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Decision uncertainty during hypothesis testing
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Humans actively seek information to reduce uncertainty, providing insight on how our decisions causally affect the world.

While we know that episodic memories can help support future goal-oriented behaviors, little is known about how hypoth-

esis testing during exploration influences episodic memory. To investigate this question, we designed a hypothesis testing

paradigm, in which participants figured out rules to unlock treasure chests. Using this paradigm, we characterized how hy-

pothesis testing during exploration influenced memory for the contents of the treasure chests. We found that there was an

inverted U-shaped relationship between decision uncertainty and memory, such that memory was best when decision un-

certainty was moderate. An exploratory analysis also showed that surprising outcomes lead to lower memory confidence

independent of accuracy. These findings support a model in which moderate decision uncertainty during hypothesis testing

enhances incidental information encoding.

[Supplemental material is available for this article.]

Individuals explore the uncertain world by seeking information

and updating hypotheses garnered from prior experience. For ex-

ample, when purchasing milk in a new grocery store, a customer

will typically go to the back corner of the store with the hypothesis

that milk is usually stored there. If a customer fails to find milk in

the back corner of a new grocery store, they will continue looking

formilkwith another hypothesis of wheremilkmight be. This type

of exploration facilitates hypothesis testing to resolve uncertainty,

but open questions remain as to how this type of hypothesis test-

ing influences episodicmemory. For example, does the uncertainty

about the grocery store’s layout affect the strength of this event in

memory?We designed a novel hypothesis testing paradigm to un-

cover how active hypothesis testing influences learning and mem-

ory during exploration.

Prior research on exploration and memory suggested that ac-

tive exploration enhances memory and several underlying mecha-

nisms, such as elaborative encoding, metacognitive monitoring,

and selective attention (Voss et al. 2011; Markant et al. 2016; Rug-

geri et al. 2019), have been proposed. However, little is known

about how hypothesis testing during exploration of complex envi-

ronment influences memory. Niv et al. (2015) suggested that indi-

viduals test hypotheses about higher-order concepts to resolve

uncertainty to explore in multidimensional environments, but

this prior work did not investigate whether and how this type of

hypothesis testing has a downstream influence on episodic mem-

ory. We propose that hypothesis testing during exploration

requires an assessment of the relative uncertainty in the environ-

ment, and these estimates of decision uncertainty will have a

downstreameffect on episodicmemory by influencing the internal

motivational state during encoding. Notably, this type of decision

uncertainty may facilitate interrogative motivational states in

whichmemory is not only enhanced for the targets of goal pursuit,

but rather generalized to multiple features of the environment

(Murty and Adcock 2014). In this way, decision uncertainty during

encoding could lead to bettermemory for incidental features of the

environment. Prior research has explored howmotivational states

can influence incidental information for goal-irrelevant informa-

tion in the context of reward (Murty and Adcock 2014) and curios-

ity (Gruber et al. 2014), but these mechanisms have yet to be

explored in the context of hypothesis testing.

A growing body of research has studied intrinsic motivational

states during information seeking, and shown an inverted

U-shaped relationship with task difficulty during problem-solving.

Specifically, individuals are most motivated to work on problems

with moderate levels of difficulty because information uptake

was the highest (Metcalfe and Kornell 2003). Thus, resolvingmod-

erate levels of uncertainty should lead to most information uptake

and decrease in decision uncertainty in uncertain environments.

Given that individuals are motivated to reduce prediction errors

during exploration (Friston and Kiebel 2009), intermediate uncer-

tainty should be most motivationally relevant. Prior research also

suggested that an individual’s motivational state is a significant

determinant of memory (Murty and Adcock 2014), including inci-

dental yet salient events; therefore, we hypothesize that moderate

decision uncertainty during hypothesis testing would yield the

greatest memory enhancements. However, surprise and decision-

uncertainty often co-occur during hypothesis testing. Given that

prior research has shown that surprise enhances memory in the

context of reward (Rouhani et al. 2018; Jang et al. 2019; Rouhani

and Niv 2021), we are also interested in testing how surprise influ-

ences memory in the context of hypothesis testing (see the

Supplemental Material).

