Robust Source Localization Exploiting Collaborative UAV Network

Conference Paper - December 2019

3 authors, including:

- Shuimei Zhang
 Temple University
 15 PUBLICATIONS 38 CITATIONS

All content following this page was uploaded by Shuimei Zhang on 02 December 2019.

The user has requested enhancement of the downloaded file.
Robust Source Localization Exploiting Collaborative UAV Network

Shuimei Zhang, Ammar Ahmed, and Yimin D. Zhang
Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA

Abstract—In this paper, we propose a robust strategy to localize multiple ground sources exploiting a distributed unmanned aerial vehicle (UAV) network in the presence of impulse noise. We achieve robust source localization by using ℓ₁-principal component analysis (ℓ₁-PCA) based signal subspace estimation at each individual UAV. This approach significantly reduces the signal subspace perturbation compared to the conventional ℓ₂-PCA based counterpart. The obtained robust signal subspace estimate is exploited to provide an improved estimate of the noise subspace, which is in turn utilized by the MUSIC algorithm to render coarse source localization at each individual UAV. The source localization information obtained at multiple UAVs is then fused by exploiting group sparsity using the re-weighted ℓ₁ minimization. Simulation results demonstrate the effectiveness of the proposed approach.

Index Terms—source localization, UAV network, impulse noise, ℓ₁-norm principal component analysis, group sparsity, information fusion.

I. INTRODUCTION

Autonomous unmanned aerial vehicles (UAVs) receive increasing attention in various civil, military, and homeland security applications, such as border surveillance, disaster monitoring, and relay communications [1]–[4]. A multi-UAV network is commonly adopted since a single UAV may not execute time-critical tasks or large-area missions due to its limited energy and payload. Multi-UAV networks also enjoy spatial diversity by sensing an area of interest from different angles, thereby significantly increasing the reliability of source localization [5]–[7].

A UAV network can perform real-time multi-source localization by exploiting passive sensing, localization (imaging), information transmission, and fusion. One important strategy for source localization is to utilize the angular information, which can be obtained through beamforming [8]–[12] or direction-of-arrival (DOA) estimation [13]–[22]. In particular, subspace-based DOA estimation methods have enjoyed great popularity because they achieve a high angular resolution with low computational complexity.

Conventional subspace-based DOA estimation techniques, e.g., multiple signal classification (MUSIC), achieve superior performance under the assumption of additive white Gaussian noise [15]. However, the noise often exhibits non-Gaussian properties in practice, such as low-frequency atmospheric noise and many types of man-made noise. The performance of subspace-based DOA estimation methods degrades substantially in the presence of impulsive noise, resulting in compromised source localization performance.

One common approach to mitigate the impacts of the impulse noise is to utilize the lower-order statistics to replace the second-order covariance as considered in the methods based on, e.g., the fractional lower-order moment (FLOM) [24] and the phased fractional lower-order moment (PFLOM) [25]. However, the fractional lower-order statistics based algorithms are suboptimal [23], [26]. It is noted that conventional subspace based DOA estimators rely on the ℓ₂-norm based singular value decomposition (SVD) of the data matrix and thus is highly sensitive to the outliers. Recently, an ℓ₁-norm principal component analysis (ℓ₁-PCA) based method is developed in [27]. The motivation for using the ℓ₁-norm principal components is that ℓ₁-PCA is robust to the outliers introduced by the impulsive noise [28]–[31].

Apart from the localization performance at individual UAVs, information fusion of the data obtained at multiple UAV nodes is another challenging task. One of the natural choices is to fuse the information by taking the arithmetic mean of the obtained localization images from different UAVs. However, this method does not combine the information effectively, especially when some UAVs have false positives or false negatives in the localization images. In [7] and [32], image fusion is achieved via pixel-wise multiplication. This method can suppress the sidelobes well. However, when false negatives occur at any UAV, the corresponding sources will not appear in the final fused result.

In this paper, we propose a robust source localization algorithm in the presence of impulse noise. We first exploit the ℓ₁-PCA based DOA estimation method at each UAV to obtain the coarse localization images. In this case, the effects of impulse noise are effectively mitigated by the utilization of ℓ₁-PCA MUSIC algorithm. Since the sources are sparsely located and the UAVs at different locations observe the same area of interest, the resulting localization images obtained at different UAVs are group sparse. We fuse these images by exploiting a group sparsity based approach, which utilizes re-weighted ℓ₁ minimization. It is noted that only the compressed images are transmitted among the UAV network to maintain low data traffic and network scalability.

