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Learning Improper Fractions with the Number Line and the 
Area Model
Jing Tian , Victoria Bartek, Maya Z. Rahman, and Elizabeth A. Gunderson

Temple University

ABSTRACT
Number lines and area models are both used pervasively in teaching 
fractions. Prior studies found that second and third graders demon
strated better magnitude knowledge of proper fractions after a 15- 
minute training using the number line as compared to using the area 
model. The current study aimed to extend these findings to improper 
fractions. We randomly assigned fourth and fifth graders to a number 
line training, an area model training, or a non-numerical control con
dition. The number line and area model trainings involved both proper 
and improper fractions and were closely modeled on the training 
procedures in prior studies. Fraction training with the area model 
produced improvements in children’s area model estimation of proper 
and improper fractions. However, contrary to our expectations, train
ing with the number line did not improve number line estimation, and 
neither training led to improvements in transfer tasks assessing frac
tion magnitude knowledge. These findings suggest that children can 
develop the skill to represent improper fractions on area models with 
brief training. Nevertheless, it is unclear whether this skill enhances 
a comprehensive understanding of fraction magnitudes.

Introduction

Many children and even adults struggle with mastering fractions. On the 2013 National 
Assessment of Educational Progress (NAEP), only 55% of 4th graders chose the correct 
answer to 2/5 + 3/5 + 4/5, and 39% chose 9/15 (an answer that can be obtained by separately 
adding the numerators and the denominators of the three addends; U.S. Department of 
Education, Institute of Education Sciences National Center for Educational Statitics, 2013). 
Children’s poor performance is not restricted to arithmetic: on the 2007 NAEP, only 49% of 
8th graders correctly ordered three fractions, 2/7, 1/2, and 5/9, from the least to the greatest 
(Martin, Strutchens, & Elliott, 2007). This lack of fraction knowledge often persists into 
adulthood: in a sample of more than 1,600 community college students, only 33% correctly 
identified the smallest among four fractions (Stigler, Givvin, & Thompson, 2010).

Children’s poor knowledge of fractions is especially unfortunate given the importance of 
mastering fractions for academic achievement, career development, and life functioning. 
Fractions are essential for learning more advanced math, such as algebra (Booth & Newton, 
2012). In nationally-representative US and UK samples, knowledge of fractions in 5th grade 
predicted general math achievement in high school, over and above IQ, working memory, 
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family background, and whole number knowledge (Siegler et al., 2012). The importance of 
fractions extends beyond school. In a representative sample of US workers, 68% reported 
using fractions at work (Handel, 2016). Fractions are also ubiquitous in adults’ daily life, 
such as in adjusting recipes, making medical decisions, and managing personal finances 
(e.g., Reyna, Nelson, Han, & Dieckmann, 2009).

The importance of mastering fractions, and many children’s failure to do so, underscores 
the need for improving fraction instruction. Much intervention research has been done to 
improve children’s fraction understanding (Fazio, Kennedy, & Siegler, 2016; Jordan et al., 
2013; Moss & Case, 1999; Saxe et al., 2007). However, many fraction interventions have 
relatively small effects, suggesting that it is hard to mitigate children’s difficulty with 
fractions and that more efforts are needed to develop effective fraction instruction 
(Hwang, Riccomini, Hwang, & Morano, 2019; Misquitta, 2011; Roesslein & Codding, 
2019). The current intervention study targeted one aspect of fraction instruction, the use 
of visual representations. In particular, we investigated whether learning fractions with the 
area model or the number line would lead to better understanding of fraction magnitude.

Area models and number lines are frequently used in teaching fractions (National 
Governors Association Center for Best Practices, Council of Chief State School Officers, 
2010). Representing fractions on area models involves shading parts of whole shapes. For 
instance, to represent a fraction, x/y, using an area model, a 2D shape is divided into y equal 
segments with x segments shaded (Figure 1a). Such representations capture the part-whole 
meaning of fractions, which might be familiar to children given that fractions are frequently 
used in part-whole contexts in children’s daily life (e.g., sharing pizza cut into pieces). 
However, representing fractions with area models may reinforce children’s misconceptions 
about fractions. Many children tend to view fractions as two separate whole numbers (i.e., 
whole number bias; Ni & Zhou, 2005). Area models may strengthen this bias by emphasiz
ing the part (the numerator) and the whole (the denominator) rather than the relation 
between the two (Hamdan & Gunderson, 2017).

On number lines, in contrast, fractions are represented as integrated magnitudes. In 
other words, instead of representing fractions using multiple parts, a fraction can be 

Figure 1. Example of representation of the fraction 1/4 with (a) an area model, (b) a number line, and (c) 
a two-dimensional square number line (adapted from “Number Line Unidimensionality Is a Critical 
Feature for Promoting Fraction Magnitude Concepts,” By E. Gunderson et al., 2019, Journal of 
Experimental Child Psychology, 187, p. 4. Copyright 2019, Elsevier Inc.).
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represented on the number line as a single mark, with the distance between the mark and 
the zero point corresponding to the magnitude of the fraction (Figure 1b). To determine 
where a fraction goes on the number line, both the numerator and the denominator of the 
fraction must be considered simultaneously, in relation to one another. This process may 
help mitigate children’s whole number bias, which occurs when students consider the 
numerator and denominator as separate whole number magnitudes (Ni & Zhou, 2005). 
Moreover, number lines take advantage of unidimensional mental representations of 
numbers: extensive behavioral and neuroimaging evidence suggests that numbers are 
represented in a manner similar to a number line, with smaller numbers on the left and 
larger numbers on the right (Ansari, 2008; Dehaene, Bossini, & Giraux, 1993; Toomarian & 
Hubbard, 2018). The number line allows children to integrate fractions with whole num
bers, which conforms with the developmental trajectory of numerical magnitudes set forth 
by the integrated theory of numerical development (Siegler, Thompson, & Schneider, 2011). 
This theory posits that numerical development is a process of enhancing the magnitude 
representations of a broadening range of numbers and that learning fractions involves 
integrating fractions with existing whole number knowledge. Therefore, compared to the 
area model, using the number line seems to be more beneficial for children’s fraction 
learning.