To capture how hypothesis testing influences episodic mem-

ory, we designed a novel hypothesis testing paradigm combined

with reinforcement learning models, which allows us to investi-

gate themechanism of howhypothesis testing influencesmemory

by estimating trial-by-trial variation in decision uncertainty.

Furthermore, these same reinforcement learning models allow us

to simultaneously assess surprise to contrast which is a better pre-

dictor of differences in memory encoding (see the Supplemental
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Material). We hypothesized that (1) individuals would seek infor-

mation about higher-order concepts during our task, (2) memory

would be enhanced during active hypothesis testing, and (3) en-

hancedmemory during active hypothesis testing is driven by trials

with moderate decision uncertainty.

Results

We tested participants on a novel hypothesis testing paradigm to

examine how decision uncertainty influences memory in the con-

text of hypothesis testing, based on prior research examining rein-

forcement learning in a multifeatured environment (Niv et al.

2015). In brief, participants completed a deterministic hypothesis

testing task (Fig. 1A), where participants were instructed to choose

one of three keys to unlock a treasure chest. Participants could

learn the target feature by testing the efficacy of different keys. If

participants selected the correct key, the chest would open reveal-

ing a trial-unique object. To ensure participants continue explor-

ing different target features over the entire block, the target

feature changed after participants responded correctly for four con-

secutive trials. In the control condition (Fig. 1C), participants com-

pleted forced-choice trials in which they were instructed to choose

a golden key from three keys given (one golden key and two gray

keys). Outcomes of the control task were yoked to the outcomes

of the previous hypothesis testing task to control for factors other

than participants’ motivational state, such as overall trial number

and trial spacing.

Feature, rather than item, updating better captures

participants’ hypothesis testing behavior
Prior research has suggested that participants could use at least two

approaches to learn in a multidimensional environment: item up-

dating and feature updating (Niv et al. 2015). During item updat-

ing, individuals attempt to learn the associations between

specific keys and their outcomes. During feature updating, individ-

uals attempt to learn the value of individual features of the key

(e.g., handle color) and pick the key with the most predictive fea-

tures. This strategy integrates acrossmultiple experiences to identi-

fy the most reward-predictive features of the environment. In the

instructions, participants were told to figure out correct keys by

testing out different features; therefore, we hypothesize that the

feature updating strategy would better predict participants’ behav-

iors. Cross-validated model prediction showed that both strategies

significantly predicted behavior (item updating RL: mean learning

rate: 0.99, mean probability: 0.40, chance: 0.33; t=21.09, P<

0.001; feature updating: mean learning rate: 0.36, mean probabil-

ity: 0.53, chance: 0.33; t=43.02, P<0.001) (Fig. 2B). As predicted,

model comparison using a “leave one subject out” cross-validation

approach showed that feature updating outperformed item updat-

ing in predicting choice behavior (t=22.73, P<0.01).

We next examined trial-level performance to confirm that

within a block, feature learning outperforms item updating. The

four trials before a feature switch are an important test of our mod-

els because subjects have identified a strategy that can successfully

identify the correct key for four consecutive trials. We found in-

creasing predictive accuracy from four trials before a feature change

to the feature changing trial for both item updating RL (ŷ−4 =

0.38, ŷ−3=0.41, ŷ−2=0.50, ŷ−1=0.48, ŷ0 = 0.49) and fea-

ture updating RL (ŷ−4=0.44, ŷ−3=0.60, ŷ−2=0.73, ŷ−1=

0.77, ŷ0 = 0.79) (Fig. 2C). Again, predictive accuracy was higher

for feature updating RL than for item updating RL (t=24.86, P<

0.01), further indicating that feature updating strategies outper-

formed an item updating strategy in predicting choice behavior,

which is consistent with previous findings on decision-making

in multidimensional environments (Niv et al. 2015). For the win-

ning feature updating model, we found that although predictive

accuracy increased across four trials before a feature change, there

was no significant learning across the entire task (Fig. 3).

Moreover, there was small variance of learning rate across partici-

pants (mean=0.36; SD=0.006) and learning rate did not predict

memory performance on the second days.

