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A B S T R A C T   

A large body of research illustrates the prioritization of goal-relevant information in memory; however, it is 
unclear how reward-related memories are organized. Using a rewarded free recall paradigm, we investigated 
how reward motivation structures the organization of memory around temporal and higher-order contexts. To 
better understand these processes, we simulated our findings using a reward-modulated variant of the Context 
Maintenance and Retrieval Model (CMR; Polyn et al., 2009). In the first study, we found that reward did not 
influence temporal clustering, but instead shifted the organization of memory based on reward category. Further, 
we showed that a reward-modulated learning rate and source features of CMR most accurately depict reward’s 
enhancement on memory and clustering by value. In a second study, we showed that reward-memory effects can 
exist in both extended periods of sustained motivation and frequent changes in motivation, by showing equiv-
alent reward effects using mixed- and pure-list motivation manipulations. However, we showed that a reward- 
modulated learning rate in isolation can support reward’s enhancement of memory in pure-list contexts. Over-
all, we conclude that reward-related memories are adaptively organized by higher-order value information, and 
contextual binding to value contexts may only be necessary when rewards are intermittent versus sustained.   

1. Introduction 

Imagine going to the grocery store to buy ingredients for an up-
coming dinner as well as a few other essentials. If you were asked to 
recall what you purchased afterwards, it is possible that you could start 
by describing the first things you picked up and move forward in time 
with each item you put in the cart. But, we often buy many things in one 
trip, which makes it unlikely that you would remember every single 
item. Instead, individuals prioritize information that is relevant to their 
goals (Murty & Adcock, 2017), such that you would be more likely to 
recall items for your upcoming dinner as opposed to more mundane, 
basic items. This type of prioritization may bias the organization of your 
recall away from the order in which you selected items but rather to-
wards the importance of items to your goal state while shopping (e.g., 
grouping ingredients you need for dinner). Prior research has detailed 
the role of reward and goal relevance in influencing which items are 
stored in memory (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & 
Gabrieli, 2006; Miendlarzewska, Bavelier, & Schwartz, 2016; Murty & 
Adcock, 2017; Shohamy & Adcock, 2010), but it remains unknown how 
reward-related memories are organized. 

A large body of research has characterized memory organization and 
free recall dynamics for neutral memoranda. While information is bound 
to the temporal context of encoding, it is most common for items to be 
recalled in the order they were learned (Howard & Kahana, 2002b; 
Polyn, Norman, & Kahana, 2009). During goal-directed behavior, 
however, this may not be the most adaptive form of memory organiza-
tion. Organizing memories based on temporal order may lead to an 
inability to discern important shared relationships among items that 
span across temporal context, which could hinder the achievement of 
goals. Rather, organizing memories by a value-related context would 
lead to the clustering of goal-relevant information to support more 
adaptive behaviors like generalization, inference, and insight (Cowan, 
Schapiro, Dunsmoor, & Murty, 2021). 

In prominent models of free recall, items are thought to be bound to 
different contextual features during encoding which are reinstated 
during retrieval to organize recall (Howard & Kahana, 2002b; Kahana, 
1996; Polyn et al., 2009). The Context Maintenance and Retrieval Model 
(CMR; Polyn et al., 2009) describes how items are learned and later 
recalled based on associations between items and their context. During 
encoding, as an item is presented, it is stamped into a continuously 
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drifting context (Polyn et al., 2009). The further away two items are 
presented in time, the less they are associated with each other since their 
temporal contexts differ as a function of time. After learning, items 
compete to be recalled and are cued by the context of the most recently 
recalled item. One hypothesis regarding how value may influence 
memory organization would suggest that reward modulates how 
strongly items are bound to a temporal context, resulting in greater 
temporal contiguity at recall. The binding of information to its temporal 
context has been shown to be supported by the hippocampus (HPC; 
(Davachi, 2006; Manning, Polyn, Baltuch, Litt, & Kahana, 2011), and a 
large literature has shown that the HPC supports reward-motivated 
memory in conjunction with involvement of the ventral tegmental 
area (VTA; Adcock et al., 2006; Murty & Adcock, 2017). Given the 
hippocampus’s role in supporting both temporal memory and reward- 
related memory, it may be hypothesized that reward biases memory 
organization towards temporal context, a process which could be 
mediated by the HPC. 

However, some evidence against this hypothesis suggests that 
reward disrupts temporal recall dynamics. For example, Murphy and 
colleagues have shown that reward motivation biases recalltowards 
strategic value-related organization and away from typical serial orga-
nization which would be structured by temporal context (Murphy & 
Castel, 2022; Murphy, Schwartz, & Castel, 2022). Additionally, Stefa-
nidi, Ellis, and Brewer (2018) have suggested that reward disrupts 
typical primacy and recency effects by showing that recall is more likely 
to begin with a high-value word, regardless of serial position. Together, 
this suggests that reward may disrupt temporal organization and instead 
drive recall towards a value-related structure. 

In the CMR framework, there are additional contextual features, such 
as task demands or the modality in which information is delivered (i.e., 
source), that influence the likelihood of an item being recalled. Items 
that belong to the same source and share task contexts are often recalled 
contiguously (Murdock & Walker, 1969; Polyn et al., 2009). Extending 
on this prior work, the source context has been used to differentiate 
between high- and low-salience items (Talmi, Lohnas, & Daw, 2019, 
2021). Here, we are interested in how these source features may influ-
ence memory organization for goal-relevant items. A competing hy-
pothesis therefore predicts that high-reward items will become more 
associated with each other, and therefore more likely to be recalled 
contiguously, since they share a ‘value context’. Through this reward 
context, during recall, we hypothesize that transitions between words 
will be to ones that share the same reward context rather than ones that 
were encoded closer in time. 

A few additional pieces of neural evidence lend to the second hy-
pothesis that reward may target higher-order features of memory. While 
it has been widely accepted that the HPC supports episodic memory 
(Davachi, 2006), recent work has shown that the HPC is also involved in 
supporting memory for higher-order concepts, such as famous people 
and places (Morton, Zippi, Noh, & Preston, 2021). Given that the hip-
pocampus can support conceptual information, as well as reward-related 
memory, it may also facilitate memory organization through higher- 
order categories such as reward value (Adcock et al., 2006; Murty & 
Adcock, 2017). Second, there is evidence that salient information fa-
cilitates interactions between VTA and anterior temporal networks 
(Cowan, Fain, O’Shea, Ellman, & Murty, 2021), which are known to 
support value-related and semantic information, respectively. Given this 
prior work, we propose that rather than influencing memory through 
temporal features of an experience, reward may bias memory organi-
zation towards de novo reward contexts. Behaviorally, we probe this 
hypothesis by characterizing clustering around reward value, rather 
than temporal context. 