Consistent with this view, several interventions that focused on building fraction mag
nitude knowledge using number lines yielded better learning than regular school curricula 
(Dyson, Jordan, Rodrigues, Barbieri, & Rinne, 2018; Fuchs et al., 2016, 2013, 2014; Saxe 
et al., 2007). For example, Fuchs et al. (2013) randomly assigned 4th graders to a 12-week 
intervention focused on learning fraction magnitudes on the number line or to a control 
curriculum that emphasized the part-whole interpretation of fractions with area models. 
Children who received the intervention using the number line improved more on fraction 
magnitude knowledge and arithmetic than those who were in the control condition.

The extensive intervention curricula in these studies involved multiple components 
(Dyson et al., 2018; Fuchs et al., 2016, 2013, 2014; Saxe et al., 2007), making it impossible 
to distinguish the effects of the number line on children’s fraction learning from other 
intervention components. Two recent experiments provided direct evidence for the advan
tages of using number lines, particularly over area models, in learning about fraction 
magnitude (Gunderson, Hamdan, Hildebrand, & Bartek, 2019; Hamdan & Gunderson, 
2017). Hamdan and Gunderson (2017) randomly assigned 2nd and 3rd graders to a number 
line training, an area model training, or a non-numerical control condition. The number 
line and the area model trainings involved similar procedures and only differed in the visual 
representation used. After a 15-minute training, children in the number line condition were 
more accurate at estimating fractions on number lines than children in the other two 
conditions. Critically, compared to children in the area model training and the control 
condition, children in the number line training condition were also more accurate at 
comparing fractions, a task which none of the children were directly taught. These findings 
suggest that using number lines is more beneficial than area models for children to develop 
fraction magnitude understanding.

Gunderson et al. (2019) replicated these findings and demonstrated that the unidimen
sionality of the number line is essential for it to produce superior fraction learning than the 
area model. This study involved four training conditions: pure unidimensional number line 
training (i.e., number lines being pure lines with no width), hybrid unidimensional number 
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line training (i.e., number lines being long thin rectangles, same as the number line training 
condition in Hamdan & Gunderson, 2017; Figure 1b), square number line training (i.e., 
squares that were partitioned from left to right and had “0” at the left end and “1” at the 
right end; Figure 1c), and square area model training (Figure 1a). Similar to Hamdan and 
Gunderson (2017), compared to children who were taught fractions with area models, those 
who were taught fractions with the unidimensional number lines (either pure or hybrid) 
were more accurate on number line estimation and magnitude comparison at posttest, 
controlling for pretest performance (Gunderson et al., 2019). Moreover, children who were 
taught fractions with two-dimensional square number lines showed similar performance at 
posttest to those who were taught with area models. Thus, being unidimensional is an 
essential feature of number lines to be more beneficial than area models for learning 
fraction magnitudes (Gunderson et al., 2019).

The main purpose of the current study was to extend prior findings on the advantage of 
the number line over the area model to the learning of improper fractions. Many children 
experience similar, if not more, difficulty understanding improper fractions as compared to 
proper fractions (Resnick et al., 2016; Siegler et al., 2011; D. Zhang, Stecker, & Beqiri, 2017). 
In math class, improper fractions are introduced later than proper fractions (Grade 4 versus 
Grade 3; National Governors Association Center for Best Practices, Council of Chief State 
School Officers, 2010). Before learning improper fractions, children’s exposure to fractions 
has been limited to proper fractions, leading to the belief that fractions are always smaller 
than one (Stafylidou & Vosniadou, 2004). Therefore, understanding the magnitudes of 
improper fractions, which are always greater than one, imposes great challenges for many 
children. Resnick et al. (2016) tracked the development of children’s estimation of proper 
and improper fractions from Grade 4 through 6. They found that most fourth graders 
estimated both proper and improper fractions as being smaller than one. While some 
children’s estimates of improper fractions gradually became reasonably accurate, more 
than 40% of children still estimated improper fractions to be smaller than one in 6th 

grade. This failure in understanding magnitudes of improper fractions is unfortunate as 
such understanding may be essential for a comprehensive understanding of fraction 
magnitudes to emerge (Rinne, Ye, & Jordan, 2017).

In the current study, we aimed to test whether the number line or the area model better 
facilitates children’s learning of improper fractions. The number line, which naturally 
extends beyond one, may better facilitate children’s transition from learning proper to 
improper fractions (Tian & Siegler, 2017). In contrast, representing improper fractions on 
area models may be awkward because more than one identical shape, with each shape 
representing one whole unit, must be involved (Behr, Wachsmuth, & Post, 1988; Wu, 2009). 
Therefore, we expected that teaching improper fractions with the number line would lead to 
greater learning than with the area model.

To test this expectation, we randomly assigned 4th and 5th graders to a number line 
training, an area model training, or a non-numerical control condition. We implemented 
a training design involving a pretest, training, immediate posttest, and delayed posttest. The 
number line and the area model trainings involved both proper and improper fractions and 
were closely modeled on the training procedures in prior studies (Gunderson et al., 2019; 
Hamdan & Gunderson, 2017). The current study employed the hybrid rather than the pure 
unidimensional number line in the training because both Hamdan and Gunderson (2017) 
and Gunderson et al. (2019) used the hybrid number line in the intervention. Moreover, in 
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Gunderson et al. (2019), training with both types of unidimensional number lines yielded 
greater improvement in fraction magntiude comparison than training with the square area 
model; however, only the hybrid number line training led to greater improvement than the 
square number line training. In the pretest and posttests of the present study, children 
completed a number line estimation task, an area model estimation task, a magnitude 
comparison task, and a comparison to one task (on which children judged whether a given 
fraction was smaller than, equal to, or greater than one). To be consistent with prior studies 
using the number line estimation task (e.g., Gunderson et al., 2019; Hamdan & Gunderson, 
2017; Siegler et al., 2011), pure unidimensional number lines, rather than hybrid unidimen
sional number lines, were employed in the pretest and posttests so that our findings would 
be comparable to prior work. We chose an older age group (4th and 5th graders) than prior 
studies (which focused on 2nd and 3rd graders) because improper fractions are taught later 
than proper fractions in school and because pilot testing suggested that this older age group 
was not at ceiling in improper fraction knowledge. Because our study was modeled on prior 
studies training children on proper fractions, we expected to conceptually replicate the 
results of those studies with improper fraction training (Gunderson et al., 2019; Hamdan & 
Gunderson, 2017). Therefore, we had four preregistered hypotheses: 

Hypothesis 1. At the immediate posttest, children in either the number line or the area 
model training condition will be more accurate at estimating fractions on the model they 
have received training on than children in the other two conditions.