Influences of hypothesis testing on 24-h memory
Next, we compared memory performance during the hypothesis

testing condition and the control condition. Participants showed

significantly better memory for objects presented during the hy-

pothesis testing condition than control condition (β=0.24, SE=

0.10, P=0.02) (Fig. 3A). There were no significant effects of

counterbalance order (β=−1.83, SE=0.30, P=0.54) or a condition*

counterbalance order interaction (β=−0.24, SE=0.14, P=0.10)

(Fig. 3B). However, multiple features of encoding could be driving

memory differences across tasks. Thus, in our next set of analyses

we explored how specific mechanisms underlying hypothesis test-

ing, such as decision uncertainty, influence memory encoding.

Decision uncertainty was modeled as the difference between

the highest chosen probability and the second highest chosen

probability from the feature updating reinforcement learning

model for a given trial. Decision uncertainty decreased across the

four trials before a feature change, where trials at feature change

mostly constitute low decision uncertainty, fourth trial before a

feature change mostly constitute high decision uncertainty and

the second and the third trial before a feature change mostly con-

stitute intermediate decision uncertainty (Figs. 4, 5). We found an

inverted U-shaped relationship between decision uncertainty and

memory accuracy (β=−1.04, SE =0.48, P=0.03), such thatmemory

was enhanced at middle levels of decision uncertainty, compared

with high and very low levels of decision uncertainty.

To control for the effects of factors such as the distribution of

decision uncertainty, overall trial number in our task and to rule

out spacing effect, we performed a control analysis in which the de-

cision uncertainty estimates were applied to the yoked control con-

dition. This control analysis did not reveal a linear (β=−0.54, SE=

0.51, P=0.29) or quadratic (β=0.57, SE=0.49, P=0.25) relationship

between decision uncertainty and memory accuracy for the control

condition. Moreover, the inverted U-shaped relationship between

decision uncertainty andmemory accuracy remained significant af-

ter direct comparison of the experiment condition and the control

condition (β=−0.32, SE=0.15, P=0.03). More specifically, relative

to memory for objects presented during the control task, memory

was only enhanced at moderate decision uncertainty (β=0.19, SE

=0.08, P=0.02). Memory at high (β=0.04, SE=0.13, P =0.72) and

low decision (β=−0.03, SE=0.12, P=0.77) difficulty was not differ-

ent from the control condition. In addition to this quadratic effect,

there was also a linear relationship between decision uncertainty

andmemory accuracy (β=1.12, SE=0.50, P =0.03), such that mem-

ory accuracy decreased as decision uncertainty increased. Model

comparison suggested that the quadratic model was significantly

better than the linear model (AICquadratic=2455.1, AIClinear=

2457.6, P=0.03) (Fig. 6). The same analyses were run to examine

how surprise influenced memory accuracy (see the Supplemental

Material). Moreover, an exploratory analysis has been run to exam-

ine how decision uncertainty and surprise influenced memory con-

fidence (see the Supplemental Material; Supplemental Fig. S1).

Discussion

To understand the influence of hypothesis testing on episodic

memory, we tested participants on a novel hypothesis testing

task. Using reinforcement learning models, we found participants

formed and tested hypotheses about target features and

Influence of decision uncertainty on memory
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generalized this learning to new stimuli. Furthermore, we found

that hypothesis testing enhanced incidental memory for the

targets of the tested hypothesis compared with a visuo–motor

matched control condition. Critically, memory enhancements

only emergedwhen individuals hadmoderate amounts of decision

uncertainty, which theoretically represents when individuals

should be most motivated to seek information. Together, these

findings support a new model in which decision-uncertainty dur-

ing hypothesis testing enhances memory encoding for incidental

information encountered during exploration.

We found an inverted U-shaped relationship between deci-

sion uncertainty and memory, such that memory is enhanced at

moderate decision uncertainty. Previous research suggested that

individuals are most motivated to learn items that are neither too

difficult nor too easy (Metcalfe and Kornell 2003). For easy items,

learning is fast and information uptake is the largest initially, but

with little subsequent increase. For items of intermediate difficulty,

even though the initial information uptake is smaller, gains are

more sustained throughout the task (Metcalfe and Kornell 2003).