A related, yet parallel, question concerns the mechanisms by which 
the salience of reward motivation influences encoding. Prior research 
proposes that affect only influences memory when salience is triggered 
by the local environment (i.e., an emotional item surrounded by neutral 
information) and does not extend to time periods that involve a 

sustained state of affective information (i.e., a list of all emotional 
words; Talmi, Luk, McGarry, & Moscovitch, 2007, 2019). This theoret-
ical framework was developed under the context of emotional valence, 
however, has been extended to the domain of reward motivation in 
studies demonstrating that reward’s influence on memory only occurs in 
the context of mixed lists (Talmi et al., 2007, 2019). In these studies, 
high- and low-salience items (i.e., high and low reward value) were 
learned intermixed within the same list, driving attentional salience, 
rather than pure lists, where high- and low-salience items were pre-
sented and tested separately (Talmi et al., 2007, 2019). However, these 
findings challenge neurobiological models of reward-motivated memory 
which suggest that motivation can be sustained over extended periods of 
time (Murty & Adcock, 2017; Shohamy & Adcock, 2010), resulting in 
more tonic increases in memory. Thus, comparing reward’s benefit on 
memory across mixed and pure lists, and testing memory after learning 
words in both categories rather than separately in the pure list condi-
tion, would help disambiguate among these two mechanisms. 

Across two studies, we use a rewarded free recall task in which items 
are learned under the context of either high or low reward. We measure 
recall organization to determine how value influences the extent to 
which items are organized by the order in which they were encoded, 
compared to a reward context, which we consider higher-order, value 
information. We then extend the interpretation of our findings with a 
computational modeling approach by using a reward-motivated variant 
of CMR to simulate features of the encoding and retrieval processes to 
understand the underlying mechanisms of reward-related memory 
organization. 

2. Methods 

2.1. Participants 

Two separate cohorts, without any history of psychiatric or neuro-
logical conditions, were recruited from Temple University to participate 
in two studies. Informed consent was obtained from each participant in a 
manner approved by Temple University’s Institutional Review Board. 
Sixty-three people participated in Study 1; three were removed due to 
failure to return for the 24-h test and four because of experimental error, 
resulting in a final sample of 56 (47 females, 9 males, ages 17–39, me-
dian age: 19). Sixty-two people were recruited to participate in Study 2; 
two were removed because of failure to return for the 24-h test and one 
due to failure to follow task instructions, resulting in a final sample of 59 
participants (48 females, 10 males, 1 non-binary, ages 18–25, median 
age: 20). Sample sizes were chosen based on standards in the literature 
of free recall (for example, Kahana, Howard, Zaromb, & Wingfield, 
2002; Talmi et al., 2007) and motivation (for example, Murayama & 
Kitagami, 2014; Murayama & Kuhbandner, 2011; Patil, Murty, Dun-
smoor, Phelps, & Davachi, 2017) and are sufficient to show both a 
medium effect size of 0.5 and a strong effect size of 0.9 with a power 
level of 0.8 (Patil et al., 2017). 

2.2. Encoding 

After consent was obtained, participants were given instructions for 
the task. All participants performed encoding on day 1, and recall fol-
lowed by recognition on day 2. Half of the participants in each study also 
completed the recall test immediately after encoding on day 1. During 
encoding, participants learned 70 words in total that were randomly 
chosen from the Toronto Noun Word Pool (Friendly, Franklin, Hoffman, 
& Rubin, 1982), only 50 of which were used in our analyses. The first 
and last 10 words, which were associated with a low reward value, were 
removed from analyses to preclude recency and primacy effects (which 
we refer to as “buffer” words). The remaining 50 target words were split 
into two lists, 25 in each. The words included in each list were randomly 
selected for each participant. Each list was presented three times in the 
same order (i.e., all three repetitions of one list followed by three 
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repetitions of the other list) to ensure accuracy would be greater than 
floor. The buffer lists were only presented one time each. Each word was 
preceded by a green or gray star and was surrounded by the same- 
colored box to ensure that participants fully associated the reward 
category of each word. Participants were told that they could earn a flat 
fee of up to $15 as a bonus for remembering the words. Participants were 
directly instructed that “words preceded by a green star are associated 
with a high reward and words preceded by a gray star are associated 
with a low reward. Remembering green star words will work towards a 
$14 bonus at the end of the study and remembering gray star words will 
work towards a $1 bonus at the end of the study. The more green words 
you remember, the more green stars you will accumulate and the closer 
you will be to earning the $14 bonus. The more gray words you 
remember, the more gray stars you will accumulate and the closer you 
will be to earning the $1 bonus. All together, you can earn up to a $15 
bonus by the end of the study for remembering the words”. Rather than 
incentivizing each individual word or the entire list, we purposefully 
instructed participants that remembering each word would contribute to 
earning the bonus of the associated category (green or gray star). Our 
prior work has shown that this vague threshold is more effective in 
raising motivation than incentivizing single words with a lower mone-
tary value (Murty, Tompary, Adcock, & Davachi, 2017; Patil et al., 
2017). We intentionally did not provide details about the minimum 
number of recalled words that were necessary to earn the bonus as we 
wanted focus to be given to all words rather than prioritizing only a 
certain amount. 

In Study 1 (Fig. 1, top), participants learned mixed lists of words, 
where the high- and low-reward words were intermixed throughout the 
two lists, with reward order randomized for each participant. In this 
study, the star cue was presented before each word for 1 s, followed by 
the presentation of the colored box for 1 s, followed by the word for 3 s 
with a 1.5 s ITI. Participants in Study 2 learned the words in pure lists 
(see Fig. 1, bottom), such that all the high-reward words were learned in 
one list and low-reward words in the other, with list order 

counterbalanced across participants. Participants were provided details 
about both reward conditions, exactly as in the instructions above, 
before learning the first list. Here, the star cue was presented for 2 s 
before the entire list, followed by the presentation of each word for 3 s 
with a 1.5 s ITI. Notably, across both studies, the reward value associ-
ated with a word was the same upon all 3 repetitions. 

