-
gests that individuals process the magnitudes of each digit in whole 
number and decimal comparisons, even when they are irrelevant (Huber 
et al., 2014; Nuerk, Weger, & Willmes, 2001; Varma & Karl, 2013). 
People tend to respond faster and more accurately when comparing 
whole number and decimal pairs where each digit in the larger number 
is larger than all digits in the smaller number (e.g., 64 vs. 52 or 0.64 vs. 
0.52; digit-compatible pairs) than comparing pairs where some of the 
digits in the larger number are smaller than digits in the smaller number 
(e.g., 64 vs. 58 or 0.64 vs. 0.58; digit-incompatible pairs). This effect is 
called the digit-compatibility effect (Nuerk et al., 2001). When the com-
parisons involve two decimals to the hundredths place, the effect is also 
called the tenths-hundredths-compatibility effect (Huber et al., 2014). The 
fact that the magnitudes of the hundredth digits influence decimal 
comparison speed and accuracy suggests that decimal digits are pro-
cessed individually, and decimals are not processed solely as holistic 
magnitudes. The tenths-hundredths-compatibility effect in decimal 
comparison has been shown among adults (Huber et al., 2014), and the 
digit-compatibility effect in whole number comparison has been docu-
mented among both adults and children (Mann, Moeller, Pixner, Kauf-
mann, & Nuerk, 2012; Nuerk et al., 2001; Nuerk, Kaufmann, Zoppoth, & 
Willmes, 2004). 

We expected that decomposed and point labels would lead to 
stronger componential processing than common-unit labels. Decom-
posed labels and point labels both explicitly label each digit in a decimal 
and are therefore likely to draw equal attention to all the decimal digits, 
even though digits with larger place values bear greater weight in 
determining decimal magnitudes. In contrast, common-unit labels only 
refer to the smallest unit and emphasize holistic magnitudes. Thus, we 
expected decomposed labels and point labels to result in more compo-
nential processing of decimals and yield a stronger tenths-hundredths- 
compatibility effect than common-unit labels. However, no prior 
research, to our knowledge, has tested how verbal labels affect the 
tendency to process decimals componentially. 

Decimal labels and the ratio effect 

Finally, we also explored whether decimal labels influence the pre-
cision of decimal magnitude representations, as measured by the ratio 
effect. In decimal comparison, people tend to have higher error rates and 
longer response times as the ratio of the smaller number over the larger 
number increases, and this effect is referred to as the ratio effect (Moyer 
& Landauer, 1967). For example, comparing 0.6 and 0.8 (a ratio of 3:4) 
is more prone to errors and takes longer than comparing 0.6 and 0.9 (a 
ratio of 2:3).1 The ratio effect has been documented both among chil-
dren (Hurst & Cordes, 2018b) and adults (Hurst & Cordes, 2018a), and 
the existence of the ratio effect is often viewed as evidence that decimal 
magnitudes are represented in an ordered manner on a mental contin-
uum (Hurst & Cordes, 2018a, 2018b; Wang & Siegler, 2013). Individual 
differences are present in the strength of the ratio effect – compared to 
others, some people’s response times and error rates increase at a greater 
rate as the ratio of the smaller number over the larger number increases. 
The strength of the ratio effect is viewed as reflecting the precision of the 
individual’s mental representation of numerical magnitudes - a more 

precise representation means less overlap with nearby numbers and a 
weaker ratio effect. 

Although we expect decimal labels to influence children’s decimal 
magnitude processing tendencies, it is less clear whether and how 
different decimal labels would affect the precision of decimal magnitude 
representations, i.e., the strength of the ratio effect. It is possible that 
place-value labels, by directing attention to place values, would enhance 
the precision of magnitude representations and yield a weaker ratio 
effect. Some indirect evidence consistent with this possibility comes 
from research on decimal number line estimation, which, like the ratio 
effect, is argued to reflect the precision of magnitude representations 
(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Dehaene, Izard, 
Spelke, & Pica, 2008; Kim & Opfer, 2017). Specifically, fifth graders’ 
correct use of decimal place-value labels was associated with how much 
they improved on decimal number line estimation accuracy after a 
number line estimation intervention (Rittle-Johnson et al., 2001). 
Alternatively, the precision of decimal magnitude representations may 
be resistant to change via brief exposure to decimal labels. Consistent 
with this, the development of precise linear mental representations of 
large whole numbers (e.g., 0–1000), as measured by number line esti-
mation, takes years in the absence of direct feedback on the represen-
tation. In one study, only 9% of second graders exhibited evidence for a 
linear representation of whole numbers between 0 and 1000; this pro-
portion was 38% among fourth graders, 72% among sixth graders, and 
reached 97% among adults (Siegler & Opfer, 2003). We explored these 
alternative possibilities by examining whether each type of decimal 
label influenced the strength of children’s ratio effects in decimal 
comparisons. 

The current study 

In summary, the current study investigated how different decimal 
labels (decomposed labels, common-unit labels, and point labels) in-
fluence decimal magnitude processing and representation. To examine 
these effects, we randomly assigned children to briefly learn to use 
either decomposed labels, common-unit labels, or point labels. Children 
then completed measures of whole-number bias (i.e., the role of zero and 
the string-length-congruity effect), componential processing (i.e., the 
tenths-hundredths-compatibility effect), and precision of magnitude 
representation (i.e., the ratio effect). Knowledge of the role of zero was 
measured using a multiple-choice task. The string-length-congruity ef-
fect, the tenths-hundredths-compatibility effect, and the ratio effect 
were measured using decimal comparison tasks. Table 1 summarizes our 
predictions for how decimal labels would influence each aspect of dec-
imal processing. We tested these predictions among fifth and sixth 
graders in the U.S. Children in these grade levels have received some 
formal instruction on both fractions and decimals - according to Com-
mon Core State Standards (National Governors Association Center for 
Best Practices, 2010), fractions are introduced in third grade and deci-
mals are introduced in fifth grade. We therefore expected them to have 
some understanding of the fraction words “tenths”, “hundredths”, and 
“thousandths” in the place-value labels without additional instruction, 
while still being in the process of learning about decimal magnitudes. At 
the same time, most of the effects of interest (i.e., role-of-zero errors, 
string-length-congruity effect and ratio effect) have been documented 
among children of similar ages (Durkin & Rittle-Johnson, 2015; Hurst & 
Cordes, 2018b). Although to our knowledge, no study has examined the 
tenths-hundredths-compatibility effect (a type of digit-compatibility 
effect in which the comparison involves two decimals to the hun-
dredths place) among children, we expect children to show this effect 
because they show the digit-compatibility effect with whole numbers 
(Mann et al., 2012). Findings of the current study can contribute to our 
theoretical understanding of how verbal labels influence cognitive 
processing, and at the same time, inform educational practice in decimal 
instruction. 

