© 2021 Wiley-VCH GmbH

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.202101636

Reimagining the e_g^{1} Electronic State in Oxygen Evolution Catalysis: Oxidation-State-Modulated Superlattices as a New Type of Heterostructure for Maximizing Catalysis

Ran Ding, Parisa Yasini, Haowei Peng, John P. Perdew, Eric Borguet,* and Michael J. Zdilla*

Supporting Information

Reimagining the eg¹ electronic state in oxygen evolution catalysis: Oxidation-statemodulated superlattices as a new type of heterostructure for maximizing catalysis.

Ran Ding, Parisa Yasini, Haowei Peng, John P. Perdew, Eric Borguet, * Michael J. Zdilla.*

R. Ding, P. Dr. Parisa Yasini, Prof. J. P. Perdew, Prof. E. Borguet, Prof. M. J. Zdilla, Prof. C. Department of Chemistry, Temple University, Philadelphia, PA 19112, USA.

E-mail: eborguet@temple.edu, mzdilla@temple.edu, mzdilla@temple.edu

Dr. H. Peng, Prof. J. P. Perdew, Department of Physics, Temple University, Philadelphia, PA 19112, USA.

Dr. H. Peng, Bluebell, PA 19422

Contents:

1. Assembly and characterization of few-layer catalysts.	. 3
2. TEM	. 5
3. Average Oxidation State from ICP-OES back titration.	. 6
4. XPS	.7
5. Tafel Plots and Electrochemical Tables	.7
6. STM/STS Additional Data	13

1. Assembly and characterization of few-layer catalysts.

Fig. S1. Cartoon illustration of the exfoliation and reassembly process for controlled stacking of birnessite layers.

Fig. S2. PXRD pattern of pristine birnessite (black) and reduced birnessite (red) using Cu K α radiation.

Fig. S3. Pictures of FTO before (left) and after (right) coated with few-layers of birnessite.

2. TEM

Fig. S4. TEM images of (A) pristine birnessite before exfoliation, (B) reduced birnessite before exfoliation, (C) NS of pristine birnesstie after exfoliation, (D) NS of reduced birnessite after exfoliation.

3. Average Oxidation State from ICP-OES back titration.

Tuble 51, manganese content for sum ennessite sample determined by fer olds.								
	Birnessite	ICP	Mn Content	Mn Content (g				
	Digested (mg)	Concentration	(mg)	Mn/ g birnessite)				
		(mg/L)						
Pristine birnessite	50.5	0.960	24.0	0.475				
Reduced birnessite	50.0	0.916	22.9	0.458				

Table S1. Manganese content for bulk birnessite sample determined by ICP-OES.

Table S2. The AOS and stoichiometries of birnessite determined by ICP-OES and back titration.

	The amount of electrons	AOS of Mn	Formula
	(mmol) needed to reduce 1		
	g of birnessite to Mn(II)		
Pristine birnessite	15.98	3.85	K _{0.15} MnO ₂
Reduced birnessite	14.18	3.70	K _{0.30} MnO ₂

Figure S5. X-ray photoelectron spectra of the 2p electrons (left) and 3s electrons (right) of the manganese region of sample FAAAAAA (top) and FBBBBBB (bottom). AOS is examined by fitting of the 2p region. For FAAAAAA, AOS = 3.85 (top), and for FBBBBBBB, AOS = 3.70 (bottom). The larger 3s splitting in Birnessite B is consistent with lower average oxidation state due to the increase in exchange energy and electron-electron repulsion in d^4 Mn^{III} in comparison to d^3 Mn^{IV}. "F" Designates the FTO electrode substrate. "A" and "B" represents monolayer of manganese oxide with different oxidation states. Spectra are fit^[43] to variable Mn(II)/(III)/(IV) signals to estimate relative content (see SI for values).