2.3. Test 

The test phase for both studies was identical. All participants 
completed a free recall test 24 h after encoding. They were given 5 min 
to verbally recite as many words as they could remember learning with 
no penalty for false recalls. Half of the participants in each study also 
completed this task on day 1 immediately after encoding. The test was 
completed after learning all words rather than a traditional study-test 
design in which many short lists would be learned with a test between 
each. In addition to not being amenable to delay tests, study-test allows 
participants to adopt different strategies across lists to maximize reward, 
and we wanted to avoid changes in strategy interfering with the reward 
manipulation. After the 24-h recall test, participants were given a 
recognition test in which they were asked to give an old/new judgement 
to which they could respond “definitely old”, “maybe old”, “maybe 
new”, or “definitely new”, again with no penalty for false alarms. Par-
ticipants completed 140 trials during the recognition test, 70 of which 
were old (i.e., presented during encoding) and 70 were new (i.e., novel 
foils). The test was self-paced. 

The unbalanced nature of our design, in which only half of the par-
ticipants completed the immediate test, was used in case a reward effect 
would only be captured at one time point, or if recall on day 1 would 
influence recall on day 2. This design allowed us the ability to look at 
subsets of the data by group and day to determine the timepoints at 
which reward influences memory. 

The data is available for public access on Open Science Framework 
(https://osf.io/tf4rd/). 

Fig. 1. Task design. Participants in Study 1 learned 2 
mixed lists of 25 words each, with high- and low- 
reward words mixed among both lists. Participants 
in Study 2 learned 2 pure lists of 25 words each (1 
high-reward and 1 low-reward). Buffer words, which 
were removed from analyses to avoid primacy and 
recency effects, were learned once, while the lists 
containing the high- and low-reward target words 
were repeated three times. Recall was tested for all 
participants (groups 1 and 2) after 24 h, with a 
recognition test following. Half of the participants 
(group 1) also completed the recall test immediately 
after encoding.   
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2.4. Analysis 

R (version 4.1.2) was used for all analyses, and the lmer package for 
all multilevel models. Plots and statistical tables were generated with 
sjPlot in which error bars represent 95% confidence intervals. 

First, we wanted to ensure that our findings replicate previous work, 
which showed enhanced recognition memory for high-reward infor-
mation. To do this, we calculated corrected recognition scores for each 
participant by measuring the number of hits (saying “old” to an “old” 

word) and subtracting the number of false alarms (saying “old” to a 
“new” word) for each reward condition. We then compared corrected 
recognition across high- and low-reward conditions using multilevel 
models with a subject-level random intercept. 

We then measured free recall accuracy on a word-level basis by 
determining whether each encoded word was recalled. The first and last 
10 (buffer) words were excluded from this analysis to remove primacy 
and recency effects. Multilevel models were used to capture the influ-
ence of reward and day on recall accuracy. In addition to these main 
effects of interest, the models included a fixed effect for group and 
random intercepts describing subject identity and word. We used 
multilevel models to account for the unbalanced design in which not all 
participants completed both recall tests, and for differences in memo-
rability across encoded words independent of condition. Effects of 
reward on recall were captured with the following model comparison: 
recalled ~ 1 + day + group + (1|subject) + (1|word) versus recalled ~ 
reward + day + group + (1|subject) + (1|word). Similarly, the effect of 
delay was measured with: recalled ~ 1 + reward + group + (1|subject) 
+ (1|word) versus recalled ~ day + reward + group + (1|subject) + (1| 
word). Finally, reward x delay interactions were determined with: 
recalled ~ reward + day + group + (1|subject) + (1|word) versus 
recalled ~ reward * day + group + (1|subject) + (1|word). 

To establish whether free recall accuracy differed by group at the 24- 
h delay test, a model comparison with and without an interaction be-
tween reward and group (recalled ~ reward + group + (1|subject) + (1| 
word) versus recalled ~ reward * group + (1|subject) + (1|word)) was 
conducted. In Study 1, we found a significantly worse model fit by 
including the reward x group interaction (χ2(1) = 6.26, p < .05), and in 
Study 2, there was not a significant interaction (χ2(1) = 0.87, p = .35). 
This suggests that there were no group differences across reward at the 
24-h delay test in either study. 

For Study 1, we conducted analyses inspired by the Context Main-
tenance and Retrieval Model (Polyn et al., 2009) to calculate temporal 
clustering and reward-category clustering. To compute temporal clus-
tering, we calculated a percentile score between the temporal distance of 
the current and next recall and the temporal distance of the current 
recall and all words that could have been recalled next. This allows for 
the comparison of the distance of the current transition versus any 
transition that could have been made. This measure was calculated 
across reward condition such that for high-reward clustering, transitions 
from high-reward words to either a high- or low-reward word were 
included, and vice versa for low-reward transitions to either high or low. 
Any trial that included a transition to or from a buffer word was not 
included in this analysis. 

In a second set of clustering analyses, we asked whether recall was 
organized by reward category (i.e., transitioning from a high-reward 
word to another high-reward word, or transitioning from a low- 
reward word to another low-reward word). To calculate reward clus-
tering, we separately measured the proportion of transitions that stayed 
within reward condition (i.e., high to high, or low to low) versus 
switched across reward condition (i.e., high to low, or low to high). The 
proportion of stay transitions was calculated as the number of transi-
tions that stayed within reward condition (separately for high- and low- 
reward) divided by the number of transitions in which the participant 
could have stayed within condition. Again, any transition that started or 
ended with a buffer word was taken out of this analysis. 