Hypothesis 2. The effects described in Hypothesis 1 will hold on both fractions that appear 
in training and fractions that do not appear in training.

Hypothesis 3. On the magnitude comparison task at immediate posttest, children in the 
number line condition will have higher accuracy (across all magnitude comparison items) 
than children in the area model condition, and children in the area model condition will 
have higher accuracy than those in the control condition.

Hypothesis 4. The effects of condition on magnitude comparison in Hypothesis 3 will be 
present among ambiguous fraction pairs (in which the fraction with the smaller numerator 
has a larger denominator than the other fraction, such as 2/8 vs. 4/6).

Hypothesis 4 was based on the finding that compared to the area model training, the 
number line training led to greater improvements in comparing ambiguous fraction pairs 
both in Hamdan and Gunderson (2017) and in Gunderson et al. (2019). However, the effect 
of training condition was not consistent across the two studies on whole-number consistent 
pairs (in which the larger fraction also has a larger numerator and a larger denominator 
than the other fraction, such as 8/4 vs. 3/2) or whole-number inconsistent pairs (in which 
the larger fraction has a smaller numerator and a smaller denominator than the other 
fraction, such as 2/6 vs. ½).

Besides these four hypotheses, we also explored whether training effects would transfer to 
better performance on an additional task assessing fraction magnitude understanding (i.e., 
comparing fractions to one) and would persist two weeks after training  at delayed posttest. 
The study was pre-registered on the Open Science Framework (OSF; https://osf.io/9wp5r). 
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All study materials, deidentified data, and analysis scripts have been made publicly available 
on OSF (https://osf.io/c7a5q/).

Method

Participants

Participants were fourth and fifth grade students recruited from six schools (18 classrooms) 
in a large city in the northeastern US (n = 133; 66 4th graders; 73 girls; Mage = 10.25, SDage = 
0.66). One hundred and twenty-nine participants completed all three sessions of the study – 
two participants were absent on one or more testing days, and another two participants 
withdrew during the study. Another 10 participants were excluded because they were tested 
outside the pre-determined time window (see the Procedure section below for more 
details). Our analytic sample included 119 participants.

Participants came from diverse backgrounds. Participants’ parents reported their chil
dren’s race/ethnicity (demographic information reported here and below were of the 119 
participants in the analytic sample; nrace/ethnicity = 105; 40.0% Caucasian, 24.8% Black/ 
African American, 19.0% Hispanic, 6.7% Asian/Asian American, and 9.5% Multi-race), 
annual family income (nfamily income = 90; M = 56,869, USD SD = 32,290, range = < 15,000 
USD to > 100,000 USD), and parental education level (nparental education = 103; years of 
education: M = 14.54, SD = 2.54, range = 10 [less than high school] to 18 [graduate degree]). 
On average, participants came from middle-income families, and their parents completed 
2 years of college.

Procedure

Each participant worked with a trained experimenter for three 20- to 30-minute sessions in 
a quiet space at their school. In Session 1, participants completed the pretest. In Session 2, 
participants were randomly assigned, within each classroom, to the number line training 
condition, the area model training condition, or the non-numerical control condition. After 
about 15– 20 minutes of training (or control activities), participants completed the immedi
ate posttest. In Session 3, participants completed the delayed posttest. Session 2 was planned 
to be administered within seven days after Session 1, and Session 3 was planned to be 
administered between 14–16 days after Session 2. Due to scheduling errors, 10 participants 
were tested outside of the 14–16-day time window between Sessions 2 and 3 and were thus 
excluded from the sample based on our pre-registered Sampling Plan. The remaining 
sample included 119 participants, with 40 in the number line training condition, 41 in 
the area model training condition, and 38 in the non-numerical control condition. The 
average time between Sessions 1 and 2 was 2.97 days (SD = 1.19) and between Sessions 2 and 
3 was 14.26 days (SD = 0.48).

The pretest and both posttests (immediate and delayed) consisted of the same four tasks: 
number line estimation, area model estimation, magnitude comparison, and comparison to 
one (see Figure 2 for an example problem from each task). The two estimation tasks were 
administered using PDF Expert (Readdle Inc, 2019) on an iPad, and the other two tasks 
were administered using E-Prime 2.0 (Schneider, Eschman, & Zuccolotto, 2002) on a laptop 
computer. The four tasks were presented in one of two orders, the following order or the 
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reverse of this order: number line estimation, comparison to one, magnitude comparison, 
and area model estimation. Participants completed the four tasks in one order in the pretest 
and delayed posttest, and in the other order in the immediate posttest. The order of tasks 
was randomly assigned to each participant.

Training conditions

In the two fraction training conditions, the experimenter showed participants how to 
represent fractions on number lines or area models, and participants practiced representing 
fractions with feedback. The training procedures were developed based on prior studies 
(Gunderson et al., 2019; Hamdan & Gunderson, 2017) and were parallel between the 
number line and the area model conditions (see Figure 3 for an overview of the training 
procedures and Supplementary Materials Sections A – C for the scripts used in the training 
and the control condition).

At the beginning of the training, fractions were introduced as numbers that have 
a number on the top (i.e., the numerator) and a number on the bottom (i.e., the denomi
nator). Then, participants were taught to represent fractions in three steps: 1) segment each 
unit of the visual representations (each unit of a visual representation represents one) into 
the number of equal segments corresponding to the denominator, 2) shade the number of 
segments corresponding to the numerator, and 3) label the visual representation by drawing 
a hash mark at the end of the shaded segments (number line training) or circling the shaded 
segments (area model training) and by writing the fraction next to the hash mark or the 
circle.