Tuble bet III b data for ennessite samples.									
	AOS	Mn(IV) (%)	Mn(III) (%)	Mn(II) (%)					
Pristine birnessite	3.77	79.38	18.62	2.00					
Reduced birnessite	3.67	70.25	26.73	3.02					

Table S3. XPS	data	for	birnessite	samples.
---------------	------	-----	------------	----------

5. Tafel Plots and Electrochemical Tables

Fig. S6. Tafel slopes derived from the LSV curves in fig. 5 correspondingly.

Fig. S7. Tafel slopes derived from the LSV curves in fig. 6A correspondingly.

Fig. S8. Tafel slopes derived from the LSV curves in fig. 6B correspondingly.

Fig. S9. Tafel slopes derived from the LSV curves in fig. 7 correspondingly.

Figure S10. Chronoamperometry of the oxygen evolution reaction with FAAAAAA at a potential of 2.0 V versus RHE (red); FBBBBBB at a potential of 1.85 V versus RHE (green); FABABAB at a potential of 1.7 V versus RHE (black).

Sample	Overpotential (mV)	Tafel Slope (mV/dec)
FAAAAA	>1000	340
FBBBBBB	750	180
FABABAB	510	105
FBABABA	505	150
FAAABBB	550	175
FBBBAAA	550	180
FAABB	670	271
FBBAA	650	240
FABBBBBBB	480	102
FBBBBBBBA	580	208
FAAAAAAB	810	377
FBAAAAAAA	650	270
FABABAB with intercalated Li ⁺	640	230
FABABAB with intercalated Na ⁺	545	130
FABABAB with intercalated Cs ⁺	450	92

Table S4. Summary	of few-lave	er birnessite	catalysts by	v electrochemistry.
				,

6. STM/STS Additional Data

Figure S11: STM images of two-layer birnessite samples GAA, GBB, GAB and GBA. (a) GAA, $350 \times 350 \text{ nm}^2$, (b) GBB, $500 \times 500 \text{ nm}^2$, inset: another location: $300 \times 300 \text{ nm}^2$ (c) GAB, $1000 \times 1000 \text{ nm}^2$, inset: another location: $500 \times 500 \text{ nm}^2$ (d) GBA, $900 \times 900 \text{ nm}^2$. All the STM images were recorded in ambient temperature and pressure, I_t=0.1 nA, V_{bias}=0.3 V. Locations of the tip for STS measurements indicated with red rectangles.

Figure S12. Bandgap estimation from plot of dI/dV of experimental STS (Fig. 8, top). Bandgap threshold current set at ± 5 nA.

Fitting of STS

The GAA STS spectrum was fitted to the equation:

$$f(x) = Y_0 + A_1 e^{-(\frac{x-x_0}{\tau_1})} + A_2 e^{-(\frac{x-x_0}{\tau_2})} + (Y_1 + A_3 e^{Bx})$$
(1)

The GBB, GAB, and GBA spectra were fit to the equation:

$$f(x) = Y_0 + \left\{\frac{M_0}{1 + e^{\frac{(h_0 - x)}{R_0}}}\right\} + Y_1$$
(2)

The experimentally determined parameters are given in Tables S5 and S6.

Table S5

	Parameters								
	Y ₀	A ₁	$ au_1$	\mathbf{A}_2	$ au_2$	Y ₁	A ₃	В	X ₀
AA	-0.06	-31.01	0.44	0.05	18.10	-0.13	0.05	2.31	-2.55

Table S6

	Parameters								
	Y ₀	\mathbf{M}_{0}	h_0	R ₀	Y ₁	M ₁	h_1	R ₁	
BB	0.35	-55.00	1.16	-0.16	-4.64	59.34	-0.77	0.17	
AB	-1.81	-50.34	0.65	-0.07	-47.10	100.16	-0.84	0.15	
BA-Sonication	0.34	-85.36	1.56	-0.26	2.86	81.83	-0.75	0.18	
ВА-ТВАОН	0.41	-63.02	1.33	-0.25	8.56	54.10	-1.10	0.21	