It is possible that any reward clustering effects could be due to 

differences in overall recall accuracy across conditions, such that greater 
clustering of high-reward words appears to occur because they are more 
likely to be recalled. In other words, greater high-reward clustering 
would emerge by chance that there are more high-reward items avail-
able in memory to transition to. Standard methods of clustering that use 
shuffling procedures to quantify clustering by chance across conditions 
(Howard, Youker, & Venkatadass, 2008; Polyn, Erlikhman, & Kahana, 
2011) do not account for differences in accuracy by condition, which 
was confirmed via simulation analyses. Therefore, we used two methods 
to account for this possibility to ensure that any clustering results were 
not due to accuracy differences by reward. First, the denominator for the 
transition probabilities was normalized, such that rather than using the 
total number of transitions made, we added the total number of all 
possible stay (or switch) transitions that could have been made across 
each trial so that there would be no bias towards recalling a high-reward 
word next (Fig. 2: Normalized). Second, we estimated dynamic, idio-
syncratic levels of chance performance for each participant to account 
for the baseline levels of clustering that may exist given any accuracy 
differences by reward (Fig. 2: Corrected). To do this, we first calculated 
the real transition probabilities in our data by capturing the number of 
stay (or switch) transitions from each reward condition and divided that 
by the total number of transitions made from that reward condition (i.e., 
non-normalized). Then for each transition, we measured the chance of 
staying within (or switching across) reward condition by calculating the 
total number of recalled words remaining from each reward condition 
and divided that by the total number of transitions remaining in the 
recall. We then took the difference between the real and chance prob-
abilities for each subject to gain a corrected transition probability score. 

3. Results 

3.1. Study 1 

First, we measured recognition accuracy at the subject-level to 
confirm that our study replicated prior work on reward-memory en-
hancements (Adcock et al., 2006; Murty & Adcock, 2017). Using the 
following model comparison: recognition ~ 1 + group + (1|subject) 
versus recognition ~ reward + group + (1|subject), we found a signif-
icant main effect of reward in recognition memory (χ2(1) = 13.52, p <
.001) suggesting that people were more likely to correctly recognize 
high- than low-reward words. 

Then, we asked whether free recall accuracy differed by reward and 
delay. Here, the results showed a significantly better model fit with 
reward (χ2(1) = 113.75, p < .001; Fig. 3; Table 1) suggesting better 
memory for items of high versus low value. We found a significantly 
worse model fit with a term for delay (χ2(1) = 7.79, p < .01), suggesting 
no difference in memory immediately versus after 24 h. We did not find 
a significant interaction between reward and delay (χ2(1) = 1.36, p =
.24), meaning that the effect of reward on memory does not change 
whether tested immediately or after 24 h. Finally, we asked whether the 
probability of recalling an item on day 2 was influenced by the proba-
bility of it being recalled on day 1 for participants that completed both 
tests. This comparison (recalled ~1 + reward + (1|subject) + (1|word) 
versus recalled ~ previously recalled + reward + (1|subject) + (1| 
word)) revealed that previously recalling an item at the immediate test 
significantly influenced its likelihood of being recalling at the 24-h delay 
test (χ2(1) = 1220.7, p < .001). 

Next, we tested how reward influences the use of temporal context to 
organize memory. Interestingly, we did not find any significant effects of 
reward (χ2(1) = 0.26, p = .61; Fig. 4; Table 2) or delay (χ2(1) = 0.01, p =
.94). There was also not a significant reward x delay interaction (χ2(1) =
0.01, p = .93). For full clarity, although there was no reward x delay 
interaction, the effect of reward is consistent at both time points (both 
p’s < 0.68). This suggests that the amount one organizes their memory 
based on temporal context is not influenced by reward value, nor does it 
change after a delay. 
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Finally, our main question of interest was to understand if reward 
may be considered a higher-order category that can be used to organize 
memory. To answer this question, we calculated the normalized prob-
ability of transitions in which people either stayed or switched reward 
category (i.e., high-high or low-low versus high-low or low-high, 
respectively). For both stay and switch transition probabilities, we 
found significant main effects of reward (stay: χ2(1) = 34.31, p < .001; 
Fig. 5 and Table 3, left, switch: χ2(1) = 34.30, p < .001; Fig. 5 and 
Table 3 right), with greater stay among high- and greater switch among 
low-reward words. This suggests that when a high-reward word had just 
been recalled, the next word was more likely to be high-reward. Simi-
larly, when a low-reward word had just been recalled, the next recall 
was again more likely to be high-reward. We found non-significant ef-
fects of delay (stay: χ2(1) = 0.09, p = .77, switch: χ2(1) = 0.50, p = .48) 
and reward x delay interactions (stay: χ2(1) = 1.74, p = .19, switch: 
χ2(1) = 0.80, p = .37). Again, the stay and switch effects remain sig-
nificant at both time points individually (all p’s < 0.05). Since these 
calculations were normalized as a function of all words that could have 
possibly been recalled next, not just the words that were recalled, this 

Fig. 2. Example calculation of reward clustering for high-reward stay transitions. Low-reward clustering and switch transition probabilities were calculated in a 
similar manner. Each colored square represents an individual word, while the outline reflects its reward value. We calculated clustering in two ways to ensure that 
clustering by reward was not due to the greater availability of high-reward words: a normalized and a corrected score. The normalized transition probability was 
calculated as the number of stay transitions from the given reward condition divided by the number of all possible transitions that could have been made from that 
reward condition. Second, the corrected clustering score was defined as the difference between real and chance transition probabilities. The real transition prob-
ability is non-normalized, where the number of stay transitions from the reward condition was divided by total number of actual transitions made from that reward 
condition. Then the chance transition probability was taken for each transition, such that the number of recalled words remaining from the reward condition that 
hadn’t been recalled yet was divided by the total number of transitions that were remaining. 

Fig. 3. Free recall accuracy difference by reward. Error bars represent 95% CI. 
*** p < .001. 
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reward clustering effect supersedes the possibility of clustering simply 
due to greater availability of high-reward words in memory. 

To further confirm that these findings were not due to the reward 
difference in free recall accuracy, we compared clustering scores against 
chance performance (calculated individually and dynamically for each 
participant). We show fewer stay (χ2(1) = 2.94, p = .09) and switch 
transitions (χ2(1) = 16.35, p < .001) from high-reward words. Although 
the effect of reward on stay transitions is not as strong here as in the 
normalized analysis, the pattern remains consistent. There was not a 
significant effect of delay or reward x delay interaction for stay or switch 
transitions (all p’s > 0.34). While only significant for switch transitions 
across condition, this is confirmation that value creates a context used to 
organize memory, above and beyond the explanation that recalling 
high-reward words together may result from the greater availability of 
them in memory. 