Figure 2. Example items of (a) the number line estimation task, (b) the area model estimation task, (c) the 
magnitude comparison task, and (d) the comparison to one task.
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Participants were taught to represent eight fractions during training (3/2, 1/2, 5/2, 3/4, 7/ 
4, 12/5, 2/5, and 4/5, in that order). For each fraction, participants practiced each of the 
three steps following the experimenter’s explanation of that step. If a participant performed 
a step incorrectly, the experimenter would demonstrate how to correctly perform that step 
and ask the participant to practice that step along with the steps leading up to it again on 
a blank number line or area model. For example, if a participant incorrectly labeled 

 Number Line Training (b) Area Model Training 

Blank Stimulus 

(1) Segment 

(2) Shade 

(3) Label 

Figure 3. Procedures of (a) number line training and (b) area model training.
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a fraction on the number line, the participant would be asked to segment, shade, and label 
a blank number line for that fraction. For fractions 3/2, 3/4, and 12/5 (the first fraction in 
each group of fractions with the same denominator), the experimenter demonstrated each 
step before the participant’s practice. Each training session took approximately 15 to 
20 minutes and was administered with PDF Expert (Readdle Inc, 2019) on an iPad.

Number line training
Participants in the number line training condition (n = 40) were taught to show fractions on 
0–3 number lines with labeled hash marks at 1 and 2 (Figure 3a). The number line (8 mm 
high � 180 mm wide) was similar to the “hybrid” number line in Gunderson et al. (2019). 
In the training, the experimenter demonstrated representing fractions by segmenting each 
unit of the number line with vertical hash marks, shading segments from left to right, and 
labeling a longer hash mark at the end of the shaded portion with the represented fraction.

Area model training
Participants in the area model training condition (n = 41) were taught to show fractions on 
three squares (each square was 50 mm � 50 mm) with the numbers 1, 2, or 3 above the 
middle of each square. In the training, the experimenter demonstrated representing frac
tions by segmenting each square area model with vertical lines; shading the segments from 
left to right; and finally, circling the shaded portion and writing the represented fraction 
next to the shaded portion. In the area model training (but not the number line training), it 
was considered correct if participants segmented using horizontal or diagonal lines or 
shaded in a different order than from left to right.

Non-numerical control
Participants in the non-numeric control condition (n = 38) worked on crossword puzzles in 
collaboration with the experimenter. The activity lasted for 18 minutes, which was similar in 
length to the number line or area model training session based on pilot testing. Participants 
referred to crossword puzzle clues and had the option to use word banks for each puzzle 
printed on paper. There were six puzzles available for the participant to complete, and no 
participant completed all six puzzles.

Pretest and posttest measures

Number line estimation
In this task, participants were asked to show fractions on 0–3 number lines (Figure 2a). At 
the beginning of the task, the experimenter illustrated where 1/2 goes on the number line. 
Then, participants were asked to represent 12 fractions (i.e. 3/4, 4/5, 2/5, 2/6, 3/5, 2/3, 7/4, 
12/5, 5/2, 6/5, 7/6, and 8/3). Among the 12 fractions, six were proper fractions, and six were 
improper fractions; and six fractions were included in the number line and area model 
training, and six were not. Participants received the 12 fractions in a predetermined random 
order or the reverse of that order.

On each trial, participants’ response value was calculated by dividing the length 
between the zero endpoint and the hash mark drawn by the participants by the total 
length of the line (i.e., 180 mm) and then multiplying the quotient by the number line 
range (i.e., 3). For example, if the length between the hash mark and the zero endpoint 
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was 90 mm, the response value = 90/180 � 3 = 3/2. Trained researchers scored 
participants’ responses (see Supplementary Materials, Section D for detailed coding 
scheme adapted from Gunderson et al., 2019, Appendix D) and calculated percent 
absolute error (PAE) for each item: (|response value – correct value|)/(number line 
range). For example, if the participant was asked to represent 4/5 and responded at 
a point equivalent to 3/2, PAE = |3/2 – 4/5|/3 = 0.23. Individual PAEs were averaged 
for the analyses. Internal consistency of the task was ade
quate (αpretest ¼ :69; αimmediateposttest ¼ :73; αdelayedposttest ¼ :67).

Area model estimation
In this task, participants were asked to show fractions on area models. The area model 
consisted of three squares (50 mm high � 50 mm wide) presented side by side (Figure 2b). 
At the beginning of the task, the experimenter demonstrated 1/2 on the area model by 
shading 1/2 of the leftmost square. Then, participants were asked to show each of the same 
12 fractions as in the number line estimation task on area models. On each trial, partici
pants’ response value was calculated by dividing the shaded pixels by the total pixels of the 
three squares and then multiplying the quotient by the numerical range of the area models 
(i.e., 3). Trained researchers scored participants’ responses by calculating the pixels of 
shaded area using Adobe Photoshop 2017 (Faulkner & Chavez, 2017; see Supplementary 
Materials, Section D for detailed coding scheme adapted from Gunderson et al., 2019, 
Appendix D) and calculated the PAE for each trial: (|response value – correct value|)/(total 
area). Individual PAEs were averaged for the analyses. Reliability was 
good (αpretest ¼ :76; αimmediateposttest ¼ :88; αdelayedposttest ¼ :86).

Magnitude comparison
In this task, participants were asked to choose the larger fraction in each pair of fractions 
(Figure 2c). On each trial, participants were asked to press the yellow button (the “A” key 
covered with a yellow sticker) if the fraction on the left was larger or the blue button (the “L” 
key covered with a blue sticker) if the fraction on the right was larger. The fraction pair 
remained on the screen until a valid response was detected. Each trial was preceded by 
a blank screen of 500 ms. Participants were asked to respond as quickly and accurately as 
possible.

Each participant completed 24 trials, with a unique pair of fractions on each trial (see 
Supplementary Materials Table E1 for the fraction pairs). Among the 24 fraction pairs, eight 
included a proper and an improper fraction, eight included two improper fractions, and 
eight included two proper fractions. As in past studies (Gunderson et al., 2019; Hamdan & 
Gunderson, 2017), the fraction pairs included “consistent” pairs (6 items), “inconsistent” 
pairs (6 items), and “ambiguous” pairs (12 items). In the consistent pairs, the larger fraction 
also had a larger numerator and a larger denominator than the other fraction (e.g., 8/4 vs. 3/ 
2). Conversely, in the inconsistent pairs, the larger fraction had a smaller numerator and 
denominator than the other fraction (e.g., 2/6 vs. 1/2). In the ambiguous pairs, the fraction 
with the smaller numerator had a larger denominator than the other fraction (e.g., 2/8 vs. 4/ 
6). We deliberately included more ambiguous pairs to increase our power of detecting the 
effect of interest in Hypothesis 4. Order of fraction pairs was randomized for each partici
pant. Children’s accuracy was scored by calculating the percentage of items answered 
correctly. Reliability was fair overall 