1 Distance effect, the effect that the error rates and reaction times of 
comparing two numbers increase as the distance between the two numbers 
decreases, is closely related to the ratio effect (Lyons, Nuerk, & Ansari, 2015). 
In addition to numerical distance, the ratio effect also concerns the numerical 
magnitudes, and therefore, we focus on the ratio effect here. 
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Methods 

Participants 

Fifth- and sixth-grade students were recruited from nine schools (12 
classrooms) in a large city in the northeastern US (N = 177; 115 fifth 
graders and 62 sixth graders; 95 girls and 82 boys; Mage = 11.20 years, 
SDage = 0.68). A power analysis indicated that a sample size of 156 (52 in 
each condition) would be sufficient to detect a medium-sized effect (η2 

= .06; Loehr & Rittle-Johnson, 2016) of differences between conditions, 
with α = 0.05 and power = 0.80. Because we allowed all children with 
parental consent and child assent from the participating classrooms to 
participate in the study, the number of participants exceeded the target 
sample size. Children were randomly assigned within classroom to a 
decomposed-label condition (N = 59), a common-unit-label condition 
(N = 57), or a point-label condition (N = 61). 

Due to an experimenter error (incorrectly administering basal and/or 
ceiling rules), 15 children did not complete the reading achievement 
measure. Because this measure was used as a covariate in all the infer-
ential analyses, we excluded these children from our analytic sample, 
resulting in an analytic sample of 162 (N = 55 in the decomposed-label 
condition, N = 50 in the common-unit-label condition, and N = 57 in the 
point-label condition). As a robustness check, we ran parallel analyses 
without including the covariate of reading achievement, allowing us to 
include all 177 children. These analyses yielded similar results as re-
ported below (see Supplementary Materials, Section A for results of 
these analyses). 

Based on parents’ reports (N = 136), 60% of the children were Black 
or African American, 11% were multiracial, 12% were White, 10% were 
Hispanic, 4% were Asian or Asian American, 1% were American Indian 
or Alaskan Native, and 1% were of another race or ethnicity. Based on 
parents’ reports of language(s) spoken at home (N = 137), 66% of the 

families spoke only English at home, 1% spoke only a language other 
than English at home, 31% spoke two languages, and 1% spoke three 
languages. English was the primary language spoken at home in 91% of 
the families. All children in the study spoke English at school and were 
able to speak and understand English during this study. The study pro-
cedures were approved under Temple University Institutional Review 
Board (IRB) protocol 21,935, “Cognitive and Emotional Bases of Math, 
Reading, and Spatial Development.” 

Procedure 

Each child worked with a trained experimenter for one 20- to 30-min 
session in a quiet space at their school. At the beginning of the session, 
children completed a standardized reading achievement measure, spe-
cifically a decoding measure, as a control. Decoding is essential for 
recognizing the meaning of words (Perfetti, 2010). Controlling for 
decoding allows us to parse out at least some influence of verbal skills 
from the effects of verbal labels on decimal processing. Children then 
received approximately 10 to 15 min of training on labeling decimals 
with either decomposed labels, common-unit labels, or point labels, 
depending on the condition they were assigned to. Finally, children 
completed four decimal magnitude measures assessing whole number 
bias in two ways (role-of-zero knowledge and the string-length- 
congruity effect), componential processing (i.e., tenths-hundredths- 
compatibility effect), and precision of magnitude representations (i.e., 
ratio effect). The order of the four measures was counterbalanced using 
a Latin squares design. The order of the test items within each measure 
was fully randomized for each participant. To remind students of the 
trained decimal labels, after completing each of the first three decimal 
magnitude measures, children were shown two decimals along with the 
labels that children were trained with. The three sets of reminder deci-
mals were 0.20 and 0.84, 0.6 and 0.02, and 0.63 and 0.49. These 
reminder decimals appeared in the same order specified here for all 
participants. The decimal training and assessment stimuli were pre-
sented on a laptop using jsPsych on JATOS (de Leeuw, 2015; Lange, 
Kühn, & Filevich, 2015). 

Training 

During training, the experimenter explained to the child how to label 
three types of decimals: decimals with no leading zeros or trailing zeros, 
such as 0.2 and 0.57; decimals with leading or trailing zeros, such as 
0.04 and 0.700; and decimals with both leading and trailing zeros, such 
as 0.030. See Supplementary Materials, Table S1 for the complete list of 
decimals used in the training. The training procedure and stimuli were 
the same across the three conditions, except for the verbal and written 
labels used for the decimals. 

In the first phase of the training, children were asked to name 14 

Table 1 
Summary of predictions and results.  

Measure Prediction Result 

Whole-number bias: Role-of-zero Prediction 1. Decomposed labels will 
lead to more correct answers than 
common-unit labels 

✓ 

Prediction 2. Decomposed labels will 
lead to more correct answers than 
point labels. 

✓ 

Prediction 3. Decomposed labels will 
lead to fewer leading-zero errors 
than common-unit labels. 

⨯ 

Prediction 4. Decomposed labels will 
lead to fewer leading-zero errors 
than point labels. 

✓ 

Whole-number bias: String- 
length-congruity effect 

Prediction 5. Decomposed labels will 
lead to a weaker string-length- 
congruity effect than common-unit 
labels. 

! 

Prediction 6. Decomposed labels will 
lead to weaker string-length- 
congruity effect than point labels. 

⨯ 

Componential vs. holistic 
processing: Tenths-hundredths- 
compatibility effect 

Prediction 7. Common-unit labels 
will lead to a weaker tenths- 
hundredths-compatibility effect than 
decomposed labels. 

✓ 

Prediction 8. Common-unit labels 
will lead to a weaker tenths- 
hundredths-compatibility effect than 
point labels. 

⨯ 

Magnitude representation: Ratio 
effect 

Exploratory. Decomposed and 
common-unit labels will lead to a 
smaller ratio effect than point labels. 

⨯ 

Note. “✓” indicates that a significant effect in the predicted direction is found (p 
< .05). “⨯” indicates that there was no significant difference between the two 
conditions. “!” indicates a significant effect in the opposite direction of what was 
predicted. 

Table 2 
Example training trials in each condition.  

Type of 
Decimal 

Decimal 
Example 

Decomposed- 
Label Condition 

Common- 
Unit-Label 
Condition 

Point-Label 
Condition 

Decimals with 
no leading 
or trailing 
zero 

0.2 Two tenths Two tenths Point two 

Decimals with 
leading or 
trailing 
zeros 

0.051 Zero tenths, five 
hundredths, and 
one thousandth 

Fifty-one 
thousandths 

Point zero 
five one 

Decimals with 
both 
leading and 
trailing 
zeros 

0.030 Zero tenths, three 
hundredths, and 
zero thousandths 

Thirty 
thousandths 

Point zero 
three zero  
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decimals by reading the labels presented below the decimals (see Table 2 
for examples). The experimenter introduced the first decimal by saying, 
“The way we can name this decimal is [the presented label]. Can you 
repeat the name?” On each subsequent training trial, if the child named 
the decimal with the provided label correctly, the experimenter would 
confirm and read the label again by saying, “Yes, it is [the presented 
label].” If the child named the decimal incorrectly, the experimenter 
would point to the label on the screen, correct the child, and ask the 
child to name the decimal again by saying, “This is actually [the pre-
sented label]. Can you read the name?” If the child provided a correct 
decimal label that was different than the presented label, the experi-
menter would encourage the child to use the presented label without 
commenting on the correctness of the label the child used. Specifically, 
the experimenter would say, “Another way to name it is [the presented 
label]. Can you read the name?” 