Notations: Lower-case (upper-case) bold characters are used to denote vectors (matrices). I_N denotes the N × N identity matrix. (⋅)^T and (⋅)^H denote the transpose and the Hermitian transpose, respectively. Moreover, diag(⋅) denotes a diagonal matrix with the elements of a vector as the diagonal entries. ℜ{X} and ℑ{X} denote the real and imaginary parts of X, respectively. E[⋅] denotes expectation. In addition, ∥⋅∥_1 and ∥⋅∥_2 express the ℓ₁ and ℓ₂ norms of a vector, respectively.

This work is supported in part by the National Science Foundation (NSF) under grant AST-1547420.
II. PROBLEM STATEMENT

A. Signal Model

Consider a UAV network in which each UAV is equipped with P sensors, and there are D uncorrelated far-field ground sources ($D < P$) impinging on them with respective elevation angle θ_d and azimuth angle ϕ_d, $d = 1, \ldots, D$. A spherical coordinate system is shown in Fig. 1, which describes the DOAs of the incoming plane waves. The received baseband signal vector at a UAV is modeled as:

$$x(t) = \sum_{d=1}^{D} a(\theta_d, \phi_d)s_d(t) + n(t) = As(t) + n(t), \quad (1)$$

where $A = [a(\theta_1, \phi_1), a(\theta_2, \phi_2), \ldots, a(\theta_D, \phi_D)] \in \mathbb{C}^{P \times D}$ is the manifold matrix of the corresponding UAV, $s(t) = [s_1(t), s_2(t), \ldots, s_D(t)]^T \in \mathbb{C}^D$ is the corresponding signal vector with t denoting the discrete-time index, and $n(t)$ is the noise vector.

In this paper, each UAV is equipped with a uniform circular array (UCA) with one element placed in the center. Compared to a uniform linear array (ULA), a UCA provides a 360° azimuthal coverage and the elevation information. The dth column of the manifold matrix A represents the steering vector of the dth source signal and is expressed as:

$$a(\theta_d, \phi_d) = \begin{bmatrix} e^{-\zeta \sin(\theta_d) \cos(\phi_d - \beta_0)} \\ e^{-\zeta \sin(\theta_d) \cos(\phi_d - \beta_1)} \\ \vdots \\ e^{-\zeta \sin(\theta_d) \cos(\phi_d - \beta_{P-2})} \\ 1 \end{bmatrix}, \quad (2)$$

where $\zeta = 2\pi r / \lambda$ and $\beta_n = 2\pi n / (P-1)$ for $n = 0, \ldots, P-2$, with r and λ respectively denoting the radius of the UCA and the wavelength of the impinging wave. Note that the central element of the UCA acts as the reference sensor.

The covariance matrix of $x(t)$ is expressed as:

$$R_{xx} = \mathbb{E}[xx^H(t)] = ABAB^H + R_{nn}, \quad (3)$$

where $B = \text{diag} [b_1, \ldots, b_D]$ is a diagonal matrix representing the power of all D sources, and R_{nn} is the noise covariance matrix.

B. Alpha-stable Noise

If the noise follows independent and identically distributed (i.i.d.) additive white Gaussian distribution, then $R_{nn} = \sigma_n^2 I_P$, where σ_n^2 denotes the noise power. On the other hand, alpha-stable distribution is commonly used to describe the impulse noise. The characteristic function of an alpha-stable random process is expressed as [33, 34]:

$$\varphi(t) = \exp \{j \mu t - \delta |t|^\alpha [1 + j \beta \text{sgn}(t) \nu(t, \alpha)] \}, \quad (4)$$

where

$$\nu(t, \alpha) = \begin{cases} \tan \frac{\alpha \pi}{2}, & \alpha \neq 1, \\ \frac{2}{\pi} \log |t|, & \alpha = 1, \end{cases} \quad (5)$$

$-\infty < \mu < \infty$, $\delta > 0$, $0 < \alpha \leq 2$, and $-1 \leq \beta \leq 1$. Here, μ is the location parameter, δ is the dispersion parameter, α is the characteristic exponent, and β is the symmetry parameter. If $\beta = 0$, the distribution is symmetric and the observation is referred to as symmetric α-stable (SoS) distribution, which is considered in this paper.