314 J. TIAN ET AL.



(αpretest ¼ :71; αimmediateposttest ¼ :71; αdelayedposttest ¼ :76) and excellent for each item 
type (αconsistent ¼ :92; αinconsistent ¼ :93; αambiguous ¼ :91Þ:

Comparison to one
In this task, participants were asked to judge whether a fraction was less than 1, equal to 1, 
or greater than 1. On each trial, a fraction was presented in the center of the screen with the 
three options (i.e., “less than one”, “equal to one”, and “greater than one”) below it (Figure 
2d). Participants were asked to press the yellow button (the “A” key covered with a yellow 
sticker) if the fraction was less than one, the green button (the “G” key covered with a green 
sticker) if the fraction was equal to one, or the blue button (the “L” key covered with a blue 
sticker) if the fraction was greater than one. The problem remained on the screen until 
a valid response was detected. Each trial was preceded by a blank screen of 500 ms. 
Participants were asked to respond as quickly and accurately as possible.

Each participant completed 16 trials. Among the 16 fractions, 12 were the same fractions 
as in the number line and area model estimation tasks (6 proper fractions and 6 improper 
fractions), and four were fractions equal to one (2/2, 3/3, 4/4, and 6/6). Order of the trials 
was randomized for each participant. Children’s accuracy was scored by calculating the 
percentage of items answered correctly. Reliability was good over
all (αpretest ¼ :83; αimmediateposttest ¼ :82; αdelayedposttest ¼ :84).

Results

Data exclusion

According to our preregistered data analysis plan, participants’ data were excluded from 
analyses of a task (or a subset of items in a task, e.g., ambiguous magnitude comparison 
items) if they did not finish at least half of the relevant items. Among the participants 
included in each analysis, we used the mean scores of each participant’s available trials 
relevant to that analysis. We also preregistered that we would exclude a participant if the 
experimenter made an error during training. No participants needed to be excluded for this 
reason.

Descriptive statistics

Table 1 shows descriptive statistics of children’s demographic characteristics as well as 
performance on each task at pretest, immediate posttest, and delayed posttest by condition 
(see Supplementary Materials, Section F for descriptive statistics of children’s performance 
on different types of problems on each measure at pretest and posttests). Analyses compar
ing demographic characteristics and performance on each task at pretest revealed no 
differences among children assigned to each condition.

Table 2 shows the correlations among all measures collapsed across conditions. Notably, 
accuracy of concurrent fraction measures did not correlate or only weakly correlated with 
each other (.02 < |r| < .32). For each fraction measure, accuracy across the three testing 
sessions correlated moderately to strongly (.38 < |r| < .64). Among all fraction measures at 
pretest and posttests, grade level only correlated with accuracy on the comparison to one 
task at pretest.
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Preregistered analyses

Based on our preregistered analysis plan, we conducted analyses of covariance (ANCOVA) 
to test each of the four hypotheses. In each ANCOVA, the dependent variable was children’s 
mean score on a measure at immediate posttest. Condition (i.e., number line training, area 
model training, or cross-word puzzle control) was entered as the independent variable, and 
children’s age and mean score on the same measure at pretest were entered as covariates. In 
cases where a significant effect of condition was found, pairwise comparisons between 
conditions based on the estimated marginal (EM) means from each ANCOVA were 
conducted. The Bonferroni correction was applied to adjust for multiple comparisons.

In all the ANCOVA analyses reported below, pretest scores significantly predicted 
posttest scores, but age did not. Only the effects of condition are reported below (see 
Supplementary Materials, Section G for detailed statistics on the effects of pretest scores 
and age).

Hypothesis 1
We expected children in either of the two training conditions to be more accurate at 
estimating fractions on the model that they received training on than children in the 
other two conditions at immediate posttest (Hypothesis 1). As expected, PAE on area 
model estimation at immediate posttest significantly differed across conditions, after 

Table 1. Means (and standard deviations) of children’s performance on all measures by condition.
NL Training 

(n = 40)
AM Training 

(n = 41)
CW Control 

(n = 38) Condition Difference

Demographics
Child Gender 22 female, 18 male 19 female, 22 male 24 female, 14 male χ2 2;N ¼ 119ð Þ ¼ 2:25; p ¼ :324
Grade Level 18 in G4, 22 in G5 20 in G4, 21 in G5 19 in G4, 19 in G5 χ2 2;N ¼ 119ð Þ ¼ 0:21; p ¼ :898
Child Age (years) 10.37 (0.76) 10.24 (0.63) 10.20 (0.58) F 2; 116ð Þ ¼ 0:74; p ¼ :480; η2

p ¼ :01
Pretest Measures
NL Est. (PAE) 0.28 (0.09) 0.27 (0.10) 0.27 (0.11) F 2; 111ð Þ ¼ 0:05; p ¼ :956; η2

p < :01
AM Est. (PAE) 0.26 (0.08) 0.25 (0.11) 0.26 (0.13) F 2; 116ð Þ ¼ 0:08; p ¼ :926; η2

p < :01
MC (accuracy) 0.57 (0.15) 0.61 (0.16) 0.59 (0.21) F 2; 116ð Þ ¼ 0:55; p ¼ :579; η2

p < :01
CO (accuracy) 0.59 (0.24) 0.67 (0.27) 0.70 (0.22) F 2; 112ð Þ ¼ 2:04; p ¼ :134; η2

p ¼ :04

Immediate-Posttest Measures
NL Est. (PAE) 0.24 (0.10) 0.24 (0.10) 0.25 (0.10) F 2; 114ð Þ ¼ 0:05; p ¼ :952; η2

p < :01
AM Est. (PAE) 0.22 (0.11)a 0.08 (0.09)b 0.22 (0.13)a F 2; 116ð Þ ¼ 23:14; p< :001; η2

p ¼ :29
MC (accuracy) 0.56 (0.15) 0.59 (0.17) 0.62 (0.19) F 2; 115ð Þ ¼ 1:36; p ¼ :261; η2

p ¼ :02
CO (accuracy) 0.65 (0.24) 0.70 (0.26) 0.73 (0.23) F 2; 114ð Þ ¼ 0:95; p ¼ :389; η2