In the second phase of the training, children practiced naming a new 
set of 14 decimals without any labels presented. After the child 
responded on each trial, the experimenter provided corrective feedback 
similar to that in the first phase. 

Measures 

Whole-number bias: role-of-zero knowledge 

This measure was designed to examine students’ knowledge and 
misconceptions regarding the role of zero in decimal magnitudes (all 
items were created by the authors, adapted from “role of zero” items in 
Durkin & Rittle-Johnson, 2015). Children were shown a target decimal 
and four choices and were asked to choose all the choices that were 
equal to the target (see Fig. 1A for an example test trial). On each trial, 
the four choices included one correct choice and three incorrect choices. 
The correct choice was created by either adding or deleting a trailing 
zero from the given decimal. For example, on the trial where 0.020 was 
the target decimal, the correct choice was 0.02. The three incorrect 
answers (foils) were designed to capture specific misconceptions. The 
leading-zero foil was created by adding or deleting a leading zero from 
the target (e.g., for the target 0.020, the leading zero foil was 0.20). The 
whole-number foil was created by ignoring the decimal point and any 
leading zeros in the target decimal (e.g., for the target 0.020, the whole- 
number foil was 20). The random-string foil was created by arranging 
the same digits in the given decimal differently (e.g., for the target 
0.020, the random string foil was 2.000). 

At the beginning of the task, children completed four practice trials 
where the target decimals were presented with labels corresponding to 
the child’s assigned condition. Children were asked to first read the label 
for the target decimal and then click all the choices equal to the target. 
Children then completed nine test trials without labels (see Supple-
mentary Materials, Table S2 for a complete list of stimuli).2 No feedback 
was provided on practice trials or test trials. 

Because the predictions relevant to this task concerned choosing the 
correct answer or the leading zero foil, we categorized the response to 
each trial as a correct answer (when only the correct answer was cho-
sen), a leading zero error (whenever the leading zero foil was chosen; e. 
g., choosing the correct answer and the leading zero foil), or other. 
Reliability of accuracy on the measure was high (Cronbach’s alpha =
0.92). Reliability was also high for leading-zero errors (Cronbach’s 
alpha = 0.86). 

Whole-number bias: string-length-congruity effect 

As a measure of the string-length-congruity effect produced by 
whole-number bias, children completed a decimal comparison task 

designed to assess their tendency to choose the longer string of digits as 
the larger number (items were created by the research team following 
similar prior work, e.g., Huber et al., 2014; Ren & Gunderson, 2019; 
Varma & Karl, 2013). In this task, each pair of decimals included a one- 
digit decimal and a two-digit decimal (see Fig. 1B for an example test 
trial). None of the decimals had leading or trailing zeros. Half of the 
trials were string-length-congruent trials, where the one-digit decimal 
was smaller than the two-digit decimal (e.g., 0.2 vs. 0.95). The other half 
of the trials were string-length-incongruent trials, where the one-digit 
decimal was larger than the two-digit decimal (e.g., 0.5 vs. 0.41). 
Within each trial type, we counterbalanced the side of the screen (left vs. 
right) on which the correct answer appeared. To control for tenths- 
hundredths compatibility, each of the decimal digit(s) in the larger 
decimal were larger than each of the decimal digit(s) in the smaller 
decimal. 

Children first completed four practice trials on which decimals were 
presented with the trained labels according to the child’s assigned 
condition. Children were asked to read the labels for the two decimals in 
each pair and indicate which decimal was larger using that label. Chil-
dren then completed 16 test trials without decimal labels by pressing the 
“A” key if the number on the left was larger or the “L” key if the number 
on the right was larger (see Supplementary Materials, Table S3 for a 
complete list of stimuli). No feedback was given on practice trials or test 
trials. Children were asked to respond as quickly as possible without 
sacrificing accuracy on test trials. Trials on which the reaction times 
(RT) were shorter than (<) 200 ms or longer than (≥) 10,000 ms (0.4% 
of trials) were excluded from the analyses on this and other tasks 
involving decimal comparison. The excessively short or long reaction 
times likely indicated children not paying attention on the trial, and 
excluding these trials is a common practice in prior studies with 
magnitude comparison tasks (e.g., Hurst & Cordes, 2018a; Nuerk et al., 
2001; Ren & Gunderson, 2021). Accuracy on the remaining trials were 
used in the analyses. On this task, a larger difference in accuracy fa-
voring string-length-congruent trials over string-length-incongruent 
trials indicates a greater whole-number bias. Reliability was high for 
both congruent (Cronbach’s alpha = 0.97) and incongruent (Cronbach’s 
alpha = 0.97) items. 

Componential processing: tenths-hundredths-compatibility effect 

To assess students’ componential processing, we asked children to 
complete a decimal magnitude comparison task designed to measure the 
tenths-hundredths-compatibility effect. Items were created by the 
research team following similar prior work (Huber et al., 2014; Nuerk 
et al., 2001). In this task, all decimals had two decimal digits and no 
leading or trailing zeros (see Fig. 1C for an example test item). On tenths- 
hundredths-compatible trials (half of all trials), the tenths digit and the 
hundredths digit of the larger decimal were both larger than the corre-
sponding digit of the smaller decimal (e.g., 0.35 vs. 0.23). On tenths- 
hundredths-incompatible trials (half of all trials), the tenths digit of 
the larger decimal was larger than the tenths digit of the smaller deci-
mal, while the hundredths digit of the larger decimal was smaller than 
that of the smaller decimal (e.g., 0.24 vs. 0.16). The side of the screen on 
which the correct answer appeared was counterbalanced within trial 
types. Because all decimals had two decimal digits, string length should 
not affect magnitude judgements. There were four practice trials on 
which children read the decimal labels corresponding to their assigned 
condition and verbally responded using the labels. Children then 
completed 16 test trials without labels (see Supplementary Materials, 
Table S4 for a complete list of stimuli). No feedback was provided on the 
practice or test trials. Children were asked to respond as quickly as 
possible without sacrificing accuracy on the test trials. Trials with RTs 
were shorter than (<) 200 ms or longer than (≥) 10,000 ms (0.2% of 
trials) were excluded from the analyses. On this task, a stronger tenths- 
hundredths-compatibility effect (i.e., a larger difference in accuracy 
favoring tenths-hundredths compatible trials over tenths-hundredths 

2 A tenth trial was administered during the role-of-zero task but was excluded 
from our analyses due to an error in the item’s design. 
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incompatible trials) indicates stronger componential processing. Reli-
ability was good for compatible items (Cronbach’s alpha = 0.76) and 
high for incompatible (Cronbach’s alpha = 0.91) items. 