C. ℓ_2-PCA Based MUSIC

In practice, the actual covariance matrix R_{xx} is usually unavailable and is estimated from the data samples as:

$$\hat{R}_{xx} = \frac{1}{K} \sum_{k=1}^{K} x(t)x^H(t) = \frac{1}{K} XX^H, \quad (6)$$

where $X = [x(1), \ldots, x(K)] \in \mathbb{C}^{P \times K}$ is the received data matrix consisting of K snapshots.

The signal subspace consists of the D-dimensional principal subspace of \hat{R}_{xx}, which is spanned by the eigenvectors associated with the D highest eigenvalues. In fact, the solution of the following ℓ_2-PCA problem results in the eigenvectors of \hat{R}_{xx} or the left singular vectors of X [27]:

$$U_{\ell_2}^s = \arg \max_{U \in \mathbb{C}^{P \times D}, U^HU = I_D} \|U^HX\|_2^2. \quad (7)$$

The noise subspace spanned by $U_{\ell_2}^n$ is orthogonal to the signal subspace spanned by $U_{\ell_2}^s$, i.e.,

$$U_{\ell_2}^n(U_{\ell_2}^n)^H = I_P - U_{\ell_2}^s(U_{\ell_2}^s)^H. \quad (8)$$

The conventional MUSIC algorithm is based on the ℓ_2-PCA and computes the following spatial pseudo-spectrum:

$$p_{\ell_2}(\theta_d, \phi_d) = \frac{1}{a^H(\theta_d, \phi_d)U_{\ell_2}^n(U_{\ell_2}^n)^H a(\theta_d, \phi_d)}. \quad (9)$$

MUSIC detects the D sources from the local peaks of Eq. (9). Under SoS noise, however, the signal subspace obtained from (7) is inaccurate, thus resulting in severe performance degradation of the conventional MUSIC algorithm.

III. PROPOSED METHOD

In this section, we describe a collaborative robust source localization algorithm for UAV networks. First, we apply an ℓ_1-PCA based MUSIC technique on the sampled data acquired at each UAV node to obtain the coarse images of the ground sources in the presence of SoS noise. Subsequently, each UAV compresses its estimated localization image by using singular value decomposition (SVD) and then wirelessly transfers it to the master UAV node. The master node, which acts as the fusion center, fuses the localization images by exploiting group sparse reconstruction based on re-weighted ℓ_1 minimization.
A. Image Formation via ℓ_1-PCA Based MUSIC

The ℓ_1-norm tends to maintain sturdy resistance against outliers when the received data is corrupted. Instead of ℓ_2-norm maximization, ℓ_1-norm maximization can be exploited in problem (7), and the corresponding ℓ_1-PCA problem can be expressed as:

$$U_{\ell_1}^s = \arg \max_{U \in \mathbb{C}^{P \times D}} \|U^H X\|_1.$$ \hspace{1cm} (10)

Given the fact that ℓ_1-PCA is developed originally for the real-valued data, the complex-number realification is utilized to recast our complex data into a real-data problem as [27]

$$X \triangleq \left[\Re\{X\}, -\Im\{X\} \right] \in \mathbb{R}^{2P \times 2K},$$ \hspace{1cm} (11)

where $\overline{\cdot}$ denotes the complex realification. In this case, (10) can be reformulated as:

$$U_{\ell_1} = \arg \max_{U \in \mathbb{R}^{2P \times 2D}} \|U^H X\|_1.$$ \hspace{1cm} (12)

Denote $R_{\ell_1} = U_{\ell_1}^s (U_{\ell_1}^s)^T \in \mathbb{R}^{2P \times 2P}$. The signal subspace is expressed as:

$$R_{\ell_1} = \tilde{R}_{\ell_1} [1: P, 1: P] + j \tilde{R}_{\ell_1} [1 + 2P, 1: P] \in \mathbb{C}^{P \times P},$$ \hspace{1cm} (13)

where $A[h: i; j: k]$ represents a sub-matrix of A which consists of the elements from the hth row and the jth column to the ith row and the kth column. The noise subspace is obtained as:

$$R_{\ell_1} = I_P - R_{\ell_1}.$$ \hspace{1cm} (14)

Consider a two-dimensional $L \times L$ source scene in the observation area, where $M = L \times L \gg D$ is the total number of pixels. The value of the spatial pseudo-spectrum at the mth pixel is the output from the ℓ_1-PCA based MUSIC estimator, given by

$$P_{\ell_1}(\theta_m, \phi_m) = \frac{1}{\hat{a}H(\theta_m, \phi_m) R_{\ell_1}^n \hat{a}(\theta_m, \phi_m)},$$ \hspace{1cm} (15)

for $m = 1, \cdots, M$. Repeating Eq. (15) pixel by pixel, we obtain the ℓ_1-PCA based MUSIC image I_g of the gth UAV for $g = 1, \cdots, G$.