3.2. Study 2 

In Study 1, we showed that reward structures memory organization 
around higher-order contexts rather than temporal features. Prior work 
has suggested that motivationally-relevant influences on memory may 
only exist in the context of mixed lists in study-test designs where salient 
items (e.g., high reward) have increased transient attentional demands 
since they are intermixed with less important items (Talmi et al., 2019; 
Talmi, Kavaliauskaite, & Daw, 2021). It is possible that the memory 
enhancement and categorical organization shown in Study 1 could be a 
result of either increased local attentional demands due to a “pop-out” 

effect of salient items, or reward could lead to increased sustained states 
of motivated encoding. To differentiate between these two possibilities, 
in Study 2 we characterized reward enhancements on recall accuracy 
using pure lists, with a test only after all learning was completed, where 
there would be no bias in transient attentional demands for high-reward 
items given that all items in each list have the same reward value. 
Therefore, if we see the same reward accuracy effects as Study 1, this 
would suggest that the reward-memory enhancement can be sustained 
for extended periods of time, rather than relying on salience within the 
local temporal environment. 

Similar to recognition memory in Study 1, here, we again found a 
significant effect of reward (χ2(1) = 3.85, p = .05), suggesting better 
recognition of high-value items. In the free recall domain, results 
showed significant effects of reward (χ2(1) = 43.02, p < .001; Fig. 6; 
Table 4) and delay (χ2(1) = 10.97, p < .001). Together, this suggests 
better recall memory for items of high value and overall worse memory 
after a 24-h delay. Finally, we found a non-significant interaction be-
tween reward and delay (χ2(1) = 1.95, p = .16), meaning that reward’s 
influence on memory is not delay-dependent. Given that we saw sig-
nificant effects of reward both in the context of mixed and pure lists, we 
conclude that this reward-memory benefit can exist in a state of sus-
tained high salience across a list, and not solely when the local envi-
ronment induces attentional salience changes. 

4. CMR simulations 

4.1. Simulation approach 

Next, we simulated our data from both studies using the Context 
Maintenance and Retrieval model (Polyn et al., 2009) to understand the 
potential mechanisms that support our accuracy and reward clustering 
effects. CMR is a neural network model of memory search that describes 
how items are encoded and compete to be retrieved. Each item is 
associated with a context state, which changes over time as more items 
are encoded or retrieved. The model contains a feature, or item, layer 
and a temporal context layer. When a new item is presented, the context 
is updated through a feature-to-context matrix during both encoding 
and retrieval. During retrieval, a context-to-feature matrix guides 
memory search in which the current state of the context cues retrieval of 

Table 1 
Multilevel model comparison measuring reward, delay, and group influences on 
word-level recall accuracy. Bold p-value represents significant effect.   

Recall 
Predictors M Odds ratios CI p 
(Intercept)  1.16 0.46–2.97 0.751 
Reward  2.25 1.93–2.61 <0.001 

High 0.42    
Low 0.28    

Day  0.78 0.65–0.93 0.005 
Immediate 0.42    
Delay 0.31    

Group  0.48 0.27–0.87 0.015 
1 0.40    
2 0.25     

Random effects 
σ2 3.29   
τ00 subject 1.12   
τ00 word 0.29   
ICC 0.30   
Nsubject 56   
Nword 50   
Observations 4200   
Marginal R2 / Conditional R2 0.067 / 0.347    

Fig. 4. Temporal clustering by reward. Error bars represent 95% CI. ns p > .05.  

Table 2 
Multilevel model comparison measuring reward, delay, and group influences on 
temporal clustering. Bold p-value represents significant effect.   

Temporal clustering 
Predictors M Estimates CI p 
(Intercept)  0.76 0.65–0.87 <0.001 
Reward  −0.01 −0.05–0.03 0.609 

High 0.72    
Low 0.71    

Day  0.00 −0.05–0.05 0.940 
Immediate 0.72    
Delay 0.71    

Group  −0.04 −0.11–0.03 0.304 
1 0.72    
2 0.69     

Random effects 
σ2 0.02   
τ00 subject 0.01   
ICC 0.33   
Nsubject 54   
Observations 158   
Marginal R2 / Conditional R2 0.012 / 0.342    
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the next word as items compete to be recalled. The item with the 
resulting highest activation given the current context will be retrieved. 
CMR also contains a source layer, which indicates contextual, task, or 

Fig. 5. Stay and switch transition probability by reward. Probability of transitioning within (stay; left) or across (switch; right) reward condition. Error bars represent 
95% CI. *** p < .001. 

Table 3 
Multilevel model comparison measuring reward, delay, and group influences on stay and switch transition probabilities. Bold p-value represents significant effect.   

Stay transitions Switch transitions 
Predictors M Estimates CI p M Estimates CI p 
(Intercept)  0.04 0.03–0.05 <0.001  0.04 0.03–0.05 <0.001 
Reward  −0.01 −0.02 to −0.01 <0.001  -0.01 −0.02 to −0.01 <0.001 

High 0.03    0.03    
Low 0.02    0.02    

Day  −0.00 −0.01–0.00 0.768  −0.00 −0.01–0.00 0.768 
Immediate 0.03    0.03    
Delay 0.03    0.03    

Group  −0.00 −0.01–0.00 0.144  −0.00 −0.01–0.00 0.144 
1 0.03    0.03    
2 0.02    0.02     

Random effects 
σ2 0.00    0.00   
τ00 subject 0.00    0.00   
ICC 0.30    0.30   
Nsubject 54    54   
Observations 160    160   
Marginal R2 / Conditional R2 0.167 / 

0.415    
0.167 / 
0.415    

Fig. 6. Free recall accuracy difference by reward. Error bars represent 95% CI. 
*** p < .001. 

Table 4 
Multilevel model comparison measuring reward, delay, and group influences on 
word-level recall accuracy. Bold p-value represents significant effect.   

Recall 
Predictors M Odds ratios CI p 
(Intercept)  1.37 0.55–3.45 0.499 
Reward  0.61 0.53–0.71 <0.001 

High 0.33    
Low 0.24    

Day  0.75 0.64–0.89 0.001 
Immediate 0.34    
Delay 0.26    

Group  0.56 0.31–1.01 0.054 
1 0.31    
2 0.22     

Random effects 
σ2 3.29   
τ00 subject 1.15   
τ00 word 0.23   
ICC 0.30   
Nsubject 59   
Nword 50   
Observations 4450   
Marginal R2 / Conditional R2 0.039 / 0.323    
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state shifts. We used a source layer here to discriminate between high- 
versus low-reward items (Talmi et al., 2019, 2021). 