Precision of magnitude representation: ratio effect 

To assess children’s precision of decimal magnitude representations, 
we assessed the ratio effect in decimal comparison. The research team 
created the items by systematically varying the ratio of the magnitude 
between the decimals compared, following prior work (see Fig. 1D for an 
example test item; Hurst & Cordes, 2018a; Wang & Siegler, 2013). Four 
pairs of two-digit decimals were chosen in each of four ratio bins: 1.25, 
1.5, 2, or 2.5 (16 test trials in total). To avoid the influence of string 
length, we used only two-digit decimals in this task. Additionally, all 
decimal pairs were tenths-hundredths compatible. The side of the screen 
on which the correct answer appeared was counterbalanced within ratio 
bin. As in the other decimal comparison tasks, there were four practice 
trials with decimal labels and 16 test trials without labels (see Supple-
mentary Materials, Table S5 for a complete list of the stimuli). Children 
did not receive any feedback on the practice or the test trials. On the test 
trials, children were asked to respond as quickly and accurately as 
possible. Reliability of the measure was calculated using accuracy and 
was good (Cronbach’s alpha = 0.80). 

Analyses of the ratio effect focused on RTs. We excluded trials on 
which the RTs were shorter than (<) 200 ms or longer than (≥) 10,000 
ms (0.5%) from the analyses. We computed a ratio effect index for each 
child using RTs of that child’s accurate responses. We further excluded 
trials on which the RTs were beyond three standard deviations away 
from the child’s mean RT (1%; all above the mean). For each child, we fit 
a linear regression model using the ratio of the decimal pairs predicting 
RTs of accurate responses. Children needed to have data in at least three 
of the four ratio bins to be included in this analysis (N = 161). Beta 
coefficient estimates of the effect of ratio on RTs were used as the index 
for the ratio effect. A larger beta coefficient estimate indicates greater 
ratio effects and less precision of magnitude representations. 

Reading achievement 

We assessed students’ reading achievement using the Letter-Word 
Identification subtest of the Woodcock-Johnson IV (Schrank, Mather, 
& McGrew, 2014). In this test, children were asked to identify letters and 

read words of increasing difficulty. Basal was met when children 
answered correctly on the six lowest-numbered items that were 
administered. Ceiling was met when children answered incorrectly on 
the six highest-numbered items that were administered. The test ended 
when both basal and ceiling were met. W scores were used in the 
analyses. 

This study was not preregistered. All testing scripts, data, and anal-
ysis code have been made publicly available on the OSF and can be 
accessed at https://osf.io/qfby8/. 

Results 

All the analyses were conducted using R (R Core Team, 2018) and the 
lme4 package (Bates, Mächler, Bolker, & Walker, 2014). There was no 
missing data on any of the four decimal knowledge measures other than 
trials excluded because of RTs as described above. 

Descriptive analyses 

Table 3 shows descriptive statistics of performance on each measure, 
separately for children in each condition. Because grade level did not 
correlate with any measure, we combined children from both grade 
levels in all subsequent analyses. 

Whole number bias: role-of-zero knowledge 

To test whether decomposed labels led to more correct answers than 
common-unit labels and point labels (Predictions 1 and 2), we fit a 
generalized linear mixed-effects model (GLMM) on the likelihood of 
choosing only the correct answer on each trial. Training condition was 
entered as a fixed effect, participant was entered as a random effect, and 
reading achievement was entered as a covariate. Because W scores on 
the reading achievement measure were on a much larger scale (ranging 
from 433 to 541 in our sample) than the dependent variable (i.e., 0 or 1), 
we scaled the reading achievement W score by dividing each child’s 
score by the maximum score among all children, to improve model 
convergence. 

The model yielded a significant effect of condition, Х2(2) = 6.29, p =
.043. Fig. 2A shows the probability of choosing only the correct answer 
among children in each condition based on the model estimates. 
Parameter estimates with the decomposed-label condition as the 

Fig. 1. Example test items in measures of (A) whole-number bias: role-of-zero knowledge, (B) whole-number bias: string-length-congruity effect, a string-length- 
incongruent trial, (C) componential processing: tenths-hundredths-compatibility effect, a tenths-hundredths-incompatible trial, and (D) precision of magnitude 
representation: ratio effect. On the decimal comparison tasks (B–D), children were instructed to choose the larger number in each pair. 
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reference level showed that the results were consistent with both Pre-
dictions 1 and 2. After controlling for reading achievement (B = 23.67, p 
= .004), the likelihood of choosing only the correct answer was higher 
among children in the decomposed-label condition than the common- 
unit-label condition (B = − 1.44, p = .028) and the point-label condi-
tion (B = − 1.33, p = .034). Setting the common-unit-label condition as 
the reference level, parameter estimates showed no significant differ-
ence in the likelihood of choosing only the correct answer in the 
common-unit-label versus the point-label conditions (B = 0.12, p =
.858). 

To test whether decomposed labels led to fewer leading-zero errors 
(i.e., choosing the leading zero foil either alone or along with other 
choices) compared to common-unit labels and point labels (Predictions 
3 and 4), we fit a similar GLMM on the likelihood of making a leading- 
zero error on each trial.3 The model yielded a significant effect of con-
dition, Х2(2) = 12.00, p = .002. Fig. 2B shows the probability of making 
a leading-zero error among children in each condition based on the 
model estimates. The effect of reading achievement in this and all the 
other models was not significant unless reported otherwise. The model 
estimates with the decomposed-label condition as the reference level 
showed no significant difference in the likelihood of making leading- 
zero errors among children in the common-unit-label condition than 
the decomposed-label condition, B = 0.80, p = .053, providing no evi-
dence for Prediction 3 (although the non-significant trend was descrip-
tively in line with Prediction 3). Consistent with Prediction 4, children in 
the point-label condition were significantly more likely than children in 
the decomposed-label condition to make leading zero errors, B = 1.40, p 
< .001. Setting the common-unit-label condition as the reference level, 
parameter estimates suggested the likelihood of making leading-zero 
errors was not significantly different among children in the common- 
unit-label and the point-label conditions (B = 0.60, p = .140). 

Whole-number bias: string-length-congruity effect 

We next examined Predictions 5 and 6, that decomposed labels 
would lead to a weaker whole-number bias and therefore a weaker 
string-length-congruity effect than common-unit labels and point labels. 
To do so, we fit a GLMM on children’s accuracy on the string-length- 
congruity effect measure.4 Training condition, item type (with 
congruent items as the reference group), and the interaction between the 
two were entered as fixed effects. Participant was entered as a random 
effect, reading achievement was entered as a covariate, and accuracy on 
each trial was entered as the dependent variable. To improve model 
convergence, we divided each child’s reading achievement W score by 
the maximum score among all children. 