During hypothesis testing, we propose that decision uncertainty

reflects trial difficulty and influences individuals’ judgment of

learning. Trials at moderate decision uncertainty are of intermedi-

ate difficulty. Given that individuals aremotivated to reduce uncer-

tainty during exploration (Friston and Kiebel 2009), trials at

moderate decisionuncertainty aremost likely to triggermotivation

to resolve uncertainty (Monosov 2020). Motivational states during

encoding have previously been shown to enhance hippocampus-

dependent memory for incidental events in the context of reward

(Murty and Adcock 2014), and our findings extend these mecha-

nisms to the domain of hypothesis testing. Our findings also dove-

tail well with a growing body of research on curiosity, which shows

that individuals are most curious when there is intermediate deci-

sion uncertainty (Gottlieb et al. 2016), which may then enhance

incidental encoding of the environment (Gruber et al. 2014;

Gruber and Ranganath 2019; Murphy et al. 2021). However, we

do not have a direct measure of motivational states and curiosity.

Therefore, the interpretations could be speculative. Future studies

are needed to directly test the underlying mechanisms.

Our hypothesis testing paradigm showed that individuals

learn and encode high-order features during hypothesis testing.

In turn, hypothesis testing enhancesmemory atmoderate decision

uncertainty. However, hypothesis testing in the real world is more

complex because the outcomes not only depend on an individual’s

own actions, but also on uncertainty in the environment (Wilson

BA

C

D

Figure 1. Overview of the task. (A) Hypothesis testing task. Participants were instructed to choose a key from three keys given, with the goal to open
treasure chests. Choosing a key with target feature would open the treasure chest and a trial-unique object would be shown inside the treasure chest.
Otherwise, the treasure chest stayed closed. (B) Three different dimensions for a key and three different features for a dimension. (C) Control task.
Participants were instructed to choose the golden key from three keys given. Outcomes of the control task were yoked to outcomes of the hypothesis
testing task. (D) Surprise memory task. Participants were presented with all the images from the hypothesis testing task and control task and the same
number of new images. Participants need to indicate whether they saw the image during encoding.
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and Niv 2012; Choung et al. 2017). In the current study, we could

not fully capture this aspect of uncertainty in the environment

because we implemented a deterministic design. For example, in

our design, if a subject picked a key and found the treasure chest

did not open, the subject could be confident that the chosen key

did not include a target feature, could rule out the three features

of the chosen key, and test the other features. However, in many

situations, we cannot attribute an outcome to a single cause or

completely rule out options during hypothesis testing. Therefore,

a probabilistic design, where an unopened treasure chest could

be due to an incorrect key, but can also be due to the probabilistic

nature of the context, is needed in the future to unpack howuncer-

tainty influences memory.

In summary, our study uncovers the learning and memory

mechanisms underlying hypothesis testing, suggesting that indi-

viduals learn information about higher-order features to update

their beliefs about an uncertain environment, which then enhanc-

es memory encoding for incidental information. Our study also

goes beyond previous research on decision-making and memory

and suggests that the underlying mechanism of decision-making

enhanced memory is moderate decision uncertainty.

Materials and Methods

Participants
Thirty-five participants (ages 18–26, seven males) were recruited
from Temple University via SONA. This sample size was calculated

using a power analysis with 0.8 power and d=0.5 effect sizewith an
alpha of 0.05 (Murty et al. 2015). Temple University’s Institutional
Review Board approved study materials and procedures. All partic-
ipants provided informed consent and were compensated for their
time with course credits. Four participants were excluded because
they did not completemore than one rule in the hypothesis testing
condition (see below for details).

Stimuli
Our task involved participants selecting keys to unlock a treasure
chest, which revealed an object image (detailed below). Object im-
ages were drawn from the Snodgrass and Vanderwart (1980) image
set. Forty object images were selected for the practice run, 120 ob-
ject images were selected for the encoding task on the first day, and
another 120 object images were selected for the memory task on
the second day. Images were randomized as to which portion of
the task they would appear. Each key consisted of three features se-
lected from three dimensions: key handle shape (circle, triangle, or
rectangle), color (red, blue, or yellow), and key tip shape (1, 2, or 3),
which resulted in 27 different keys (Fig. 1B).