p ¼ :02

Delayed-Posttest Measures
NL Est. (PAE) 0.26 (0.08) 0.23 (0.10) 0.26 (0.10) F 2; 113ð Þ ¼ 1:66; p ¼ :195; η2

p ¼ :03
AM Est. (PAE) 0.23 (0.11)a 0.16 (0.12)b 0.21 (0.12)a, b F 2; 114ð Þ ¼ 4:09; p ¼ :019; η2

p ¼ :07
MC (accuracy) 0.56 (0.13)a 0.66 (0.17)b 0.60 (0.22)a, b F 2; 115ð Þ ¼ 3:22; p ¼ :044; η2

p ¼ :05
CO (accuracy) 0.69 (0.25) 0.70 (0.25) 0.75 (0.22) F 2; 115ð Þ ¼ 0:85; p ¼ :429; η2

p ¼ :01

In rows where conditions differ, post-hoc comparisons have been conducted with the Bonferroni correction for multiple 
comparison, and the conditions that significantly differ (p < .05) are labeled with different superscript letters. For example, 
in the immediate-posttest, PAEs of area model estimation of the number line training and crossword control group did not 
differ (indicated by the superscript a), and both are different than the PAE of area model estimation of the area model 
training group (indicated by the superscript b). G, grade; NL, number line; AM, area model; CW, cross-word puzzle; Est., 
estimation; MC, magnitude comparison; CO, comparison to one; PAE, percent absolute error.
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adjusting for age and PAE on area model estimation at pretest, F (2, 114) = 27.25, p < .001, 
η2

p= .32 (Figure 4a).
Post-hoc analyses revealed that PAE on area model estimation at immediate posttest was 

significantly smaller among children in the area model training condition (EM mean = 0.08, 
SE = 0.02) than those in the number line training condition (EM mean = 0.22, SE = 0.02), p. 
adj < .001, and those in the cross-word puzzle control condition (EM mean = 0.22, SE = 
0.02), p.adj < .001. However, controlling for age and PAE on number line estimation at 
pretest, PAE on number line estimation at immediate posttest did not differ across condi
tions, F (2, 108) = 0.44, p = .644, η2

p= .01 (Figure 4b).

Hypothesis 2
Children in the area model condition yielded more accurate estimates of fractions on area 
models than children in the other two conditions at immediate posttest, and we expected 
this effect to hold for both the trained and untrained fractions (Hypothesis 2). As expected, 
on area model estimation, a significant effect of condition emerged for PAE of both trained 
and untrained fractions at immediate posttest, adjusting for pretest PAE and age (trained 

Figure 4. Performance on (a) area model estimation, (B) number line estimation, (c) magnitude 
comparison, and (d) comparison to one at immediate posttest and delayed posttest. Values are adjusted 
means, controlling for age and pretest performance on the same measure. Error bars represent one 
standard error. ** p < .01; *** p < .001.
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fractions, F (2, 114) = 25.76, p < .001, η2
p= .31; untrained fractions, F (2, 114) = 21.77, p < 

.001, η2
p = .28). Post-hoc analyses showed that children in the area model condition yielded 

significantly smaller area model PAEs on both trained (EM mean = 0.09, SE = 0.02) and 
untrained fractions (EM mean = 0.07, SE = 0.02) at immediate posttest than children in the 
number line condition (trained, EM mean = 0.22, SE = 0.02; untrained, EM mean = 0.21, 
SE = 0.02) and than children in the cross-word puzzle condition (trained, EM mean = 0.23, 
SE = 0.02; untrained, EM mean = 0.22, SE = 0.02), p.adjs < .001.

Hypothesis 3
For the magnitude comparison task at immediate posttest, we hypothesized that children in 
the number line condition would have higher accuracy than children in the area model 
condition, and children in the area model condition would have higher accuracy than those 
in the crossword puzzle control condition. However, controlling for accuracy on magnitude 
comparison at pretest and children’s age, no difference in accuracy at immediate posttest 
was seen across conditions, F (2, 113) = 1.36, p = .261, η2

p= .02 (Figure 4c).

Hypothesis 4
We hypothesized that the effects of condition on magnitude comparison in Hypothesis 3 
would be present among ambiguous items. However, similar to the lack of effect of 
condition on overall magnitude comparison accuracy, we found no significant effect of 
condition on magnitude comparison of ambiguous items, F (2, 113) = 0.17, p = .847, 
η2

p< .01.
In summary, only children who received area model training, but not those who received 

number line training, estimated fractions more accurately on the models they were trained 
on in the immediate posttest. However, the area model training did not lead to significantly 
higher accuracy on the magnitude comparison task.

Exploratory analyses

We conducted exploratory analyses to understand the scope of improvement among 
children who received area model training and the lack of learning among children who 
received number line training. Similar to the pre-registered analyses, when comparing 
performance across conditions on posttests, we conducted ANCOVAs with pretest perfor
mance and age as covariates and condition as the independent variable. In cases where there 
was a significant effect of condition, we conducted post-hoc pairwise comparisons of 
estimated marginal means with the Bonferroni correction.

Scope of improvement among children who received area model training
We first explored whether area model training led to more accurate estimates of both proper 
and improper fractions on the area model. Separate ANCOVAs on PAE of area model 
estimation, adjusting for pretest accuracy and children’s age, were conducted for proper and 
improper fractions. Both ANCOVAs yielded a significant effect of condition (proper 
fractions, F (2, 114) = 10.08, p < .001, η2

p = .15; improper fractions, F (2, 113) = 29.06, p < 
.001, η2

p = .34). Post-hoc analyses revealed that children in the area model condition had 
significantly smaller PAEs on both proper (EM mean = 0.05, SE = 0.02) and improper 
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fractions (EM mean = 0.10, SE = 0.02) at immediate posttest than children in the number 
line condition (proper fractions, EM mean = 0.17, SE = 0.02; improper fractions, EM 
mean = 0.26, SE = 0.02) and children in the cross-word puzzle condition (proper fractions, 
EM mean = 0.15, SE = 0.02; improper fractions, EM mean = 0.31, SE = 0.02), p.adjs < .01.