The model yielded a significant main effect of item type (Х2(1) =
546.32, p < .001) and a significant interaction between item type and 
condition (Х2(2) = 45.58, p < .001). Fig. 3 shows the expected values of 
accuracy on string-length-congruent and string-length-incongruent tri-
als among children from each of the three training conditions based on 
the model estimates. Estimates of model parameters with the 
decomposed-label condition as the reference group indicated that chil-
dren in the decomposed-label condition showed a stronger string-length- 
congruity effect than children in the common-unit-label condition (i.e., 
greater difference in accuracy between congruent and incongruent 
items; B = 3.12, p < .001), which contradicted our Prediction 5. There 
was no significant difference in the strength of the string-length- 
congruity effect between the decomposed-label condition and the 
point-label condition (B = 0.10, p = .878), providing no evidence for 
Prediction 6. Model estimates with the common-unit-label condition as 
the reference level showed that children in the point-label condition had 
a stronger string-length-congruity effect than children in the common- 
unit-label condition (B = − 3.02, p < .001). 

Componential processing: tenths-hundredths-compatibility effect 

Figure 4 shows children’s accuracy on tenths-hundredths compatible 
and tenths-hundredths incompatible trials. To test Predictions 7 and 8, 
that common-unit labels lead to a weaker tenths-hundredths- 
compatibility effect than decomposed labels and point labels, we fit a 
GLMM on accuracy on the tenths-hundredths-compatibility effect mea-
sure. Training condition, item type (with tenths-hundredths compatible 
items as the reference group), and the interaction between the two were 
entered as fixed effects. Participant was entered as a random effect, 
reading achievement was scaled and entered as a covariate, and accu-
racy on each trial was entered as the dependent variable. 

The model yielded a significant main effect of item type (Х2(1) =
4.87, p = .027) and a significant interaction between item type and 
condition (Х2(2) = 22.69, p < .001). Estimates of model parameters with 
the common-unit-label condition as the reference group suggested that 
consistent with Prediction 7, children in the common-unit-label condi-
tion showed a weaker tenths-hundredths-compatibility effect than 
children in the decomposed-label condition (i.e., a smaller difference in 
accuracy favoring tenths-hundredths compatible than tenths- 
hundredths incompatible items; B = − 2.58, p < .001). However, 
although trending in the expected direction, children in the common- 
unit-label condition and the point-label condition did not significantly 
differ in the strength of tenths-hundredths-compatibility effects (B =
− 0.98, p = .087), failing to support Prediction 8. Parameter estimates of 
the model with the decomposed-label condition as the reference group 
showed that children in the point-label condition showed a weaker 

Table 3 
Demographic Information and Mean Performance on Each Measure by 
Condition.  

Measure Decomposed- 
Label Condition 
(N = 55) 
M (SD) 

Common- 
Unit-Label 
Condition 
(N = 50) 
M (SD) 

Point-Label 
Condition 
(N = 57) 
M (SD) 

Demographics 
Gender 32 girls; 23 boys 29 girls; 21 

boys 
29 girls; 28 
boys 

Grade 32 fifth graders; 
23 sixth graders 

34 fifth 
graders; 16 
sixth graders 

35 fifth 
graders; 22 
sixth graders 

Years of age 11.27 (0.63) 11.14 (0.70) 11.25 (0.72) 
Role-of-Zero (frequency)    
Correct answer (when 
only the correct answer 
was chosen) 

0.43 (0.38) 0.29 (0.35) 0.30 (0.36) 

Leading zero error 
(whenever the leading 
zero foil was chosen) 

0.32 (0.31) 0.43 (0.29) 0.53 (0.36) 

String-Length-Congruity Effect (accuracy) 
Congruent items 0.97 (0.14) 0.90 (0.29) 0.98 (0.13) 
Incongruent items 0.16 (0.34) 0.22 (0.40) 0.19 (0.36) 

Tenths-Hundredths-Compatibility (accuracy) 
Compatible items 0.95 (0.15) 0.95 (0.10) 0.95 (0.14) 
Incompatible items 0.87 (0.29) 0.98 (0.06) 0.95 (0.14) 

Ratio Effect (accuracy) 0.98 (0.04) 0.96 (0.07) 0.96 (0.14) 
Ratio Effect (RT slope 

index) 
− 113.78 
(208.92) 

− 108.68 
(345.11) 

− 47.24 
(144.33) 

Reading Achievement (W 
Score) 

500.42 (19.31) 501.02 
(17.31) 

503.14 
(13.36)  

3 We also ran a parallel model on the likelihood of choosing only the leading 
zero error on each trial. The model did not yield a main effect of condition, 
Х2(2) = 3.424, p = .181. 

4 Analyses of the string-length-congruity measure and the tenths-hundredth- 
compatibility measure focused on accuracy. Parallel analyses of RTs on these 
two measures did not yield any significant effects, suggesting that the effects we 
observed with accuracy were not due to a speed-accuracy trade-off (see Sup-
plementary Materials, Section B for analyses on RTs). 
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tenths-hundredths-compatibility effect than children in the 
decomposed-label condition (B = 1.61, p = .002). 

Ratio effect 

Figure 5 shows the average RTs of accurate responses on trials in 
each ratio bin. We used each child’s slope of the relation between ratios 
and RTs as the ratio effect index in subsequent inferential analyses. t- 
tests suggested that the ratio effect index was significantly different from 
zero among children in all conditions (decomposed-label condition: M 
= − 113.78, SD = 208.92, t(54) = − 4.04, p < .001, Cohen’s d = 0.54; 
common-unit-label condition: M = − 108.68, SD = 345.11, t(48) =
− 2.23, p = .031, Cohen’s d = 0.31; and point-label condition: M =
− 47.24, SD = 144.33, t(55) = − 2.45, p = .018, Cohen’s d = 0.33). 

To explore whether the training influenced the strength of the ratio 
effect, we fit a linear regression model with training condition as a 
predictor, reading achievement as a covariate, and the ratio effect index 
as the dependent variable. Reading achievement W score was not scaled 
in this model because it was on a similar scale as the ratio effect index. 
The effect of training condition was not significant in the model, F (2, 
157) = 1.16, p = .318. Children in the common-unit-label condition did 
not significantly differ in the ratio effect compared to children in the 
decomposed-label condition (B = − 4.42, p = .926) and the point-label 
condition (B = 58.89, p = .216). 

Discussion 

As compared to informal point labels, place-value decimal labels, 
including decomposed labels and common-unit labels, are believed to 
scaffold children’s understanding of decimal magnitudes (Loehr & 
Rittle-Johnson, 2016; Malone et al., 2017; National Governors Associ-
ation Center for Best Practices, 2010; Rittle-Johnson et al., 2001). We 
argue that although the two types of place-value labels may both be 
more beneficial than point labels, each has strengths and weaknesses in 
promoting children’s decimal magnitude processing. By having fifth and 
sixth graders learn and practice labeling decimals with either decom-
posed labels, common-unit labels, or point labels, we illustrated the 
distinctive effects of these labels on decimal magnitude processing. In 
particular, decomposed labels and common-unit labels each showed 
unique advantages in reducing the whole-number bias, and common- 
unit labels also reduced the tendency to process the magnitudes of 
decimal digits individually. 