B. Image Fusion via Enhanced Group-Sparsity

All images $I_g, g = 1, \cdots, G$, obtained from the ℓ_1-PCA based MUSIC technique are transmitted to the fusion center in a compressed form [37]. Since the images obtained at different UAVs correspond to the same sparse scene of the sources, they exhibit group sparsity which helps obtain the correct sparsity support and suppress undesired sporadic results [35].

Define $i_g = \text{vec}(I_g)$, where $\text{vec}(\cdot)$ denotes the matrix vectorization. The group sparsity is employed as:

$$\min_{w_g} \sum_{g=1}^{G} \|i_g - \Phi w_g\|_2^2$$ \hspace{1cm} \text{subject to} \sum_{m=1}^{M} \left(\sum_{g=1}^{G} |w_{g,m}| \right)^{1/2} \leq \gamma_{\text{tol}},$$ \hspace{1cm} (16)

where γ_{tol} is the acceptable tolerance, $\Phi \in \mathbb{R}^{M \times M}$ is the dictionary matrix which, in the underlying application, is an identity matrix, and $w_{g,m}$ denotes the mth element of the vector $w_g \in \mathbb{R}^M$ for the gth UAV which serves as the vectorized form of the fused final estimates. The optimization (16) can be reformulated as follows:

$$\hat{w}_g = \min_{w_g} \sum_{g=1}^{G} \|i_g - \Phi w_g\|_2^2 + \eta \sum_{m=1}^{M} \left(\sum_{g=1}^{G} |w_{g,m}| \right)^{1/2},$$ \hspace{1cm} (17)

where η is the regularization parameter.

When the sources are observed with different strengths, the group sparse reconstruction can be enhanced by utilizing the following weighting function [36]:

$$v_{m}^{(n)} = \begin{cases} \left(\sum_{g=1}^{G} \hat{w}_{g,m}^{(n-1)} \right)^{-1/2}, & \text{if } \sum_{g=1}^{G} \hat{w}_{g,m}^{(n-1)} > 0, \\ 1/\epsilon, & \text{if } \sum_{g=1}^{G} \hat{w}_{g,m}^{(n-1)} = 0, \end{cases}$$ \hspace{1cm} (18)

where $v_{m}^{(n)}$ denotes the weighting coefficient for the mth iteration, and ϵ should ideally be slightly less than the minimum non-zero value of w_g. Large weights are used to discourage nonzero entries, while small weights are used to encourage nonzero entries. It results in the following re-weighted ℓ_1-minimization group sparse reconstruction problem:

$$\hat{w}_g^{(n)} = \min_{w_g} \sum_{g=1}^{G} \|i_g - \Phi w_g\|_2^2 + \eta \sum_{m=1}^{M} v_{m}^{(n)} \left(\sum_{g=1}^{G} |w_{g,m}| \right)^{1/2}.$$ \hspace{1cm} (19)

We solve (19) in an iterative fashion until convergence. The final fused image can be computed as follows:

$$\hat{W} = \text{ivec}(\hat{w}) = \text{ivec} \left(\sum_{g=1}^{G} |\hat{w}_g| \right),$$ \hspace{1cm} (20)

where $\text{ivec}(\cdot)$ denotes the inverse of vectorization operation.

IV. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate the performance of the proposed robust source localization method. Five UAVs are considered with their respective locations at $(-80, 0, 120)$ m, $(-40, 69, 120)$ m, $(0, 5, 120)$ m, $(40, 69, 120)$ m, and $(80, 0, 120)$ m. Each UAV is equipped with...
In this paper, we propose a robust source localization technique in the presence of impulse noise. The \(\ell_1 \)-PCA based MUSIC technique is individually performed at each UAV to robustly obtain the initial localization images, whereas the re-weighted group-sparsity based image fusion method is performed to obtain the final localization image at the fusion center. Simulation results verified the effectiveness of the proposed strategy.

V. CONCLUSION

In this paper, we propose a robust source localization technique in the presence of impulse noise. The \(\ell_1 \)-PCA based MUSIC technique is individually performed at each UAV to robustly obtain the initial localization images, whereas the re-weighted group-sparsity based image fusion method is performed to obtain the final localization image at the fusion center. Simulation results verified the effectiveness of the proposed strategy.