Procedure
In the hypothesis testing condition (Fig. 1A), participantswere pre-
sented with a treasure chest and three different keys on each trial.
Participants were instructed to choose a key within 3 sec, with the
goal of opening asmany treasure chests as possible. The level of de-
cision uncertainty varied during hypothesis testing, allowing us to
investigate how decision uncertainty influenced trial-by-trial
memory later (see below). If participants did not make a choice
within 3 sec, “too slow” was presented on screen and the task au-
tomatically moved to the next trial. After a key was chosen, the
chosen key was highlighted for 1 sec, followed by the outcome
of the choice (either closed or open treasure chest). The treasure
chest opened if the participant selected the key that included the
target feature. If the treasure chest opened, participants viewed a
trial-unique object. Because the object inside a treasure chest did
not provide any useful information regarding updating their be-
liefs about target features, we considered the objects as incidental
information and conducted a surprise memory test for the objects
at a 24-h delay. The outcome remained on screen for 3 sec. The out-
comes of the task were deterministic. Treasure chests opened as
long as the key with the correct feature was chosen. In the control

B

A

Figure 2. Hypothesis testing enhances memory encoding. (A) After
24-h of delay, memory was better for objects presented during the hy-
pothesis testing task than the control task. Error bars are 95% confidence
interval. (B) Model estimate from mixed effect model, where task condi-
tion and counterbalance order and the interaction were submitted as
fixed effects and objects and subjects were submitted as random effects.
Only the main effect of conditions was significant.

Figure 3. Predictive accuracy for the feature updating reinforcement
learning model across the entire task. Because participants completed dif-
ferent number of trials for the task, we only show learning across the four
trials before a feature change. We found that predictive accuracy increased
across four trials before a feature change, but no learning across rules. Red
vertical lines indicate the fourth trial before a feature change.
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condition (Fig. 1C), individuals’ choices had no effect on out-
comes. On each trial, a treasure chest along with a golden key
and two gray keys was presented. Participants were instructed to
choose the golden key only and the treasure chest would open
sometimes. Removing the color feature of the keys in the control
condition precluded active hypothesis testing, but did not influ-
ence other measures, such as decision uncertainty. Then, as in
the hypothesis testing task, the chosen key was highlighted before
the outcomewas shown. Because the number of trials for a hypoth-
esis testing block can vary, the outcomes of the control task were
yoked to the outcomes of the previous hypothesis testing task
from that subject to ensure the equivalent outcome sequences
and exposure to object image across conditions. Participants saw
the same number of object stimuli during the hypothesis testing
condition and the yoked control condition. Notably, treasure
chests never opened when participants chose gray keys. Most sub-
jects followed the instructions and only chose golden keys.
Therefore, the control condition ensured factors other than moti-
vational state to be the same as the hypothesis testing condition.
The order of hypothesis testing condition and control condition

was counterbalanced across subjects, such that one group of partic-
ipants completed the hypothesis testing condition first, and an-
other group of participants completed the control condition first.

Before performing the task, participants received on-screen
instructions showing them the three different dimensions (color,
key handle shape, and key tip shape) of a key and were instructed
that in the hypothesis testing task, only one target feature would
open the treasure chest. To ensure participants were not incentiv-
ized by monetary rewards, no monetary rewards were offered for
opening the treasure chests. Participants practiced six trials in
which the target feature was instructed, then they completed a
quiz to ensure they understood the instructions. Finally, they com-
pleted a practice run in which target features were not instructed.
The practice run was identical to a task run but used different stim-
uli. In the practice run, one group of participants completed one
block of hypothesis testing task first, followed by one block of con-
trol task. The control task was yoked to the hypothesis testing task
in the practice, where the outcome sequence for the control task
was the same as the outcome sequence for the previous hypothesis
testing task. Another group of participants completed one block of
control task, followed by one block of hypothesis testing task. The
control task in the practice run for the second group had 40 trials,
with 50% of chance opening the treasure chest to see the object
stimuli by choosing the golden key.