In the current study, a brief exposure to decomposed labels decreased 
one type of misconception yielded by the whole-number bias - miscon-
ception about the role of zero in decimals - among fifth and sixth 
graders. Children often incorrectly assume that leading and trailing 
zeros function similarly in decimals as in whole numbers – that adding 
leading zeros does not change the magnitude of a decimal (e.g., 
assuming 0.03 equals 0.3) whereas adding trailing zeros does (e.g., 
assuming 0.30 does not equal 0.3; Desmet et al., 2010; Durkin & Rittle- 
Johnson, 2015). We expected that decomposed labels would reduce this 
misconception by explicitly labeling the place values of zeros in the 

Fig. 2. Probability of (A) choosing only the correct answer and (B) making a leading-zero error among children in each training condition based on predicted values 
in each GLMM. Error bars represent one standard error. Correct answer: only the correct choice was selected. Leading-zero error: whenever the leading zero foil was 
selected. * p < .05, *** p < .001. 
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fractional part of the decimal (e.g., labeling 0.030 as “zero tenths, three 
hundredths, and zero thousandths”). Consistent with this expectation, 
children exposed to decomposed labels were more likely to correctly 
recognize that deleting or adding trailing zeros in a decimal does not 
change its magnitude than children in the common-unit-label or point- 
label conditions. Children who learned and practiced using decom-
posed labels were also less likely to make errors produced by treating 
decimals with and without a leading zero as equivalent (e.g., 0.3 and 

0.03). These findings suggest that decomposed labels can help reduce 
children’s role-of-zero misconceptions. 

However, contrary to our expectations, decomposed labels did not 
reduce another effect also yielded by the whole-number bias, the string- 
length-congruity effect. This effect is driven by the tendency to judge 
numbers with more digits to be larger, an assumption true of whole 
numbers (e.g., 51 is greater than 7) but not true of decimals (e.g., 0.51 is 
less than 0.7). Because decomposed decimal labels are the most 

Fig. 3. Accuracy on the string-length-congruity effect measure among children from each of the three training conditions. Values are predicted values from the 
GLMM. Error bars represent one standard error. *** p < .001. 

Fig. 4. Accuracy on the tenths-hundredths-compatibility effect measure among children from each of the three training conditions. Values are predicted values from 
the GLMM. Error bars represent one standard error. ** p < .01, *** p < .001. 
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distinctive from whole-number labels among the three types of labels, 
we expected them to be the most effective in reducing this tendency. 
However, children in the decomposed-label and point-label conditions 
exhibited similar string-length-congruity effects, suggesting that speci-
fying place values of each decimal digit did not influence the strength of 
this effect. This finding contradicts prior ones where children exposed to 
decomposed labels exhibited weaker string-length-congruity effects 
than those exposed to point labels (Loehr & Rittle-Johnson, 2016). One 
reason for this discrepancy might be that children in our study 
completed decimal comparison problems without any labels presented. 
In contrast, children in Loehr and Rittle-Johnson’s (2016) study 
completed half of the problems while naming the decimals with the 
assigned labels presented below the problems. This manipulation might 
have resulted in a more substantial influence of decomposed labels on 
performance than in our study. 

Our exploratory analyses showed that common-unit labels weakened 
the whole-number bias as reflected by a smaller string-length-congruity 
effect. It is likely that after exposure to common-unit labels, children less 
often assumed numbers with more digits to be larger. Instead, they more 
often assumed numbers with fewer digits to be larger - sometimes called 
the fraction rule (Resnick et al., 1989; Sackur-Grisvard & Léonard, 1985). 
The rule reflects the misconception that numbers labeled as “tenths” are 
always greater than numbers labeled as “hundredths” because 1/10 is 
greater than 1/100. Common-unit labels likely encouraged using this 
rule by signifying the place value of only the smallest digit. For example, 
when children compare 0.56 and 0.4, common-unit labels make it 
possible to use the fraction rule and incorrectly conclude that 56 hun-
dredths is smaller than 4 tenths because “hundredths” is smaller than 
“tenths”. In contrast, the fraction rule cannot be applied with decom-
posed labels because the decomposed label for 0.56 refers to both 
“tenths” and “hundredths”. It is worth noting that, even in the common- 
unit label condition, there was still a strong string-length congruity ef-
fect, indicating substantial whole-number bias at the group level. Thus, 
although the labeling manipulation impacted students’ performance, 
more sustained instruction may be necessary to eliminate whole-number 
bias on this task. 

In the current study, the advantage of common-unit labels was also 
reflected in a reduction in componential processing (i.e., tenths- 
hundredths-compatibility effect). Compared to common-unit labels, 
decomposed labels are expected to draw more attention to the 

hundredths digit, which is irrelevant in two-digit decimal comparisons 
when the tenths digit differs. Consistent with this expectation, practicing 
common-unit labels reduced interference from the hundredths digit, 
compared to practicing decomposed-labels. Our exploratory analyses 
further suggested that decomposed labels led to a stronger interference 
from the hundredths digit than point labels. It is likely that labeling the 
place values of each decimal digit as in decomposed labels (e.g., “two 
tenths and four hundredths”) encouraged componential processing of 
decimal magnitudes. 

Although decimal labels influenced the processing of decimal mag-
nitudes, as evidenced by the unique effects of the three types of labels on 
whole-number bias and componential processing, they did not seem to 
influence the precision of children’s decimal magnitude representation. 
Across the three conditions, we found no significant differences in the 
size of the ratio effect, which is viewed as an indicator of the precision of 
numerical representations (Halberda & Feigenson, 2008; Verguts & Fias, 
2004). It is possible that the precision of decimal magnitude represen-
tations is resistant to change. This would be consistent with the slow 
development of precision in whole-number magnitude representations 
(Siegler & Opfer, 2003). The slow progression between second grade 
and adulthood suggests that developing a precise representation of large 
whole numbers takes a relatively long time, and this may also be the case 
for decimals. Although some brief targeted training, such as providing 
feedback on estimates on the number line and playing linear board 
games involving numbers, improved the linearity and precision of whole 
number magnitude representation (Opfer & Siegler, 2007; Siegler & 
Ramani, 2008), the brief exposure to decimal labels in our study might 
be too short and too oblique to lead to changes in decimal magnitude 
representations. 