Model simulations tested the effect that three parameters had on the 
effects of interest: drift rate, learning rate, and the source layer. Notably, 
these three measures have been manipulated to account for multiple 
findings in free recall in prior work (Howard & Kahana, 2002a; Lohnas, 
Polyn, & Kahana, 2015; Polyn et al., 2009; Rouhani, Norman, Niv, & 
Bornstein, 2020). Drift rate is defined as the distance by which the 
temporal context changes, or “drifts”, when a new item is presented. An 
item that enters temporal context with a high drift rate, compared to a 
low drift rate, triggers greater representational change to the temporal 
context at encoding. Learning rate determines how strongly an item is 
bound or associated with the context, including both temporal and 
source contexts when relevant. A higher learning rate means an item is 
stamped more strongly into the context. Typically, a variable learning 
rate would be applied to both the temporal and source layers, but our 
results showed a similar pattern when learning rate was only modulated 
by reward within the source layer and kept static in the temporal layer. 
Therefore, our results will be presented with the latter, simpler model. 
The source layer, which contains two units, one for each reward cate-
gory, determines the reward context to which each item belongs. 

We evaluated whether manipulating these parameters as contingent 
on reward (i.e., a higher drift/learning rate for high-reward items and 
having a source layer or not) would exhibit the same behavioral effects 
presented above. Defining two separate source categories for the reward 
conditions is identical to the approach used by Talmi et al. (2019, 2021) 
in the context of both reward- and emotion-related effects on memory. 
Given the relatively minimal amount of data available from each 
participant (i.e., without a study-test design), we were not able to 
conduct model fitting in which the value of parameters would be 
determined based on a given participant’s data. Instead, the values for 
the baseline of all parameters (i.e., for low-reward items) were taken 
from Polyn et al., 2009; see Table 5). The values for the high-reward 
learning and drift rates were moderately increased from baseline, but 

not drawn from any previously fit values. Our recall data was collected 
immediately after encoding as well as after a 24-h delay. To simulate the 
delay, we decreased the drift rate at recall for the delay test (Talmi et al., 
2019). We ran 10,000 simulations for each parameter, as well as all 
possible combinations, for the immediate and delay tests separately. For 
each simulation, a random participant’s data was selected to inform the 
model of the reward category for each encoded word. We qualitatively 
compared each individual parameter and their combinations to our 
behavioral data to determine which model most closely represented our 
accuracy and reward clustering findings (Talmi et al., 2019). For each 
study, we will describe the most plausible model simulation along with 
the pattern exhibited by each parameter on its own (see Polyn et al., 
2009 for model equations). 

4.2. Study 1 

Since we tested memory immediately and after a 24-h delay, we 
simulated our data at each time point separately. However, the pattern 
of effects in the immediate and delay tests were similar, so for simplicity, 
we will be discussing model simulations across delay conditions, but 
visualize them separately in our figures. 

The model that resulted in a pattern most like our behavioral findings 
included a reward-dependent learning rate and a source layer that 
differentiated the two reward categories. This set of parameters showed 
accuracy (Fig. 7) and reward clustering (Fig. 8) patterns that mirrored 
the greater probability of recall for high-reward words and greater stay 
compared to switch transition probability for high-reward words, 
respectively. The role of the source layer is to create two separate reward 
contexts through which items of the same value category are associated. 
These distinct categorical contexts may enhance memory for items in 
both reward categories because they all have stronger contextual fea-
tures without distinguishing one category as more goal-relevant than the 
other. However, the learning rate creates stronger associations between 
items and their contexts, more so for high-reward words, which serves 
memory for the goal-relevant items. Since the high-reward items have 
stronger contextual associations, they are more likely to win the recall 
competition, leading to greater free recall and clustering rates. 
Combining learning rate with source creates an additive benefit where 
the source associations lead to enhanced memory and clustering for each 
reward category, and the learning rate leads to stronger item-context 
associations for high-reward words. Overall, we conclude this model 
to show the strongest and most plausible overlap to our findings above 
and beyond any parameter by itself or any possible combination of the 
three parameters with each other. While our manipulation of the 
parameter space was limited to these three, it is possible that another 
sub-model could provide a better account of the data. Fitting the model, 
rather than simulating it as we did here, could reveal a more precise 
picture; however, this approach was not possible given our design and 
limited amount of data available. 

Next, we detail how manipulating each parameter on its own influ-
enced accuracy and clustering simulations. First, by turning on a dy-
namic drift rate for rewarded items, we can determine whether 
increasing the representational distance between learned items in the 
temporal context influences the degree of recalling and clustering 
rewarded items. Drift rate appeared to have the least impact on both 
effects such that greater context change does not lead to a greater 
likelihood of high-reward items being recalled or clustered. Second, we 
use the source layer to measure the extent to which creating categorical 
contexts, which links items of the same reward condition, influences the 
likelihood of words being retrieved and recalled contiguously. Creating 
separate reward contexts led to no difference between high- and low- 
reward accuracy or clustering; however, it equally boosted memory 
and clustering for both conditions beyond any of the other parameters. 
Third, we manipulate the learning rate to determine how creating 
stronger item-context associations influences recall dynamics. The 
learning rate exhibited a reward difference in accuracy and reward 

Table 5 
CMR parameters including drift (β) and learning (γ) rates used across all models 
(left) when the parameters were static or contingent on reward, and when there 
was a source layer. Encoding parameters were consistent across both delays. 
Recall parameters were defined separately for the immediate (‘imm’) and delay 
(‘del’) tests. Parameters used in the most plausible models for Study 1 (middle) 
and Study 2 (right).  

Parameter Value Study 1 most plausible 
model 

Study 2 most plausible 
model 

Static 
βenc 0.6 ✓ ✓ 

γencCF 1   
γencFC 0.581 ✓ ✓ 

βrec, imm 0.36 ✓ ✓ 

βrec, del 0.25 ✓ ✓ 

γrecCF 0 ✓ ✓ 

γrecFC 0 ✓ ✓  

Reward-contingent 
βenc, low 0.6   
βenc, high 0.8   
γenc, lowCF 1 ✓ ✓ 

γenc, highCF 2 ✓ ✓ 

βenc, lowsource 0.5 ✓  

βenc, highsource 0.7 ✓  

γenc, lowCF source 0.1 ✓  

γenc, highCF source 0.3 ✓   

Source layer features 
γencFC 0.898 ✓  

βrec, immtemp 0.51 ✓  

βrec, deltemp 0.4 ✓  

βrec, immsource 0.59 ✓  

βrec, delsource 0.59 ✓   
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clustering similar to our behavioral findings, but at a lower rate than our 
data. Creating stronger item-context links for goal-relevant items may 
cue other high-reward items that also share strong item-context asso-
ciations, leading to greater probability of recall and clustering. Finally, 
in testing each combination of parameters, with a main interest in 
combining a dynamic learning rate and source layer for rewarded items, 
we conclude that learning rate and source together are the most 
reasonable features to explain our data by more strongly associating the 
high-reward items with their context and creating a categorical context 
for high- and low-reward words. 