The task consisted of three runs, and each run consisted of a
block of the hypothesis testing task and a block of the control
task. The group that started with the hypothesis testing task in
the practice also started with the hypothesis testing task in the
real test, followed by a control task. The control task was yoked
to the previous hypothesis testing task to ensure the outcome se-
quences for the control tasks were the same as the hypothesis test-
ing task. The second group that started with the control condition
in the practice run, started with the control task in the real test, fol-
lowed by a hypothesis testing task. The first control task in the real
test was yoked to the hypothesis testing task in the practice run.
The control tasks in the second and third runwere yoked to the hy-
pothesis testing task in the previous runs. Pilot data suggested that
four consecutive correct trials implied that participants success-
fully learned the target feature. Therefore, to motivate continuous
hypothesis testing throughout the task, target features changed af-
ter participants responded correctly for four consecutive trials. A
new target feature was randomly selected from a total of nine dif-
ferent features. Participants were not told that the target feature
would change after certain trials, and they need to figure out the
feature change by themselves. The block terminated after subjects
opened twenty treasure chests. As a result, the number of trials

Figure 5. Changes of decision uncertainty and surprise across the four
trials before a feature change, including the trial at switch. (Blue line)
Decision uncertainty decreased across the four trials before a feature
change, including the trial at switch. (Orange line) Surprise decreased
across the four trials before a feature change, but increased at trial of
switch (see the Supplemental Material for detailed results on surprise).

B

A

C

Figure 4. Feature RL outperformed item RL. (A) Item RL only updated
value for the chosen key, whereas feature RL updated values for all keys
that shared features with the chosen key. (B) Cross-validated model prob-
ability suggested that both feature RL and item RL predicted the data sig-
nificantly better than chance (gray dash line), and feature RL
outperformed item updating RL across all three blocks. (C) There is increas-
ing predictive accuracy for the last four trials before a rule switch and the
switching trial for both feature RL and item RL. Participants did not know
the switching trial until they saw the feedback. At the trial level, both
feature RL and item RL still predicted the data significantly better than
chance (gray dashed line), and feature RL outperformed item RL in predict-
ing at the trial level.
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varied across runs. However, this ensured that each subject was ex-
posed to the same number of object images.

At an ∼24-h delay, participants were instructed to perform a
self-paced, recognition task testing theirmemory for the objects re-
vealed by the treasure chests, allowing us to relate memory perfor-
mance to signals, such as decision uncertainty and surprise, from
the hypothesis testing task on the first day. Participants were
shown an object image and had to indicate whether they had pre-
viously seen the object image and their confidence (“definitely
old,” “maybe old,” “maybe new,” and “definitely new”).
Participants completed 240 recognition trials including 60 objects
from the hypothesis testing condition, 60 objects from the control
condition, and 120 novel objects.

Behavioral data analysis
All statistical analyses were conducted in R version 3.6.1.
Mixed-effects models were run using the “lme4” package glmer
function (Bates et al. 2015). Each model included random inter-
cepts for each participant to control for individual differences in
memory performance, each object image to control for different
memorability of object images, total number of rules for each sub-
ject and overall trial number for each subject. Condition (Hypoth-
esis testing, control), block order and their interaction were
submitted as fixed effects. Reaction times (RTs) before feature
changeswere calculated by averaging across RTs of four trials before
a feature change; RTs after feature changes were calculated by aver-
aging across RTs of four trials after a feature change. RTs from the
hypothesis testing task were submitted to a paired t-test with con-
dition (RTs before feature changes, RTs after feature changes) as the
independent variable. Memory accuracy was calculated as the hit
rate. Memory confidence was calculated by grouping “definitely
old” and “definitely new” responses as high memory confidence
and grouping “maybe old” and “maybe new” responses as low
memory confidence. We tested a model with memory accuracy
and memory confidence as separate variables and tested another
model including confidence inmemory. We found that the model
that treated memory accuracy and memory confidence separately
was a better model.

Computational models
To capture learning strategies participants used during the hypoth-
esis testing task, we compared reinforcement learning (RL) models

with different task representations participants may have used to
solve the task (Fig. 2A).

Item updating RL with decay

Item updating is a learning strategy in which individuals learn val-
ues for each of the 27 keys in the hypothesis testing task. Thismod-
el does not generalize between keys, suggesting a key treasure
memorization strategy. No higher-order hypothesis about features
is formed. After choosing a key, K, the value of this key, Vk, is up-
dated as Vnew

k = Vold
k + a(R− Vold

k ), where α is the learning
rate, and R is the outcome (treasure or no treasure). Note that there
were nomonetary rewards in the task. Values of unchosen keys de-
cay according to Vunchosen

k = Vunchosen
k × g, where γ is the decay pa-

rameter. At the beginning of each block, the Vk is initialized to 0.