These findings, in addition to revealing the effects of verbal labels, 
shed light on the nature of children’s knowledge of decimals. Children’s 
performance on the two tasks measuring whole-number bias each 
benefited from different place-value labels, suggesting that the role-of- 
zero errors and the string-length-congruity effect are separable compo-
nents of the whole-number bias. Therefore, whole-number bias is not a 
single, unified phenomenon and overcoming it may require addressing 
each component individually. Further, the fact that children’s perfor-
mance changed after only brief training suggests that these aspects of 
whole-number bias are highly malleable. This may indicate that children 
had prior knowledge of decimal magnitudes, and the verbal labels 

Fig. 5. Average reaction times of accurate responses on the ratio effect measure among children from each of the three training conditions. Error bars represent one 
standard error. 
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activated this knowledge. Alternatively, this malleability to brief 
training may indicate that the labels led children to attend to certain 
features of the stimuli and thereby change their task-solving strategies. 
These possibilities could be distinguished by future research examining 
the effects of verbal labels on children’s performance on multiple tasks 
with varying characteristics measuring the same aspect of whole- 
number bias. 

Educational implications 

Verbal labels are ubiquitous in teaching and discussing mathematical 
concepts in the classroom. Prior research has illustrated the power of 
verbal labels on many aspects of math learning, such as counting (Miller 
& Stigler, 1987), fraction knowledge (Paik & Mix, 2003), proportional 
reasoning (Hurst & Cordes, 2019), pattern abstraction (Fyfe, McNeil, & 
Rittle-Johnson, 2015), and angle knowledge (Gibson, Congdon, & Lev-
ine, 2015). One reason for some verbal labels to be especially effective in 
promoting math learning is that those verbal labels direct children’s 
attention to mathematically relevant features. For example, 4-year-olds 
were more successful in recreating patterns using novel materials based 
on a model pattern with abstract labels (e.g., A-B-A-B) than with con-
crete labels (e.g., blue-red-blue-red; Fyfe et al., 2015). The abstract la-
bels facilitated pattern abstraction by directing children’s attention to 
the mathematically relevant relational relationship among the objects in 
the model pattern. In contrast, concrete labels directed children’s 
attention to the mathematically irrelevant feature - the color of the 
objects in the model pattern. 

In our study, decomposed labels, compared to common-unit labels, 
likely encouraged children to attend to and process the place values of 
individual decimal digits. Because decimal magnitudes are sums of the 
values of each digit, processing individual digits does not necessarily 
interfere with decimal magnitude processing. In fact, processing the 
values of the trailing and leading zeros in decimals helps reduce mis-
conceptions about the role of zero in decimals. In the current study, with 
an emphasis on individual decimal digits, decomposed labels led to 
higher accuracy in judging decimal equivalence when decimals had 
trailing or leading zeros than common-unit labels. 

However, for decomposed labels to enhance decimal magnitude 
understanding in general, a solid understanding of place values is 
needed. This involves knowing that the place value of a digit is ten times 
the place value of the digit to its right, that the holistic magnitude of a 
decimal equals the sum of all digits multiplied by their corresponding 
place values, and that the digits of greater place values are more 
important in determining a decimal’s holistic magnitude. When such 
knowledge is limited or absent, processing the place values of individual 
digits could interfere with judgment of the holistic magnitude of deci-
mals, which might be the case in the current study. Compared to chil-
dren in the common-unit-label condition, children in the decomposed- 
label condition showed a stronger tendency to process the digits in the 
hundredths place even when doing so interfered judgment of the deci-
mal magnitudes. Common-unit labels exhibited their advantage in this 
case, likely by directing children’s attention to the holistic magnitudes 
of the decimals. 

The strengths and weaknesses of the two types of place-value labels 
justify using both labels in math classrooms. It might be particularly 
beneficial to use the specific labels in cases where they show advantages 
over the other type, such as using decomposed labels in teaching the role 
of zero in decimals. Although point labels did not exhibit advantages 
over the place-value labels on any task in the current study, point labels 
are more common in daily life than place-value labels, and teaching with 
point labels may encourage children to utilize their everyday knowledge 
to learn decimals. However, more research is needed before conclusions 
about specific uses of decimal labels can be made. 

Limitations and future directions 

Several limitations of the current study suggest potential directions 
for future research. For example, we did not explicitly assess children’s 
knowledge of fractions or place values. We selected fifth and sixth 
graders as our sample based on the assumption that they should have 
some knowledge of place values from recent instruction on the topic in 
school. However, this might not be the case, and if children had limited 
place-value knowledge, this might help to explain them not fully 
benefiting from place-value labels. Future research may benefit from 
examining children’s prior place-value understanding and fraction 
knowledge to better understand whether and how each type of decimal 
labels influences children’s magnitude knowledge. 

Further, we did not assess children’s decimal magnitude processing 
and representation prior to exposing them to specific decimal labels. 
This posttest-only design was sufficient to examine our main topic of 
interest, the distinctive effects of the three types of decimal labels on 
magnitude processing and knowledge. However, this design does not 
allow us to conclude whether decimal labels would be an effective tool 
to improve children’s decimal magnitude knowledge. Relatedly, the 
posttest occurred immediately after decimal labeling instruction, leav-
ing open the possibility that the effects of labeling could reflect either 
short-term changes in strategy use or more durable improvements in 
conceptual knowledge. For example, the benefits of decomposed labels 
on the role-of-zero task might result from increased attention to each 
decimal digit when completing the task, rather than improved concep-
tual knowledge. However, with sustained use of the place-value labels in 
math classrooms, we would expect these strategy improvements to lead 
to better conceptual understanding. Future research should examine 
these possibilities. 

In sum, we have shown that decomposed and common-unit labels 
both have advantages over point labels, while each has strengths and 
weaknesses in promoting children’s decimal magnitude processing and 
knowledge. As compared to point labels, brief exposure to decomposed 
labels reduced fifth and sixth graders’ whole-number-bias as reflected by 
fewer role-of-zero errors. Brief exposure to common-unit labels also 
reduced a different aspect of students’ whole-number bias, the string- 
length-congruity effect. Common-unit labels further reduced children’s 
componential processing as compared to decomposed and point labels. 
These results highlight the power of verbal labels on children’s math 
knowledge and provide a potential avenue for improving students’ 
decimal magnitude knowledge. 
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Sackur-Grisvard, C., & Léonard, F. (1985). Intermediate cognitive organizations in the 
process of learning a mathematical concept: The order of positive decimal numbers. 
Cognition and Instruction, 2(2), 157–174. https://doi.org/10.1207/ 
s1532690xci0202_3 

Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line 
estimation, and mathematical achievement: Their interrelations in grades 5 and 6. 
Journal of Educational Psychology, 101(2), 359–372. https://doi.org/10.1037/ 
a0013840 

Schrank, F. A., Mather, N., & McGrew, K. S. (2014). Woodcock-Johnson IV tests of 
achievement. Riverside Publishing Company.  