4.3. Study 2 

We simulated CMR in Study 2 in the same manner as Study 1 at each 
time point separately. Each parameter on its own showed a similar 
pattern to Study 1 (Fig. 9). First, the drift rate again did not result in 
better memory for high-value items, and in fact showed the opposite 
effect, potentially because representing low-reward items closer in time 
when learned in one list increases their associations with one another. 
The source layer also enhanced memory, but specifically for low-reward 
words. This may again be likely because of the lower drift rate for low- 
reward words making them more similar within category. Similar to 
Study 1, learning rate was crucial in supporting reward’s enhancement 

Fig. 7. Free recall accuracy difference by reward simulated with CMR at the immediate (left) and 24-h delay (right) tests. The simulations are overlaid on the 
behavioral data at each time point. The most plausible model, learning rate and source, is represented by the purple dot with thick black outline. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Stay (top) and switch (bottom) transition probability differences by reward simulated with CMR at the immediate (left) and 24-h delay (right) tests. The 
simulations are overlaid on the behavioral data at each time point. The most plausible model, learning rate and source, is represented by the purple dot with thick 
black outline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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on recall accuracy, but interestingly was enough to show this effect and 
did not need the additional support of the source layer. The nature of the 
design in Study 2 intrinsically groups words by reward category and it is 
therefore unnecessary for participants to use this higher-order type of 
organization when the design already does so. Thus, creating stronger 
item-context associations for valuable information is enough to support 
memory when the learning environment already contains a higher-order 
category structure. Again, since our simulations tested a constrained 
search of the parameter space, it is possible that a better sub-model 
could be revealed with model fitting. 

5. Discussion 

Across two studies, we investigated how reward influences the or-
ganization of memories, delineating roles for temporal context and de 
novo higher-order reward contexts, as well as putative mechanistic 
underpinnings using model simulations. In Study 1, we found that 
reward did not influence the extent to which participants clustered their 
recall around temporal context, but instead created a category for high- 
reward items where the probability of transitioning within category was 
greater for high- than low-reward words. Given that there was greater 
clustering by high reward, we posit that although a reward category is 
created for both high- and low-value information, the stronger binding 
of high-reward words to their source context leads to the difference in 
reward-related organization. In Study 2, we showed that reward en-
hances memory in pure lists as it does for mixed lists, suggesting that 
sustained salience, rather than just attentional changes, supports 
reward-memory enhancements. 

To bolster and extend our empirical findings, we simulated these 
results using a neural network model of free recall, a reward-mediated 
variant of CMR. This approach allowed us to determine that in Study 
1, the most plausible account of our accuracy effects came from a model 
that included a biased learning rate for high-reward items and a separate 
source layer for each reward category. This combination of parameters 
modeled value-based contextual associations through the source layer 
by enhancing memory for both high- and low-value information, while 
learning rate enhanced memory specifically for high-reward words by 
creating stronger item-context associations. These findings dovetail with 
a recently developed variant of CMR (eCMR) tailored to model 
emotional memory, and has been replicated in the reward domain 
(Talmi et al., 2019, 2021). eCMR demonstrated that emotional-memory 
enhancements are driven by an emotion-contingent learning rate and 
source layer, suggesting parallelism between the mechanistic un-
derpinnings of value- and emotion-related memory. Simulations in 
Study 2 showed that when a higher-order categorical structure is already 

established in the learning environment, learning rate alone is enough to 
support increased memory for high-value information. These two 
studies reveal different potential mechanistic underpinnings of reward- 
memory benefits, but this is not particularly surprising given their 
differing goals and designs. In Study 2, temporal and reward contexts 
were confounded so that we could examine memory accuracy in the 
context of pure lists as opposed to mixed lists in Study 1. Moreover, 
given that we only manipulated a small portion of the parameter space 
in CMR, it is possible that with more data available to fit the model as 
opposed to simulating it, a different sub-model could provide a more 
accurate depiction of the data. However, our simulations provide a proof 
of concept that item-context and contextual associations underly 
reward-related memory enhancements and organization. 

Our CMR simulations showed very similar patterns among simula-
tions of reward clustering. By creating stronger item-context associa-
tions through the learning rate, and defining separate reward contexts 
through the source layer, high-reward items were more likely to be 
recalled contiguously. Within the source layer, there is a separate 
learning rate for the temporal and source contexts. It is typical to 
manipulate the learning rate in both contexts, but we interestingly found 
the same patterns when only modulating the source context (presented 
above). Although we cannot directly equate the temporal and source 
contexts because they contain a different number of units, it is inter-
esting to note that this model with only a source learning rate was suf-
ficient to replicate the effects we saw in the full model. While we are not 
able to make direct comparisons, this presents some evidence that cat-
egorical features of memory may be targeted by reward to drive accu-
racy and clustering enhancements. 

Together, these patterns support the notion that reward may not 
influence memory solely by strengthening the binding of items to their 
temporal features as events unfold. Rather, our findings suggest that 
individuals construct de novo categories around value, and that episodic 
information is bound to these contexts to support more adaptive forms of 
organization. While in neutral contexts it is typical to recall information 
in a similar temporal order to that which it was learned, under a moti-
vational context such as reward, this may not be the most adaptive 
feature to target. Instead, it may be more adaptive to note important 
relationships that exist between items, such as how related they are to 
one another based on their relative importance to a current or future 
goal. However, future work tapping into how memory organization by 
reward value relates to future adaptive decision-making is necessary to 
test these hypotheses. 