Feature updating RL with decay

Feature updating RL implies a higher-order concept learning strat-
egy in which participants generalize across keys to isolate the
reward-predictive feature. Participants learn feature weights:

Wnew
f = Wold

f + a(R−Wold
f ). The value of each key, V(K), is the

sum of values of its three features: V(K) =
∑

f[K

Wf . The feature

weights can be thought of as a form of selective attention that en-
hances themore reward-predictive features of eachkey (Leong et al.
2017). As in the itemmodel, the values of unchosen features are de-
cayed, with the decay rate controlled by γ. Note that inclusion of
the decay parameter improved the performance of both models,
consistent with previous reports (Niv et al. 2015). Values of the
nine different features are initialized at 0 at the beginning of
each run.

Decision-making

For both models, we modeled choices using a softmax decision

function over the values of keys, p(Ki) = emV(Ki)/
∑3

j=1 e
mV(Kj), to

calculate the chosen probability of each key for a given trial, i. m
is the inverse temperature parameter that controls the level of noise
in the decision process. We fit models by maximizing the log like-
lihood of observed choices for all other subjects using SciPy’s min-
imize function with the BFGS method.

Model comparison

To compare different models, we used a “leave one subject out”
cross-validation approach. For each model, the model was fit to
the data for all other subjects. This approach avoids overfitting
by pooling data from multiple subjects (Ballard et al. 2018). We
computed the average likelihood per block for each subject. This
metric varies from 0 to 1, where 1/3 is the chance level.

Figure 7. Correlation of decision uncertainty and surprise. An individual
example of changes of decision uncertainty and surprise in one block. Gray
dashed line indicates switching trials.

Figure 6. Relationship between memory accuracy and decision uncer-
tainty. There was a significant linear relationship between memory accura-
cy and decision uncertainty (red). Memory accuracy decreased as decision
uncertainty increased. On top of that, there was also a significant inverted
U-shaped relationship between memory accuracy and decision uncertain-
ty (blue). Memory was enhanced at moderate decision uncertainty. Black
dots indicate individual subject data.
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Estimating 24-h memory performance using decision

uncertainty and surprise derived from reinforcement

learning models
Individuals explore an uncertain environment with the goal of re-
ducing uncertainty. Varied levels of decision uncertainty are im-
portant for individuals to update beliefs about the uncertain
environment, which guides future decision-making. To under-
stand the underlying mechanism of how exploration influences
memory, we derived decision uncertainty from RL models (Fig.
7). We also derived surprise from RL models given previous re-
search suggesting that surprise enhances memory (Rouhani et al.
2018) (see the Supplemental Material).

Decision uncertainty

Decision uncertainty estimates how uncertain participants were
about the choice on each trial. Decision uncertainty is defined as
1− (P

highest
k − P

second highest
k ), where P is the probability of action

for each key under the softmax function. Higher values indicate
higher decision uncertainty.We used difference between the high-
est chosen probability and the second highest chosen probability
for a given trial, instead of entropy, because during hypothesis test-
ing, participants can rule out one possibility easily and ultimately
need to decide between two options. Entropy depends on chosen
probability of all three options. Therefore, we decided to use deci-
sion difficulty instead of entropy to capture decision uncertainty
during hypothesis testing.

Surprise

Surprise estimates the prediction errors at the outcome (treasure re-
vealed or withheld). surprise is defined as R− Vchosen

k .
Higher values indicate larger surprise. Surprise is positively

correlated with decision uncertainty (r=0.83, P<0.01). In the fea-
ture updatingmodel, because the expected value of a key (Vk) is the
sum of weights on the individual features, the expected value of a
key can be >1. A positive reward of 1 can lead to a slightly negative
RPE. We used signed prediction errors as surprise.

Because previous research suggested that binned values are
more effective to capture nonlinear relationships (Jang et al.
2019), we divided decision uncertainty and surprise into five quan-
tiles, with roughly equal number of trials in each quantile. Binned
decision uncertainty and surprise were then submitted into a
mixed effect model with the fixed effects as subject and object im-
ages as random effect.
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