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., … 
Chen, M. (2012). Early predictors of high school mathematics achievement. 
Psychological Science, 23(7), 691–697. https://doi.org/10.1177/0956797612440101 

Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. 
Journal of Educational Psychology, 107(3), 909–918. https://doi.org/10.1037/ 
edu0000025 

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence 
for mulitple representations of numerical quantity. Psychological Science, 14(3), 
237–250. https://doi.org/10.1111/1467-9280.02438 

Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes 
low-income children’s numerical development. Developmental Science, 11(5), 
655–661. https://doi.org/10.1111/j.1467-7687.2008.00714.x 

Stigler, J. W., Givvin, K. B., & Thompson, B. J. (2010). What community college 
developmental mathematics students understand about mathematics. The Carnegie 
Foundation for the Advancement of Teaching, 1(3(May)), 4–18. https://doi.org/ 
10.1016/j.learninstruc.2014.03.002 

Tirosh, D., Fischbein, E., Graeber, A. O., & Wilson, J. W. (1999). Prospective elementary 
teachers’ conceptions of rational numbers. Retrieved September 26, 2016 from htt 
p://jwilson.coe.uga.edu/texts.folder/tirosh/pros.el.tchrs.html. 

Varma, S., & Karl, S. R. (2013). Understanding decimal proportions: Discrete 
representations, parallel access, and privileged processing of zero. Cognitive 
Psychology, 66(3), 283–301. https://doi.org/10.1016/j.cogpsych.2013.01.002 

J. Tian et al.                                                                                                                                                                                                                                     

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1037/a0017887
https://doi.org/10.1037/a0017887
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0015
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0015
https://doi.org/10.1126/science.1156540
https://doi.org/10.1016/j.learninstruc.2009.07.004
https://doi.org/10.1016/j.learninstruc.2009.07.004
https://doi.org/10.1016/j.jecp.2015.01.013
https://doi.org/10.1016/j.jecp.2015.01.013
https://doi.org/10.1037/0012-1649.43.6.1428
https://doi.org/10.1016/j.learninstruc.2011.11.001
https://doi.org/10.1016/j.learninstruc.2014.08.003
https://doi.org/10.1016/j.learninstruc.2014.08.003
https://doi.org/10.1111/cdev.12331
https://doi.org/10.1111/cdev.12286
https://doi.org/10.1111/cdev.12286
https://doi.org/10.1037/a0012682
https://doi.org/10.3389/fnhum.2014.00172
https://doi.org/10.1111/bjop.12244
https://doi.org/10.1016/j.jecp.2017.12.003
https://doi.org/10.1016/j.jecp.2017.12.003
https://doi.org/10.1111/desc.12790
https://doi.org/10.1037/dev0000305
https://doi.org/10.1037/dev0000305
https://doi.org/10.1016/j.econedurev.2011.09.006
https://doi.org/10.1371/journal.pone.0130834
https://doi.org/10.1016/j.jecp.2013.08.007
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.1080/15248372.2016.1243118
https://doi.org/10.1037/edu0000148
https://doi.org/10.1037/edu0000148
https://doi.org/10.1037/xge0000094
https://doi.org/10.1016/j.lindif.2017.05.007
https://doi.org/10.1016/j.jecp.2012.08.002
https://doi.org/10.1016/j.jecp.2012.08.002
https://doi.org/10.1016/S0885-2014(87)90091-8
https://doi.org/10.1016/S0885-2014(87)90091-8
https://doi.org/10.1006/jecp.1999.2519
https://doi.org/10.1006/jecp.1999.2519
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0145
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0145
https://doi.org/10.21890/ijres.61754
https://doi.org/10.21890/ijres.61754
https://doi.org/10.1007/BF00302379
https://doi.org/10.1007/BF00302379
https://doi.org/10.1207/s15326985ep4001_3
https://doi.org/10.1037/0012-1649.40.6.1199
https://doi.org/10.1037/0012-1649.40.6.1199
https://doi.org/10.1016/S0010-0277(01)00142-1
https://doi.org/10.1016/S0010-0277(01)00142-1
https://doi.org/10.1016/j.cogpsych.2006.09.002
https://doi.org/10.1016/j.cogpsych.2006.09.002
https://doi.org/10.1111/1467-8624.t01-1-00526
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0185
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0185
https://www.r-project.org/
https://doi.org/10.1037/dev0000797
https://doi.org/10.1037/dev0000797
https://doi.org/10.1016/j.jecp.2020.105015
https://doi.org/10.2307/749095
https://doi.org/10.1177/0956797612466268
https://doi.org/10.1037/0022-0663.93.2.346
https://doi.org/10.1037/0022-0663.93.2.346
https://doi.org/10.1207/s1532690xci0202_3
https://doi.org/10.1207/s1532690xci0202_3
https://doi.org/10.1037/a0013840
https://doi.org/10.1037/a0013840
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0230
http://refhub.elsevier.com/S0193-3973(23)00026-6/rf0230
https://doi.org/10.1177/0956797612440101
https://doi.org/10.1037/edu0000025
https://doi.org/10.1037/edu0000025
https://doi.org/10.1111/1467-9280.02438
https://doi.org/10.1111/j.1467-7687.2008.00714.x
https://doi.org/10.1016/j.learninstruc.2014.03.002
https://doi.org/10.1016/j.learninstruc.2014.03.002
http://jwilson.coe.uga.edu/texts.folder/tirosh/pros.el.tchrs.html
http://jwilson.coe.uga.edu/texts.folder/tirosh/pros.el.tchrs.html
https://doi.org/10.1016/j.cogpsych.2013.01.002


Journal of Applied Developmental Psychology 86 (2023) 101537

13

Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A 
neural model. Journal of Cognitive Neuroscience, 16(9), 1493–1504. https://doi.org/ 
10.1162/0898929042568497 

Wang, Y., & Siegler, R. S. (2013). Representations of and translation between common 
fractions and decimal fractions. Chinese Science Bulletin, 58(36), 4630–4640. https:// 
doi.org/10.1007/s11434-013-6035-4 

Wong, T. T. Y. (2020). Are the acuities of magnitude representations of different types 
and ranges of numbers related? Testing the core assumption of the integrated theory 
of numerical development. Cognitive Development, 54(May), Article 100888. https:// 
doi.org/10.1016/j.cogdev.2020.100888 

J. Tian et al.                                                                                                                                                                                                                                     

https://doi.org/10.1162/0898929042568497
https://doi.org/10.1162/0898929042568497
https://doi.org/10.1007/s11434-013-6035-4
https://doi.org/10.1007/s11434-013-6035-4
https://doi.org/10.1016/j.cogdev.2020.100888
https://doi.org/10.1016/j.cogdev.2020.100888

	Verbal labels influence children’s processing of decimal magnitudes
	Introduction
	Verbal labels for decimals
	Decimal labels and whole-number bias
	Decimal labels and componential vs. holistic processing
	Decimal labels and the ratio effect
	The current study

	Methods
	Participants
	Procedure
	Training

	Measures
	Whole-number bias: role-of-zero knowledge
	Whole-number bias: string-length-congruity effect
	Componential processing: tenths-hundredths-compatibility effect
	Precision of magnitude representation: ratio effect
	Reading achievement

	Results
	Descriptive analyses
	Whole number bias: role-of-zero knowledge
	Whole-number bias: string-length-congruity effect
	Componential processing: tenths-hundredths-compatibility effect
	Ratio effect

	Discussion
	Educational implications
	Limitations and future directions

	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