Next, we examined whether children’s improvement in area model estimation trans
ferred to higher accuracy on the comparison to one task. Adjusting for pretest accuracy of 
the same task and children’s age, there was no significant effect of condition on accuracy at 
immediate posttest, F (2, 108) = 0.04, p = .964, η2

p < .01 (Figure 4d).
Additionally, we explored whether children’s improvement in area model estimation 

after area model training remained on the delayed posttest. Adjusting for pretest PAE on 
area model estimation and age, PAE on area model estimation at delayed posttest signifi
cantly differed by condition, F (2, 112) = 4.91, p = .009, η2

p= .08 (Figure 4a). Post-hoc 
analyses showed that children in the area model condition yielded significantly smaller 
PAEs (EM mean = 0.16, SE = 0.02) than those in the number line condition (EM mean = 
0.23, SE = 0.02), p.adj = .008, but not than those in the cross-word puzzle condition (EM 
mean = 0.21, SE = 0.02), p.adjs = .130.

Therefore, after learning how to estimate fractions on area models, children’s improve
ment in area model estimation persisted to some extent on the delayed posttest, which was 
administered around two weeks after training. Yet the improvement on area model 
estimation did not transfer to any of the other tasks in the current study (number line 
estimation, magnitude comparison, and comparison to one).

Lack of improvement among children who received number line training
We first examined whether children in the number line training condition at least improved 
on estimating the same fractions that they received training on. Results of the ANCOVA on 
PAE of number line estimation of the trained fractions suggested that they did not; no effect 
of condition arose, F (2, 108) = 0.53, p = .593, η2

p= .01.
Then, we examined whether children in the number line training condition at least 

improved on estimating proper fractions, on which improvements have been seen in prior 
studies with similar training (Gunderson et al., 2019; Hamdan & Gunderson, 2017). We did 
not find evidence for improvement even on proper fractions: results of the ANCOVA on 
PAE of number line estimation of proper fractions suggested that children in the number 
line training condition performed similarly at posttest as those in the other two conditions, 
F (2, 108) = 1.45, p = .240, η2

p= .03.
Finally, we explored the possibility that the number line training procedure was more 

confusing for children than the area model training procedure. To do so, we compared the 
number of training trials on which children received corrective feedback between the two 
training conditions. During training, corrective feedback was provided when a child per
formed a step incorrectly following the experimenter’s instructions on that step. Receiving 
a large number of corrective feedback trials suggests difficulty in understanding the experi
menter’s instructions. For children in the two training conditions, an analysis of variance 
(ANOVA) with training condition as the between-subject variable showed that children in 
the number line condition (M = 2.42, SD = 3.02) received corrective feedback on a margin
ally greater number of training trials than those in the area model condition (M = 1.46, SD = 
1.55), F (1, 79) = 3.27, p = .074, η2

p = .04.
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Discussion

In prior studies, using the number line, as compared to the area model, to teach fractions led 
to better fraction magnitude knowledge among children (Dyson et al., 2018; Fuchs et al., 
2016, 2013, 2014; Gunderson et al., 2019; Hamdan & Gunderson, 2017; Moss & Case, 1999; 
Saxe et al., 2007). The current study extended this work by testing the effects of a brief 
training on improper fractions with the number line versus the area model. Unexpectedly, 
fraction training with the area model produced improvements in children’s area model 
estimation of proper and improper fractions but training with the number line did not 
improve number line estimation. Further, neither training led to improvements in transfer 
tasks assessing fraction magnitude knowledge. We discuss potential reasons for these 
unexpected results, implications of these findings for learning improper fractions, and 
implications for educational practice.

We expected the number line to better support children’s learning of improper fractions 
than the area model. However, contrary to this expectation, compared to children in the 
number line or the control condition, children who were taught fractions with the area 
models estimated both proper and improper fractions more accurately on the area model at 
immediate posttest. The improvement brought by the area model training was not only 
greater than the number line training or the control activities but also impressive in absolute 
terms: among children who received the area model training, PAE of area model estimation 
decreased from 0.25 to 0.08 from pretest to posttest. Two weeks after training, children in 
the area model condition persistently yielded more accurate estimates on area model 
estimation than those in the number line condition (but not more accurate than those in 
the control condition). In contrast, children who received the number line training were no 
better than children in the area model or the control condition at estimating fractions on the 
number line after training – not even on estimating the fractions on which they received 
training. In prior work training proper fractions (Gunderson et al., 2019), number line 
training appeared to transfer to area model estimation, in that both trainings led to 
equivalent area model estimation performance. This was not the case in our study, provid
ing further evidence that the number line training in the present study was not effective at 
improving fraction concepts.

One reason for the ineffectiveness of the number line training might be that the training 
procedures were hard to follow. We developed the procedures for both the number line and 
the area model training based on prior interventions that enhanced 2nd and 3rd graders’ 
magnitude knowledge of proper fractions (Gunderson et al., 2019; Hamdan & Gunderson, 
2017). The training included the same steps (i.e., segment, shade, and label) and lasted 
a similar amount of time as in prior studies (i.e., 15 minutes). However, because the current 
training involved both proper and improper fractions, children may have found the training 
more difficult to understand than in prior studies, which only involved proper fractions. 
Consistent with this idea, whereas prior number line training with only proper fractions led 
to more accurate estimates on the number line than the area model training and the control 
activity (Gunderson et al., 2019; Hamdan & Gunderson, 2017), children who completed 
number line training in the current study did not improve at estimating proper fractions. 
Training being hard to follow might be more evident in the number line than in the area 
model condition because children are more familiar with the area model than the number 
line for representing fractions (Ni, 2001; X. Zhang, Clements, & Ellerton, 2015). Consistent 
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with this view, during training, children in the number line condition tended to execute 
procedures incorrectly more often than children in the area model condition. Future studies 
should explore whether a more extensive number line training (e.g., training children on 
more fractions and providing more trials of experimenter demonstrations) would yield 
greater learning outcomes.

The effectiveness of the area model training and the ineffectiveness of the number line 
training might also be due to the limitations of the stimuli used in training and at posttest. 
We expected the continuous number line to support learning of improper fractions because 
number lines naturally extend beyond one. To convert a 0–1 number line to represent 
improper fractions, one only needs to extend the number line beyond the endpoint of 1. 
Such a representation is analogous with the mental number line, on which proper fractions, 
the number one, and improper fractions are ordered in a continuous manner (Dehaene, 
1992). In contrast, converting a one-unit area model to incorporate improper fractions 
requires adding discrete shapes identical to the one-unit model (Behr et al., 1988; Wu, 
2009). The area models employed in the current study (i.e., three blank squares; Figure 2b), 
however, eliminated the potential difficulty of adding identical shapes – because three 
shapes were already provided, children did not have to actively extend a one-unit area 
model to a multi-unit area model to represent improper fractions.