The creation of de novo categories around which memories can be 
organized is not a novel idea, and in fact has been discussed in length by 
Barsalou (for example, see Barsalou, 1983). Barsalou discussed how new 

Fig. 9. Free recall accuracy difference by reward simulated with CMR at the immediate (left) and 24-h delay (right) tests. The simulations are overlaid on the 
behavioral data at each time point. The most plausible model, learning rate, is represented by the yellow dot with thick black outline. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

E.A. Horwath et al.                                                                                                                                                                                                                             



Cognition 231 (2023) 105315

11

categories of information can be created (e.g., “items to sell at a garage 
sale” or “things to take on a camping trip”) but that these differ from 
common categories (e.g., “fruits” or “mammals”) due to their necessity 
in certain contexts. Common categories, which are well established in 
memory, allow for associations to be formed during encoding and 
retrieval (Barsalou, 1983). When existing common categories are not 
specific enough to help achieve a goal, it would be necessary to create a 
new one (Barsalou, 1991), such as determining what to bring when 
preparing for a camping trip, or when instructed to remember certain 
items to earn a monetary bonus. Creating categories that link items of 
like value allows them to be better remembered, leading to the receipt of 
the goal. 

These behavioral findings provide some insight into the underlying 
neural mechanisms driving differences in memory organization, when 
considering them in conjunction with prior neuroimaging work. Re-
ward’s influence on memory is known to be largely supported by hip-
pocampal involvement in concordance with the VTA (Adcock et al., 
2006; Murty & Adcock, 2017). It is widely accepted that the HPC sup-
ports episodic memory and item-context binding (Davachi, 2006). 
However, recent evidence suggests that both of these regions may be 
more involved in conceptual knowledge than previously thought 
(Cowan, Fain, et al., 2021; Morton et al., 2021). Given the VTA and 
HPC’s involvement in reward and conceptual aspects of memory, we 
posit that reward may facilitate higher-order memory, the functions of 
which could extend to the domain of reward and value generalization. In 
fact, in other domains, hippocampal engagement has been shown to 
support the generalization of reward information across related items 
(Kahnt, Park, Burke, & Tobler, 2012; Wimmer, Daw, & Shohamy, 2012; 
Wimmer & Shohamy, 2012), a process which has also been shown 
behaviorally where reward generalizes across semantic categories to 
other category members that were retroactively tagged as important 
(Patil et al., 2017). Relatedly, HPC-VTA interactions have been shown to 
support retroactive generalization of valuable information, however in 
the context of threat (Clewett, Dunsmoor, Bachman, Phelps, & Davachi, 
2020). Given this work, in addition to our findings here, we propose that 
reward targets higher-order features of memory in service of providing a 
more adaptive form of memory organization. 

In a parallel question, we explored the nature of the mechanisms 
which may be driving reward-memory effects, namely whether these 
effects exist in states of both high- and low- transition frequencies be-
tween salient and non-salient items (Talmi et al., 2019). We distinguish 
between these two mechanisms by measuring reward’s influence on 
memory in pure and mixed lists. Within this framework, an enhance-
ment of memory only in mixed lists would suggest reward-memory ef-
fects may be due to high transitions between salient items, whereas 
enhanced memory in pure lists would suggest a mechanism present in 
states of sustained salience. In both Study 1, which used a mixed list 
paradigm, and Study 2, which used pure lists, we found significant 
reward accuracy effects in which high-reward words were more likely to 
be later recognized and recalled. This suggests that reward-memory 
effects may not only be due to salience in local temporal environ-
ments, but rather may extend across periods of time, which dovetails 
well with models of VTA-HPC circuits guiding periods of tonic motiva-
tional engagement (Murty & Adcock, 2017; Shohamy & Adcock, 2010). 
We take this to indicate that in salient states, regardless of the transition 
frequency, reward-memory enhancements and organization of memory 
by reward category are likely supported by creating stronger item- 
context and categorical associations for valuable information. 

While our goal was to understand how reward motivation shapes 
memory organization, there are several factors that are important to 
disentangle from our effects. First, it is possible that these effects of 
reward could be explained by lower-level processes such as allocating 
greater attention, rehearsal, or strategy use to high-value information. 
Previous work has shown that similar attentional processes are dedi-
cated to both high- and low-value information measured by equivalent 
fixations to both sets of information (Ariel & Castel, 2014). Similarly, 

individual differences in working memory capacity and strategy use 
(Elliott, McClure, & Brewer, 2020) as well as more rehearsal of high- 
reward information (Stefanidi et al., 2018) are not related to value- 
directed remembering. All of this is taken to suggest that low-level 
processing does not drive reward’s effect on memory. Instead, the 
encoding of valuable stimuli seem to engage deeper encoding strategies 
(Elliott & Brewer, 2019), relying on frontotemporal semantic networks 
(Cohen, Rissman, Suthana, Castel, & Knowlton, 2014), suggesting the 
necessity of higher-level processing. Further, another potential expla-
nation of these effects is that participants explicitly remember the value 
associated with the given words. However, much evidence has shown 
that people have low source memory for reward value, which suggests 
that this is an automatic encoding process and does not rely on explicit 
knowledge of the words’ reward category. While source memory would 
likely rely on higher-order processes, this evidence is contradictory and 
therefore does not reveal a clear mechanism. Thus, further work is 
necessary to fully understand the potential processes at play. 

Additionally, given the large literature on consolidation-dependent 
reward memory (for example, see Murayama & Kitagami, 2014; Mur-
ayama & Kuhbandner, 2011; Wang & Morris, 2010), it was expected 
that consolidation may play a role in reward-related memory organi-
zation such that this higher-order form of organization would only 
appear after a delay. However, evidence from a recent study showing 
that some features of memory (i.e., schema use) are constructed during 
encoding but may not express themselves until after a delay (Tompary, 
Zhou, & Davachi, 2020), supports our findings that an organizational 
structure may occur immediately. It would be important for future 
research to tease apart the circumstances under which reward’s influ-
ence on memory is and is not consolidation-dependent. 

In summary, we have shown enhanced memory for items of high 
value, effects which can exist in sustained states of reward. We found 
that reward does not influence memory through temporal features 
during reward-motivated encoding, but rather organizes memory by de 
novo reward information that provides an associative link in memory for 
items deemed valuable. While we have investigated these aspects of 
memory under states of reward motivation, these effects may also be 
true for goal-relevant information or in the context of agency, which 
engages similar neural circuitry (Murty, DuBrow, & Davachi, 2015). 
Further research is needed to understand whether these features extend 
into other motivational domains. Taken together, as opposed to 
remembering all of the details of an event in order, it may be more 
adaptive to target and link together important information so that it may 
be more accessible when working towards a goal. 
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