Moreover, the perceptual dissimilarity between the number lines used in training and at 
posttest might be another reason why no improvement was seen on number line estimation. 
The number line used at posttest had labeled endpoints at 0 and 3 but did not have hash 
marks or numerical labels at 1 and 2, whereas the number line used in the training did. In 
the training, we included the hash marks and numerical labels with the goal of helping 
students connect fraction magnitudes to their existing whole-number knowledge. However, 
we did not include them in the number line estimation task at posttests to be consistent with 
prior studies using this task (e.g., Gunderson et al., 2019; Hamdan & Gunderson, 2017; 
Siegler et al., 2011). Eliminating the hash marks and labels at 1 and 2 may have substantially 
increased the difficulty of representing fractions on the number line: Most of children’s 
successful strategies of estimating fractions on number lines beyond 1 involve an initial step 
of segmenting the number line into whole number units, and some children have trouble 
with this step (D. Zhang et al., 2017). Although the area models in the training also had 
numerical labels (i.e., 1, 2, and 3), eliminating these labels from the area models at posttest 
may not impose much difficulty as the three squares had clear boundaries for them to be 
considered as three whole number units. Future research should explore whether these 
perceptual features of the number line and the area model influence children’s performance 
of estimating fractions on them.

Implications for learning improper fractions

The effectiveness of number line training for improving proper fraction knowledge in prior 
studies, and the ineffectiveness of similar number line training for improving improper 
fraction knowledge in the current study, suggest that improper fraction magnitudes might 
be harder to learn than proper fraction magnitudes. In two prior studies, a 15-minute 
number line training effectively improved knowledge of proper fractions among second and 
third graders who had limited formal instruction on fractions (Gunderson et al., 2019; 
Hamdan & Gunderson, 2017). Although the current study involved older students (i.e., 
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fourth and fifth graders), a number line training similar to that in the prior studies failed to 
yield any learning of fraction magnitudes. The lack of learning was not due to ceiling 
performance at pretest: the PAE of number line estimation among children in the number 
line condition was 0.28, similar to that on area model estimation, which decreased sub
stantially after area model training.

One reason for improper fractions to be harder than proper fractions might arise from 
the process of integrating improper fractions with existing whole number knowledge. The 
integrated theory of numerical development posits that learning new types of numbers 
involves extending existing number knowledge, and understanding fractions requires 
integrating fractions with existing whole number knowledge (Siegler et al., 2011). This 
integration process can be challenging. Much of the difficulty in learning fractions is due to 
overgeneralization of whole number knowledge (Ni & Zhou, 2005). As compared to proper 
fractions, learning improper fractions may impose an additional challenge: the magnitudes 
of improper fractions may fall between any two whole numbers whereas proper fractions 
are always between 0 and 1. Learning magnitudes of improper fractions may thus require 
fluency in whole number arithmetic, particularly division.

Another reason that improper fractions may be challenging is that understanding 
improper fraction magnitudes requires inhibiting the tendency to treat all fractions as 
smaller than one. The tendency to treat all fractions as smaller than one is seen when 
children estimate fractions on the number line (Resnick et al., 2016) and when children 
reason about whether there is a smallest or biggest fraction (Stafylidou & Vosniadou, 2004). 
In the current study, most children did not seem to explicitly hold such a belief given that 
their performance on the comparison to one task was well above chance. However, even 
college students have this tendency to treat all fractions as being smaller than one on tasks 
involving automatic processing of fraction magnitudes (Kallai & Tzelgov, 2009). It is likely 
that for children to learn and process the magnitudes of improper fractions, they need to 
inhibit an implicit tendency to treat all fractions as smaller than one.

Although the present training on improper fractions was closely matched to prior 
ones on proper fractions (Gunderson et al., 2019; Hamdan & Gunderson, 2017), there are 
still important differences between the trainings. For example, the prior and current 
trainings both lasted about 15 minutes, but the prior training only involved proper 
fractions whereas the current involved both proper and improper fractions. This and 
other differences preclude direct comparison between the prior and current findings to 
reveal whether learning improper fractions is more challenging than learning proper 
fractions. To better understand whether and, if so, why learning improper fractions is 
harder than proper fractions, future studies need to closely match the proper and 
improper fraction trainings and include measures of factors that might contribute to 
differences in learning proper and improper fractions, such as whole number arithmetic 
fluency and inhibition.

Educational implications

Our findings indicate that children can learn to represent improper fractions on the area 
model with brief training, and this learning can last at least two weeks after training. 
Representing improper fractions with the area model can be challenging (Behr et al., 
1988; Wu, 2009). Nevertheless, children in the current study quickly learned how to do 

JOURNAL OF COGNITION AND DEVELOPMENT 323



so after a 15-minute training, during which they saw the experimenter show three fractions 
on the area model and practiced and received feedback on eight fractions.

However, it is less clear whether progress in estimating fractions on the area model 
promoted a comprehensive understanding of fraction magnitudes. Despite the considerable 
improvement in area model estimation, children who received the area model training did no 
better than other children who received the number line training or control activities on any 
other fraction tasks in the current study (i.e., number line estimation, fraction magnitude 
comparison, and comparison to one). These findings are in sharp contrast with prior inter
ventions, in which the number line training not only led to more accurate number line 
estimation than the other conditions, but also transferred to fraction magnitude comparison 
(Gunderson et al., 2019; Hamdan & Gunderson, 2017) and led to similar improvement in area 
model estimation as the area model training (Gunderson et al., 2019). However, they are in line 
with other findings that many children who could successfully express fractions on the area 
model did not develop conceptual understanding of fractions in non-area-model contexts (X. 
Zhang et al., 2015). It is possible that, given appropriate dosage and scaffolding, estimating 
fractions on the number line would better facilitate the development of a comprehensive 
understanding of fraction magnitudes than on the area model. It is also possible that children 
need more scaffolding to transfer the improvement in the area model estimation task to solving 
other fraction tasks, for example, by triggering children’s awareness of the relations between the 
tasks (Cooper & Sweller, 1987). These possibilities should be examined in future research.
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